九年级数学: 《用列表法求概率》教学设计
《用列表法求概率》教学设计
4.2.2 用列举法求概率第1课时用列表法求概率【知识与技能】1.进一步在具体情境中了解概率的意义.2.会用列表法求出简单事件的概率.【过程与方法】通过生活中简单的例子,通过列表列举出事件的所有结果,进而求指定事件的概率.【情感态度】通过小组合作、探究、发现解决数学问题的方法和途径,从而激发求知欲.【教学重点】用列表法求概率的过程与方法.【教学难点】理解“等可能事件”,摸球或抽卡片放回与不放回的区别.一、情境导入,初步认识活动1:一枚硬币连续掷两次,求下列事件概率.(1)两次全部正面朝上;(2)两次全面反面朝上;(3)一次正面朝上,一次反面朝上.学生分组讨论,思考,教师让学生回答解题结果:(1)14(2)14(3)12教师问:解决上述问题,能否用一个表格先列举出所有可能结果,再解题呢?这个表格应怎样列,学生先动手试试看,然后教师展示列表.思考:若能先列出表格,列举出试验的所有结果,再求确定事件的概率,是否要简捷一些.二、思考探究,获取新知在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性都相等,可以用列表列举出试验结果的方法,分析出随机事件的概率.例李明和刘英各掷一枚骰子,如果两枚骰子的点数之和是奇数,则李明赢,如果两枚骰子的点数之和为偶数,则刘英赢,这个游戏公平吗?【分析】1.游戏对双方是否公平,要看双方获胜的概率是否相等,若相等,则公平,若不相等,则不公平.2.各掷一枚骰子,可能出现的结果比较多,为了不重不漏,可用列表法列举出所有可能结果.解:列表从表中可以看出,出现点数之和为奇数的结果有18种,出现点数之和为偶数的结果也有18种.∴P(李明胜)=181362=,P(刘英胜)=181362=,所以游戏公平.【教学说明】以上例可以看出用列表法求概率的关键是能根据题意正确列出表格,用表格列举出事件出现的所有结果.活动2:教师引导学生完成教材P128的“做一做”.【教学说明】用列表法求概率适用的对象是:1.试验出现各种结果的个数是有限个.2.试验涉及两个因素或分两步完成,如掷两个骰子,抽两张卡片,两次摸球等.强调:当试验为模球或抽卡片时,一定要分清第一次摸球或抽卡片后,“球”与“卡”是否放回,即“放回”与“不放回”结果是不同的.三、运用新知,深化理解1.从1,2,3,4,5五个数中任意取出2个数做加法,其和为偶数的概率是()2.均匀的正四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是()3.(福建福州中考)从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是()4.(山东潍坊中考)将一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色”的概率是________(红色和蓝色配成紫色).5.(湖北黄冈中考)在一个口袋中有4个完全相同的小球,把它们分别标号1,2,3,4.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x,小强摸出球的标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.【教学说明】学生先自主解答,再教师引导分析讲解,加深对新知识理解.【答案】1.C 2.B 3.B 4.1 185.解:(1)由题意知(x,y)共有(1,2)(1,3)(1,4)(2,1)(2,3)(2,4)(3,1)(3,2)(3,4)(4,1)(4,2)(4,3)共12种,其中x>y有6种,∴小明获胜的概率P(x>y)=612=12.(2)由题意知(x,y)除(1)中情形外,还有(1,1)(2,2)(3,3)(4,4)共16种.其中x>y有6种.∴x>y的概率P(x>y)=616=38<12,∴游戏规则不公平.四、师生互动,课堂小结1.师生共同回顾用列表法求概率的方法和步骤.2.通过本节课的学习,你掌握了哪些新知识,还有哪些疑问,请与同伴交流.1.教材P129第1、2题.2.完成同步练习册中本课时的练习.本节课从掷硬币试验引出用列表法求简单事件的概率,通过学生自己动手列表,加深对新知识的掌握和认识,并运用所学知识解决实际问题,体验应用知识的乐趣.。
初中数学教学课例《用列表法求概率》教学设计及总结反思
发展应用意识。
学生学习能
学生在做有关将球放不放回的问题上有些困难,特
力分析 别不明确提出放不放回的情况下。
让学生亲自做摸球游戏,引导学生完成我提出的问 教学策略选
题。还让学生准备好扑克牌,同桌做摸牌游戏,教师提 择与设计
出问题,学生讨论,再回答问题。
问题情境:1、求随机事件概率的一般步骤。2、我
初中数学教学课例《用列表法求概率》教学设计及总结反思
学科
初中数学
教学课例名
《用列表法求概率》
称
本节课主要学习用列举法求概率。
教学重点:能够利用列表法和树形图法计算简单事 教材分析
件发生的概率。教学难点:判断何时采用列表法或树形
图意义,能够利
用列举法计算事件发生的概率,并阐明理由。 教学目标
们用什么方法求概率。学生回答问题,通过回答的方式, 教学过程
帮助学生回忆上节课所学的知识,为本节课的学习准备
好知识基础。
通过学生自主探求列表法、使学生在何时应用列表
课例研究综 法、何时利用树形图法有更深的理解,指导学生如何规
述
范应用列表法解决概率问题,使学生在不同的情境下体
会列表法的特点,加深学生对列表法的理解。
列表法求概率教案初中
列表法求概率教案初中教学目标:1. 使学生在具体情境中了解概率的意义,初步学会用列举法(包括列表)计算随机事件发生的概率。
2. 使学生能够从实际需要出发判断何时选用列表法或画树形图法求概率更方便。
3. 利用分类思想合理列举随机事件所有可能发生的结果,提高化复杂问题为简单问题的能力,发展思维的条理性。
教学重点:1. 能够运用列表法计算简单事件发生的概率,并阐明理由。
2. 利用有序分类思想合理列举随机事件所有可能发生的结果。
教学难点:1. 利用有序分类思想合理列举随机事件所有可能发生的结果。
教学准备:1. 教学课件或黑板。
2. 骰子、卡片等教学道具。
教学过程:一、导入(5分钟)1. 引入概率的概念,解释概率是表示一个事件发生可能性的大小的数值。
2. 强调初中阶段只学习可能出现的结果只有有限个,且每种结果出现的可能性相等的事件的概率。
二、新课讲解(15分钟)1. 讲解列表法的概念:当一次试验涉及两个因素(或两步实施)而每一因素又有多种情况时,用列表的方法列举出所有可能的结果。
2. 举例说明列表法的应用:掷两个骰子的可能结果,用列表法列举出所有可能的结果,并计算某些事件的概率。
三、课堂练习(15分钟)1. 让学生分组进行练习,每组选择一个具体情境,用列表法计算随机事件发生的概率。
2. 引导学生思考何时选用列表法或画树形图法求概率更方便。
四、总结与反思(5分钟)1. 让学生总结本节课所学的内容,巩固对列表法的理解和应用。
2. 引导学生反思在实际问题中如何判断和使用列表法或画树形图法求概率。
教学延伸:1. 引导学生进一步学习分类列举法和树形图法求概率。
2. 结合实际问题,让学生运用概率知识解决生活中的问题。
教学反思:本节课通过讲解和练习,使学生初步了解了概率的意义和列表法的应用。
在教学过程中,要注意引导学生思考何时选用列表法或画树形图法求概率更方便,以及如何利用有序分类思想合理列举随机事件所有可能发生的结果。
初中数学《用列举法求概率》教案
课时教学设计个因素(例如抛掷两枚骰子)改为“把一枚骰子掷两次”,(1)满足两枚骰子点数相同(记为事件A)的结果有6个(表中斜体加粗部分),所以P(A)=636=16;(2)满足两枚骰子的和是9(记为事件B)的结果有4个(表中的阴影部分),所以P(B)=436=19;(3)满足至少有一枚骰子的点数为2(记为事件C)的结果有11个(表中方框部分),所以P(C)=1136步骤列表;求出表中可能出现的结果的总数n;统计某种随机事件可能发生的结果的数目m;用公式P(A)=mn计算概率.个分支,在分支下的第三行分别写上H和I;④按竖向把各种可能的结果竖着写在下面,就可得出所有可能的结果的总数(即机会均等的结果的总数m),再找出符合要求的种数,就可以利用概率的意义计算概率了.依据题意,我们可以画出如下的树状图:从树状图中可以看出,所有可能出现的结果共有12个,且这些结果出现的可能性相等,只有一个元音字母的结果有5个,即ACI,ADH,BCI,BDI,BEH,所以P(一个元音)=5 12;全是辅音字母的结果有两个,即BCH,BDH,所以P(三个辅音)=21= 126.的值,,∵共有6种等可能的结果,抽取2名,恰好是1名女生和1名男生有4种情况,∴抽取2名,恰好是1名女生和1名男生概率为23.称为几何概型).小猫在如图所示的地板上自由地走来走去,并随意停留在某块方砖上(图中每一块方砖除颜色外完全相同),求它最终停留在黑色方砖上的概率.由于试验中等可能发生的结果无法计数,所以此时的概率可以用所关注区域(即所有黑色方砖)的面积除以可能发生的区域(即所有方砖)的面积.不妨设小方砖的面积为1,由几何概型的概率公式知,P(停留在黑砖上)=41=164.2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的百分比.若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是 %.板书设计。
人教版九年级数学上册(教案)25.2第1课时 用列表法求概率 教案
25.2用列举法求概率第1课时用列表法求概率教学目标1.会用列举法(直接列举、列表法)求简单事件的概率,进一步培养随机观念.2.感受分步分析对思考较复杂问题时起到的作用.教学重点用列表法求简单随机事件的概率.教学难点如何使用列表法.教学设计一师一优课一课一名师(设计者:)教学过程设计一、创设情景明确目标1.掷一枚质地均匀的硬币有几种可能的结果?它们的可能性相等吗?正面向上的概率是多少?2.“把掷一枚质地均匀的硬币”改为“同时掷两枚质地均匀的硬币”有几种可能的结果?它们的可能性相等吗?两个硬币全部正面向上的概率是多少?问题2与问题1相比,条件发生了哪些变化?如何解答?二、自主学习指向目标1.自读教材第136至137页.2.学习至此:请完成学生用书“课前预习”部分.三、合作探究达成目标探究点一用列举法求概率活动一:出示教材第136页例1,思考下列问题:(1)使用两枚硬币作抛掷硬币试验,理解“所有可能的结果共有4种,并且这4种结果出现的可能性相等”;(2)“正反”与“反正”是相同的结果吗?(3)随机事件“一枚硬币正面朝上,一枚硬币反面朝上”包含哪几种结果?【展示点评】当第一枚硬币正面向上,第二枚硬币有正、反两种情况;同理,第一枚硬币为反面的情况下,第二枚有正、反两种情况,所有的结果共有4个,并且这4个结果的可能性相等.【小组讨论】两枚硬币可以编上序号以示区分,再完成例2中的3个问题,看与例2解答有何区别?【反思小结】“同时掷两枚硬币”与“先掷一枚硬币再掷一枚硬币”这两种试验所出现的结果是一样的.有的随机事件发生的概率可以转化成与之发生概率相同的随机事件进行研究.【针对训练】见学生用书“当堂练习”知识点一探究点二用列表法求概率活动二:出示教材第136页例2,思考下列问题:(1)当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重复不遗漏地列举出所有可能的结果,通常用什么办法?(2)例2中的表左边的一列表示第二个骰子的点数共有几种等可能的结果?上边一行表示第一个骰子的点数共有几种等可能的结果?其他部分像(1,6)这样的单元格共有多少种情况?【展示点评】由表可以得到:两个骰子点数相同的结果有:________________________________________________________________________;两个骰子点数和是9的结果有:________________________________________________________________________;至少有一个骰子点数为2的结果有:________________________________________________________________________.【小组讨论】如果把例2中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果共有多少种?试用列表法分析.【反思小结】用列表法求概率的前提是一次试验涉及的因素只有两个,并且各种结果出现的可能性都相等.求符合列表法求概率的等可能随机事件的概率的几个基本步骤:一列表;二描述表中可能出现的结果的总数n及各种结果出现的可能性相等;三统计满足某种随机事件发生的结果的数目m,并列举出来;四用公式P=m,n计算概率.【针对训练】见学生用书“当堂练习”知识点二四、总结梳理内化目标1.在一次试验中,当可能出现的结果只有________个,且各种结果出现的可能性大小________时,我们可以用________试验结果的方法,求出随机事件发生的概率.2.列举法求概率目前学到两种方法:一是直接列举法;二是通过表格列举法.3.用表格列举法求概率的步骤:(1)列表;(2)分析表中的结果的特征:有多少种可能出现的结果,并且各种结果出现的可能性相同;(3)计算概率:用公式P=m,n计算.五、达标检测反思目标1.李进有红、黄、白3件运动上衣和白、黑2条运动短裤,若任意组合穿着,则穿着“衣裤同色”的概率是__1,6__.2.(2015·衡阳)某校学生会正筹备一个“庆毕业”文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,求选出的两名主持人“恰好为一男一女”的概率__2,3__.3.从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是( A )A.1,3 B.1,4 C.1,6 D.2,12六、布置作业巩固目标1.上交作业:教材第140页第3,5,7题.2.课后作业:见学生用书的“课后作业”部分.教学反思。
用列表求概率教案
用列表求概率教案教案标题:用列表求概率教案目标:1. 理解概率的基本概念和原理。
2. 掌握使用列表方法求解概率问题的技巧。
3. 培养学生的逻辑思维和问题解决能力。
教学资源:1. 黑板/白板和彩色粉笔/马克笔。
2. 学生用纸和铅笔/钢笔。
3. 教学PPT或投影仪。
教学过程:引入(5分钟):1. 引导学生回顾概率的基本概念,例如事件、样本空间和概率的定义。
2. 提出一个简单的问题,例如抛硬币的结果是正面还是反面的概率是多少?引导学生思考如何解决这个问题。
探究(15分钟):1. 解释列表法求解概率的基本原理:将所有可能的结果列成一个列表,然后计算感兴趣事件出现的次数与总次数的比值。
2. 通过一个具体的例子,例如掷骰子,向学生演示如何使用列表法求解概率问题。
3. 让学生尝试解决几个简单的概率问题,例如抽取一张扑克牌的红心的概率是多少?拓展(15分钟):1. 引导学生思考更复杂的概率问题,例如从一个袋子中抽取不同颜色的球的概率是多少?2. 提供更多的例子和练习,让学生在小组或个人中尝试使用列表法求解概率问题。
3. 引导学生总结列表法求解概率问题的步骤和技巧。
实践(15分钟):1. 将学生分成小组,给每个小组分发一些概率问题,要求他们使用列表法解决。
2. 每个小组派代表上台演示他们的解决过程和答案,其他小组进行评价和讨论。
3. 教师给予肯定和指导,纠正学生可能存在的错误,并强调解决问题的思路和方法。
总结(5分钟):1. 回顾本节课的学习内容,强调列表法在求解概率问题中的应用。
2. 鼓励学生在日常生活中运用概率知识解决问题。
3. 鼓励学生继续探索更复杂的概率问题,并提供相关的参考资料。
作业:布置一些概率问题作为课后作业,要求学生使用列表法求解,并在下节课上交。
25.2 用列举法求概率(第一课时)(教学设计)九年级数学上册同步备课系列(人教版)
25.2 用列举法求概率(第一课时)一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十五章“概率初步”25.2 用列举法求概率(第一课时列表法求概率),内容包括:用列举法(列表法)求简单随机事件的概率.2.内容解析在一次试验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫做列举法. 当每次试验涉及两个因素时,为了更清晰、不重不漏地列举出试验的所有结果,教科书给出了以表格形式呈现的列举法——列表法.这种方法适合列举每次试验涉及两个因素,且每个因素的取值个数较多的情形.相对于直接列举法,用表格列举体现了分步分析对思考较复杂问题时起到的作用.将试验涉及的一个因素所有可能的结果写在表头的横行中,另一个因素所有可能的结果写在表头的竖列中,就形成了不重不漏地列举出这两个因素所有可能结果的表格.这种分步分析问题的方法,将在下节课树状图法中进一步运用.基于以上分析,确定本节课的教学重点是:用列表法求简单随机事件的概率.二、目标和目标解析1.目标1)会用直接列举法、列表法列举所有可能出现的结果.2)用列举法(列表法)计算简单事件发生的概率.2.目标解析达成目标1)的标志是:对于结果种数有限且每种结果等可能的随机事件,可以用列举法求概率;当每次试验涉及两个因素,且每个因素的取值个数较多时,相对于直接列举,采用表格的方式更有利于将试验的所有结果不重不漏地表示出来.达成目标2)的标志是:掌握列表法求概率的步骤:1)列表;2)通过表格计数,确定所有等可能的结果数n和符合条件的结果数m的值;,计算出事件的概率.3)利用概率公式P(A)=mn三、教学问题诊断分析学生已经理解了列举法求概率的含义,但对于涉及两个因素的试验,如何不重不漏地列举出试验所有可能的结果这对学生而言是一种考验,如何设计出一种办法解决这个较复杂问题,“分步”分析起到了重要作用.基于以上分析,本节课的教学难点是:掌握列表法求概率的步骤.四、教学过程设计(一)复习巩固【提问】简述概率计算公式?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾上节课所学内容,为接下来学习利用列表法求概率打好基础.(二)探究新知【问题一】老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,学生赢. 你们觉得这个游戏公平吗?师生活动:教师提出问题,学生尝试思考.【设计意图】通过现实生活中的实际问题,激发学生学习数学的兴趣.【问题二】同时掷两枚硬币,求下列事件的概率:1)两枚硬币两面一样.2)一枚硬币正面朝上,一枚硬币反面朝上.3)问题一中的游戏公平吗?师生活动:教师提出问题,先要求学生说出可能出现的情况.部分学生认为:上述三个事件恰好代表了抛掷两枚硬币的所有可能的结果,故概率分别为13;另一位学生认为:出现结果为:正正、正反、反正、反反,其中“正反”与“反正”应分别算作两种可能的结果,故上述事件的概率分别为14,14和12.教师强调:在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫做列举法.师:你觉得问题一中的游戏公平吗?师生活动:学生通过刚才的结论得出:学生赢的概率与教师赢的概率相等,所以该游戏是公平的. 教师补充说明:上述这种列举法我们称为直接列举法(枚举法)并给出使用直接列举法的注意事项.【设计意图】让学生掌握用列举法求概率的使用条件:①所有可能出现的结果是有限个.②每个结果出现的可能性相等.【问题三】“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?由此你发现了什么?师生活动:教师共同作答,得出:同时掷两枚硬币,会出现:两正、两反,一正一反和一反一正;先后两次掷一枚硬币,也会出现:两正、两反,一正一反和一反一正.所以这两种实验的所有可能的结果一样.教师指出:“两个相同的随机事件同时发生”与“一个随机事件先后两次发生”的结果是一样的,因此作此改动对所得结果没有影响.当试验涉及两个因素时,可以“分步”对问题进行分析.【设计意图】让学生理解当试验涉及两个因素时,可以“分步”对问题进行分析.(三)典例分析与针对训练例1 小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是_________【针对训练】1. 从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为____________2. 如图,4×2的正方形的网格中,在A,B,C,D四个点中任选三个点,能够组成等腰三角形的概率为______________3.(2020·江苏南通·统考中考真题)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:1)写出这三辆车按先后顺序出发的所有可能结果;2)两人中,谁乘坐到甲车的可能性大?请说明理由.4.(2022·江苏南京·统考中考真题)甲城市有2个景点A、B,乙城市由3个景点C、D、E,从中随机选取景点游览,求下列事件的概率:(1)选取1个景点,恰好在甲城市;(2)选取2个景点,恰好在同一个城市.【设计意图】巩固用列举法求概率.(四)探究新知【问题三】同时投掷两个质地均匀的骰子,观察向上一面的点数,求下列事件的概率.1)两个骰子的点数相同.2)两个骰子点数的和是9.3)至少有一个骰子的点数为2.师生活动:师生分析得出,与问题二类似,问题三的试验也涉及两个因素(第一枚骰子和第二枚骰子),但这里每个因素的取值个数要比问题二多(抛一枚硬币有2种可能的结果,但掷一枚骰子有6种可能的结果),因此试验的结果数也就相应要多很多.因此,直接列举会比较繁杂,可以使用列表法.列表法适合列举每次试验涉及两个因素,并且每个因素的取值个数较多的情形.师:如何列表?师生活动:学生分析,因为试验涉及两个因素(两枚骰子),可以分两步进行思考,将第1枚骰子的所有可能结果作为表头的横行,将第2枚骰子的所有可能结果作为表头的竖列,列出如下表格:由上表可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相同.1)两枚骰子的点数相同(记为事件A)的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以P(A)= 636= 16 2)两枚骰子的点数相同(记为事件B)的结果有4种,即(3,6),(6,3),(5,4),(4,5) 所以P(B)= 436= 193)至少有一个骰子的点数为2(记为事件C)的结果有11种,即(1,2),(2,2),(3,2),(4,2),(5,2),(6,2) (2,1),(2,3),(2,4),(2,5),(2,6)所以P(B)= 1136【设计意图】明确列表法.【问题四】简述列表法求概率的步骤?师生活动:教师提出问题,学生尝试回答.教师引导与归纳得出:1)列表;2)通过表格计数,确定所有等可能的结果数n 和符合条件的结果数m 的值;3)利用概率公式P (A )=mn ,计算出事件的概率.【设计意图】让学生掌握列表法求概率的方法.(五)典例分析与针对训练例2 一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是_______________【针对训练】1. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行调查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是______________2.从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛.(1)若甲一定被选中参加比赛,再从其余3名学生中任意选取1名,恰好选中乙的概率是___________;(2)任意选取2名学生参加比赛,求一定有丁的概率.3.在一个不透明的口袋中装有大小材质完全相同的三个小球,分别标有数字3,4,5, 另有四张背面完全一样的卡片,卡片正面分别标有数字2,3,4,5,四张卡片背面朝上放在桌面上.小明先从口袋中随机摸出一个小球,记下小球上的数字为x,小红再从桌面上随机抽出一张卡片,记下卡片上的数字为y.(1)从口袋中摸出一个小球恰好标有数字3的概率是___________;(2)求点P(x,y)在直线y=x−1上的概率.【设计意图】巩固列表法求概率的方法.(六)直击中考1.(2023·安徽中考真题)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59 B.12C.13D.292.(2023·湖南中考真题)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是()A.16 B.14C.13D.123.(2023·黑龙江齐齐哈尔中考真题)某校举办文艺汇演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是()A.12 B.13C.14D.16【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点. (七)归纳小结1. 通过本节课的学习,你学会了哪些知识?2. 用列举法求概率应该注意哪些问题?3. 列表法适用于解决哪类概率求解问题?使用列表法有哪些注意事项?(八)布置作业P138:练习五、教学反思。
用列表法求概率 初中九年级数学教案教学设计课后反思 人教版
由表格可知,共有种 16 可能,其中两个都是黑球的结果 4 种 ,所以 P(两个 都是黑球)= =
设计意图:通过具体的例子学习,理解和掌握用列表法求“放回型”两步概率
方法步骤。 问题 2:随机摸出一个球后不放回,再随机摸出一个球,求摸出的两个球
都是黑球的概率.
解:两个白球、两个黑球分别分白 1,白 2,黑 1,黑 2,根据题意列出表格:
白1
白2
黑1
黑2
白 1 ——
(白 1,白 2) (白 1,黑 1) (白 1,白 2)
白 2 (白 2,白 1)
——
(白 2,黑 1) (白 2,黑 2)
黑 1 (黑 1,白 1) (黑 1,白 2) ——
(黑 1,黑 2)
黑 2 (黑 2,白 1) (黑 2,白 2) (黑 2,黑 1)
——
由表格可知,共有种 12 可能,其中两个都是黑球的结果 2 种 ,所以 P(两个 都是黑球)= =
白1
白2
黑1
黑2
白 1 (白 1,白 1) (白 1,白 2) (白 1,黑 1) (白 1,白 2)
白 2 (白 2,白 1) (白 2,白 2) (白 2,黑 1) (白 2,黑 2)
黑 1 (黑 1,白 1) (黑 1,白 2) (黑 1,黑 1) (黑 1,黑 2)
黑 2 (黑 2,白 1) (黑 2,白 2) (黑 2,黑 1) (黑 2,黑 2)
例:一个不透明的袋子里装有两个白球、两个黑球(白球、黑球除颜色外
都相同)
问题 1:随机摸出一个球后放回搅匀,再随机摸出一个球,求摸出两个球都是
黑球的概率。
分析:当一次试验从一个袋子摸两个球时,为了不重不漏地列举出所有可能出现
《用列举法求概率+第1课时》精品教学方案
第二十五章概率初步15.3用列举法求概率第1课时一、教学目标1.会用直接列举法和列表法求简单事件的概率;2.能利用概率知识解决涉及两个因素的事件的概率问题;3.经历试验、列表、统计、运算等活动,渗透数形结合,分类讨论、特殊到一般的思想,培养学生在具体情境中分析问题和解决问题的能力;4.通过数学活动,体会数学的应用价值,培养积极思考的学习习惯.二、教学重难点重点:会用直接列举法和列表法求简单事件的概率.难点:当可能出现的结果很多时,会用列表法列出所有可能得结果.三、教学用具多媒体等.四、教学过程设计可以看出,同时掷两枚骰子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子点数相同(记为事件A)的结果有6种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6).所以()61. 366P A==(2)两枚骰子点数的和是9 (记为事件B)的结果有4种,即(3,6),(4,5),(5,4),(6,3).所以()41. 369P B== (3)至少有一枚骰子的点数为2 (记为事件C)的结果有11种,即(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(2,1),(2,3),(2,4),( 2,5),(2,6).所以()11. 36P C=【归纳】1.用列举法(列表法)求简单随机事件的概率.2.用列表法求概率的步骤:①列表;②通过表格计数,确定所有等可能的结果数n和关注的结果数m的值;③利用概率公式()mP An=计算出事件的概率.3.适用条件:如果事件中各种结果出现的可能性相等,含有两次操作(如掷骰子两次)或两个条件(如掷两个骰子)的事件.【思考】教师活动:教师提出问题“若上一题的情景‘同时掷两枚质地均匀的骰子’换成‘把一枚掷质均匀的骰子投两次’,所有可能的结果有变化吗?”给学生思考时间,最后给出答案,没有变化,只是列表的时候表头变为第1次,第2次即可.【随堂练习】教师活动:通过Pk作答的形式,让学生独立思考,再由老师带领整理思路过程.练习1从1,2,−3三个数中,随机抽取两个数相乘,积是正数的概率是______.答案:1 3 .练习2小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.16B.13C.12D.23答案:B .追问:请用列表法写出所有可能的结果.答案:小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为31 93 =.以思维导图的形式呈现本节课所讲解的内容. 巩固例题练习。
用列表法求概率说课稿
《用列表法求概率》说课稿现实生活中存在着大量随机事件,而概率正是研究不确定事件的一门学科。
今天我说课的题目是《用列表法求概率》。
我将从教材分析、目标分析、过程分析、教法分析、评价分析五个方面来具体阐述对本节教材的理解和教学设计。
一、教材分析:1、内容分析:《用列举法求概率》是人教版新教材九年级上册第二十五章第二节,本节内容分二课时完成,本次课设计是第一课时的教学。
主要内容是学习用列表法求概率。
2、地位与作用:概率与人们的日常生活密切相关,应用十分广泛。
因此,初中教材增加了这部分内容。
了解和掌握一些概率统计的基本知识,是学生初中毕业后参加实际工作的需要,也是高中进一步学习概率统计的基础,在教材中处于非常重要的位置。
3、教学重难点:运用列表法计算事件的概率。
二、目标分析依据《数学课程标准》,以教材特点和学生认知水平为出发点,确定以下三方面为本节课的教学目标。
1、能够判断一次试验中每一种情况的发生是否是等可能的。
2、会用列表法求概率。
3、渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。
三、过程分析《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。
”为了向学生提供更多从事数学活动的机会,我将本节课的教学过程设定为以下五个环节:(一)、创设问题情境引入新课我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这是一个游戏双方获胜概率大小的问题。
下面我们来做一个小游戏:老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢。
请问,你们觉得这个游戏公平吗?通过这道问题,对今天新课进行导入.(二)、自主分析再探新知环节1:课前热身,提出了四个问题:想一想,议一议①掷一枚质地均匀的硬币,观察向上一面的情况,可能出现的结果有:;②掷一个质地均匀的骰子,观察向上一面的点数,可能出现的结果有:;③同时掷两枚质地均匀的硬币,观察向上一面的情况,可能出现的结有:;④同时掷两个质地均匀的骰子,观察向上一面的点数,所有可能出现的结果情况如何?请你用简便的方法把所有可能结果不重不漏的表示出来。
人教版九年级数学上册25.2用列表法求概率一等奖优秀教学设计
人教版义务教育课程标准实验教科书九年级上册25.2用列举法求概率教学设计一、教材分析1、内容解析:在一次实验中,如果可能出现的结果只有有限种,且各种结果出现的可能性大小相等,那么我们可以通过列举实验结果的方法,求出随机事件发生的概率。
当每次实验涉及两个因数时,为了更清晰、不重不漏的列举出实验的结果。
教科书给出了以表格形式呈现的列举法——列表法。
这种方法适合列举每次实验涉及两个因素,且每个因素的取值个数较多的情形。
相对于直接列举,用表格列举体现了分步分析对思考较复杂问题时所起到的作用。
将实验涉及的一个因素所有可能的结果写在表头的横行中,另一个因素所有可能的结果写在表头的竖列中。
就形成了不重不漏的列举出这两个因数所有可能结果的表格。
这种分步分析问题的方法将在下节课树状图法和高中分步乘法计算原理的学习中进一步运用。
另外,通过求概率,学生将进一步体会概率的意义,逐步培养随机观念。
2、目标和目标解析:(1)、目标:①用列举法求简单随机事件的概率,进一步培养随机观念。
②感受分步分析对思考较复杂问题时起到的作用。
(2)、目标解析:达成目标1的标志是:学生清晰的知道,对于结果种数有限且每种结果等可能的随机实验中的事件,可以用列举法求概率。
当每次实验涉及两个因数,且每个因素的取值个数较多时,相对于直接列举,采用表格的方式更有利于将实验的所有结果不重不漏的列举出来,学生能够利用列表法正确计算简单随机事件的概率。
结合具体问题进一步体会概率是如何定量地刻画随机事件发生可能性的大小。
目标2体现在学生探索、归纳列表法的过程中。
学生在问题的引导下思考如何才能将涉及两个因素实验的所有可能的结果不重不漏的表示出来。
将体会“分步”策略对分析复杂问题起到的作用。
3、教学重、难点教学重点:用列表法求简单随机事件的概率。
教学难点:列表格不重不漏的列举随机实验的所有结果。
突破难点的方法:让学生合作探究,自主学习,体验列举实验结果过程。
二、教学准备:多媒体课件、导学案。
九年级《用列举法求概率》优秀教案
九年级《用列举法求概率》优秀教案25.2.1 用列举法求概率一、教学目标1.知道什么时候采用“直接列举法”和“列表法” .2.会正确“列表”表示出所有可能出现的结果.3.知道如何利用“列表法”求随机事件的概率.二、课时安排1课时三、教学重点会正确“列表”表示出所有可能出现的结果.四、教学难点知道如何利用“列表法”求随机事件的概率.五、教学过程(一)导入新课我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这是一个游戏双方获胜概率大小的问题.老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问,你们觉得这个游戏公平吗?(二)讲授新课活动内容1:探究1:用直接列举法求概率同时掷两枚硬币,试求下列事件的概率:(1)两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上;“掷两枚硬币”所有结果如下:正正、正反、反正、反反解:(1)两枚硬币两面一样包括两面都是正面,两面都是反面,共两种情形;所以学生赢的概率是(2)一枚硬币正面朝上,一枚硬币反面朝上,共有反正,正反两种情形;所以老师赢的概率是∵P(学生赢)=P(老师赢).∴这个游戏是公平的.上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.注意: 直接列举法比较适合用于最多涉及两个试验因素或分两步进行的试验,且事件总结果的种数比较少的等可能性事件.想一想“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?探究2:列表法求概率问题1 利用直接列举法可以比较快地求出简单事件发生的概率,对于列举复杂事件的发生情况还有什么更好的方法呢?明确:列表法问题2 怎样列表格?列表法中表格构造特点:一个因素所包含的可能情况,另一个因素所包含的可能情况说明:如果第一个因素包含2种情况;第二个因素包含3种情况;那么所有情况n=2×3=6活动2:探究归纳列表法求概率应注意的问题确保试验中每种结果出现的可能性大小相等.列表法求概率的基本步骤第一步:列表格;第二步:在所有可能情况n中,再找到满足条件的事件的个数m;第三步:代入概率公式计算事件的概率.(三)重难点精讲例1 同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同;(2)两个骰子点数的和是9;(3)至少有一个骰子的点数为2.分析当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能结果,通常采用列表法.把两个骰子分别标记为第1个和第2个,列表如下:解:由列表得,同时掷两枚骰子,可能出现的结果有36个,它们出现的可能性相等.(1)满足两枚骰子的点数相同(记为事件A)的结果有6个,则P(A)= ;(2)满足两枚骰子的点数之和是9(记为事件B)的结果有4个,则P(B)= ;(3)满足至少有一枚骰子的点数为2(记为事件C)的结果有11个,则P(C)= .我们发现:与前面掷硬币问题一样,“同时掷两个质地相同的骰子”与“把一个骰子掷两次”,所得到的结果没有变化. 所以,当试验涉及两个因素时,可以“分步”对问题进行分析.(四)归纳小结求概率的方法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)= .归纳出用列举法求概率的方法:(1)计算出共有多少可能的结果即n;(2)事件A中包含有几种可能即m;(3)求出P(A)= .理解用列举法求概率的方法.(五)随堂检测1.小明与小红玩一次“石头、剪刀、布”游戏,则小明赢的概率是()A. B. C. D.2.某次考试中,每道单项选择题一般有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全对的概率是()A. B. C. D.3.如果有两组牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一张牌.(1)摸出两张牌的数字之和为4的概念为多少?(2)摸出为两张牌的数字相等的概率为多少?【答案】1.C2. D3. 解:(1)P(数字之和为4)= .(2)P(数字相等)=六.板书设计25.2.1 用列举法求概率列表法求概率的基本步骤第一步:列表格;第二步:在所有可能情况n中,再找到满足条件的事件的个数m;第三步:代入概率公式计算事件的概率.七、作业布置课本P138练习1、2练习册相关练习八、教学反思第1课时教学内容25.2 用列举法求概率(1).教学目标1.用列举法(列表法)求简单随机事件的概率,进一步培养随机概念.2.经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率,渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力.3.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.教学重点运用列表法求事件的概率.教学难点如何使用列表法.教学过程一、导入新课为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.以贴近学生生活的联欢晚会为背景,创设转盘游戏引入,能在最短时间内激发学生的兴趣,引起学生高度的注意力,进入情境,导入新课的教学.二、新课教学1.学生分组讨论,探索交流.在这个环节里,首先要求学生分组讨论,探索交流.然后引导学生将实际问题转化为数学问题,即:停止转动后,哪个转盘指针所指数字较大的可能性更大呢?由于事件的随机性,我们必须考虑事件发生概率的大小.此时我首先引导学生观看转盘动画,同学们会发现这个游戏涉及A、B两转盘,即涉及2个因素,与前一课所讲授单转盘概率问题(教材P136例1)相比,可能产生的结果数目增多了,列举时很容易造成重复或遗漏.怎样避免这个问题呢?实际上,可以将这个游戏分两步进行.于是,指导学生构造表格.2.指导学生构造表格A B457168首先考虑转动A盘:指针可能指向1,6,8三个数字中的任意一个,可能出现的结果就会有3个.接着考虑转动B盘:当A盘指针指向1时,B盘指针可能指向4、5、7三个数字中的任意一个,这是列举法的简单情况.当A盘指针指向6或8时,B盘指针同样可能指向4、5、7三个数字中的任意一个,一共会产生9种不同的结果.设计意图:这样既分散了难点,又激发了学生兴趣,渗透了转化的数学思想.3.学生独立填写表格,通过观察与计算,得出结论(即列表法)A B4571(1,4)(1,5)(1,7)6(6,4)(6,5)(6,7)8(8,4)(8,5)(8,7)从表中可以发现:A盘数字大于B盘数字的结果共有5种.∴ P(A数较大)=,P(B数较大)= .∴ P(A数较大)>P(B数较大).∴选择A装置的获胜可能性较大.在学生填写表格过程中,注意向学生强调数对的有序性.由于游戏是分两步进行的,我们也可用其他的方法来列举.即先转动A盘,可能出现1,6,8三种结果;第二步考虑转动B盘,可能出现4,5,7三种结果.4.解法二.由图知,可能的结果为:(1,4),(1,5),(1,7),(6,4),(6,5),(6,7),(8,4),(8,5),(8,7),共计9种.∴ P(A数较大)=,P(B数较大)= .∴ P(A数较大)> P(B数较大).∴选择A装置的获胜可能性较大.然后,引导学生对所画图形进行观察:若将图形倒置,你会联想到什么?这个图形很像一棵树,所以称为树形图(在幻灯片上放映).列表和树形图是列举法求概率的两种常用的方法.设计意图:自然地学生感染了分类计数和分步计数思想.三、巩固练习例同时掷两枚质地均匀的骰子,计算下列事件的概率:(1)两枚骰子的点数相同;(2)两枚骰子点数的和是9;(3)至少有一枚骰子的点数为2.分析:当一次试验是掷两枚骰子时,为不重不漏地列出所有可能的结果,通常采用列表法.具体过程见教材第137页.小结:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.运用列表法求概率的步骤如下:(1)列表;(2)通过表格计数,确定公式P(A)=中m和n的值;(3)利用公式P(A)=计算事件的概率.四、课堂小结今天学习了什么?有什么收获?五、布置作业习题25.2 第1题.第11 页共11 页。
《用列举法求概率》教学设计
学生先思考、分析, 然后计算,小组展示 师生总结(以学生为 主):当一次试验要涉及 两个因素(如:同时掷两个 骰子)或一个因素做两次 试验(如 : 一个骰子掷两 次)并且可能出现的结果 数目较多时 , 为不重不漏 地列出所有可能的结果, 通常可以采用列表法。
经过刚才第一 题的探究,对本节 课的内容有一个较 为简单的认识,此 时在通过本的讲 解,学生对知识点 有更深层次掌握情 况。
面记为反面。记录下自己掷的结果。 师:以反面的次数为结果,反面向上的 结果的概率是多少?为什么选反面呢?反 面是我国的国徽,同学们要时刻热爱我们的 二、趣味数 祖国。 学,方法探 根据刚才的游戏,求下列事件的概率: 究 (1)两枚硬币全部正面向上; (2)两枚硬币全部反面向上; (3)一枚硬币正面向上、一枚硬币反 面向上. 教师引导学生思考,最后得出结论. (教师拓展)方法三:树形图法: 正 反
五、课堂小 结 今天学习了什么?有什么收获? 生:回答问题
谈谈学生对本 课的收获, 了解学生 存在的不足。 对于班上的学 生存在着差异, 因此
六、布置作 业
习题 25.2
1、2、 (必做)
3(选做)
分为选做和必做让 学生得到不同层次 的发展。
八、课后反思: 1.对这节课, 熟悉教学内容, 准确的把握本课的教学目标, 精心设计好各个教学环节, 重难点突出, 学生能通过课堂的教学过程中领会和理解教学内容。 2.在教学过程中,通过试验的方式,学生主动的参与了整个教学过程,体现学生自主学习的教学方 式,调动学生的积极性,培养学生学习兴趣。 3.教学的活动方式,要体现教学目标,能很好的完成教学要求,突出教学的实效。 4.但是本节课对于放回和不放回抽的区别没有很好的掌握,下次课可采用实例进行改进,加强学生 的理解,后期选两道典型例题加强。
九年级数学上册《用列举法求概率》教案、教学设计
b.针对学生的反馈,及时调整教学策略,提高教学效果。
7.关注学生心理健康,营造良好课堂氛围:
a.教师应以鼓励、表扬为主,关注学生的心理需求,增强他们的自信心。
b.营造轻松、愉快的课堂氛围,让学生在愉悦的情感中学习。
四、教学内容与过程
(一)导入新课,500字
一、导入新课
1.引导学生回顾已学的概率知识,为新课的学习做好铺垫。
2.提问:“我们之前学过如何求一个事件的概率吗?今天我们要学习一种新的求概率的方法,你们猜猜是什么?”
二、自主学习
1.让学生阅读教材,了解列举法求概率的基本概念和步骤。
2.学生尝试解决教材中的例题,体验列举法求概率的过程。
三、合作探究
b.选取典型例题进行讲解,引导学生运用所学知识解决问题。
c.设计课堂练习,让学生独立完成,巩固所学知识。
5.课堂总结与拓展:
a.让学生总结本节课所学的知识点,加深理解。
b.提问引导学生思考列举法在实际生活中的应用,激发他们的学习兴趣。
c.布置课后作业,巩固所学知识,培养学生的自主学习能力。
6.教学评价与反馈:
a.让学生自主阅读教材,了解列举法求概率的基本概念和步骤。
b.将学生分组,进行合作探究,讨论列举法在实际问题中的应用,培养学生的团队协作和沟通能力。
3.分层教学,因材施教:
针对不同学生的认知水平,设计不同难度的练习题,使每位学生都能在课堂上获得成就感。
4.精讲精练,强化巩固:
a.教师针对学生的讨论成果,详细讲解列举法求概率的步骤和方法。
2.难点:
a.学生在列举过程中可能出现遗漏或重复现象,需要引导他们细心、严谨地完成列举。
人教版数学九年级上册25.2.1用列表法求概率(教案)
-在解决实际问题时,教师需要引导学生将问题简化,提取关键信息,构建列表,并指导学生如何从列表中提取有用信息进行概率计算。
-教学难点中,列表构建的全面性可以通过小组讨论的方式,让学生互相检查,确保没有遗漏。
-识别并区分确定事件与不确定事件,理解概率的意义。
-利用列表法解决实际问题,将生活情境数学化。
-理解概率的取值范围,即0到1之间的实数。
举例:在掷骰子游戏中,列出所有可能的结果,并计算得到某个特定点数的概率。
2.教学难点
-列表法的构建:学生可能难以将实际问题抽象成列表形式,尤其是当问题较为复杂时。
-确保列表的全面性:学生在列出所有可能结果时容易遗漏,导致计算的概率不准确。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解列表法求概率的基本概念。列表法是通过列出所有可能的结果来求解事件发生概率的方法。它在帮助我们理解不确定事件的规律性方面具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。通过抛硬币实验,列出所有可能出现的结果,并计算得到正面或反面的概率。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“列表法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-对于概率计算的理解,教师需要通过直观的例子,如掷骰子的实验,让学生观察到概率是通过大量重复实验得到的频率来估计的理论值。
2022年人教版九年级数学上册第二十五章概率初步教案 用列举法求概率(第2课时)
25.2 用列举法求概率(第2课时)一、教学目标【知识与技能】理解并掌握列表法和树状图法求随机事件的概率.并利用它们解决问题,正确认识在什么条件下使用列表法,什么条件下使用树状图法.【过程与方法】经历用列表法或树状图法求概率的学习,使学生明白在不同情境中分析事件发生的多种可能性,计算其发生的概率,解决实际问题,培养学生分析问题和解决问题的能力.【情感态度与价值观】通过求概率的数学活动,体验不同的数学问题采用不同的数学方法,但各种方法之间存在一定的内在联系,体会数学在现实生活中应用价值,培养缜密的思维习惯和良好的学习习惯.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】1.会用列表法和树状图法求随机事件的概率.2.区分什么时候用列表法,什么时候用树状图法求概率.【教学难点】1.列表法是如何列表,树状图的画法.2.列表法和树状图的选取方法.五、课前准备课件等.六、教学过程(一)导入新课出示课件2:现有A、B、C三盘包子,已知A盘中有两个酸菜包和一个糖包,B 盘中有一个酸菜包和一个糖包和一个韭菜包,C盘中有一个酸菜包和一个糖包以及一个馒头.老师就爱吃酸菜包.如果老师从每个盘中各选一个包子(馒头除外),那么老师选的包子全部是酸菜包的概率是多少?你能用列表法列举所有可能出现的结果吗?出示课件3:通过播放视频,体会用“列表法”的不方便,从而导入新课.(板书课题)(二)探索新知探究利用画树状图法求概率教师问:抛掷一枚均匀的硬币,出现正面向上的概率是多少?(出示课件5)学生答:P(正面向上)=1.2教师问:同时抛掷两枚均匀的硬币,出现正面向上的概率是多少?学生答:可能出现的结果有:(正,正)(正,反)(反,正)(反,反).P(正面向上)=14教师问:还有别的方法求上面问题的概率吗?学生思考交流后,师生共同解答.(出示课件6).P(正面向上)=14出示课件7:如一个试验中涉及2个因素,第一个因素中有2种可能情况;第二个因素中有3种可能的情况.则其树形图如下图:教师归纳:树状图法:按事件发生的次序,列出事件可能出现的结果.出示课件8:同学们:你们玩过“石头、剪刀、布”的游戏吗,小明和小华正在兴致勃勃的玩这个游戏,你想一想,这个游戏能用概率分析解答吗?尝试用树状图法列出小明和小华所玩游戏中所有可能出现的结果,并求出事件A、B、C的概率.A:“小明胜”B:“小华胜”C:“平局”学生尝试用树状图分析,师生共同解答.(出示课件9,10)一次游戏共有9个可能结果,而且它们出现的可能性相等.事件A 发生的所有可能结果:(石头,剪刀)(剪刀,布)(布,石头); 事件B 发生的所有可能结果:(剪刀,石头)(布,剪刀)(石头,布); 事件C 发生的所有可能结果:(石头,石头)(剪刀,剪刀)(布,布). 所以,P(A)=3193=;P(B)=3193=;P(C)=3193=.出示课件11,12:教师归纳:1.画树状图求概率的定义用树状图的形式反映事件发生的各种情况出现的次数和方法、以及某一事件发生的可能性次数和方式,并求出概率的方法.适用条件:当一次试验涉及两个及其以上(通常3个)因素时,采用树状图法.2.画树状图求概率的基本步骤(1)将第一步可能出现的A 种等可能结果写在第一层;(2)若第二步有B 种等可能的结果,则在第一层每个结果下面画B 个分支,将这B 种结果写在第二层,以此类推;(3)根据树状图求出所有的等可能结果数及所求事件包含的结果数,利用概率公式求解.出示课件13,14:例1 某班有1名男生、2名女生在校文艺演出中获演唱奖,另有2名男生、2名女生获演奏奖.从获演唱奖和演奏奖的学生中各任选一人去领奖,求两人都是女生的概率.学生独立思考后师生共同解答.解:设两名领奖学生都是女生的事件为A,两种奖项各任选1人的结果用“树状图”来表示.共有12种结果,且每种结果出现的可能性相等,其中2名都是女生的结果有4种,所以事件A发生的概率为P(A)=41.123出示课件15:教师强调:计算等可能情形下概念的关键是确定所有可能性相等的结果总数n和求出事件A发生的结果总数m,“树状图”能帮助我们有序的思考,不重复、不遗漏地得出n和m.巩固练习:(出示课件16,17)经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率(1)三辆车全部继续直行;(2)两车向右,一车向左;(3)至少两车向左.学生自主思考后,独立解决,一生板演.解:画树状图,得(1)P (全部继续直行)=127; (2)P (两车向右,一车向左)=19; (3)P (至少两车向左)=727. 出示课件18:例2 甲、乙、丙三人做传球的游戏,开始时,球在甲手中,每次传球,持球的人将球任意传给其余两人中的一人,如此传球三次.(1)写出三次传球的所有可能结果(即传球的方式);(2)指定事件A :“传球三次后,球又回到甲的手中”,写出A 发生的所有可能结果;(3)P(A).学生思考交流后师生共同解答.(出示课件19)解:画树状图,得“传球三次后,球又回到甲的手中”的结果有甲-乙-丙-甲、甲-丙-乙-甲2种. .4182)(==A P教师强调:(出示课件20)当试验包含两步时,列表法比较方便;当然,此时也可以用树状图法;当事件要经过多个(三个或三个以上)步骤完成时,应选用树状图法求事件的概率.巩固练习:(出示课件21,22)现在学校决定由甲同学代表学校参加全县的诗歌朗诵比赛,甲同学有3件上衣,分别为红色(R)、黄色(Y)、蓝色(B),有2条裤子,分别为蓝色(B)和棕色(b).甲同学想要穿蓝色上衣和蓝色裤子参加比赛,你知道甲同学任意拿出1件上衣和1条裤子,恰好是蓝色上衣和蓝色裤子的概率是多少吗?学生自主思考后独立解决.解:用“树状图”列出所有可能出现的结果:每种结果的出现是等可能的.“取出1件蓝色上衣和1条蓝色裤子”记为事.件A,那么事件A发生的概率是P(A)=16.所以,甲同学恰好穿上蓝色上衣和蓝色裤子的概率是16(三)课堂练习(出示课件23-32)1.甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.12B.13C.14D.162.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.193.a、b、c、d四本不同的书放入一个书包,至少放一本,最多放2本,共有种不同的放法.4.三女一男四人同行,从中任意选出两人,其性别不同的概率为()A.14B.13C.12D.345.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色外,其余均相同,若从中随机摸出一个球,摸到黄球的概率为45,则n= .6.在一个不透明的盒子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同.先从盒子里随机取出一个小球,记下数字后放回盒子里,摇匀后再随机取出一个小球,记下数字.请你用列表或画树状图的方法求下列事件的概率.(1)两次取出的小球上的数字相同;(2)两次取出的小球上的数字之和大于10.7.甲、乙、丙三个盒中分别装有大小、形状、质地相同的小球若干,甲盒中装有2个小球,分别写有字母A和B;乙盒中装有3个小球,分别写有字母C、D和E;丙盒中装有2个小球,分别写有字母H和I;现要从3个盒中各随机取出1个小球.(1)取出的3个小球中恰好有1个,2个,3个写有元音字母的概率各是多少?(2)取出的3个小球上全是辅音字母的概率是多少?参考答案:1.C解析:如图所示,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两.个小球上都写有数字2的概率是:142.A解析:画树状图如图:由树状图可知,共有9种等可能结果,其中两次都摸.到黄球的有4种结果,所以两次都摸到黄球的概率为493.104.C5.86.解:根据题意,画出树状图如下:(1)两次取出的小球上的数字相同的可能性只有3种,所以P(数字相同)= 31.93(2)两次取出的小球上的数字之和大于10的可能性只有4种,所以P(数字之和.大于10)=497.解:由树状图得,所有可能出现的结果有12个,它们出现的可能性相等..⑴满足只有一个元音字母的结果有5个,则P(一个元音)=512满足只有两个元音字母的结果有4个,则P(两个元音)=41=.123.满足三个全部为元音字母的结果有1个,则P(三个元音)=112⑵满足全是辅音字母的结果有2个,则P(三个辅音)=21=.126(四)课堂小结1.为了正确地求出所求的概率,我们要求出各种可能的结果,通常有哪些方法求出各种可能的结果?2.列表法和画树状图法分别适用于什么样的问题?如何灵活选择方法求事件的概率?(五)课前预习预习下节课(25.3)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:由于前面已学过一般的列举法,学生在小学或其他学科中接触过“列表法”,因此本节课除了继续探究更为复杂的列举法外,还引入了树状图这种新的列举方法,以学生的生活实际为背景提出问题,在自主探究解决问题的过程中,自然地学习使用这种新的列举方法.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏.。
25.2用列举法求概率用列表法求概率(教案)2021-2022学年九年级数学人教版上册
本节课将结合具体例题,让学生在实际操作中掌握列举法和列表法求概率的方法。
二、核心素养目标
本节课旨在培养学生的数学核心素养,主要包括以下方面:
1.逻辑推理:通过列举法和列表法的应用,让学生掌握求解概率问题的基本方法,提高逻辑推理能力,能够从具体实例中抽象出一般性规律,形成严密的逻辑思维。
2.数据分析:培养学生从实际问题中提取信息,运用列表法整理数据,分析事件概率的能力,提高对数据敏感度和数据分析能力。
3.数学建模:引导学生将实际问题转化为数学模型,运用列举法和列表法求解概率问题,培养学生建立数学模型解决问题的能力。
4.数学抽象:通过具体实例,让学生体会概率问题的抽象性,提高数学抽象思维,培养学生从具体情境中提炼数学问题的能力。
5.数学运算:培养学生熟练运用列举法和列表法进行概率计算,提高数学运算的准确性和速度。
本节课将紧密结合课本内容,以实际问题为载体,有针对性地提升学生的数学核心素养。
三、教学难点与重点
1.教学重点
(1)掌握列举法求概率的基本步骤:找出所有可能结果,确定事件A的所有可能结果,计算事件A的概率。
举例:抛掷一枚硬币,求正面朝上的概率。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题,如掷骰子、抽卡片等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如抛硬币、掷骰子等。这个操作将演示概率的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
举例:在求取出红球的概率时,正确计算红球的数量(3个)除以总球数(3+2+5=10个),得出概率为3/10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《用列表法求概率》教学设计
北京市第二十中学王云松
一、内容和内容解析
1.内容
用列表法求简单随机事件的概率.
2.内容解析
学生在前几节的学习中,已经了解了概率的意义及通过直接列举试验结果的方法,求简单随机事件发生的概率.这种求概率的方法,是建立在一次实验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等.但是当每次试验涉及两个因素(或两步实施)而每一因素又有多种情况时,用直接列举的方法不够方便.为了不重不漏的列出所有结果,教科书给出了用表格进行列举的方法——列表法.
列表法是依据试验涉及的两个因素(或是两个步骤),将它们分别作为表格的横纵表头,而将实验的所有结果写在表格之中,从而实现不重不漏地列举出所有结果.这种有序分步地进行问题分析的方法,将在接下来的列树状图求概率及高中阶段排列组合的学习中继续运用.另外,学习本节课将进一步培养学生的随机观念,加深对概率意义的理解.基于以上分析,确定本节课的教学重点是:用列表法求随机事件发生的概率.
二、目标和目标解析
1.教学目标
(1)理解列表法的适用条件;
(2)能用列表法求随机事件发生的概率.
2.目标解析
达成目标(1)的标志是:学生能理解一次试验“包含两步,并且每一步的结果为有限多个情形”的意义;理解列表法相对于直接列举,体现了有序分步思考较复杂问题时所起的作用.
达成目标(2)的标志是:列表法每一步的结果为有限多个情形,这样的试验出现的所有等可能结果,并会利用古典概率的定义对指定的随机事件求出其发生的概率.
三、教学问题诊断分析
本节是在上一节的基础上,继续研究用列举的方法求概率.相比上一节,这一节中的问题相对复杂些,试验中每一种结果都包含两个子结果(这时试验往往是分两步实施,或涉及两种因素等).当试验结果比较复杂时,采用一些特殊形式帮助梳理列举的条理,往往有利于不重不漏的列举试验的结果.因此,教科书在通过设计掷骰子的例子介绍了借助列表格列
举试验结果的方法.学生针对两步操作的问题,往往还是愿意使用直接列举的方法,甚至有时直接将每个因素所出现的结果进行相加,而作为所有出现的结果,说明学生还没有真正理解列表的含义.
基于以上分析,本节课的教学难点是:能根据试验的分步实施或涉及因素准确列表.
四、教学过程设计
1.创设情境,引入新知
问题1 小聪、小明和小慧设计了一个游戏:同时掷两枚硬币,如果都是正面朝上,小聪羸;如果都是反面朝上,小明赢;如果是一正一反,小慧赢.你来判断一下,这个游戏公平吗?
师生活动:学生展开讨论,发表自己的意见.学生能说出游戏是否公平取决于三人获胜概率的是否相等.如果学生认为游戏公平,则其把“两正”、“两反”、“一正一反”当作了是三种等可能性的情况. 教师针对这学生出现的问题,要向学生阐明:事实上我们可以将两个硬币分开来看,可以为其标出序号1,2,这样可以将所有情况一一列举出来:正1正2(记为事件A);正1反2;反1正2;反1反2(记为事件B),显然这四种情况出现的可
能性相等.因而P(A)=,P(B)=,而一正一反(记为事件C)的结果共有2种.
所以P(C)=.由于三种事件的概率不同,因而这个游戏是不公平的.
【设计意图】创设现实情境,由学生感兴趣的游戏入手,引入课题,调动学生的学习积极性.通过学生的计算,既回顾了上节课直接列举所有等可能情况下,求随机事件发生概率的方法,又向学生展示了涉及两个因素试验随机事件发生概率的求解,所以本题起着承上启下的作用.
教师追问1 “同时抛掷两枚质地均匀的硬币”与“先后两次抛掷一枚质地均匀的硬币”,这两种试验的所有可能结果一样吗?
师生活动:教师引导学生进行思考、讨论,明确“同时抛掷两枚质地均匀的硬币”与“先后两次抛掷一枚质地均匀的硬币”,没有本质的区别.当同时抛掷两枚硬币时,由于每枚硬币相对独立,其所出现的结果不受另一枚硬币的影响,这与先后抛掷一枚硬币道理一样.两种情形下,都会出现“正正”,“正反,“反正”,“反反”四种等可能性的结果.这说明,当一次试验的结果涉及两个因素时,可以采用分步思考的方法对两个因素按序分析.【设计意图】通过追问,引发学生思考,并明确当试验中涉及两个因素时,等价于分两步实施,体现思考的有序性和分类思想.
2.探究新知,明确方法
问题2 同时抛掷两枚质地均匀的骰子,两枚骰子的点数会出现多少可能的结果?它们出现的可能性是否相等?
师生活动:教师提出问题,引发学生思考:如果用直接列举的方法方便吗?师生共同分析,在这个问题中也是涉及到了两个因素(第一枚骰子和第二枚骰子),而每个因素的取值个数较多,达到6种,如果直接列举会比较复杂,而且可能会出现重复或遗漏.怎样才能做到不重不漏呢?师生交流后达成共识相,可以采用列表格的形式,将第一枚骰子的所有可能结果作为表头的纵列,将第二枚骰子的所有结果作为表头的横行,并按序将两枚骰子共同组成的所有可能结果填入表中.学生动手画出如下表格:
学生通过表格发现共有36种结果,而且它们的可能性相等.这样就比较直观地将涉及两个因素的所有可能出现的结果不重不漏的体现出来,相对于直接列举优势明显.教师指出,通过列表格的方法将试验的所有可能出现的结果列举出来的方法,叫列表法.今后,当一次试验涉及到两个因素(或两步实施)时,可以选用列表法.
【设计意图】明确列表法的适用条件及列表的一般方法.
3.例题示范,学会应用
例同时抛掷两枚质地均匀的骰子,计算下列事件的概率:
(1) 两个骰子的点数相同;
(2) 两个骰子的点数的和是9;
(3) 至少有一个骰子的点数为2.
问题3例题中的试验涉及几个因素?你能用列表法计算这三个事件发生的概率吗?
师生活动:教师提出问题,学生思考回答这个试验涉及到了两个因素(两枚骰子),因而可以用列表法.通过刚才的列表,我们已经知道试验共有36种可能的结果,并且它们发生的可能性相同.所以,弄清在问题中的三个事件中,各自包含多少种可能的结果是解题的关键.学生观察表格可以看出:
(1)满足两个骰子的点数相同(记为事件A)的结果有6个(满足条件的结果在表格的对角线上),即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以
P(A);
(2)满足两个骰子的点数的和是9(记为事件B)的结果有4个(满足条件的结果在(3,6)和(6,3)所在的斜线上),即(3,6),(4,5),(5,4),(6,3),所以
P(B);
(3)至少有一个骰子的点数为2(记为事件C)的结果有11个(满足条件的结果在数
字2所在的行和2所在的列上),所以P(C).
师生共同归纳,运用列表法求概率的步骤如下:
①列表;
②通过表格计数,确定公式P(A)中m和n的值;
③利用公式P(A)计算事件的概率.
【设计意图】运用列表法求概率,巩固概率求法的一般步骤.
教师追问2 “同时抛掷两枚质地均匀的骰子”与“先后两次抛掷一枚质地均匀的骰子”,得到的结果有变化吗?为什么?
师生活动:学生分析回答,与刚才游戏中抛掷硬币的道理一样,同时掷两枚与先后掷同一枚并不能影响结果的可能性的大小.从而得出结论:如果试验只涉及两个因素,并且每个因素取值数为有限多个的情形,就可以用列表法求概率,如果实验只涉及一个因素,但要分两步进行时时,也可以用列表法.
【设计意图】明确试验涉及到两个因素时,其本质就是进行分步分析,有序思考.
4.反馈练习,巩固方法
练习:在一个口袋中有5个完全相同的小球,把它们分别标号1,2,3,4,5,随机地摸出一个小球后,记下标号放回,再随机地摸出一个小球,用列表法求下列事件的概率:(1)两次取的小球的标号相同;
(2)两次取的小球的标号的和等于5.
师生活动:学生运用刚才学习的列表法进行分析计算,教师巡视指导.通过列表,可知共有25种可能的结果,且这些结果的可能性相同.两次取的小球的标号相同(记为事件A)
的结果共有5个,所以P(A);两次取的小球的标号的和等于5(记为事件B)的
结果共有4个,所以P(B).
【设计意图】复习巩固用列表法求概率的方法,渗透随机观念和建模思想.
变式:在一个口袋中有5个完全相同的小球,把它们分别标号1,2,3,4,5,随机地摸出一个小球后,不放回,再随机地摸出一个小球,用列表法求下列事件的概率:(1)两次取的小球的标号相同;
(2)两次取的小球的标号的和等于5.
师生活动:教师指导学生列出表格,与刚才的表格对比,少了五种可能性. 这是因为当第一次取了某个标号的小球后而不放回,所以表格中不会出现标号相同的小球.这样所有等可能性的结果是20个,标号相同的结果为0个,所以(1)中事件发生的概率为0;(2)
中标号和为5的结果仍然是4个,所以其概率为.
【设计意图】通过变式练习,加深学生对列表法求概率的理解和应用,明确试验中有放回与无放回时对试验结果存在影响.
5.归纳小结,反思提高
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)列表法求概率的适用条件是什么?
(2)列表法求概率的一般步骤是什么?
(3)使用列表法要注意哪些问题?
【设计意图】通过小结,使学生梳理本节课所学内容,把握本节课的核心——列表法求概率,明确其方法和一般步骤.
6.布置作业
教科书P138页练习;习题25.2第3题.
五、目标检测设计
1.连续两次抛掷一枚质地均匀的硬币,两次正面都朝上的概率是()
A.B.C.D.
【设计意图】考查学生对掷硬币模型的理解.
2.小杰与小龙玩一次“石头、剪刀、布”游戏,则小杰赢的概率是;
小龙赢的概率是.这个游戏是否公平?
【设计意图】考查学生在实际情境中运用列表法解决问题的能力.
3.如图有2个转盘,分别分成5个和4个相同的扇形,颜色分别为红、绿、黄三种颜色,指针的位置固定,同时转动2个转盘后任其自由停止,(指针指向两个扇形的分界线时,则重转一次),用列表法求下列事件的概率:
(1)两个指针同时指向红色;
(2)指针一个指向红色,另一个指向绿色.
【设计意图】考查学生在实际情境中运用列表法解决问题的能力.。