蒙特卡洛方法

合集下载

蒙特卡洛模型方法

蒙特卡洛模型方法

蒙特卡洛模型方法蒙特卡罗方法(Monte Carlo method)蒙特卡罗方法概述蒙特卡罗方法又称统计模拟法、随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。

为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡罗命名。

蒙特卡罗方法的提出蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。

数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。

在这之前,蒙特卡罗方法就已经存在。

1777年,法国Buffon提出用投针实验的方样调查来确定可能的优胜者。

其基本思想是一样的。

科技计算中的问题比这要复杂得多。

比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维数(即变量的个数)可能高达数百甚至数千。

对这类问题,难度随维数的增加呈指数增长,这就是所谓的“维数的灾难”(Curse of Dimensionality),传统的数值方法难以对付(即使使用速度最快的计算机)。

Monte Carlo 方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数。

以前那些本来是无法计算的问题现在也能够计算量。

为提高方法的效率,科学家们提出了许多所谓的“方差缩减”技巧。

另一类形式与Monte Carlo方法相似,但理论基础不同的方法—“拟蒙特卡罗方法”(Quasi -Monte Carlo方法)—近年来也获得迅速发展。

我国数学家华罗庚、王元提出的“华—王”方法即是其中的一例。

这种方法的基本思想是“用确定性的超均匀分布序列(数学上称为Low Discrepancy Sequences)代替Monte Carlo方法中的随机数序列。

蒙特卡洛类方法

蒙特卡洛类方法

蒙特卡洛类方法
蒙特卡洛方法是一类随机化的计算方法,主要应用于求出高维度空间中的定积分或概率分布的特性。

该方法以随机样本为基础,通过大量生成且符合某种分布律的随机数,从中抽取样本,利用样本的统计性质来计算近似解。

常见的蒙特卡洛方法包括:
1.随机模拟法
在数学建模、广告投放、经济预测等领域,随机模拟(也称蒙特卡罗方法)已经成为了一个重要的工具。

其基本思想是,系统表现出的某些规律和性质可以用随机过程进行模拟和预测。

2.随机游走算法
随机游走是一种基于随机过程的数值计算算法,通过简单的偏随机移动来解决复杂问题,被广泛应用于物理、化学、生物学、金融等领域。

随机游走算法的核心思想是通过随机漫步遍历所有可能的状态,找到最终解。

3.马尔可夫链蒙特卡罗方法
马尔可夫链蒙特卡罗方法(MCMC)是一种近似随机模拟算法,用于计算高维空间中的积分和概率分布。

这种方法通过构造一个马尔可夫链来模拟复杂的概率
分布,并通过观察链的过程来获得所求的统计量。

4.重要性采样
重要性采样是一种通过迭代抽样来估算积分值或概率分布的方法。

它的基本思想是利用不同的概率分布来采样目标分布中的样本,从而增加目标分布中采样到重要样本的概率,从而提高采样的效率。

总之,蒙特卡洛方法在物理学、统计学、金融学、计算机科学、生物科学等众多领域都有广泛的应用,是一种很实用的工具。

蒙特卡洛算法

蒙特卡洛算法


取8个随机数
R1 0.0078, R2 0.9325,R3 0.1080,R4 0.0063
用蒙 特卡 洛计 算定 积分
R5 0.5490, R6 0.8556,R7 0.9771,R8 0.2783 Iˆ 0.9187
1.9

大大改善了结果!
理论依据 贝努里(Bernoulli) 大数定律
设 nA 是 n 次独立重复试验中事件 A 发生的 次数, p 是每次试验中 A 发生的概率,则
0 有
nA lim P p 0 n n

nA lim P p 1 n n
1 1 1 0 0.25 2 2 2
P(A1) = P(j=0)P(A1∣j=0) + P(j=1)P(A1∣j=1) =
1 1 1 1 0 2 2 3 6
P(A2) = P(j=0)P(A2∣j=0) + P(j=1)P(A2∣j=1)
1 1 1 1 = 0 2 2 6 12 1 1 1 2 0.33 E1 = 6 12
生成一个满足均匀分布的 m n 随机矩阵,矩
阵的每个元素都在 (0,1) 之间。 注:rand(n)=rand(n,n)
randn(m,n)
生成一个满足正态 m n 的随机矩阵
randperm(m)
生成一个由 1:m 组成的随机排列
perms(1:n)
生成由 1:n 组成的全排列,共 n! 个,称为 “群“
分析:这是一个概率问题,可以通过理论计算
得到相应的概率和期望值.但这样只能给出作战 行动的最终静态结果,而显示不出作战行动的动 态过程.

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。

一起源这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。

Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。

Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。

蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特•罗方法正是以概率为基础的方法。

与它对应的是确定性算法。

二解决问题的基本思路Monte Carlo方法的基本思想很早以前就被人们所发现和利用。

早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。

清华数学实验实验五蒙特卡罗方法

清华数学实验实验五蒙特卡罗方法

03 蒙特卡罗方法在清华数学 实验实验五中的应用
模拟随机过程
随机过程模拟
蒙特卡罗方法可以模拟各种随机 过程,如股票价格波动、气象变 化等,通过模拟这些过程,可以 更好地理解和预测实际现象。
概率分布模拟
蒙特卡罗方法可以生成符合特定 概率分布的随机数,用于模拟和 研究各种概率分布的性质和行为 。
求解数学问题
蒙特卡罗方法的优缺点
误差和不确定性
蒙特卡罗方法的精度取决于抽样次数,抽样次数越多,精 度越高,但计算成本也越高。同时,由于是随机模拟,结 果存在一定的不确定性。
对离散问题处理不佳
对于一些离散或非连续的问题,蒙特卡罗方法的精度可能 会受到影响。
对参数敏感
蒙特卡罗方法的参数选择对结果影响较大,需要谨慎选择。
02 清华数学实验实验五内容
实验目的
掌握蒙特卡罗方法的原理和应用。 学会使用蒙特卡罗方法解决实际问题。 培养数学建模和计算能力。
实验原理
蒙特卡罗方法是一种基于概率统 计的数值计算方法,通过随机抽
样和统计模拟来求解问题。
该方法适用于具有随机性和不确 定性的问题,通过大量模拟实验
来获得近似解。
蒙特卡罗方法的精度取决于模拟 实验的次数和随机抽样的质量。
金融工程
蒙特卡罗方法在金融工程中广泛应用于 风险评估、资产定价和衍生品定价等问
题。
工程设计
蒙特卡罗方法在工程设计中用于优化 设计参数、模拟系统性能和可靠性分
析等。
物理科学
在物理科学中,蒙特卡罗方法被用于 模拟分子运动、材料性质和量子力学 等领域。
社会科学
在社会科学中,蒙特卡罗方法被用于 模拟社会现象、预测人口变化和评估 政策效果等。
蒙特卡罗方法的优缺点

蒙特卡罗方法

蒙特卡罗方法

蒙特卡罗方法一、蒙特卡罗方法概述蒙特·卡罗方法(Monte Carlo method ),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。

是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

与它对应的是确定性算法这种方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。

蒙特卡罗方法是一种计算方法,但与一般数值计算方法有很大区别。

它是以概率统计理论为基础的一种方法。

由于蒙特卡罗方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,因而该方法的应用领域日趋广泛。

蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。

1.历史起源蒙特卡罗方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。

数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo —来命名这种方法,为它蒙上了一层神秘色彩。

在这之前,蒙特卡罗方法就已经存在。

1777年,法国Buffon 提出用投针实验的方法求圆周率∏。

这被认为是蒙特卡罗方法的起源。

2. 蒙特卡罗方法的基本思想二十世纪四十年代中期,由于科学技术的发展和电子计算机的发明,蒙特卡罗方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。

但其基本思想并非新颖,人们在生产实践和科学试验中就已发现,并加以利用。

当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验的方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。

这就是蒙特卡罗方法的基本思想。

当随机变量的取值仅为1或0时,它的数学期望就是某个事件的概率。

计算统计学中的蒙特卡罗方法

计算统计学中的蒙特卡罗方法

计算统计学中的蒙特卡罗方法在计算统计学领域中,蒙特卡罗方法是一种重要的数值计算技术。

蒙特卡罗方法是一种基于随机抽样的数值计算方法,其名称来源于蒙特卡罗赌场,意为通过随机抽样来近似求解复杂的数学问题。

一、蒙特卡罗方法的基本原理蒙特卡罗方法的基本原理是通过生成大量的随机数来近似求解数学问题。

这些随机数被用来模拟概率分布或系统模型,通过对这些随机数的统计分析来得出问题的解。

蒙特卡罗方法的关键在于随机性,通过增加随机性的数量和质量,可以提高近似解的准确性。

二、蒙特卡罗方法的应用领域蒙特卡罗方法在统计学中有着广泛的应用,特别是在概率论、统计推断和模拟实验等方面。

例如,在蒙特卡罗积分法中,随机数被用来模拟复杂的积分问题,从而得到数值解;在蒙特卡罗抽样法中,随机数被用来模拟样本的分布规律,从而进行统计推断;在蒙特卡罗模拟实验中,随机数被用来模拟实际系统的行为,从而得到实验结果。

三、蒙特卡罗方法的优缺点蒙特卡罗方法的优点在于可以处理复杂的数学问题,不受维数限制,且对计算误差的控制比较灵活。

然而,蒙特卡罗方法的计算量通常比较大,需要大量的随机数才能得到准确的结果,因此在一些实时性要求较高的计算问题中可能不适用。

四、蒙特卡罗方法的改进和发展随着计算机技术的不断发展,蒙特卡罗方法在计算统计学中得到了广泛的应用和发展。

研究者们通过改进蒙特卡罗方法的随机数生成算法、抽样技术和统计分析方法,使其在更多领域发挥作用。

同时,结合蒙特卡罗方法与其他数值计算方法,可以进一步提高计算效率和准确性。

总之,蒙特卡罗方法作为一种重要的数值计算技术,在计算统计学中扮演着重要的角色。

通过对随机数的巧妙运用,可以有效地解决复杂的数学问题,为统计学研究提供了有力的工具和方法。

希望本文对蒙特卡罗方法的原理、应用和发展有所启发,促进读者对计算统计学的深入理解和应用。

蒙特卡洛方法

蒙特卡洛方法

蒙特卡洛方法蒙特卡洛方法是一种基于随机抽样的计算方法,可以用于解决众多复杂的数学问题,涉及到概率统计、数值计算、优化问题等多个领域。

蒙特卡洛方法的核心思想是通过随机抽样来近似计算问题的解,其优点在于适用范围广,对于复杂的问题能够给出较为准确的结果。

本文将介绍蒙特卡洛方法的基本原理、应用领域以及优缺点。

蒙特卡洛方法的基本原理是利用随机抽样来估计问题的解。

通过生成服从特定分布的随机数,然后根据这些随机数来近似计算问题的解。

蒙特卡洛方法的核心思想是“用随机数来代替确定性数”,通过大量的随机抽样来逼近问题的解,从而得到较为准确的结果。

蒙特卡洛方法的随机性使得其能够处理复杂的问题,尤其在概率统计领域和数值计算领域有着广泛的应用。

蒙特卡洛方法的应用领域非常广泛,其中包括但不限于,概率统计、金融工程、物理学、生物学、计算机图形学等。

在概率统计领域,蒙特卡洛方法可以用来估计各种概率分布的参数,进行模拟抽样,计算统计量等。

在金融工程领域,蒙特卡洛方法可以用来进行期权定价、风险管理、投资组合优化等。

在物理学领域,蒙特卡洛方法可以用来模拟粒子的行为、计算物理系统的性质等。

在生物学领域,蒙特卡洛方法可以用来模拟生物分子的构象、预测蛋白质的结构等。

在计算机图形学领域,蒙特卡洛方法可以用来进行光线追踪、图像渲染等。

蒙特卡洛方法的优点在于适用范围广,能够处理各种复杂的问题,且能够给出较为准确的结果。

蒙特卡洛方法的缺点在于计算量大,需要进行大量的随机抽样才能得到较为准确的结果,且随机抽样的过程可能会引入误差。

因此,在实际应用中需要权衡计算成本和精度要求,选择合适的抽样方法和样本量。

总之,蒙特卡洛方法是一种重要的计算方法,具有广泛的应用价值。

通过随机抽样来近似计算问题的解,能够处理各种复杂的问题,且能够给出较为准确的结果。

在实际应用中,需要根据具体问题的特点和要求来选择合适的抽样方法和样本量,以平衡计算成本和精度要求。

希望本文能够帮助读者更好地理解蒙特卡洛方法的基本原理、应用领域以及优缺点,为实际问题的解决提供一些参考和启发。

蒙特卡罗方法PPT课件

蒙特卡罗方法PPT课件

第1页/共83页
蒙特卡 罗方法
直接方法
可以分解为各个独立 过程的随机性事件
统计方法 数值求解多维定积分
第2页/共83页
5.1 基本思想和一般过程
• Buffon投针实验
• 1768年,法国数学家Comte de Buffon利用投针实验估计 值
L
d
p 2L
d
第3页/共83页
• 长度为 l的针随机地落在相距为d>l 的一组水平线之间, 求针与线相交的概率?
分布的随机数的抽样,进行大量的计算随机模拟实验,从中获得随机变量 的大量试验值。各种概率模型具有不同的概率分布,因此产生已知概率分 布的随机变量,是实现Monte Carlo方法的关键步骤。最简单、最基本、 最重要的一个概率分布是(0,1)上的均匀分布 (或称矩形分布)。随机数就 是具有这种均匀分布的随机变量。对于其他复杂概率模型的概率分布可以 用数学方法在此基础上产生。因此,随机数是Monte Carlo模拟的基本工 具。
方法就叫做简单抽样法或非权重随机抽样法。
• 随机抽样法的真正优势表现在对较高维积分的近似求解,诸如在多体动力
学和统计力学中所遇到的问题。蒙待卡罗方法对较高维体系的积分误差仍

,而这时梯形定则给出的误差变为1/m2/D,这里D为维数。
1m
第21页/共83页
5.3.1 简单抽样 • 将其推广到多维的情况
模拟这个概率过程。对于本来不是随机性质的确定性问题,比如计算定积 分、解线性方程组及偏微分方程边值问题等,要用蒙特卡罗方法求解,就 必须事先构造一个人为的概率过程,它的某些参量正好是所要求的问题的 解。
第10页/共83页
5.1 基本思想和一般过程 • (2) 实现从已知概率分布的抽样 • 有了明确的概率过程后,为了实现过程的数字模拟,必须实现从已知概率

蒙特卡罗方法 分子动力学方法 有限元方法

蒙特卡罗方法 分子动力学方法 有限元方法

蒙特卡罗方法、分子动力学方法和有限元方法是当前科学研究和工程技术领域中常用的数值计算方法,它们在材料科学、物理化学、工程力学等领域均有着重要的应用。

本文将从这三种方法的基本原理、应用领域和优缺点等方面进行介绍和比较。

一、蒙特卡罗方法蒙特卡罗方法是一种随机模拟的计算方法,主要用于求解概率统计问题和复杂的数学积分。

其基本原理是通过大量的随机样本来近似计算得出结果,具有较高的精度和可靠性。

蒙特卡罗方法的应用领域非常广泛,包括金融工程、通信网络、生物医学、物理模拟等方面,在材料科学领域中也有着重要的应用。

可以利用蒙特卡罗方法模拟材料的热力学性质,计算材料的热容、热传导系数等物理量。

蒙特卡罗方法的优点是能够处理复杂的非线性问题,但由于需要大量的随机样本,计算量较大,耗时较长,且结果受随机性影响较大。

二、分子动力学方法分子动力学方法是一种模拟分子运动的数值计算方法,通过求解牛顿运动方程来模拟分子在空间中的运动轨迹。

分子动力学方法在纳米材料、生物化学、材料加工等领域有着广泛的应用。

可以利用分子动力学方法模拟材料的力学性能、热学性质、表面反应等。

分子动力学方法的优点是能够考虑到分子间相互作用力的影响,较为真实地反映了材料的微观结构和宏观性能,但由于需要求解大量分子的运动轨迹,计算量也较大,且对计算机的性能要求较高。

三、有限元方法有限元方法是一种常用的工程数值计算方法,主要用于求解复杂结构的力学问题和传热问题。

其基本思想是将求解区域划分为有限个小单元,通过建立单元之间的联系,得出整个求解区域的数值解。

有限元方法在工程结构分析、材料成型、热处理过程中有着广泛的应用。

可以利用有限元方法模拟材料的应力分布、变形状态、热应力分析等。

有限元方法的优点是能够较为准确地描述复杂结构的力学和热学行为,计算精度较高,但需要进行网格划分和建立单元之间的关系,工作量较大,且求解非线性和大变形问题时较为困难。

蒙特卡罗方法、分子动力学方法和有限元方法分别在概率统计、分子模拟和结构力学领域有着重要的应用价值,对于不同的研究和工程问题可以选择合适的数值计算方法。

《蒙特卡罗方法》课件

《蒙特卡罗方法》课件
蒙特卡罗方法的优缺点
REPORTING
优点
高效性
蒙特卡罗方法在处理大规模、复杂问 题时,相对于解析方法,具有更高的 计算效率。
适用性强
该方法适用于各种类型的问题,无论 是数学、物理还是工程领域。
灵活性高
蒙特卡罗方法允许使用各种随机抽样 技术,可以根据问题的特性灵活调整 。
易于实现
蒙特卡罗方法的算法相对简单,容易 编程实现。
估计精度
统计估计的精度与样本数量和估计方法的选 择有关。
误差分析
误差来源
蒙特卡罗方法的误差主要来源于概率模型的近似和随机抽样的不 确定性。
误差控制
通过增加样本数量、改进概率模型等方法来减小误差。
误差评估
通过方差、置信区间等统计方法对误差进行评估和检验。
PART 03
蒙特卡罗方法的实现步骤
REPORTING
《蒙特卡罗方法》 PPT课件
REPORTING
• 蒙特卡罗方法简介 • 蒙特卡罗方法的原理 • 蒙特卡罗方法的实现步骤 • 蒙特卡罗方法的应用实例 • 蒙特卡罗方法的优缺点 • 蒙特卡罗方法的未来发展与展望
目录
PART 01
蒙特卡罗方法简介
REPORTING
定义与特点
定义
蒙特卡罗方法是一种基于概率统计的 数值计算方法,通过随机抽样和统计 模拟来求解数学、物理、工程等领域 的问题。
代。
PART 04
蒙特卡罗方法的应用实例
REPORTING
金融衍生品定价
总结词
蒙特卡罗方法在金融衍生品定价中应用广泛 ,通过模拟标的资产价格变化,计算衍生品 价格和风险。
详细描述
蒙特卡罗方法通过随机抽样和概率统计,模 拟标的资产(如股票、外汇或商品等)的价 格变化,从而计算出衍生品(如期权、期货 或掉期等)的预期收益或风险。这种方法能 够处理复杂的衍生品定价问题,并给出较为 精确的估计。

蒙特卡罗方法蒙特卡罗方法解粒子输运问题

蒙特卡罗方法蒙特卡罗方法解粒子输运问题

蒙特卡罗方法在粒子输运问题中价值体现
高效性
蒙特卡罗方法通过随机抽样模拟粒子输运过程,避免了复杂数学 模型的求解,大大提高了计算效率。
灵活性
该方法适用于各种复杂几何形状和边界条件,能够处理实际工程中 的复杂粒子输运问题。
精确性
通过大量的随机抽样,蒙特卡罗方法能够得到高精度的数值解,满 足工程实际需求。
发展历程
蒙特卡罗方法起源于20世纪40年代,最初用于解决原子弹设 计中的中子输运问题。随着计算机技术的发展,蒙特卡罗方 法的应用范围不断扩大,成为科学研究和工程领域的重要工 具。
基本原理及特点
基本原理
蒙特卡罗方法的基本原理是大数定律和中心极限定理。通过大量随机抽样,可 以得到随机变量的统计特征,从而近似求解实际问题。
03
蒙特卡罗方法解粒子输运 问题流程
问题定义与建模
明确粒子输运问题的物理背景和数学描述,如粒 子的类型、数量、初始状态、相互作用等。
建立粒子输运问题的概率模型,将物理问题转化 为数学问题,如概率密度函数、期望、方差等。
确定模型的输入和输出,以及需要求解的目标函 数或性能指标。
随机数生成技术
选择合适的随机数生成器,如伪 随机数生成器或真随机数生成器, 以满足模拟的精度和效率要求。
未来发展趋势预测和挑战分析
并行化技术
随着计算机技术的发展,并行化技术将进一步提高蒙特卡罗方法的计算效率。
智能化算法
结合人工智能等先进技术,实现自适应抽样和智能优化,提高计算精度和效率。
未来发展趋势预测和挑战分析
• 多物理场耦合:将蒙特卡罗方法应用于多物理场耦合问题, 实现更复杂的粒子输运模拟。
未来发展趋势预测和挑战分析
确定随机数生成器的种子和参数, 以保证模拟的可重复性和一致性。

第八章 蒙特卡洛方法

第八章 蒙特卡洛方法

常用的几组和X如下 X
0.5 0.05 0.01
0.6745 1.96 3
特别称=0.5时的误 差0.6745/N1/2为概 然误差。再如,取置 信水平为95%,则X =1.96,此时表明误 差不等式:以95%的 可能性具有精确度为 E=1.960/N1/2 。
所以,MC方法对于误差的 估计具有概率性质。即对于 这个方法不能断言误差不超 过某值,而只能指出误差以 某种(如接近1)的概率不超过 某值。还可看出,当给定置 信度后,误差E由和N1/2 决定。要减小E,或者是增 大N,或者是减小方差2。 在固定下,要提高精度一 位数字,就要增加100倍工 作量,因此,单纯增大N, 不是一个有效的办法。
效率
一般来说,降低方差的技巧,往往会使观察一个子 样的时间增加。在固定时间内,使观察的样本数减少。 所以,一种方法的优劣,需要由方差和观察一个子样 的费用(使用计算机的时间)两者来衡量。 这就是蒙特卡罗方法中效率的概念。它定义为方差 的平方与 c 的乘积,其中 c 是观察一个子样的平均费用。 显然乘积越小,方法越有效。
蒙特卡罗是欧洲摩纳哥国的一个重要城市,以赌博著称。
蒙特卡罗方法是以概率论与数理统计学为基础的,是通过 统计试验达到计算某个量的目的。
而赌博时,概率论是一种有力的手段。所以,以蒙特卡罗 作为方法的名字,原因大概于此。
蒙特卡罗方法不仅可作为理论和实验的补充,同时可可以 给出关于体系的实验可观测物理量和通过现有实验所无法观 测的物理量的值。如光子和中子的联合输运问题的模拟实验 研究和可任意改变系统中的相互作用势;即便是对实验中难 以达到的某种极限条件,它也能很容易的实现!
2.2.3 伪随机数及其产生的方法
计算机不会掷骰子,它是利用数论的方法来产生随机数的。 由于这种办法属于半经验性质,因此只能近似地具备随机 数的性质,所以称为伪随机数。最初冯· 诺伊曼(Von Neumann)建议的“平方取中法”如下;首先取一个2S的 数,去它中间的S位数字作为第一个随机伪随机数;然后 其自乘构成一个新2S位数,再取中间的S位数作为第二个 伪随机数· · · · · ·

计算材料学概述 之 蒙特卡洛方法.详解

计算材料学概述 之  蒙特卡洛方法.详解

随机数产生的办法
关于随机数的几点注意
注1 由于均匀分布的随机数的产生总是采用某个确定 的模型进行的,从理论上讲,总会有周期现象出现的。 初值确定后,所有随机数也随之确定,并不满足真正 随机数的要求。因此通常把由数学方法产生的随机数 成为伪随机数。 但其周期又相当长,在实际应用中几乎不可能出 现。因此,这种由计算机产生的伪随机数可以当作真 正的随机数来处理。 注2 应对所产生的伪随机数作各种统计检验,如独 立性检验,分布检验,功率谱检验等等。
考虑平面上的一个边长为1的正方形及其内部的一个形状不规 则的“图形”,如何求出这个“图形”的面积呢?Monte Carlo方法是这样一种“随机化”的方法:向该正方形“随机 地”投掷N个点,若有M个点落于“图形”内,则该“图形” 的面积近似为M/N。
用该方法计算π的基本思路是: 1 、根据圆面积的公式: s=πR^2 ,当R=1时,
11
面积的计算
辛普逊方法
蒙特-卡洛方法
在长方形中均匀投N0组(x,y) 如 y<f(x), 则 N=N+1
I = ΣSn
f (x)
Hale Waihona Puke I =(N/N0)×S0f (x)
S0
S
x x
MC 的优点 MC与传统数学方法相比,具有直观性强,简便易行的优点,该方
法能处理一些其他方法无法解决的负责问题,并且容易在计算机 上实现,在很大程度上可以代替许多大型、难以实现的复杂实验 和社会行为。无污染、无危险、能摆脱实验误差。
Monte Carlo方法之随机数的产生
许多计算机系统都有随机数生成函数 F90: call random_seed
call random_number(a) 2、ISEED=RTC()

蒙特卡罗方法常用蒙特卡罗程序介绍

蒙特卡罗方法常用蒙特卡罗程序介绍
优点
拒绝采样可以处理复杂、非标准形式的分布,且实现简单。
缺点
拒绝采样需要选择一个合适的建议分布和接受率以获得较高的抽样效率,且在某些情况下可能难以找到 合适的建议分布或接受率导致抽样效率低下。
03
蒙特卡罗方法在数学领域 应用
数值积分与微分
利用随机数进行数值积分
通过生成在指定区间内均匀分布的随机数,计算函数在这些随机数处的取值,并求平均来近似计算定 积分。
利用蒙特卡罗方法模拟相变过程中的临界现象,如临界指数、普 适类等。
有序-无序相变研究
模拟有序-无序相变过程,研究相变机制、相图以及临界行为等。
拓扑相变研究
通过蒙特卡罗方法模拟拓扑相变过程,探索拓扑序、拓扑缺陷以 及拓扑保护等物理现象。
05
蒙特卡罗方法在金融领域 应用
风险评估与建模
信用风险评估
利用蒙特卡罗方法模拟信贷资产组合中违约事件的发 生,进而估计预期损失和非预期损失。
统计物理
用于研究复杂系统的统计 性质,如相变、临界现象 等。
应用领域与前景
• 量子力学:用于求解薛定谔方程,研究原子、分子等微观粒子的性质。 • 金融工程:用于评估金融衍生品的价值、风险管理等问题。 • 优化问题:用于求解复杂的优化问题,如组合优化、非线性规划等。 • 前景:随着计算机技术的不断发展和算法的改进,蒙特卡罗方法的应用前景将更加广阔。未来,该方法将在更
通过构建二叉树模型模拟标的资产价格的变动路径,并利用蒙特卡罗方法进行期权定价的验证。
蒙特卡罗模拟定价
直接运用蒙特卡罗方法模拟期权到期日的收益,从而得到期权的预期收益和价格。
投资组合优化问题求解
1 2 3
有效前沿求解
利用蒙特卡罗方法模拟不同投资组合的收益和风 险,进而求解出一定风险水平下的最优投资组合。

蒙特卡罗方法

蒙特卡罗方法

蒙特卡罗方法
蒙特卡罗方法是一种通过随机抽样来解决问题的数值计算方法。

它的名称来源于摩纳哥蒙特卡罗赌场,因为在这种方法中,随机数起着核心作用,就像赌场中的随机事件一样。

蒙特卡罗方法在统计学、物理学、金融学、计算机图形学等领域得到了广泛的应用,它的核心思想是通过大量的随机抽样来近似地求解问题,从而避免了复杂问题的精确求解。

蒙特卡罗方法最早是由美国科学家冯·诺伊曼在20世纪40年代提出的,用于研究核爆炸的中子输运问题。

随后,蒙特卡罗方法在众多领域得到了广泛的应用,并且随着计算机技术的发展,它的应用范围变得越来越广泛。

在实际应用中,蒙特卡罗方法通常包括以下几个步骤,首先,确定问题的随机模型;然后,进行大量的随机抽样;接着,根据抽样结果进行统计分析;最后,得出问题的近似解。

蒙特卡罗方法的优势在于,它可以处理各种复杂的问题,不受问题维度的限制,而且在一定条件下可以得到问题的近似解。

在统计学中,蒙特卡罗方法被广泛应用于概率分布的模拟和统计推断。

通过大量的随机抽样,可以得到概率分布的近似结果,从而对统计问题进行求解。

在物理学中,蒙特卡罗方法可以用于模拟粒子的输运过程、热力学系统的平衡态分布等问题。

在金融学中,蒙特卡罗方法可以用于期权定价、风险管理等领域。

在计算机图形学中,蒙特卡罗方法可以用于光线追踪、体积渲染等领域。

总的来说,蒙特卡罗方法是一种强大的数值计算方法,它通过随机抽样来解决各种复杂问题,具有广泛的应用前景。

随着计算机技术的不断发展,蒙特卡罗方法将会在更多的领域得到应用,并为解决实际问题提供更加有效的数值计算手段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蒙特卡洛方法
1、蒙特卡洛方法的由来
蒙特卡罗分析法(Monte Carlo method),又称为统计模拟法,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法。

由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。

第二次世界大战时期,美国曼哈顿原子弹计划的主要科学家之一,匈牙利美藉数学家约翰·冯·诺伊曼(现代电子计算机创始人之一)在研究物质裂变时中子扩散的实验中采用了随机抽样统计的手法,因为当时随机数的想法来自掷色子及轮盘等赌博用具,因此他采用摩洛哥著名赌城蒙特卡罗来命名这种计算方法,为这种算法增加了一层神秘色彩。

蒙特卡罗方法提出的初衷是用于物理数值模拟问题, 后来随着计算机的快速发展, 这一方法很快在函数值极小化、计算几何、组合计数等方面得到应用, 于是它作为一种独立的方法被提出来, 并发展成为一门新兴的计算科学, 属于计算数学的一个分支。

如今MC 方法已是求解科学、工程和科学技术领域大量应用问题的常用数值方法。

2、蒙特卡洛方法的核心—随机数
蒙特卡洛方法的基本理论就是通过对大量的随机数样本进行统计分析,从而得到我们所需要的变量。

因此蒙特卡洛方法的核心就是随机数,只有样本中的随机数具有随机性,所得到的变量值才具有可
信性和科学性。

在连续型随机变量的分布中, 最基本的分布是[0, 1]区间上的均匀分布, 也称单位均匀分布。

由该分布抽取的简单子样ξ1,ξ2ξ3 ……称为随机数序列, 其中每一个体称为随机数, 有时称为标准随机数或真随机数, 独立性和均匀性是其必备的两个特点。

真随机数是数学上的抽象, 真随机数序列是不可预计的, 因而也不可能重复产生两个相同的真随机数序列。

真随机数只能用某些随机物理过程来产生, 如放射性衰变、电子设备的热噪音、宇宙射线的触发时间等。

实际使用的随机数通常都是采用某些数学公式产生的,称为伪随机数。

真随机数只是一种数学的理想化概念,实际中我们所接触到的和使用的都是伪随机数。

要把伪随机数当成真随机数来使用, 必须要通过随机数的一系列的统计检验。

无论伪随机数用什么方法产生,它的局限性都在于这些随机数总是一个有限长的循环集合, 而且序列偏差的上确界达到最大值。

所以若能产生低偏差的确定性序列是很有用的,产生的序列应该具有这样的性质, 即任意长的子序列都能均匀地填充函数空间。

人们已经产生了若干种满足这个要求的序列,如Halton序列、Faure序列、Sobol序列和Niederreiter序列等。

称这些序列为拟随机数序列。

伪随机序列是为了模拟随机性, 而拟随机序列更致力于均匀性。

3、蒙特卡洛方法的原理
当问题可以抽象为某个确定的数学问题时,应当首先建立一个恰
当的概率模型,即确定某个随机事件A或随机变量X,使得待求的解等于随机事件出现的概率或随机变量的数学期望值。

然后进行模拟实验,即重复多次地模拟随机事件A或随机变量X。

最后对随机实验结果进行统计平均,求出A出现的频数或X的平均值作为问题的近似解。

一、收敛性
切比雪夫定理:
设随机变量X1, X2…X n,...相互独立,且具有相同的数学期望和方差:E(X k) = μ, D(X k) = σ2 (k=1,2,…),作前n个随机变量的算术平均
Y n=1
n
∑X k
n
k=1
则对任意ε>0有
lim
n→∞
P{|Y n−μ|<ε}
lim n→∞P{|1
n
∑X k−μ
n
k=1
|<ε}=1
这说明,当n充分大时,随机变量的算术平均值接近于数学期望,这种接近是在概率意义下接近的。

换言之,n个相互对立的随机变量的算术平均,当n无限增大时,几乎变成了一个常数。

伯努利大数定律:
设m是n次独立试验中事件A发生的次数,p是事件A在每次试验中发生的概率(0<p<1),则对任意ε>0,有
lim n→∞P{|
m
n
−p|<ε}=1
这表明,当n足够大时,事件的频率与其发生的概率的偏差小于任意小的数ε的概率为1。

因此在实际中,试验次数达到一定的数值时,我们可以用事件的频率来替代事件发生的概率。

收敛判据:蒙特卡洛方法的收敛判据是根据所计算变量估计值的误差来确定的,常用方差系数来表示:
β=√V(F)/NS
E(F)
只有方差系数降低到一定的数值,抽样才停止。

二、蒙特卡洛方法步骤
(1)为了计算某个变量I,首先就是选择一个数学期望为I的随机变量Y,从中抽出子样Y1,Y2,Y3,……Y n。

接着要确定随机变量Y的概率模型Y=g(ξ1,ξ2,ξ3 ……ξm),其中ξ1,ξ2称为随机数,就是我们上文提到的真随机数。

m称为此次算法的结构性维数,也就是完成一次抽样所需要随机数的最大数目。

也就是根据随机产生的m个随机数得到随机变量Y的一个子样Y n,可以是一种对应关系,或者是函数关系,或者可以称为一种映射关系。

(2)抽样方法的采用:当确定随机变量Y后, 关键的就是从Y的分布中抽取子样Y1, Y2,……Y n。

因此, 随机变量抽样是蒙特卡洛方法的关键步骤。

对于任意非单位均匀分布随机变量 的抽样, 均是使用严格数学方法, 借助随机数产生, 步骤为先抽取若干个随机数ξ1,
ξ2 ,ξ3 ……ξm, 然后经过概率模型运算g(ξ1,ξ2 ,ξ3 ……ξm) 得到算计变量Y子样的一个体Y n。

(3)最后根据切比雪夫定理,根据得到的一定数目的子样:Y1,Y2,Y3,……Y n,求出子样算术平均值从而得到所要计算的变量I。

相关文档
最新文档