2012年浙江省舟山市中考数学试卷含答案
舟山中考数学试题及答案
舟山中考数学试题及答案试题一:1. 已知函数f(x) = 2x^2 - 3x + 1, 求f(2)的值。
解答:将x = 2代入函数f(x)中,得到f(2) = 2(2)^2 - 3(2) + 1 = 8 - 6+ 1 = 3。
2. 若a:b = 3:4,b:c = 5:6,求a:c的值。
解答:根据已知条件,可以构建两个等比数列,分别是3、4和5、6。
将它们相乘得到:(3/4) * (5/6) = 15/24 = 5/8。
因此a:c = 5:8。
3. 甲、乙、丙三个人合作修建一条路,甲单独工作需要10天完成,乙单独工作需要15天完成,丙单独工作需要25天完成。
甲、乙、丙三个人一起工作几天能完成?解答:设甲、乙、丙三个人一起工作x天完成。
根据人数与工作效率的关系,可以得到以下方程:10/x + 15/x + 25/x = 1。
解这个方程得到x ≈ 5.357。
因此,甲、乙、丙三个人一起工作约5天能完成修建工作。
4. 若a + b = 5,a^2 + b^2 = 19,求a^3 + b^3的值。
解答:根据已知条件,可以得到以下等式:(a + b)(a^2 + b^2 - ab) =a^3 + b^3。
将已知的数值代入,得到:5(19 - ab) = a^3 + b^3。
解方程得到ab = -6。
将ab代入方程得到:5(19 - (-6)) = a^3 + b^3,化简得到a^3 + b^3 = 95。
5. 若log(a) = 2,log(b) = 3,求log(a^3 * b^2)的值。
解答:根据对数的性质,可以得到log(a^3 * b^2) = log(a^3) +log(b^2) = 3log(a) + 2log(b) = 3(2) + 2(3) = 6 + 6 = 12。
试题二:1. 某公司总共有300名员工,其中男性占总人数的3/5,女性占总人数的2/5。
求男性和女性的人数各是多少?解答:男性人数 = 总人数 * (3/5) = 300 * (3/5) = 180。
2012浙江舟山中考数学解析版
初中毕业数学中考模拟试题(一)(满分120分)学校班别姓名得分一.选择题:(本大题共12小题,每小题3分,共36分)1. 的绝对值是()A . B . C . D .2.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到的设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种方案,你认为符合条件的是()A.等腰三角形 B.正三角形 C.等腰梯形 D.菱形3.点P(-2,1)关于y轴对称的点的坐标为()A.(-2,-1) B.(2,1) C.(2,-1) D.(-2,1)4.形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()5.若m+n=3,则Array的值为()A.12 B.C.3 D.06、下列函数中,自变量x 的取值范围是的函数是()A .B .C .D .7.二次函数的图象的顶点坐标是()A. B. C. D.8.请你观察下面的四个图形,它们体现了中华民族的传统文化.对称现象无处不在,其中可以看作是轴对称图形的有()A.4个 B.3个 C.2个 D.1个9.已知⊙O是的外接圆,若AB=AC=5,BC=6,则⊙O的半径为()A.4 B.3.25 C.3.125 D.2.2510.如图,在四边形ABCD中,E是BC边的中点,连结DE并延长,交AB的延长线于F点,.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A. B. C. D.11.如图,骰子是一个质量均匀的小正方体,它的六个面上分别刻有1~6 个点.小明仔细观察骰子,发现任意相对两面的点数和都相等.这枚骰子向上的一面的点数是5,它的对面的点数是()A.1 B.2 C.3 D.612.某公司员工的月工资如下表:则这组数据的平均数、众数、中位数分别为( )A .2200元 1800元 1600元B .2000元 1600元 1800元C .2200元 1600元 1800元D .1600元 1800元 1900元 二、填空题(本大题共6小题,每小题3分,共18分) 13.分解因式:a 2+2a =__.14.在不透明的袋子中装有4个红球和7个黄球,每个球除颜色外都相同,从中任意摸出一个球,摸到_ _球的可能性大.15. 在钦州保税港区的建设中,建设者们发扬愚公移山、精卫填海的精神,每天吹沙填海造地约40亩.据统计,最多一天吹填的土石方达316700方,这个数字用科学计数法表示为_ _方(保留三个有效数字). 16.如图,将一副三角板叠放在一起,使直角顶点重合于O 点,则.17. 如图是反比例函数y =在第二象限内的图象,若图中的矩形OABC 的面积为2,则k =_ _.18.a 是不为1的有理数,我们把称为a 的差倒数.如:2的差倒数是,的差倒数是.已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推,则 .三.解答题:19.计算(6分):已知a=3 +1,b=3。
2012中考数学试题及答案
2012中考数学试题及答案第一节:选择题1. 若 a + b = 8,且 a - b = 4,则 a 的值是多少?A. 12B. 6C. 4D. 2答案:C. 4解析:将两个等式相加得到 2a = 12,因此 a = 6。
将 a = 6 代入第一个等式得到 6 + b = 8,从而可以得到 b = 2。
因此 a 的值是 4。
2. 已知一个等腰直角三角形的两条直角边分别为 5 cm。
那么斜边的长是多少?A. 5 cmB. 10 cmC. 7.07 cmD. 4.24 cm答案:C. 7.07 cm解析:根据勾股定理,斜边的长可以计算为√(a^2 + a^2),其中 a 代表直角边的长度。
代入 a = 5 cm,得到斜边的长约为 7.07 cm。
3. 若 3x - 4 = 7,则 x 的值是多少?A. 2B. 3C. 4D. 5答案:D. 5解析:将等式两边同时加上 4,得到 3x = 11。
接着将等式两边同时除以 3,得到 x = 11/3 或约等于 3.67。
因此 x 的值是 5。
第二节:填空题1. 若 f(x) = 2x^2 + 3x - 5,则 f(-1) 的值是多少?答案:-6解析:将 x = -1 代入函数 f(x) = 2x^2 + 3x - 5,得到 f(-1) = 2(-1)^2 + 3(-1) - 5 = 2 - 3 - 5 = -6。
2. 在一个等差数列中,首项为 3,公差为 4。
第 n 项为多少?答案:3 + 4(n-1)解析:在一个等差数列中,第 n 项可以通过首项加上 (n-1) 倍的公差得到。
代入首项为 3,公差为 4,得到第 n 项为 3 + 4(n-1)。
第三节:解答题1. 请用因数分解法求解方程 x^2 + 6x + 8 = 0 的解。
解答:首先,我们可以尝试将方程进行因数分解。
将方程右侧的 8 进行因式分解得到 8 = 2 * 2 * 2 或者 8 = 1 * 2 * 4。
2012年中考数学试题及答案
2012年中考数学试题及答案一、选择题1. ( ) 设a、b、c、d是四个不同的整数,且a<b<c<d,那么它们中最小的一个是?A. aB. bC. cD. d2. ( ) 从一个圆盘上切下一个小扇形的时候,整个圆盘的周长减小7cm,小扇形的周长减小7cm的结果是原来的周长的等于1/3,那么整个圆盘的面积减小的结果是?A. 2/7B. 1/3C. 1/7D. 3/73. ( ) 如果x+y=200,x>y,那么x.y的最大值是A. 40000B. 40401C. 40500D. 405014. ( ) 如图,正方形ABCD中,E、F分别为AB和CD的中点,连结EF.求证:EF⊥BC.A. 对,方法不唯一B. 对,方法唯一C. 对,方法准确D. 错5. ( ) 如图,已知∠A=42°,AP和BP分别是△ABC的角平分线,且∠APC=∠BPC=96°,求∠PBC=_______°.A. 18B. 42C. 48D. 54二、填空题6. 六个完全相同的圆半径的和是90,则r的值为______.8. 如图,是一块标有长方体的正六面体.4、5、6三点所在直线交EF于点P,其中,exE=16cm,则EP=________cm.9. √(7+√41) +(7-√41) = ______10. 如图,ABCD是一个平行四边形,四边中点依次为E、F、G、H.则EFHG是平行四边形吗?(是或否)三、解答题11. 一个正整数恰好被13整除,当它的各位数字交换后,所得的数恰好被17整除,那么这个数是多少?12. 如图,①是一个等边三角形,边长为20cm.分别以A、B为圆心,AB为半径交于点P.连结OP,OP与②的交点为Q.求过P,Q两点的直线的长度13. 解方程:3(x-1)+4(x-2)=5(x+3)14. 如图,是一个摄影器材专卖店的平面图.把ㄨBCD┼縄顺时针旋转100°。
2012年舟山中考数学试题(解析版)
2012年浙江省舟山市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(-2)0等于( A )A.1 B.2 C.0 D.-2【考点】零指数幂.【专题】计算题.【分析】根据0指数幂的定义直接解答即可.【解答】解:(-2)0=1.故选A.【点评】本题考查了0指数幂,要知道,任何非0数的0次幂为1.2.下列图案中,属于轴对称图形的是( A )A. B. C. D.【考点】轴对称图形.【专题】【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念知B、C、D都不是轴对称图形,只有A是轴对称图形.故选A.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为( C )A.0.35×108B.3.5×107C.3.5×106D.35×105【考点】科学记数法—表示较大的数.【专题】常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,因为350万共有7位,所以n=7-1=6.【解答】解:350万=3 500 000=3.5×106.故选C.【点评】本题考查了科学记数法表示较大的数,准确确定n是解题的关键4.如图,AB是⊙0的弦,BC与⊙0相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于( B )A.15°B.20°C.30°D.70°【考点】切线的性质.【专题】【分析】由BC与⊙0相切于点B,根据切线的性质,即可求得∠OBC=90°,又由∠ABC=70°,即可求得∠OBA的度数,然后由OA=OB,利用等边对等角的知识,即可求得∠A的度数.【解答】解:∵BC与⊙0相切于点B,∴OB⊥BC,∴∠OBC=90°,∵∠ABC=70°,∴∠OBA=∠OBC-∠ABC=90°-70°=20°,∵OA=OB,∴∠A=∠OBA=20°. 故选B .【点评】此题考查了切线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用,注意圆的切线垂直于经过切点的半径定理的应用. 5.若分式12x x -+的值为0,则( D ) A .x=-2 B .x=0 C .x=1或2 D .x=1 【考点】分式的值为零的条件. 【专题】概念题.【分析】先根据分式的值为0的条件列出关于x 的不等式组,求出x 的值即可. 【解答】解:∵分式12x x -+的值为0, ∴-=⎧⎨+≠⎩x 10x 20,解得x=1.故选D .【点评】本题考查的是分式的值为0的条件,根据题意列出关于x 的不等式组是解答此题的关键. 6.如图,A 、B 两点在河的两岸,要测量这两点之间的距离,测量者在与A 同侧的河岸边选定一点C ,测出AC=a 米,∠A=90°,∠C=40°,则AB 等于( C )米.A .a sin40°B .a cos40°C .a tan40°D .tan 40a【考点】解直角三角形的应用. 【专题】【分析】直接根据锐角三角函数的定义进行解答即可.【解答】解:∵△ABC 中,AC= a 米,∠A=90°,∠C=40°,∴AB=a tan40°. 故选C .【点评】本题考查的是解直角三角形的应用及锐角三角函数的定义,熟知锐角三角函数的定义是解答此题的关键.7.已知一个圆锥的底面半径为3cm ,母线长为10cm ,则这个圆锥的侧面积为( B )A .15πcm 2B .30πcm 2C .60πcm 2D.2【考点】圆锥的计算. 【专题】计算题.【分析】圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可.【解答】解:这个圆锥的侧面积=π×3×10=30πcm 2,故选B .【点评】考查圆锥的计算;掌握圆锥的侧面积计算公式是解决本题的关键.8.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”如“947”就是一个“V 数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V 数”的概率是( C )A .14 B .310 C .12 D .34【考点】列表法与树状图法. 【专题】新定义.【分析】首先根据题意画出树状图,由树状图即可求得所有等可能的结果与与2组成“V 数”的情况,利用概率公式即可求得答案.【解答】解:画树状图得: ∵可以组成的数有:321,421,521,123,423,523,124,324,524,125,325,425,其中是“V 数”的有:423,523,324,524,325,425,∴从1,3,4,5中任选两数,能与2组成“V 数”的概率是:61122=. 故选C .【点评】此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.9.如图,已知△ABC 中,∠CAB=∠B=30°,AB=2 3 ,点D 在BC 边上,把△ABC 沿AD 翻折使AB 与AC 重合,得△AB ′D ,则△ABC 与△AB ′D 重叠部分的面积为( A ) A.32 B.12 C.3D 36- 【考点】翻折变换(折叠问题).【专题】【分析】首先过点D 作DE ⊥AB ′于点E ,过点C 作CF ⊥AB ,由△ABC 中,∠CAB=∠B=30°,AB=利用等腰三角形的性质,即可求得AC 的长,又由折叠的性质,易得∠CDB ′=90°,∠B ′=30°,B ′C=AB ′-AC=2,继而求得CD 与B ′D 的长,然后求得高DE 的长,继而求得答案.【解答】解:过点D 作DE ⊥AB ′于点E ,过点C 作CF ⊥AB ,∵△ABC 中,∠CAB=∠B=30°,AB=∴AC=BC ,∴AF=12∴AC 2cos AF CAB ===∠,由折叠的性质得:AB ′=AB=B ′=∠B=30°,∵∠B ′CD=∠CAB+∠B=60°, ∴∠CDB ′=90°,∵B ′C=AB ′-AC=2,∴CD=12B ′1,B ′D=B ′C •cos ∠B ′=2)3=∴•32'=='CD B D DE B C , ∴S 阴影=12AC •DE=122⨯= 故选A .【点评】此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.10.如图,正方形ABCD 的边长为a ,动点P 从点A 出发,沿折线A →B →D →C →A 的路径运 动,回到点A 时运动停止.设点P 运动的路程长为长为x ,AP 长为y ,则y 关于x 的函数图象大致是( D )A .B .C .D .【考点】动点问题的函数图象. 【专题】【分析】根据题意设出点P 运动的路程x 与点P 到点A 的距离y 的函数关系式,然后对x 从0到2a +时分别进行分析,并写出分段函数,结合图象得出得出答案.【解答】解:设动点P 按沿折线A →B →D →C →A 的路径运动,∵正方形ABCD 的边长为a ,∴,则当0≤x <a 时,y=x ,当a ≤x <(a 时,y =当a (x <a (y =当a (x ≤a ((2y a x =+-,结合函数解析式可以得出第2,3段函数解析式不同,得出A 选项一定错误,根据当a ≤x <(a 时,函数图象被P 在BD 中点时,分为对称的两部分,故B 选项错误,再利用第4段函数为一次函数得出,故C 选项一定错误, 故只有D 符合要求,故选:D .【点评】此题主要考查了动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.二、填空题(共6小题,每小题4分,满分24分) 11.当a=2时,代数式3a-1的值是 5 . 【考点】代数式求值. 【专题】【分析】将a=2直接代入代数式即可求出代数式3a-1的值. 【解答】解:将a=2直接代入代数式得,3a-1=3×2-1=5. 故答案为5.【点评】本题考查了代数式求值,要学会替换,即将字母换成相应的数.12.因式分解:a 2-9= (a+3)(a-3) . 【考点】因式分解-运用公式法. 【专题】【分析】a 2-9可以写成a 2-32,符合平方差公式的特点,利用平方差公式分解即可.【解答】解:a 2-9=(a+3)(a-3).【点评】本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键.13.在直角△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,若CD=4,则点D 到斜边AB 的距离为 4 .【考点】角平分线的性质. 【专题】计算题.【分析】根据角平分线的性质定理,解答出即可;【解答】解:如右图,过D 点作DE ⊥AB 于点E ,则DE 即为所求, ∵∠C=90°,AD 平分∠BAC 交BC 于点D ,∴CD=DE (角的平分线上的点到角的两边的距离相等), ∵CD=4,∴DE=4. 故答案为:4.【点评】本题主要考查了角平分线的性质,角平分线上的点到角两边的距离相等. 14.如图是嘉兴市某6天内的最高气温折线统计图,则最高气温的众数是 9℃ .【考点】众数;折线统计图. 【专题】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【解答】解:9℃出现了2次,出现次数最多,故众数为9,故答案为:9.【点评】本题属于基础题,考查了确定一组数据的众数的能力.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.15.如图,已知⊙O 的半径为2,弦AB ⊥半径OC ,沿AB 将弓形ACB 翻折,使点C 与圆心O 重合,则月牙形(图中实线围成的部分)的面积是43π+【考点】扇形面积的计算;翻折变换(折叠问题). 【专题】【分析】首先求出AOB=120°,再利用S 弓形ACB =S 扇形AOB -S △AOB ,以及月牙形的面积是S 圆-2S 弓形ACB 即可得出答案.【解答】解:连接OA ,OB ,∵OC ⊥AB 于E ,根据题意,得OE=12OC=12OB=1,则∠ABO=30°,=∴AB=AOB=120°.S 弓形ACB =S 扇形AOB -S △AOB 120414=36023 AB EO ππ⨯=-⨯-则月牙形(图中实线围成的部分)的面积是:S 圆-2S 弓形ACB =4442(=33πππ=-+故答案为:43π+ 【点评】此题主要考查了扇形面积求法以及不规则图形面积计算方法,根据已知图象得出月牙形的面积=S 圆-2S 弓形ACB 是解题关键.16.如图,在Rt △ABC 中,AB=BC ,∠ABC=90°,点D 是AB 的中点,连接CD ,过点B 作BG ⊥CD ,分别交CD ,CA 于点E ,F ,与过点A 且垂直于AB 的直线相交于点G ,连接DF ,给出以下五个结论:①AG AB =FG FB ;②∠ADF=∠CDB ;③点F 是GE 的中点;④AF= 2 3 AB ;⑤S △ABC=5S △BDF ,其中正确结论的序号是 ①②④【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形. 【专题】【分析】由△AFG ∽△BFC ,可确定结论①正确;由△ABG ≌△BCD ,△AFG ≌△AFD ,可确定结论②正确;由△AFG ≌△AFD 可得FG=FD >FE ,所以点F 不是GE 中点,可确定结论③错误; 由△AFG ≌△AFD 可得AG=12AB=12BC ,进而由△AFG ∽△BFC 确定点F 为AC 的三等分点,可确定结论④正确;因为F 为AC 的三等分点,所以S △ABF =13S △ABC ,又S △BDF =12S △ABF ,所以S △ABC =6S △BDF ,由此确定结论⑤错误. 【解答】解:依题意可得BC ∥AG ,∴△AFG ∽△BFC ,∴AG FGBC FB =, 又AB=BC ,∴AG FGAB FB=. 故结论①正确;如上图,∵∠1+∠3=90°,∠1+∠4=90°,∴∠3=∠4. 在△ABG 与△BCD 中,∠=∠⎧⎪=⎨⎪∠=∠=︒⎩34AB BCBAG CBD 90 , ∴△ABG ≌△BCD (ASA ),∴AG=BD ,又BD=AD ,∴AG=AD ; 在△AFG 与△AFD 中,AG=AD ∠FAG=∠FAD=45° AF=AF , ∴△AFG ≌△AFD (SAS ),∴∠5=∠2, 又∠5+∠3=∠1+∠3=90°,∴∠5=∠1, ∴∠1=∠2,即∠ADF=∠CDB . 故结论②正确;∵△AFG ≌△AFD ,∴FG=FD ,又△FDE 为直角三角形,∴FD >FE , ∴FG >FE ,即点F 不是线段GE 的中点. 故结论③错误;∵△ABC 为等腰直角三角形,∴AC=2AB ; ∵△AFG ≌△AFD ,∴AG=AD=12AB=12BC ; ∵△AFG ∽△BFC ,∴AG BC =AF FC ,∴FC=2AF , ∴AF=13AC=23AB . 故结论④正确;∵AF=13AC ,∴S △ABF =13S △ABC ;又D 为中点,∴S △BDF =12S △ABF , ∴S △BDF =16S △ABC ,即S △ABC =6S △BDF .故结论⑤错误.综上所述,结论①②④正确, 故答案为:①②④. 【点评】本题考查了等腰直角三角形中相似三角形与全等三角形的应用,有一定的难度.对每一个结论,需要仔细分析,严格论证;注意各结论之间并非彼此孤立,而是往往存在逻辑关联关系,需要善加利用.三、解答题(共8小题,满分66分)17.计算:(1)25163-+-(2)(x+1)2-x (x+2)【考点】整式的混合运算;实数的运算. 【专题】计算题. 【分析】(1)根据绝对值、平方根、平方的定义分别计算,然后再进行加减运算;(2)先根据完全平方公式和单项式乘以多项式法则将原式展开,再合并同类项.【解答】解:(1)原式=5+4-9=0;(2)原式=x 2+2x+1-x 2-2x=1.【点评】本题考查了整式的混合运算、实数的运算,要熟悉其运算法则. 18.解不等式2(x-1)-3<1,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集. 【专题】计算题.【分析】根据一元一次不等式的解法,去括号,移项,合并同类项,系数化为1即可得解. 【解答】解:去括号得,2x-2-3<1, 移项、合并得,2x <6,系数化为1得,x <3. 在数轴上表示如下:【点评】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.19.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE . (1)求证:BD=EC ;(2)若∠E=50°,求∠BAO 的大小.【考点】菱形的性质;平行四边形的判定与性质.【专题】证明题.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证;(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.【解答】(1)证明:∵菱形ABCD,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC;(2)解:∵平行四边形BECD,∴BD∥CE,∴∠ABO=∠E=50°,又∵菱形ABCD,∴AC丄BD,∴∠BAO=90°-∠ABO=40°.【点评】本题主要考查了菱形的性质,平行四边形的判定与性质,熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键.20.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】【分析】(1)根据扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,即可得出被抽取的总天数;(2)利用轻微污染天数是50-32-8-3-1-1=5天;表示优的圆心角度数是850×360°=57.6°,即可得出答案;(3)利用样本中优和良的天数所占比例得出一年(365天)达到优和良的总天数即可.【解答】解:(1)∵扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天); (2)轻微污染天数是50-32-8-3-1-1=5天; 表示优的圆心角度数是8 50 ×360°=57.6°, 如图所示:(3)∵样本中优和良的天数分别为:8,32, ∴一年(365天)达到优和良的总天数为:8+32 50 ×365=292(天).∴估计该市一年达到优和良的总天数为292天.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 21.如图,一次函数1y kx b =+的图象与反比例函数2my x=的图象相交于点A (2,3)和点B ,与x 轴相交于点C (8,0).(1)求这两个函数的解析式; (2)当x 取何值时,y 1>y 2.【考点】反比例函数与一次函数的交点问题. 【专题】计算题.【分析】(1)将A 、B 中的一点代入2my x=,即可求出m 的值,从而得到反比例函数解析式,把 A (2,3)、C (8,0)代入y 1=kx+b ,可得到k 、b 的值; (2)根据图象可直接得到y1>y2时x 的取值范围. 【解答】解:(1)把 A (2,3)代入2my x=,得m=6. 把 A (2,3)、C (8,0)代入y 1=kx+b ,得 k=-12k =-,b=4, ∴这两个函数的解析式为1142y x =-+,26y x=;(2)由题意得121426y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,解得1161x y =⎧⎨=⎩,2223x y =⎧⎨=⎩,当x <0 或 2<x <6 时,y 1>y 2.【点评】本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.22.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每 辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y 元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x 辆车时,每辆车的日租金为 1400-50x 元(用含x 的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益不盈也不亏? 【考点】二次函数的应用. 【专题】 【分析】(1)根据当全部未租出时,每辆租金为:400+20×50=1400元,得出公司每日租出x 辆车时,每辆车的日租金为:1400-50x ;(2)根据已知得到的二次函数关系求得日收益的最大值即可;(3)要使租赁公司日收益不盈也不亏,即:y=0.即:50 (x-14)2+5000=0,求出即可. 【解答】解:(1)∵某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每 辆车的日租金每增加50元,未租出的车将增加1辆; ∴当全部未租出时,每辆租金为:400+20×50=1400元, ∴公司每日租出x 辆车时,每辆车的日租金为:1400-50x ; 故答案为:1400-50x ; (2)根据题意得出: y=x (-50x+1400)-4800,=-50x 2+1400x-4800,=-50(x-14)2+5000.当x=14时,在范围内,y 有最大值5000.∴当日租出14辆时,租赁公司日收益最大,最大值为5000元. (3)要使租赁公司日收益不盈也不亏,即:y=0.即:50(x-14)2+5000=0, 解得x 1=24,x 2=4,∵x=24不合题意,舍去.∴当日租出4辆时,租赁公司日收益不盈也不亏. 【点评】本题考查了列代数式及二次函数的应用和一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出代数式或函数关系式是解题关键.23.将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB ′C ′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC 作变换[60得△AB ′C ′,则S △AB ′C ′:S △ABC = 3 ;直线BC 与直线B ′C ′所夹的锐角为 60 度;(2)如图②,△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B 、C 、C ′在同一直线上,且四边形ABB'C'为矩形,求θ和n 的值;(3)如图③,△ABC 中,AB=AC ,∠BAC=36°,BC=l ,对△ABC 作变换[θ,n]得△AB ′C ′,使点B 、C 、B ′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n 的值.【考点】相似三角形的判定与性质;解一元二次方程-公式法;平行四边形的性质;矩形的性质;旋转的性质.【专题】代数几何综合题.【分析】(1)由旋转与相似的性质,即可得S △AB ′C ′:S △AB C=3,然后由△ABN 与△B ′MN 中,∠B=∠B ′,∠ANB=∠B ′NM ,可得∠BMB ′=∠BAB ′,即可求得直线BC 与直线B ′C ′所夹的锐角的度数;(2)由四边形 ABB ′C ′是矩形,可得∠BAC ′=90°,然后由θ=∠CAC ′=∠BAC ′-∠BAC ,即可求得θ的度数,又由含30°角的直角三角形的性质,即可求得n 的值;(3)由四边形ABB ′C ′是平行四边形,易求得θ=∠CAC ′=∠ACB=72°,又由△ABC ∽△B ′BA ,根据相似三角形的对应边成比例,易得AB 2=CB •BB ′=CB (BC+CB ′),继而求得答案.【解答】解:(1)根据题意得:△ABC ∽△AB ′C ′,∴S △AB ′C ′:S △ABC =23''==2A B AB(),∠B=∠B ′, ∵∠ANB=∠B ′NM ,∴∠BMB ′=∠BAB ′=60°;故答案为:3,60;(2)∵四边形 ABB ′C ′是矩形,∴∠BAC ′=90°.∴θ=∠CAC ′=∠BAC ′-∠BAC=90°-30°=60°.在 Rt △ABC 中,∠ABB'=90°,∠BAB ′=60°,∴∠AB ′B=30°,∴n='AB AB=2; (3)∵四边形ABB ′C ′是平行四边形,∴AC ′∥BB ′,又∵∠BAC=36°,∴θ=∠CAC ′=∠ACB=72°.∴∠BB ′A=∠BAC=36°,而∠B=∠B ,∴△ABC ∽△B ′BA ,∴AB :BB ′=CB :AB ,∴AB 2=CB •BB ′=CB (BC+CB ′),而 CB ′=AC=AB=B ′C ′,BC=1,∴AB 2=1(1+AB ),∴=AB , ∵AB >0,∴n ''==B C BC 【点评】此题考查了相似三角形的判定与性质、直角三角形的性质、旋转的性质、矩形的性质以及平行四边形的性质.此题综合性较强,难度较大,注意数形结合思想与方程思想的应用,注意辅助线的作法.24.在平面直角坐标系xOy 中,点P 是抛物线:2y x =上的动点(点在第一象限内).连接 OP ,过点0作OP 的垂线交抛物线于另一点Q .连接PQ ,交y 轴于点M .作PA 丄x 轴于点A ,QB 丄x 轴于点B .设点P 的横坐标为m .(1)如图1,当m =时,①求线段OP 的长和tan ∠POM 的值;②在y 轴上找一点C ,使△OCQ 是以OQ 为腰的等腰三角形,求点C 的坐标;(2)如图2,连接AM 、BM ,分别与OP 、OQ 相交于点D 、E .①用含m 的代数式表示点Q 的坐标;②求证:四边形ODME 是矩形.【考点】二次函数综合题.【专题】代数几何综合题.【分析】(1)①已知m 的值,代入抛物线的解析式中可求出点P 的坐标;由此确定PA 、OA 的长,通过解直角三角形易得出结论.②题干要求△OCQ 是以OQ 为腰的等腰三角形,所以分QO=OC 、QC=QO 、CQ=CO 三种情况来判断: QO=QC 时,Q 在线段OC 的垂直平分线上,Q 、O 的纵坐标已知,C 点坐标即可确定;QO=OC 时,先求出OQ 的长,那么C 点坐标可确定;CQ=CO 时,先求出CQ 的长,那么C 点坐标可确定.(2)①由∠QOP=90°,易求得△QBO ∽△MOA ,通过相关的比例线段来表示出点Q 的坐标;②在四边形ODME 中,已知了一个直角,只需判定该四边形是平行四边形即可,那么可通过证明两组对边平行来得证.【解答】解:(1)①把2x =2y x =,得 y=2,∴P 22),∴OP= 6∵PA 丄x 轴,∴PA ∥MO .∴tan ∠P0M=tan ∠0PA=2OP AP = ②设 Q (n ,n 2),∵tan ∠QOB=tan ∠POM , ∴222n n =-.∴22n = ∴Q (22-12),∴OQ=32. 当OQ=OC 时,则C 1(0,32),C 2(0,32-; 当OQ=CQ 时,则C 3(0,1);当CQ=CO 时,则C 4(0,34)不合题意,舍去. 综上所述,所求点C 坐标为:C 1(0,32),C 2(0,32-),C3(0,1); (2)①∵P (m ,m 2),设 Q (n ,n 2),∵△APO ∽△BOQ ,∴ =BQ BO AO AP∴22 n n m m -=,得1n m =-,∴Q (1m -,21m ). ②设直线PO 的解析式为:y=kx+b ,把P (m ,m2)、Q (-1 m ,1 m2 )代入,得:2211m mk b k b mm ⎧=+⎪⎨=+⎪⎩ 解得b=1,∴M (0,1) ∵2 1 m==QB OB MO AO ,∠QBO=∠MOA=90°, ∴△QBO ∽△MOA∴∠MAO=∠QOB ,∴QO ∥MA同理可证:EM ∥OD又∵∠EOD=90°,∴四边形ODME 是矩形.【点评】考查了二次函数综合题,该题涉及的知识点较多,有:解直角三角形、相似三角形、等腰直角三角形的判定、矩形的判定等重要知识点;(1)②题中,要注意分类进行讨论,以免出现漏解、错解的情况.QQ 709885341。
【2012中考真题】舟山中考数学试卷(有答案)
2012年浙江省舟山市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(-2)0等于(A)A.1B.2C.0D.-2【考点】零指数幂.【专题】计算题.【分析】根据0指数幂的定义直接解答即可.【解答】解:(-2)0=1.故选A.【点评】本题考查了0指数幂,要知道,任何非0数的0次幂为1.2.下列图案中,属于轴对称图形的是(A)A.B.C.D.【考点】轴对称图形.【专题】【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念知B、C、D都不是轴对称图形,只有A是轴对称图形.故选A.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为(C)A.0.35×108B.3.5×107C.3.5×106D.35×105【考点】科学记数法—表示较大的数.【专题】常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,因为350万共有7位,所以n=7-1=6.【解答】解:350万=3 500 000=3.5×106.故选C.【点评】本题考查了科学记数法表示较大的数,准确确定n是解题的关键4.如图,AB是⊙0的弦,BC与⊙0相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于(B)A.15°B.20°C.30°D.70°【考点】切线的性质.【专题】【分析】由BC与⊙0相切于点B,根据切线的性质,即可求得∠OBC=90°,又由∠ABC=70°,即可求得∠OBA的度数,然后由OA=OB,利用等边对等角的知识,即可求得∠A的度数.【解答】解:∵BC与⊙0相切于点B,∴OB⊥BC,∴∠OBC=90°,∵∠ABC=70°,∴∠OBA=∠OBC-∠ABC=90°-70°=20°,∵OA=OB,∴∠A=∠OBA=20°. 故选B .【点评】此题考查了切线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用,注意圆的切线垂直于经过切点的半径定理的应用. 5.若分式12x x -+的值为0,则( D ) A .x=-2 B .x=0 C .x=1或2 D .x=1 【考点】分式的值为零的条件. 【专题】概念题.【分析】先根据分式的值为0的条件列出关于x 的不等式组,求出x 的值即可. 【解答】解:∵分式12x x -+的值为0, ∴-=⎧⎨+≠⎩x 10x 20,解得x=1.故选D .【点评】本题考查的是分式的值为0的条件,根据题意列出关于x 的不等式组是解答此题的关键. 6.如图,A 、B 两点在河的两岸,要测量这两点之间的距离,测量者在与A 同侧的河岸边选定一点C ,测出AC=a 米,∠A=90°,∠C=40°,则AB 等于( C )米.A .a sin40°B .a cos40°C .a tan40°D .tan 40a【考点】解直角三角形的应用. 【专题】【分析】直接根据锐角三角函数的定义进行解答即可.【解答】解:∵△ABC 中,AC= a 米,∠A=90°,∠C=40°,∴AB=a tan40°. 故选C .【点评】本题考查的是解直角三角形的应用及锐角三角函数的定义,熟知锐角三角函数的定义是解答此题的关键.7.已知一个圆锥的底面半径为3cm ,母线长为10cm ,则这个圆锥的侧面积为( B )A .15πcm 2B .30πcm 2C .60πcm 2 D.cm 2 【考点】圆锥的计算. 【专题】计算题.【分析】圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可. 【解答】解:这个圆锥的侧面积=π×3×10=30πcm 2,故选B .【点评】考查圆锥的计算;掌握圆锥的侧面积计算公式是解决本题的关键.8.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”如“947”就是一个“V 数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V 数”的概率是( C ) A .14 B .310 C .12 D .34【考点】列表法与树状图法. 【专题】新定义.【分析】首先根据题意画出树状图,由树状图即可求得所有等可能的结果与与2组成“V 数”的情况,利用概率公式即可求得答案.【解答】解:画树状图得:∵可以组成的数有:321,421,521,123,423,523,124,324,524,125,325,425, 其中是“V 数”的有:423,523,324,524,325,425,∴从1,3,4,5中任选两数,能与2组成“V 数”的概率是:61122=. 故选C .【点评】此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.9.如图,已知△ABC 中,∠CAB=∠B=30°,AB=2 3 ,点D 在BC 边上,把△ABC 沿AD 翻折使AB 与AC 重合,得△AB ′D ,则△ABC 与△AB ′D 重叠部分的面积为( A ) A.32- B.12 C.3D 36【考点】翻折变换(折叠问题).【专题】【分析】首先过点D 作DE ⊥AB ′于点E ,过点C 作CF ⊥AB ,由△ABC 中,∠CAB=∠B=30°,AB=利用等腰三角形的性质,即可求得AC 的长,又由折叠的性质,易得∠CDB ′=90°,∠B ′=30°,B ′C=AB ′-AC=2,继而求得CD 与B ′D 的长,然后求得高DE 的长,继而求得答案.【解答】解:过点D 作DE ⊥AB ′于点E ,过点C 作CF ⊥AB ,∵△ABC 中,∠CAB=∠B=30°,AB=∴AC=BC ,∴AF=12∴AC 2cos AF CAB ===∠,由折叠的性质得:AB ′=AB=B ′=∠B=30°,∵∠B ′CD=∠CAB+∠B=60°, ∴∠CDB ′=90°,∵B ′C=AB ′-AC=2,∴CD=12B ′C= 1,B ′D=B ′C •cos ∠B ′=2)3=∴•32'=='CD B D DE B C , ∴S 阴影=12AC •DE=122⨯= 故选A .【点评】此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.10.如图,正方形ABCD 的边长为a ,动点P 从点A 出发,沿折线A →B →D →C →A 的路径运 动,回到点A 时运动停止.设点P 运动的路程长为长为x ,AP 长为y ,则y 关于x 的函数图象大致是( D )A .B .C .D .【考点】动点问题的函数图象. 【专题】【分析】根据题意设出点P 运动的路程x 与点P 到点A 的距离y 的函数关系式,然后对x 从0到2a +时分别进行分析,并写出分段函数,结合图象得出得出答案.【解答】解:设动点P 按沿折线A →B →D →C →A 的路径运动,∵正方形ABCD 的边长为a ,∴,则当0≤x <a 时,y=x ,当a ≤x <(a 时,y =当a (x <a (y =当a (x ≤a ((2y a x =+-,结合函数解析式可以得出第2,3段函数解析式不同,得出A 选项一定错误,根据当a ≤x <(a 时,函数图象被P 在BD 中点时,分为对称的两部分,故B 选项错误,再利用第4段函数为一次函数得出,故C 选项一定错误, 故只有D 符合要求,故选:D .【点评】此题主要考查了动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.二、填空题(共6小题,每小题4分,满分24分) 11.当a=2时,代数式3a-1的值是 5 . 【考点】代数式求值. 【专题】【分析】将a=2直接代入代数式即可求出代数式3a-1的值. 【解答】解:将a=2直接代入代数式得,3a-1=3×2-1=5. 故答案为5.【点评】本题考查了代数式求值,要学会替换,即将字母换成相应的数. 12.因式分解:a 2-9= (a+3)(a-3) . 【考点】因式分解-运用公式法. 【专题】【分析】a 2-9可以写成a 2-32,符合平方差公式的特点,利用平方差公式分解即可. 【解答】解:a 2-9=(a+3)(a-3).【点评】本题考查了公式法分解因式,熟记平方差公式的结构特点是解题的关键.13.在直角△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,若CD=4,则点D 到斜边AB 的距离为 4 .【考点】角平分线的性质.【专题】计算题.【分析】根据角平分线的性质定理,解答出即可;【解答】解:如右图,过D 点作DE ⊥AB 于点E ,则DE 即为所求, ∵∠C=90°,AD 平分∠BAC 交BC 于点D ,∴CD=DE (角的平分线上的点到角的两边的距离相等), ∵CD=4,∴DE=4. 故答案为:4.【点评】本题主要考查了角平分线的性质,角平分线上的点到角两边的距离相等. 14.如图是嘉兴市某6天内的最高气温折线统计图,则最高气温的众数是 9℃ .【考点】众数;折线统计图. 【专题】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【解答】解:9℃出现了2次,出现次数最多,故众数为9,故答案为:9.【点评】本题属于基础题,考查了确定一组数据的众数的能力.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.15.如图,已知⊙O 的半径为2,弦AB ⊥半径OC ,沿AB 将弓形ACB 翻折,使点C 与圆心O 重合,则月牙形(图中实线围成的部分)的面积是43π+【考点】扇形面积的计算;翻折变换(折叠问题). 【专题】【分析】首先求出AOB=120°,再利用S弓形ACB=S扇形AOB-S △AOB ,以及月牙形的面积是S圆-2S 弓形ACB 即可得出答案.【解答】解:连接OA ,OB ,∵OC ⊥AB 于E ,根据题意,得OE=12OC=12OB=1,则∠ABO=30°,=∴AB=AOB=120°.S 弓形ACB =S 扇形AOB -S △AOB 120414=36023AB EO ππ⨯=-⨯-则月牙形(图中实线围成的部分)的面积是:S 圆-2S 弓形ACB=4442(=33πππ=--+故答案为:43π+. 【点评】此题主要考查了扇形面积求法以及不规则图形面积计算方法,根据已知图象得出月牙形的面积=S圆-2S 弓形ACB 是解题关键.16.如图,在Rt △ABC 中,AB=BC ,∠ABC=90°,点D 是AB 的中点,连接CD ,过点B 作BG ⊥CD ,分别交CD ,CA 于点E ,F ,与过点A 且垂直于AB 的直线相交于点G ,连接DF ,给出以下五个结论: ①AG AB =FG FB ;②∠ADF=∠CDB ;③点F 是GE 的中点;④AF= 2 3 AB ;⑤S △ABC=5S △BDF ,其中正确结论的序号是 ①②④【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形. 【专题】【分析】由△AFG ∽△BFC ,可确定结论①正确;由△ABG ≌△BCD ,△AFG ≌△AFD ,可确定结论②正确;由△AFG ≌△AFD 可得FG=FD >FE ,所以点F 不是GE 中点,可确定结论③错误; 由△AFG ≌△AFD 可得AG=12AB=12BC ,进而由△AFG ∽△BFC 确定点F 为AC 的三等分点,可确定结论④正确;因为F 为AC 的三等分点,所以S △ABF =13S △ABC ,又S △BDF =12S △ABF ,所以S △ABC =6S △BDF ,由此确定结论⑤错误.【解答】解:依题意可得BC ∥AG ,∴△AFG ∽△BFC ,∴AG FGBC FB =, 又AB=BC ,∴AG FGAB FB=. 故结论①正确;如上图,∵∠1+∠3=90°,∠1+∠4=90°,∴∠3=∠4. 在△ABG 与△BCD 中,∠=∠⎧⎪=⎨⎪∠=∠=︒⎩34AB BCBAG CBD 90 , ∴△ABG ≌△BCD (ASA ),∴AG=BD ,又BD=AD ,∴AG=AD ; 在△AFG 与△AFD 中,AG=AD ∠FAG=∠FAD=45° AF=AF , ∴△AFG ≌△AFD (SAS ),∴∠5=∠2, 又∠5+∠3=∠1+∠3=90°,∴∠5=∠1, ∴∠1=∠2,即∠ADF=∠CDB .故结论②正确;∵△AFG ≌△AFD ,∴FG=FD ,又△FDE 为直角三角形,∴FD >FE , ∴FG >FE ,即点F 不是线段GE 的中点. 故结论③错误;∵△ABC 为等腰直角三角形,∴; ∵△AFG ≌△AFD ,∴AG=AD=12AB=12BC ; ∵△AFG ∽△BFC ,∴AG BC =AF FC ,∴FC=2AF ,∴AF=13AC=3AB . 故结论④正确;∵AF=13AC ,∴S △ABF =13S △ABC ;又D 为中点,∴S △BDF =12S △ABF , ∴S △BDF =16S △ABC ,即S △ABC =6S △BDF .故结论⑤错误.综上所述,结论①②④正确, 故答案为:①②④.【点评】本题考查了等腰直角三角形中相似三角形与全等三角形的应用,有一定的难度.对每一个结论,需要仔细分析,严格论证;注意各结论之间并非彼此孤立,而是往往存在逻辑关联关系,需要善加利用.三、解答题(共8小题,满分66分)17.计算:(1)253-+(2)(x+1)2-x (x+2)【考点】整式的混合运算;实数的运算. 【专题】计算题. 【分析】(1)根据绝对值、平方根、平方的定义分别计算,然后再进行加减运算;(2)先根据完全平方公式和单项式乘以多项式法则将原式展开,再合并同类项.【解答】解:(1)原式=5+4-9=0;(2)原式=x 2+2x+1-x 2-2x=1.【点评】本题考查了整式的混合运算、实数的运算,要熟悉其运算法则. 18.解不等式2(x-1)-3<1,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集. 【专题】计算题.【分析】根据一元一次不等式的解法,去括号,移项,合并同类项,系数化为1即可得解. 【解答】解:去括号得,2x-2-3<1, 移项、合并得,2x <6,系数化为1得,x <3. 在数轴上表示如下:【点评】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.19.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE . (1)求证:BD=EC ;(2)若∠E=50°,求∠BAO 的大小.【考点】菱形的性质;平行四边形的判定与性质.【专题】证明题.【分析】(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证;(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.【解答】(1)证明:∵菱形ABCD,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC;(2)解:∵平行四边形BECD,∴BD∥CE,∴∠ABO=∠E=50°,又∵菱形ABCD,∴AC丄BD,∴∠BAO=90°-∠ABO=40°.【点评】本题主要考查了菱形的性质,平行四边形的判定与性质,熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键.20.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】【分析】(1)根据扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,即可得出被抽取的总天数;(2)利用轻微污染天数是50-32-8-3-1-1=5天;表示优的圆心角度数是850×360°=57.6°,即可得出答案;(3)利用样本中优和良的天数所占比例得出一年(365天)达到优和良的总天数即可.【解答】解:(1)∵扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天); (2)轻微污染天数是50-32-8-3-1-1=5天;表示优的圆心角度数是8 50 ×360°=57.6°, 如图所示:(3)∵样本中优和良的天数分别为:8,32, ∴一年(365天)达到优和良的总天数为:8+32 50 ×365=292(天).∴估计该市一年达到优和良的总天数为292天.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 21.如图,一次函数1y kx b =+的图象与反比例函数2my x=的图象相交于点A (2,3)和点B ,与x 轴相交于点C (8,0).(1)求这两个函数的解析式; (2)当x 取何值时,y 1>y 2.【考点】反比例函数与一次函数的交点问题. 【专题】计算题.【分析】(1)将A 、B 中的一点代入2my x=,即可求出m 的值,从而得到反比例函数解析式,把 A (2,3)、C (8,0)代入y 1=kx+b ,可得到k 、b 的值; (2)根据图象可直接得到y1>y2时x 的取值范围. 【解答】解:(1)把 A (2,3)代入2my x=,得m=6. 把 A (2,3)、C (8,0)代入y 1=kx+b ,得 k=-12k =-,b=4, ∴这两个函数的解析式为1142y x =-+,26y x=; (2)由题意得121426y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,解得116 1x y =⎧⎨=⎩,2223xy=⎧⎨=⎩,当x<0 或2<x<6 时,y1>y2.【点评】本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.22.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为1400-50x 元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?【考点】二次函数的应用.【专题】【分析】(1)根据当全部未租出时,每辆租金为:400+20×50=1400元,得出公司每日租出x辆车时,每辆车的日租金为:1400-50x;(2)根据已知得到的二次函数关系求得日收益的最大值即可;(3)要使租赁公司日收益不盈也不亏,即:y=0.即:50 (x-14)2+5000=0,求出即可.【解答】解:(1)∵某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;∴当全部未租出时,每辆租金为:400+20×50=1400元,∴公司每日租出x辆车时,每辆车的日租金为:1400-50x;故答案为:1400-50x;(2)根据题意得出:y=x(-50x+1400)-4800,=-50x2+1400x-4800,=-50(x-14)2+5000.当x=14时,在范围内,y有最大值5000.∴当日租出14辆时,租赁公司日收益最大,最大值为5000元.(3)要使租赁公司日收益不盈也不亏,即:y=0.即:50(x-14)2+5000=0,解得x1=24,x2=4,∵x=24不合题意,舍去.∴当日租出4辆时,租赁公司日收益不盈也不亏.【点评】本题考查了列代数式及二次函数的应用和一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出代数式或函数关系式是解题关键.23.将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60得△AB′C′,则S△AB′C′:S△ABC= 3 ;直线BC与直线B′C′所夹的锐角为60 度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.【考点】相似三角形的判定与性质;解一元二次方程-公式法;平行四边形的性质;矩形的性质;旋转的性质.【专题】代数几何综合题.【分析】(1)由旋转与相似的性质,即可得S △AB ′C ′:S △AB C=3,然后由△ABN 与△B ′MN 中,∠B=∠B ′,∠ANB=∠B ′NM ,可得∠BMB ′=∠BAB ′,即可求得直线BC 与直线B ′C ′所夹的锐角的度数;(2)由四边形 ABB ′C ′是矩形,可得∠BAC ′=90°,然后由θ=∠CAC ′=∠BAC ′-∠BAC ,即可求得θ的度数,又由含30°角的直角三角形的性质,即可求得n 的值;(3)由四边形ABB ′C ′是平行四边形,易求得θ=∠CAC ′=∠ACB=72°,又由△ABC ∽△B ′BA ,根据相似三角形的对应边成比例,易得AB 2=CB •BB ′=CB (BC+CB ′),继而求得答案.【解答】解:(1)根据题意得:△ABC ∽△AB ′C ′,∴S △AB ′C ′:S △ABC =23''==2A B AB(),∠B=∠B ′, ∵∠ANB=∠B ′NM ,∴∠BMB ′=∠BAB ′=60°;故答案为:3,60;(2)∵四边形 ABB ′C ′是矩形,∴∠BAC ′=90°.∴θ=∠CAC ′=∠BAC ′-∠BAC=90°-30°=60°.在 Rt △ABC 中,∠ABB'=90°,∠BAB ′=60°,∴∠AB ′B=30°,∴n='AB AB=2; (3)∵四边形ABB ′C ′是平行四边形,∴AC ′∥BB ′,又∵∠BAC=36°,∴θ=∠CAC ′=∠ACB=72°.∴∠BB ′A=∠BAC=36°,而∠B=∠B ,∴△ABC ∽△B ′BA ,∴AB :BB ′=CB :AB ,∴AB 2=CB •BB ′=CB (BC+CB ′),而 CB ′=AC=AB=B ′C ′,BC=1,∴AB 2=1(1+AB ),∴=AB , ∵AB >0,∴12n ''==B C BC 【点评】此题考查了相似三角形的判定与性质、直角三角形的性质、旋转的性质、矩形的性质以及平行四边形的性质.此题综合性较强,难度较大,注意数形结合思想与方程思想的应用,注意辅助线的作法.24.在平面直角坐标系xOy 中,点P 是抛物线:2y x =上的动点(点在第一象限内).连接 OP ,过点0作OP 的垂线交抛物线于另一点Q .连接PQ ,交y 轴于点M .作PA 丄x 轴于点A ,QB 丄x 轴于点B .设点P 的横坐标为m .(1)如图1,当m =时,①求线段OP 的长和tan ∠POM 的值;②在y 轴上找一点C ,使△OCQ 是以OQ 为腰的等腰三角形,求点C 的坐标;(2)如图2,连接AM 、BM ,分别与OP 、OQ 相交于点D 、E .①用含m 的代数式表示点Q 的坐标;②求证:四边形ODME 是矩形.【考点】二次函数综合题.【专题】代数几何综合题.【分析】(1)①已知m 的值,代入抛物线的解析式中可求出点P 的坐标;由此确定PA 、OA 的长,通过解直角三角形易得出结论.②题干要求△OCQ 是以OQ 为腰的等腰三角形,所以分QO=OC 、QC=QO 、CQ=CO 三种情况来判断: QO=QC 时,Q 在线段OC 的垂直平分线上,Q 、O 的纵坐标已知,C 点坐标即可确定;QO=OC 时,先求出OQ 的长,那么C 点坐标可确定;CQ=CO 时,先求出CQ 的长,那么C 点坐标可确定.(2)①由∠QOP=90°,易求得△QBO ∽△MOA ,通过相关的比例线段来表示出点Q 的坐标;②在四边形ODME 中,已知了一个直角,只需判定该四边形是平行四边形即可,那么可通过证明两组对边平行来得证.【解答】解:(1)①把x =2y x =,得 y=2,∴P2),∴OP= 6∵PA 丄x 轴,∴PA ∥MO .∴tan ∠P0M=tan ∠0PA=OP AP = ②设 Q (n ,n 2),∵tan ∠QOB=tan ∠POM ,∴22n n =-.∴2n =- ∴Q(2-,12),∴OQ=2. 当OQ=OC 时,则C 1(0,2),C 2(0,2-); 当OQ=CQ 时,则C 3(0,1);当CQ=CO 时,则C 4(0,34)不合题意,舍去. 综上所述,所求点C 坐标为:C 1(0,2),C 2(0,2-),C3(0,1); (2)①∵P (m ,m 2),设 Q (n ,n 2),∵△APO ∽△BOQ ,∴ =BQ BO AO AP∴22 n n m m -=,得1n m =-,∴Q (1m -,21m ). ②设直线PO 的解析式为:y=kx+b ,把P (m ,m2)、Q (-1 m ,1 m2 )代入,得:2211m mk b k b mm ⎧=+⎪⎨=+⎪⎩ 解得b=1,∴M (0,1)∵2 1 m==QB OB MO AO ,∠QBO=∠MOA=90°, ∴△QBO ∽△MOA∴∠MAO=∠QOB ,∴QO ∥MA同理可证:EM ∥OD又∵∠EOD=90°,∴四边形ODME 是矩形.【点评】考查了二次函数综合题,该题涉及的知识点较多,有:解直角三角形、相似三角形、等腰直角三角形的判定、矩形的判定等重要知识点;(1)②题中,要注意分类进行讨论,以免出现漏解、错解的情况.QQ 709885341。
浙江省舟山市2012届九年级数学上学期期中试题苏科版
∵ ( 3) 2 4 4 0 ,∴方程 4.88 1.22x 2 3.66 x 无解.
∴足球的飞行高度不能达到 4.88m.……… 4 分
(3)∵ y 2.44 ,∴ 2.44 1.22x 2 3.66x ,
∴ x2
3x 2 0 ,∴ x1 1(不合题意, 舍去),x2
2 ∴平均速度至少为 12 2
2
b
4ac
0 ;② abc
0 ;③ 8a
c
0 ;④ 9a
3b
c
0 .其
中, 正确结论的个数是
▲.
16. 如图, □ABCD的顶点 A,B 的坐标分别是 A(- 1,0),B( 0,- 2),
顶点 C,D 在双曲线 y= k 上,边 AD交 y 轴于点 E,且四边形 BCDE的 x
面积是△ ABE面积的 5 倍,则 k=_ ▲ ___.
2
b , 4 ac b ).
2a
4a
一、选择题 (本大题有 10 小题 , 每小题 3 分 , 共 30 分 . 请选出各题中一个符合题意的正确选
项. 不选、多选、错选均不给分)
1.函数 y
2
的图像经过的点是(
x
▲)
A. (2,1)
B.
( 2, 1)
C.
( 2,4)
D.
( 1 ,2)
2
0
2. 如图在⊙ O 中,点 C 是弧 AB 的中点,∠ A 40 ,则 BOC 等于(▲ )
22.( 本题满分 10 分 ) 解:( 1)设 y 关于 x 的函数关系式为 y ax2 bx . 依题可知:当 x 1 时, y 2.44 ;当 x 3时, y 0 .
a b 2.44
a 1.22
【中考12年】浙江省嘉兴市、舟山市2001-中考数学试题分类解析 专题04 图形的变换
嘉兴市、舟山市2001-2012年中考数学试题分类解析专题04 图形的变换一、选择题1. (2001年浙江舟山、嘉兴、台州、丽水4分)一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)【】A.115° B.160° C.57° D.29°2. (2002年浙江舟山、嘉兴4分)圆台的轴截面是一个上、下底边长分别为2cm,4cm,腰长为3cm的等腰梯形,这个圆台的侧面积是【】A.9πcm2B.18πcm2C.24πcm2D.36πcm2【答案】A。
【考点】圆台的计算。
【分析】圆台的侧面积A。
3. (2003年浙江舟山、嘉兴4分)如果圆柱的轴截面是一个边长为4cm的正方形,那么圆柱的侧面积为【】A .16πcm2 B.18πcm2 C.20πcm2 D .24πcm24. (2004年浙江舟山、嘉兴4分)已知圆锥底面半径为3,高为4,则圆锥侧面积为【】A.10πB.12πC.15πD.20π5. (2005年浙江舟山、嘉兴4分)圆锥的轴截面是【】A .等腰三角形 B.矩形 C .圆 D.弓形6. (2006年浙江舟山、嘉兴4分)已知圆锥的母线长为5cm,底面半径为3cm,则此圆锥的侧面积为【】.A.15πcm2 B.20πcm2 C.12πcm2 D.30πcm2【答案】A。
7. (2006年浙江舟山、嘉兴4分)假定有一排蜂房,形状如图,一只蜜蜂在左下角,由于受了点伤,只能爬行,不能飞,而且始终向右方(包括右上,右下)爬行,•从一间蜂房爬到右边相邻的蜂房中去.例如.蜜蜂爬到1号蜂房的爬法有:蜜蜂→1号;蜜蜂→0号→1号,共有2种不同的爬法.问蜜蜂从最初位置爬到4号蜂房共有几种不同的爬法【】.A.7 B.8 C.9 D.108. (2010年浙江舟山、嘉兴4分)已知一个几何体的三视图如图所示,则该几何体是【】A.棱柱 B.圆柱 C.圆锥 D.球9. (2011年浙江舟山、嘉兴3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD 是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为【】(A)30° (B)45°(C)90°(D)135°10. (2011年浙江舟山、嘉兴3分)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是【】(A)2010(B)2011(C)2012(D)2013【答案】D。
浙江省舟山市中考数学真题试卷(解析版)
数学浙江省舟山市中考数学试题一.选择题(本题有10小题,每题3分,共30分.请选出各题中唯一正确选项,不选.多选.错选,均不得分)1. 下列几何体中,俯视图...为三角形是()A. B. C. D.【答案】C【解析】【分析】依次观察四个选项,A中圆锥从正上看,是其在地面投影;B中,长方体从上面看,看到是上表面;C中,三棱柱从正上看,看到是上表面;D中四棱锥从正上看,是其在地面投影;据此得出俯视图并进行判断.【解答】A.圆锥俯视图是带圆心圆,故本选项错误;B.长方体俯视图均为矩形,故本选项错误;C.三棱柱俯视图是三角形,故本选项正确.D.四棱锥俯视图是四边形,故本选项错误;故选C.【点评】本题应用了几何体三视图知识,从上面向下看,想象出平面投影是解答重点;2. 20185月25日,中国探月工程“鹊桥号”中继星成功运行于地月拉格朗日点,它距离地球约.数1500000用科学记数法表示为()A. B. C. D.【答案】B【解析】【分析】科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数.确定n值时,要看把原数变成a时,小数点移动了多少位,n绝对值与小数点移动位数相同.当原数绝对值>1时,n是正数;当原数绝对值<1时,n是负数.【解答】解:将1500000用科学记数法表示为:.故选B.【点评】本题考查了科学记数法表示方法.科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a值以及n值.3. 20181~4月我国新能源乘用车月销售情况如图所示,则下列说法错误..是()A. 1月份销售为2.2万辆B. 从2月到3月月销售增长最快C. 4月份销售比3月份增加了1万辆D. 1~4月新能源乘用车销售逐月增加【答案】D【解析】【分析】观察折线统计图,一一判断即可.【解答】观察图象可知:A. 1月份销售为2.2万辆,正确.B.从2月到3月月销售增长最快,正确.C., 4月份销售比3月份增加了1万辆,正确.D. 1~4月新能源乘用车销售先减少后增大.故错误.故选D.【点评】考查折线统计图,解题关键是看懂图象.4. 不等式解在数轴上表示正确是()A.B.C.D.【答案】A【解析】【分析】根据解不等式,可得不等式解集,根据不等式解集在数轴上表示方法,可得答案.【解答】在数轴上表示为:故选A.【点评】考查在数轴上表示不等式解集,解一元一次不等式,解题关键是解不等式.5. 将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边虚线剪去一个角,展开铺平后图形是()A.(A)B.(B)C.(C)D.(D)【答案】A【解析】【分析】根据两次折叠都是沿着正方形对角线折叠, 展开后所得图形顶点一定在正方形对角线上, 根据③剪法,中间应该是一个正方形.【解答】根据题意,两次折叠都是沿着正方形对角线折叠,根据③剪法,展开后所得图形顶点一定在正方形对角线上,而且中间应该是一个正方形.故选A.【点评】关键是要理解折叠过程,得到关键信息,如本题得到展开后图形顶点在正方形对角线上是解题关键.6. 用反证法证明时,假设结论“点在圆外”不成立,那么点与圆位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内【答案】D【解析】【分析】在假设结论不成立时要注意考虑结论反面所有可能情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定。
2012中考数学试题及答案
2012中考数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 2答案:C2. 一个圆的半径是5厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B3. 如果一个等腰三角形的底边长为6厘米,腰长为5厘米,那么它的周长是多少厘米?A. 16B. 21C. 22D. 26答案:B4. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/12答案:C5. 一个数的平方根是4,这个数是?A. 16B. 8C. 4D. 2答案:A6. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是多少立方米?A. 24B. 12C. 8D. 6答案:B7. 一个数的倒数是1/5,这个数是?A. 5B. 1/5C. 1/4D. 4/5答案:A8. 一个直角三角形的两条直角边分别是3和4,斜边长是多少?A. 5B. 6C. 7D. 8答案:A9. 一个分数的分子是8,分母是它的4倍,这个分数是多少?A. 1/4B. 1/3C. 1/2D. 2/3答案:A10. 一个数的立方是27,这个数是?A. 3B. 9C. 27D. 81答案:A二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______或______。
答案:5或-512. 如果一个数的平方是25,那么这个数是______或______。
答案:5或-513. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的平方根和立方根相等,这个数是______。
答案:0或115. 如果一个数的对数是2,那么这个数是______。
答案:10016. 一个数的平方是36,那么这个数是______或______。
答案:6或-617. 一个数的倒数是2/3,这个数是______。
答案:3/218. 如果一个数的立方是-27,那么这个数是______。
(中考精品)浙江省舟山市中考数学真题(解析版)
数学卷Ⅰ(选择题)一、选择题(本题有10小题,请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1. 若收入3元记为+3,则支出2元记为()A. 1B. -1C. 2D. -2 【答案】D【解析】【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【详解】解:∵收入3元记为+3,∴支出2元记为-2.故选:D【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.2. 如图是由四个相同的小立方体搭成的几何体,它的主视图是()A. B. C. D.【答案】B【解析】【分析】主视图有3列,每列小正方形数目分别为2,1,1.【详解】如图所示:它的主视图是:.故选:B.【点睛】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.3. 根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为( )A. 82.5110⨯B. 72.5110⨯C. 725.110⨯D. 90.25110⨯【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a ×10n ,n 为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=82.5110⨯.故选:A【点睛】本题考查用科学记数法表示较大数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键. 4. 用尺规作一个角的角平分线,下列作法中错误的是( )A. B.C. D.【答案】D【解析】【分析】根据作图轨迹及角平分线的定义判断即可得出答案.【详解】A 、如图,由作图可知:,OA OC AB BC ==,又∵OB OB =,∴OAB OCB ≅ ,∴AOB COB ∠=∠,∴OB 平分AOC ∠.的故A 选项是在作角平分线,不符合题意;B 、如图,由作图可知:,OA OB OC OD ==,又∵COB AOD ∠=∠,∴OBC OAD ≅ ,∴OA OB OAD OBC OCB ODA =∠=∠∠=∠,,,∴AC BD =,∵CEA BED ∠=∠,ECA EDB ∠=∠,∴AEC BED ≅△△,∴AE BE =,∵,EAO EBO OA OB ∠=∠=,∴AOE BOE ∠=∠,∴OE 平分AOB ∠.故B 选项是在作角平分线,不符合题意;C 、如图,由作图可知:,AOB MCN OC CD ∠=∠=,∴CD OB ∥,COD CDO =∠∠,∴DOB CDO ∠=∠,∴COD DOB ∠=∠,∴OD 平分AOB ∠.故C 选项是在作角平分线,不符合题意;D 、如图,由作图可知:,OA BC OC AB ==,又∵OB OB =,∴AOB CBO ≅ ,∴,,AOB OBC COB ABO ∠=∠∠=∠故D 选项不是在作角平分线,符合题意;故选:D【点睛】本题考查了角平分线的作图,全等三角形的性质与判定,掌握以上知识是解题的关键.5. 的值在( )A. 4和5之间B. 3和4之间C. 2和3之间D. 1和2之间【答案】C【解析】【分析】根据无理数的估算方法估算即可.<<∴23<<故选:C .【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.6. 如图,在ABC 中,8AB AC ==,点E ,F ,G 分别在边AB ,BC ,AC 上,EF AC ∥,GF AB ∥,则四边形AEFG 的周长是( )A. 32B. 24C. 16D. 8【答案】C【解析】 【分析】根据EF AC ∥,GF AB ∥,可得四边形AEFG 是平行四边形,从而得到FG =AE ,AG =EF ,再由EF AC ∥,可得∠BFE =∠C ,从而得到∠B =∠BFE ,进而得到BE =EF ,再根据四边形AEFG 的周长是2(AE +EF ),即可求解.【详解】解∶∵EF AC ∥,GF AB ∥,∴四边形AEFG 是平行四边形,∴FG =AE ,AG =EF ,∵EF AC ∥,∴∠BFE =∠C ,∵AB =AC ,∴∠B =∠C ,∴∠B =∠BFE ,∴BE =EF ,∴四边形AEFG 的周长是2(AE +EF )=2(AE +BE )=2AB =2×8=16.故选:C【点睛】本题主要考查了平行四边形的判定和性质,等腰三角形的性质,熟练掌握平行四边形的判定和性质,等腰三角形的性质是解题的关键.7. A ,B 两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A 成绩较好且更稳定的是( )A. A B x x >且22A B S S >.B. A B x x >且22B A S S <.C. A B x x <且22A B S S >D. A B x x <且22B A S S <. 【答案】B【解析】 【分析】根据平均数、方差的定义,平均数越高成绩越好,方差越小成绩越稳定解答即可.【详解】根据平均数越高成绩越好,方差越小成绩越稳定.故选:B .【点睛】此题考查平均数、方差的定义,解答的关键是理解平均数、方差的定义,熟知方差是衡量一组数据波动大小的量,方差越小表明该组数据分布比较集中,即波动越小数据越稳定.8. 上学期某班的学生都是双人同桌,其中14男生与女生同桌,这些女生占全班女生的15,本学期该班新转入4个男生后,男女生刚好一样多,设上学期该班有男生x 人,女生y 人,根据题意可得方程组为( )A. 445x y x y +=⎧⎪⎨=⎪⎩B. 454x y x y +=⎧⎪⎨=⎪⎩C. 445x y x y -=⎧⎪⎨=⎪⎩D.454x y x y -=⎧⎪⎨=⎪⎩ 【答案】A【解析】【分析】设上学期该班有男生x 人,女生y 人,则本学期男生有(x +4)人,根据题意,列出方程组,即可求解.【详解】解:设上学期该班有男生x 人,女生y 人,则本学期男生有(x +4)人,根据题意得:445x y x y +=⎧⎪⎨=⎪⎩. 故选:A【点睛】本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.9. 如图,在Rt ABC 和Rt BDE 中,90ABC BDE ∠=∠=︒,点A 在边DE 的中点上,若AB BC =,2DB DE ==,连结CE ,则CE 的长为( )C. 4【答案】D【解析】 【分析】过点E 作EF ⊥BC ,交CB 延长线于点F ,过点A 作AG ⊥BE 于点G ,根据等腰直角三角形的性质可得BE =,∠BED =45°,进而得到AB BC ==,EG AG AE ===,BG =,再证得△BEF ∽△ABG,可得BF EF ==,然后根据勾股定理,即可求解. 【详解】解:如图,过点E 作EF ⊥BC ,交CB 延长线于点F ,过点A 作AG ⊥BE 于点G ,在Rt BDE 中,∠BDE =90°,2DB DE ==,∴BE ==BED =45°,∵点A 在边DE 的中点上,∴AD =AE =1,∴AB ==,∴AB BC ==,∵∠BED =45°,∴△AEG 是等腰直角三角形,∴EG AG AE ===,∴BG = ∵∠ABC =∠F =90°,∴EF ∥AB ,∴∠BEF =∠ABG ,∴△BEF ∽△ABG , ∴BE BF EF AB AG BG====,解得:BF EF ==∴CF =,∴CE ==故选:D【点睛】本题主要考查了相似三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质,等腰直角三角形的判定和性质,勾股定理是解题的关键.10. 已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( ) A. 52 B. 2 C. 32 D. 1【答案】B【解析】分析】把(,)A a b 代入3y kx =+后表示出ab ,再根据ab 最大值求出k ,最后把(4,)B c 代入3y kx =+即可.【详解】把(,)A a b 代入3y kx =+得:3b ka =+ ∴2239(3)3(24ab a ka ka a k a k k =+=+=+- ∵ab 的最大值为9∴0k <,且当32a k =-时,ab 有最大值,此时994ab k =-= 解得14k =- ∴直线解析式为134=-+y x 把(4,)B c 代入134=-+y x 得14324c =-⨯+= 故选:B . 【点睛】本题考查一次函数上点的特点、二次函数最值,解题的关键是根据ab 的最大值为9求出k 的值.卷Ⅱ(非选择题)二、填空题(本题有6小题)11. 分解因式:2m m +=___________.【答案】(1)m m +【解析】【分析】利用提公因式法进行因式分解.【详解】解:2(1)m m m m +=+故答案为:(1)m m +.【点睛】本题考查提公因式法因式分解,掌握提取公因式技巧正确计算是解题关键. 12. 正八边形的一个内角的度数是____ 度.【的【答案】135【解析】【分析】根据多边形内角和定理:(n ﹣2)•180°(n≥3且n 为正整数)求出内角和,然后再计算一个内角的度数即可.【详解】正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为: 1080°÷8=135°,故答案为135.13. 不透明的袋子中装有5个球,其中有3个红球和2个黑球,它们除颜色外都相同.从袋子中随机取出1个球,它是黑球的概率是_____. 【答案】25 【解析】【分析】直接根据概率公式求解.【详解】解:∵盒子中装有3个红球,2个黑球,共有5个球, ∴从中随机摸出一个小球,恰好是黑球的概率是25; 故答案为:25. 【点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.14. 如图,在直角坐标系中,ABC 的顶点C 与原点O 重合,点A 在反比例函数ky x=(0k >,0x >)的图象上,点B 的坐标为(4,3),AB 与y 轴平行,若AB BC =,则k =_____.【答案】32【解析】【分析】根据AB BC =求出A 点坐标,再代入k y x=即可.【详解】∵点B 的坐标为(4,3)∴5OB ==∵AB BC =,点C 与原点O 重合,∴5AB BC BO ===∵AB 与y 轴平行,∴A 点坐标为(4,8)∵A 在k y x =上 ∴84k =,解得32k = 故答案为:32.【点睛】此题主要考查了反比例函数图象上点的坐标性质;得出A 点坐标是解题关键. 15. 某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为k (N ).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n (1n >)倍,且钢梁保持水平,则弹簧秤读数为_______(N )(用含n ,k 的代数式表示).【答案】k n【解析】 【分析】根据杠杆的平衡条件是:动力×动力臂=阻力×阻力臂,计算即可.【详解】设弹簧秤新读数为x根据杠杆的平衡条件可得:k PB x nPB ⋅=⋅ 解得k x n= 故答案为:k n . 【点睛】本题是一个跨学科的题目,熟记物理公式动力×动力臂=阻力×阻力臂是解题的关键.16. 如图,在廓形AOB 中,点C ,D 在 AB 上,将 CD 沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F .已知120AOB ∠=︒,6OA =,则 E F 的度数为_______;折痕CD 的长为_______.【答案】 ①. 60°##60度②.【解析】【分析】根据对称性作O 关于CD 的对称点M ,则点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上,再结合切线的性质和垂径定理求解即可. 【详解】作O 关于CD 的对称点M ,则ON =MN 连接MD 、ME 、MF 、MO ,MO 交CD 于N∵将 CD沿弦CD 折叠 ∴点D 、E 、F 、B 都在以M 为圆心,半径为6的圆上∵将 CD沿弦CD 折叠后恰好与OA ,OB 相切于点E ,F . ∴ME ⊥OA ,MF ⊥OB ∴90MEO MFO ∠=∠=︒ ∵120AOB ∠=︒∴四边形MEOF 中36060EMF AOB MEO MFO ∠=︒-∠-∠-∠=︒即 E F 的度数为60°;∵90MEO MFO ∠=∠=︒,ME MF = ∴MEO MFO ≅ (HL )∴1302EMO FMO FME ∠=∠=∠=︒∴6cos cos30ME OM EMO ===∠︒∴MN =∵MO ⊥DC∴12DN CD ====∴CD =故答案为:60°;【点睛】本题考查了折叠的性质、切线的性质、垂径定理、勾股定理;熟练掌握折叠的性质作出辅助线是解题的关键.三、解答题(本题有8小题)17. (101)--. (2)解不等式:841x x +<-. 【答案】(1)1;(2)3x > 【解析】【分析】(1)根据零指数幂、立方根进行运算即可;(2)根据移项、合并同类项、系数化为1,进行解不等式即可. 【详解】(1)原式21=-1=. (2)移项得:418x x -<--, 合并同类项得:39x -<-, 系数化为得: 3x >.【点睛】此题考查了零指数幂、立方根、解不等式等知识,熟练掌握运算法则是解题的关键.18. 小惠自编一题:“如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,AC BD ⊥,OB OD =,求证:四边形ABCD 是菱形”,并将自己的证明过程与同学小洁交流.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明.【答案】赞成小洁的说法,补充AB CB =,见解析 【解析】【分析】赞成小洁的说法,补充:AB CB =,由四边相等的四边形是菱形即可判断. 【详解】赞成小洁的说法,补充:AB CB =. 证明: AC BD ⊥,OB OD =,∴AB AD =,CB CD =.又∵AB CB =. ∴AB AD CB CD ===, ∴四边形ABCD 是菱形.【点睛】本题考查菱形的判定以及线段垂直平分线的性质,熟练掌握菱形的判定是解题的关键.19. 观察下面的等式:111236=+,1113412=+,1114520=+,…… (1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数) (2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++ (2)见解析 【解析】【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n +1)个式子为1111(1)n n n n =+++. (2)由(1)的规律发现第(n +1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明. 【小问1详解】解:∵第一个式子()1111123621221=+=+++, 第二个式子()11111341231331=+=+++, 第三个式子()11111452041441=+=+++, ……∴第(n +1)个式子1111(1)n n n n =+++; 【小问2详解】解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边, ∴1111(1)n n n n =+++. 【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.20. 6月13日,某港口的潮水高度y (cm )和时间x (h )的部分数据及函数图象如下:(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象. ②观察函数图象,当4x =时,y 的值为多少?当y 的值最大时,x 的值为多少? (2)数学思考:请结合函数图象,写出该函数的两条性质或结论. (3)数学应用:根据研究,当潮水高度超过260cm 时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?【答案】(1)①见解析;②200y =,21x =(2)①当27x ……时,y 随x 的增大而增大;②当14x =时,y 有最小值80(3)510x <<和1823x << 【解析】【分析】(1)①根据表格数据在函数图像上描点连线即可; ②根据函数图像估计即可;(2)从增减性、最值等方面说明即可;(3)根据图像找到y =260时所有的x 值,再结合图像判断即可. 【小问1详解】 ①②观察函数图象: 当4x =时,200y =;当y 的值最大时,21x =;21x =. 【小问2详解】 答案不唯一.①当27x ……时,y 随x 的增大而增大; ②当14x =时,y 有最小值80. 【小问3详解】根据图像可得:当潮水高度超过260cm 时510x <<和1823x <<,【点睛】本题考查函数图像的画法、从函数图像获取信息,准确的画出函数图像是解题的关键.21. 小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知10cm AD BE ==,5cm CD CE ==,AD CD ⊥,BE CE ⊥,40DCE ∠=︒.(结果精确到0.1cm ,参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈,sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈)(1)连结DE ,求线段DE 的长. (2)求点A ,B 之间的距离. 【答案】(1)3.4cm(2)22.2cm 【解析】【分析】(1)过点C 作CF DE ⊥于点F ,根据等腰三角形的性质可得DF EF =,20DCF ECF ∠=∠=︒,再利用锐角三角函数,即可求解;(2)连结AB .设纸飞机机尾的横截面的对称轴为直线l ,可得对称轴l 经过点C .从而得到四边形DGCE 是矩形,进而得到DE =CG ,然后过点D 作DG AB ⊥于点G ,过点E 作EH ⊥AB 于点H ,可得1202GDC CEH DCE ∠=∠=∠=︒,从而得到2020DAB GDC EBH CEH ∠=∠=︒∠=∠=︒,,再利用锐角三角函数,即可求解.【小问1详解】解:如图2,过点C 作CF DE ⊥于点F ,∵CD CE =,∴DF EF =,CF 平分DCE ∠. ∴20DCF ECF ∠=∠=︒,∴sin 2050.34 1.7DF CD ︒=⋅≈⨯=, ∴2 3.4cm DE DF ==. 【小问2详解】解:如图3,连结AB .设纸飞机机尾的横截面的对称轴为直线l ,∵纸飞机机尾的横截面示意图是一个轴对称图形, ∴对称轴l 经过点C . ∴AB l ⊥,DE l ⊥, ∴AB ∥DE .过点D 作DG AB ⊥于点G ,过点E 作EH ⊥AB 于点H , ∵DG ⊥AB ,HE ⊥AB , ∴∠EDG =∠DGH =∠EHG =90°, ∴四边形DGCE 矩形, ∴DE =HG , ∴DG ∥l , EH ∥l , ∴1202GDC CEH DCE ∠=∠=∠=︒, ∵AD CD ⊥,BE ⊥CE ,∴2020DAB GDC EBH CEH ∠=∠=︒∠=∠=︒,,∴cos 20100.949.4,cos 20100.949.4AG AD BH BE =⋅︒≈⨯==⋅︒≈⨯=, ∴22.2cm AB BH AG DE =++=.【点睛】本题主要考查了解直角三角形的实际应用,明确题意,准确构造直角三角形是解题的关键.22. 某教育部门为了解本地区中小学生参加家庭劳动时间的情况,随机抽取该地区1200名是中小学生进行问卷调查,并将调查问卷(部分)和结果描述如下: 调查问卷(部分)1.你每周参加家庭劳动时间大约是_________h ,如果你每周参加家庭劳动时间不足2h ,请回答第2个问题;2.影响你每周参加家庭劳动的主要原因是_________(单选). A .没时间B .家长不舍得C .不喜欢D .其它中小学生每周参加家庭劳动时间x (h )分为5组:第一组(00.5x <…),第二组(0.51x <…),第三组(1 1.5x <…),第四组(1.52x <…),第五组(2x …).根据以上信息,解答下列问题:(1)本次调查中,中小学生每周参加家庭劳动时间的中位数落在哪一组? (2)在本次被调查的中小学生中,选择“不喜欢”的人数为多少?(3)该教育部门倡议本地区中小学生每周参加家庭劳动时间不少于2h ,请结合上述统计图,对该地区中小学生每周参加家庭劳动时间的情况作出评价,并提出两条合理化建议. 【答案】(1)第二组(2)175人(3)该地区大部分学生家庭劳动时间没有达到2个小时以上主要原因是学生没有时间;建议:①家长多指导孩子家庭劳动技能;②各学校严控课后作业总量 【解析】【分析】(1)根据中位数的定义求解即可;(2)根据扇形统计图求出C 所占的比例再计算即可; (3)根据统计图反应的问题回答即可. 【小问1详解】1200人的中位数是按从小到大排列后第600和601位的平均数,而前两组总人数为308+295=603∴本次调查中,中小学生每周参加家庭劳动时间的中位数落在第二组; 【小问2详解】由扇形统计图得选择“不喜欢”的人数所占比例为143.2%30.6%8.7%17.5%---- 而扇形统计图只统计不足两小时的人数,总人数为1200-200=1000 ∴选择“不喜欢”的人数为100017.5%175⨯=(人) 【小问3详解】答案不唯一、言之有理即可.例如:该地区大部分学生家庭劳动时间没有达到2个小时以上主要原因是学生没有时间;建议:①家长多指导孩子家庭劳动技能;②各学校严控课后作业总量;③学校开设劳动拓展课程:等等.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23. 已知抛物线1L :2(1)4y a x =+-(0a ≠)经过点(1,0)A . (1)求抛物1L 的函数表达式.(2)将抛物线1L 向上平移m (0m >)个单位得到抛物线2L .若抛物线2L 的顶点关于坐标原点O 的对称点在抛物线1L 上,求m 的值.(3)把抛物线1L 向右平移n (0n >)个单位得到抛物线3L .已知点(8,)P t s -,(4,)Q t r -都在抛物线3L 上,若当6t >时,都有s r >,求n 的取值范围.【答案】(1)2()4y x =+-(2)4m =(3)3n > 【解析】【分析】(1)根据待定系数法即可求解. (2)根据平移的性质即可求解.(3)根据平移的性质对称轴为直线1x n =-,10a =>,开口向上,进而得到点P 在点Q 的左侧,分两种情况讨论:①当P ,Q 同在对称轴左侧时,②当P ,Q 在对称轴异侧时,③当P ,Q 同在对称轴右侧时即可求解. 【小问1详解】解:将(1,0)A 代入得:20(11)4a =+-, 解得:1a =,∴抛物线1L 的函数表达式:2()4y x =+-. 【小问2详解】∵将抛物线1L 向上平移m 个单位得到抛物线2L ,∴抛物线2L 的函数表达式:2(1)4y x m =+-+. ∴顶点(1,4)m --+,∴它关于O 的对称点为(1,4)m -, 将(1,4)m -代入抛物线1L 得:40m -=, ∴4m =. 【小问3详解】把1L 向右平移n 个单位,得3L :2(1)4y x n =+--,对称轴为直线1x n =-,10a =>,开口向上,∵点(8,)P t s -,(4,)Q t r -, 由6t >得:824t t -<<-, ∴点P 在点Q 的左侧,①当P ,Q 同在对称轴左侧时,14n t ->-,即3n t >-,∵6t >,∴3n >,②当P ,Q 在对称轴异侧时, ∵s r >,∴1(8)4(1)n t t n --->---, 解得:3n >,③当P ,Q 同在对称轴右侧时,都有s r <(舍去), 综上所述:3n >.【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象平移变换,熟练掌握待定系数法及平移的性质结,巧妙运用分类讨论思想是解题的关键.24. 如图1.在正方形ABCD 中,点F ,H 分别在边AD ,AB 上,连结AC ,FH 交于点E ,已知CF CH =.(1)线段AC 与FH 垂直吗?请说明理由.(2)如图2,过点A ,H ,F 的圆交CF 于点P ,连结PH 交AC 于点K .求证:KH AK CH AC=. (3)如图3,在(2)的条件下,当点K 是线段AC 的中点时,求CP PF 的值. 【答案】(1)AC FH ⊥,见解析(2)见解析(3)32CP PF = 【解析】【分析】(1)证明Rt Rt CDF CBH △△≌(HL ),得到DCF BCH ∠=∠,进一步得到FCA HCA ∠=∠,由△CFH 是等腰三角形,结论得证;(2)过点K 作KG AB ⊥于点G .先证△AKG ∽△ACB ,得AK KG AC CB=,证△KHG ∽CHB 可得KH KG CH CB=,结论得证; (3)过点K 作KG AB ⊥点G .求得12GH BH =,设GH a =,2BH a =,则KG =AG =GB =3a ,则CH CF =,勾股定理得FH =,EH =,由FPH HEC △∽△得PF FH EH CH=,得PF =,CP =,即可得到答案. 【小问1详解】证明:∵四边形ABCD 是正方形,∴CD CB =,90D B ∠=∠=︒,又∵CF CH =,∴Rt Rt CDF CBH △△≌(HL ),∴DCF BCH ∠=∠.又∵45DCA BCA ∠=∠=︒,∴FCA HCA ∠=∠.∵CF CH =∴△CFH 是等腰三角形,∴AC FH ⊥.【小问2详解】证明:如图1,过点K 作KG AB ⊥于点G .∵CB AB ⊥,∴KG CB ∥.∴AKG ACB △∽△, ∴AK KG AC CB=. ∵PHA DFC ∠=∠,DFC CHB ∠=∠,∴KHG CHB ∠=∠.∴KHG CHB △∽△, ∴KH KG CH CB=, ∴AK KH AC CH =. 小问3详解】解:如图2,过点K 作KG AB ⊥点G .∵点K 为AC 中点:由(2)得12KH AK CH AC ==, ∴12GH KH BH CH ==, 设GH a =,2BH a =,则3KG AG GB a ===,∴6CB AB a ==,4AH a =,∴CH CF =,∵AF AH =,【∴FH =,EH =,∵180FPH FAH ∠+∠=︒,∴90FPH CEH ∠=︒=∠,又∵CHE PFH ∠=∠,∴FPH HEC △∽△, ∴PF FH EH CH=.∴PF =,∴CP CF PF =-=, ∴32CP PF =. 【点睛】此题考查正方形的性质、相似三角形的判定和性质、勾股定理、直角三角形全等的判定定理等知识,熟练掌握相似三角形的判定和性质是解题的关键。
2012年中考数学试题及答案
2012年中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 5D. -1答案:C2. 如果一个角的度数是30°,那么它的补角是:A. 30°B. 45°C. 60°D. 120°答案:D3. 一个圆的半径是5厘米,那么它的面积是:A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B4. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. 8答案:A5. 一个三角形的三边长分别为3,4,5,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能构成三角形答案:B6. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. 1/3D. 1答案:A7. 一个长方体的长、宽、高分别是4cm,3cm,2cm,那么它的体积是:A. 24 cm³B. 36 cm³C. 48 cm³D. 52 cm³答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 3D. 5 或 -5答案:D9. 一个分数的分子是3,分母是5,那么它的最简形式是:A. 3/5B. 1/5C. 3/1D. 5/3答案:A10. 如果一个数的立方根是3,那么这个数是:A. 27B. 3C. 9D. 81答案:A二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是____。
答案:±412. 一个数的立方是-27,这个数是____。
答案:-313. 一个圆的直径是14cm,那么它的半径是____cm。
答案:714. 如果一个三角形的内角和是180°,那么一个四边形的内角和是____°。
答案:36015. 一个数的相反数是-5,这个数是____。
浙江省舟山市2012年中考数学试卷及参考答案
(1) 求这两个函数的解析式; (2) 当x取何值时,y1>y2. 22. 某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每 辆车的日租金每增加5 0元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出x辆车时,日收益为y元.(日收益=日
请你根据图中提供的信息,解答下列问题:
(1) 计算被抽取的天数; (2) 请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数; (3) 请估计该市这一年(365天)达到“优”和“良”的总天数. 21. 如图,一次函数y1=kx+b的图象与反比例函数y2= 的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0)
点E,F,与过点A且垂直于AB的直线相交于点G,连接DF,给出以下五个结论:
①
;②∠ADF=∠CDB;③点F是GE的中点;④AF= AB;⑤S△ABC=5S△BDF ,
其中正确结论的序号是________.
三、解答题
17. 计算:
2
(1) 丨﹣5|+ ﹣32 (2) (x+1)2﹣x(x+2) 18. 解不等式2(x﹣1)﹣3<1,并把它的解集在数轴上表示出来.
(1) 如图①,对△ABC作变换[60°, ]得△AB′C′,则S△AB′C′:S△ABC=;直线BC与直线B′C′所夹的锐角为度; (2) 如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且 四边形ABB'C'为矩形,求θ和n的值; (3) 如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上 ,且四边形ABB′C′为平行四边形,求θ和n的值. 24. 在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接 OP,过点0作OP的垂线交抛物 线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.
浙江省舟山市2012届九年级数学第一次阶段性教学诊断试题 苏科版
某某省某某市第一初级中学2012届九年级数学第一次阶段性教学诊断试题苏科版【卷首语】亲爱的同学,欢迎你参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平,祝你成功!(本卷满分120分,考试时间120分钟)一、选择题(本题共10小题,每小题3分,共30分。
每小题只有一个选项是正确的,不选、多选、错选均不给分)1.函数kyx=的图象经过点(12)A-,,则k的值为()A.12B.12-C.2D.2-2.将二次函数2xy=的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.2)1(2+-=xy B.2)1(2++=xyC.2)1(2--=xy D.2)1(2-+=xy3.若反比例函数kyx=的图象经过点(3)m m,,其中0m≠,则此反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限4.将(21)(2)1y x x=-++化成()y a x m n2=++的形式为()A.23252416y x⎛⎫=+-⎪⎝⎭B.2317248y x⎛⎫=--⎪⎝⎭C.2317248y x⎛⎫=+-⎪⎝⎭ D.2317248y x⎛⎫=++⎪⎝⎭y–1 13Ox第5题抛物线c bx x y ++-=2的部分图象如图所示,若0>y ,则x 的取值X 围是() A .14<<-x B .13<<-x C .4-<x 或1>x D .3-<x 或1>x6.反比例函数ky x =与直线2y x =-相交于点A A ,点的横坐标为1-,则此反比例函数的解析式为()A .2y x =B .12y x =C .2y x =-D .12y x =-7.将一X 边长为30cm 的正方形纸片的四角分别剪去一个边长为xcm 的小正方形,然后折叠成一个无盖的长方体.当x 取下面哪个数值时,长方体的体积最大() A .7B .6C .5D .48.若A (a1,b1),B (a2,b2)是反比例函数x y 2-=图象上的两个点,且a1<a2,则b1与b2的大小关系是 ()A .b1<b2B .b1 = b2C .b1>b2D .大小不确定9.如果反比例函数ky x =的图象如左图所示,那么二次函数221y kx k x =--的图象大致为 ()10.已知一次函数y = ax + b 的图象过点(-2,1),则关于抛物线y = ax2-bx + 3的三条叙xyO OA . x yOy xB . Oy xC . OyxD .第9题述:①过点(2,1),②对称轴可以是x = 1,③当a <0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是()A .0B .1C .2D .3二、填空题(本题共6小题,每小题4分,共24分)11.矩形面积为26cm ,长为cm x ,那么这个矩形的宽(cm)y 与长(cm)x 的函数关系为12.抛物线2(1)2y x =-+的顶点坐标是 .13.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是m .14.开口向下的抛物线22(2)21y m x mx =-++的对称轴经过点(13)-,,则m = .15.若正方形AOBC 的边OAOB ,在坐标轴上,顶点C 在第一象限且在反比例函数1y x=的图象上,则点C 的坐标是.16.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在k y x =的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;第13题ky x=1y x=第16题④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是(把你认为正确结论的序号都填上,少填或错填不给分).三、解答题(本题共8小题,共66分)17.(6分)已知点A(2,6)在某个反比例函数的图象上,求此反比例函数的解析式.18.(8分)如图,一次函数bkxy+=的图象与反比例函数xmy=的图象相交于A、B两点.(1)根据图象,分别写出点A、B的坐标;(2)求出这两个函数的解析式;(3)根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函数值?19.(8分)如图,一个二次函数的图象经过点A、C、B 三点,点A的坐标为(1,0-),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.(1)求点C的坐标;(2)求这个二次函数的解析式,并求出该函数的最大值.1ABO2xy第18题COA B xy第19题20.(8分)某种爆竹点燃后,其上升的高度h (米)和时间t (秒)符合关系式201(02)2h t gt t υ=-<≤,其中重力加速度g 以10米/秒2计算.这种爆竹点燃后以020υ=米/秒的初速度上升,(1)这种爆竹在地面上点燃后,经过多少时间离地15米?(2)在爆竹点燃后在1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明理由.21.(8分)如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m ,最高点离水面8m ,以水平线AB 为x 轴,AB 的中点为原点建立坐标系. ①求此桥拱线所在抛物线的解析式.②桥边有一浮在水面部分高4m ,最宽处12m 的渔船,试探索此船能否开到桥下?说明理由.22.(8分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:2240w x =-+.设第21题这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?23.(8分)如图,已知(80)(06)A B,,,,两个动点P Q,同时在OAB△的边上按逆时针方向()O A B O→→→→→运动,开始时点P在点B位置、点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.(1当t=1秒时,求OPQ△的面积;(2)在前3秒内,求OPQ△的最大面积;O xyBA第23题24.(12分)如图,已知OAB △的顶点(30)A ,,(01)B ,,O 是坐标原点.将OAB △绕点O 按逆时针旋转90°得到ODC △. (1)写出C D ,两点的坐标;(2)求过C D A ,,三点的抛物线的解析式,并求此抛物线的顶点M 的坐标;(3)在线段AB 上是否存在点N 使得NA NM =?若存在,请求出点N 的坐标;若不存在,请说明理由.出卷人:平 磊某某一初九年级阶段性教学诊断数学卷(答案)2011/10/13一、选择题1.D ;2.A ;3.B ;4.C ;5.B ;6.C ;7.C ;8.D ;9.B ;10.C . (每题3分)二、填空题11.6(0)y x x =>;12.(12),;13.10;14.-1;15.(1,1);16.①②④. (16题选2个得3分,选1个得2分,多选不得分,其余每题4分)第24题y OAB C D M三、解答题 (66分)17.解:设所求的反比例函数为x k y =,依题意得: 6 =2k,∴k=12......5分∴反比例函数为x y 12=.……………….6分18.(1)解:由图象知,点A 的坐标为(-6,-2),点B 的坐标为(4,3)….2分(2)∵反比例函数x my =的图象经过点B ,∴34m =,即12m =. ∴所求的反比例函数解析式为12y x =. ………2分∵一次函数b kx y +=的图象经过A 、B 两点,∴26,34.k b k b -=-+⎧⎨=+⎩解这个方程组,得1,21.k b ⎧=⎪⎨⎪=⎩∴所求的一次函数解析式为112y x =+. ……………4分(3)由图象知,一次函数的函数值大于反比例函数的函数值时,x 的取值X 围为:60,4x x -<<>或.…………2分19.解:(1)∵ A(-1,0)、B(4,0),∴ AO=1, OB=4,即AB= AO+OB=1+4=5. ∴ OC =5,即点C 的坐标为(0,5). ..........2分(2)解:设图象经过A 、C 、B 三点的二次函数的解析式为2y ax bx c =++, 由于这个函数的图象过点(0,5),可以得到c=5,又由于该图象过点(-1,0)、(4,0),则:50,16450.a b a b -+=⎧⎨++=⎩解这个方程组,得5,415.4a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴所求的二次函数解析式为2515544y x x =-++. .....................3分∵504a =-<,∴当1534522()4x =-=⨯-时,y 有最大值225154()5()41254454164()4ac b a ⨯-⨯--==⨯-.3分20.(1)解:由已知得,211520102t t =-⨯⨯,整理得,2430t t -+=.解得,13t =,21t =当3t =时,不合题意,舍去.∴当爆竹点燃后1秒离地15米.…….4分(2)解:由题意得,2520h t t =-+.∴顶点的横坐标202(5)t =-⨯-2=.∴顶点的横坐标2t =.又50-<,∴抛物线开口向下.∴在爆竹点燃后的1.5秒至1.8秒这段时间内,爆竹在上升.…………4分21.解:(1)(120)(120)(08)A B C -,,,,,. 设抛物线为2y ax bx c =++,将C 点坐标代入得:8c = A B ,点坐标代入得:14412801441280a b a b -+=⎧⎨++=⎩解得1180a b ⎧=-⎪⎨⎪=⎩,所求抛物线为21818y x =-+…………..4分(2)当4y =时得2418x =,62x ∴=±,高出水面4m 处,拱宽>船宽所以此船在正常水位时不可以开到桥下.…………..4分22.解:(1)2(50)(50)(2240)234012000y x w x x x x =-=--+=-+-··, y ∴与x 的关系式为:2234012000y x x =-+-.……….3分(2)222340120002(85)2450y x x x =-+-=--+,∴当85x =时,y 的值最大. .2分(3)当2250y =时,可得方程22(85)24502250x --+=. 解这个方程,得175x =,295x =.根据题意,295x =不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.………..3分23.(1)(80)(06)6810A B OB OA AB ∴===,,,,,,.BP=2,OP=4,OQ=1OPQ ∴△的面积=2………………3分(2)在前3秒内,点P 在OB 上,点Q 在OA 上, 设经过t 秒,点P Q ,位置如图.则62OP t OQ t =-=,.OPQ ∴△的面积1(3)2A OP OQ t t ==-, 当32t =时,max 94S =.…..5分Oxy B AP Qword11 / 1124.解:(1)(10)C -,,(03)D ,…2分(2)设所求抛物线的解析式为2y ax bx c =++(0a ≠)A C D ,,在抛物线上∴30930c a b c a b c =⎧⎪-+=⎨⎪++=⎩,,30310a b a b -+=⎧⇒⎨++=⎩,12a b =-⎧⇒⎨=⎩, 即223y x x =-++.…………3分又2(1)4y x =--+,(14)M ∴,.…………..5分(3)解:连结MB ,作ME y ⊥轴于E ,则1ME =,413BE =-=MB ==BA MB === 即在线段AB 上存在点(01)N ,(即点B )使得NA NM =.………………….5分。
浙江省舟山市中考数学真题试题
罐头横截面数学 试题卷考生须知:1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题. 2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效.参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标是(-2ba,244ac b a -).温馨提示:请仔细审题,细心答题,答题前仔细阅读答题纸上的“注意事项”.卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题3分,共30分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分) 1.-2的相反数是( ▲ ) (A )2(B )-2(C )12(D )-122.如图,由三个小立方块搭成的俯视图是( ▲ )3.据舟山市旅游局统计,2012年舟山市共接待境内外游客约2771万人次.数据2771万用科学计数法表示为( ▲ ) (A )2771×107(B )2.771×107 (C )2.771×106(D )2.771×1054.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m )分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是( ▲ )(A )1.71 (B )1.85 (C )1.90 (D )2.31 5.下列运算正确的是( ▲ )(A )x 2+x 3=x 5(B )2x 2-x 2=1 (C )x 2•x 3=x 6(D )x 6÷x 3=x 36.如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为30º,则“蘑菇罐头”字样的长度为( ▲ ) (A )4πcm (B )74πcm (C )72πcm (D )7πcm 7.下列说法正确的是( ▲ )(A )要了解一批灯泡的使用寿命,应采用普查的方式①(B )若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖(C )甲、乙两组数据的样本容量与平均数分别相同,若方差2S 甲=0.1,2S 乙=0.2,则甲组数据比乙组数据稳定(D )“掷一枚硬币,正面朝上”是必然事件8.若一次函数y =ax +b (a ≠0)的图象与x 轴的交点坐标为(-2,0),则抛物线y =ax2正面(A ) (B ) (C ) (D )EABC DO +b 的对称轴为( ▲ )(A )直线x =1 (B )直线x =-2 (C )直线x =-1 (D )直线x =-49.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB =8,CD =2,则EC 的长为( ▲ )(A )215 (B )8 (C )210(D )21310.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:A ○+B =(x 1+x 2)+(y 1+y 2).例如,A (-5,4),B (2,-3),A ○+B =(-5+2)+(4-3)=-2.若互不重合的四点C ,D ,E ,F ,满足C ○+D =D ○+E =E ○+F =F ○+D ,则C ,D ,E ,F 四点( ▲ ) (A )在同一条直线上(B )在同一条抛物线上(C )在同一反比例函数图象上(D )是同一正方形的四个顶点卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题4分,共24分) 11.二次根式3x 中,x 的取值范围是 ▲ 时.12.一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为 ▲ . 13.分解因式:ab 2-a = ▲ .14.在同一平面内,已知线段AO =2,⊙A 的半径为1,将⊙A 绕点O 按逆时针方向旋转60º得到的像为⊙B ,则⊙A 与⊙B 的位置关系为 ▲ .15.杭州到北京的铁路长1487千米.火车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程来 ▲ . 16.如图,正方形ABCD 的边长为3,点E ,F 分别在边AB ,BC 上,AE =BF =1,小球P 从点E 出发沿直线向点F 运动,每当碰到正方形的边时反弹,反弹时 反射角等于入射角.当小球P 第一次碰到点E 时,小球P 所经过的路程为 ▲ . 三、解答题(本大题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(1)计算:|―4|―9+(-2)0; (2)化简:a (b +1)―ab ―1.18.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A =∠D ,AB =DC .(1)求证:△ABE ≌DCE ;(2)当∠AEB =50º,求∠EBC 的度数?友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助D CAEDAyxlAC BN O 11191(k ≠0)与反比例函数y =x (m ≠0)的图象有公共点A (1,2).直线l ⊥x 轴于点N (3,0),与一次函数和反比例函数的图象分别交于点B ,C . (1)求一次函数与反比例函数的解析式; (220. (1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?补调查的学生每人一周零花钱数额的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?21.某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60º(如图2);校门打开时,每个菱形的锐角度数从60º缩小为10º(如图3).问:校门打开了多少米?(结果精确到1米,参考数据:sin5º≈0.0872,cos5º≈0.9848).该校部分学生每人一周零花钱数额条形统计图零花钱 18 14 8 6 2y O 20 16 12 10 4 0 学生人数(人) 该校部分学生每人一周 零花钱数额扇形统计图30元50元40元 25%20元 20% 60ºDA CB…20个 (图2)10ºD 1A1C 1B 1…20个 (图3)(图1)22.小明在做课本“目标与评定”中的一道题:如图1,直线a ,b 所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数? (1)①请你帮小明在图2的画板内画出你的测量方案(简要说明画法过程); ②说出该画法的依据的定理.(2)小明在此基础上又进行了更深入的探究,想到两个操作:①在图3的画板内,在直线a 和b 上各取一点,使这两点与 直线a 、b 的交点构成等腰三角形(其中交点为顶角的顶点), 画出该等腰三角形在画板内的部分; ②连结AD 并延长交直线a 于点B ,请写出图3中所有与∠PAB 相等的角,并说明理由;(3)在图3的画板内,作出“直线a ,b 所成的跑到画板外面去的角”的平分线(画板内的部分),只要求作出图形,并保留作图痕迹. 请你帮小明完成上面两个操作过程.(必须要有方案图,所有的线不能画到画板外, 只能画在画板内).23.某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量. (1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000立方米海水,淡化率为70%.每淡化1立方米海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/立方米的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?24.如图,在平面直角坐标系xOy 中,抛物线y =14(x ―m )2―14m 2+m 的顶点为A ,与y 轴的交点为B ,连结AB ,AC ⊥AB ,交y 轴于点C ,延长CA 到点D ,使AD =AC ,连结BD .作AE ∥x 轴,DE ∥y 轴.(1)当m =2时,求点B 的坐标; (2)求DE 的长?(3)①设点D 的坐标为(x ,y ),求y 关于x 的函数关系式?(图1)(图3) ab(图2)abyxEDCABO②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?2013年浙江省初中毕业生学业考试(舟山卷)数学参考答案一.选择题l.A 2.A 3.B 4.B 5.D 6.B 7.C 8.C 9.D l0.A二、填空题11.x≥3;l2.47;13.a(b+1)(b-1);14.外切;15.1487x-148770x=3;16.6,65三、解答题17.(1)2;(2)a-118.(1)略;(2)∠EBC=25º19.(1)y=x+1,y=2x;(2)S△ABC=10320.(1)略;(2)圆心角36º,中位数是30元;;(3)16250元21.5米.22.解:(1)方法1:①如图2,画PC∥a,量出直线b与PC的夹角度数即为直线a,b所成角的度数②两直线平行,同位角相等方法2:①如图2,在直线a,b上各取一点A,B,连结AB,测得∠1,∠2的度数,则180º―∠1―∠2即为直线a,b所成角的度数②三角形内角和为180º(2)如图3,以P为圆心,任意长为半径画弧,分别交直线b,PC于点B,D,连结BD并延长交直线a于点A,则ABPQ就是所求作的图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年舟山数学中考卷试题分析一、选择题(本题有10小题,每题3分,共30分)答案:C。
解析:本题考查对特殊知识点的识记。
任意数的零次幂均等于1.答案:A。
解析:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。
根据定义,很容易得到正确答案A,对称轴是垂直于水平面的竖直直线。
本题考查对轴对称图形定义的理解。
答案:C。
解析:科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为正整数)。
一般保留两位有效数字足够准确则保留两位有效数字,即从左向右第一个不为零的数字算起保留两位数字,并乘以10n,以与原数相等。
答案:B。
解析:由于BC是⊙O的切线,所以OB⊥BC,∠OBC=90゜,因为∠ABC=70゜,所以∠OBA=90゜-70゜=20゜,又OA=OB,所以∠A=∠OBA=20゜本题主要考查圆的切线性质。
答案:D。
解析:若此分式为零,则只需分子等于零,即×-1=0,得×=1,且当×=1时,分母不为零,分式仍然有意义,所以得答案D。
答案:C。
解析:本题是将三角函数运用到实际问题的一个典型例子。
在△ABC中,∠BAC=90゜,即直角,∠ACB=40゜,则运用三角函数可求出AB=a tan40゜答案:B。
解析:题目要求圆锥的侧面积,即围成侧面扇形的面积,根据扇形面积公式S=RL,其中L是扇形弧长,而此扇形弧长即底面周长。
由此将问题转化为求圆锥底面周长,而在底面圆中,半径已知,则很容易求出周长,带入到扇形面积公式,得出所求面积为30πcm2,本题主要考查扇形面积公式。
答案:C。
解析:本题是初中最常见的求概率的问题。
根据题意,十位上的数应是最小的,若十位上是2时,在所给的四个数1、3、4、5中,只有3、4、5符合,则先给百位(个位)选一个,符合的概率是3/4,则一个符合条件的已被选择,则只剩两个符合的,和一个不符合条件的,所以再给个位(百位)选择时,符合条件的概率是2/3,所以最终能与2组成“V”数的概率是3/4*2/3=1/2.答案:A。
解析:要求重叠部分(即阴影部分)的面积,可用△ABC-△ABD求出,分别做出两个三角形的高,即分别过C、D两点做AB边的高线,分别交A、B于E、F ,已知AB 长度,则只需求出这两条高线即可。
因为∠CAB=∠B=30゜,所以△ABC 是等腰三角形,所以高线CE 与AB 的交点E 是AB 的中点,则AE=√3,则在△ACE 中根据三角函数可求出CE.又∠B ´∠B=30゜,∠B ´CD=60゜,则△B ´CD 是直角三角形。
则CD:DB ´=tan30゜,得CD=DB ´tan30゜,又DF:CE=DB:CB=DB ´:(CD+DB ´),将CD 代入可求出DF.据此求出两三角形面积相减得到阴影部分面积。
答案:D 。
解析:本题重点考查将运动轨迹与图像的区分的能力,要求考生对题意的把握,对运动过程中自变量函数值之间的变化关系的把握。
首先P 从A 点出发,直到B 点,AP 的距离是匀速增长的,而随着到B 点后,到D 点,AP 的长先减小后增大的,而在临界点等距离的两边,减小与增大的幅度应该是同等的,所以可以排除B 。
而从D 点到C 点,很明显,AP 的长度是增加的,所以A 和C 是错误的,因此只有D 是对的。
二.填空题(本题有6小题,每题4分,共24分) 11、当a=2时,代数式3a-1的值是_______。
考点:实数的运算分析:根据实数的性质进行运算 解答:512、因式分解=9-2a __________。
考点:因式分解分析:利用平方差公式进行因式分解 解答:()()3-3a a +13、如图, ABC Rt ∆中,︒=∠90C ,AD 平分BAC ∠,交BC 与点D ,CD=4,则点D 到AB 的距离为__________。
考点:全等三角形分析:过点D 做AB 的垂线,垂足为E ,可证AED ACD ∆≅∆ 解答:414、如图是舟山市某6天内的最高气温折线统计图,则最高气温的众数是_______℃。
考点:众数的概念和应用分析:通过看图上的数据得出答案 解答:915、如图,已知圆O 的半径为2,弦AB ⊥半径OC ,沿AB 将弓形ACB 翻折,使点C 与圆心O 重合,则月牙形(图中实线围城的部分)的面积是________。
考点:扇形面积计算分析:月牙形的面积等于S 扇OABC —S OAB 图形面积=圆形面积-2月牙形面积解答:3234+π16、如图,在ABC Rt ∆中,AB=AC ,︒=∠90ABC ,点D 是AB 的中点,连结CD ,过点B 作BG ⊥CD ,分别交CD 、DA 于点E 、F ,过点A 且垂直于AB 的直线相交于点G ,连结DF ,给出以下五个结论: ①FBFG AB AG =, ②CDB ADF ∠=∠, ③点F 是GE 的中点, ④AB AF 32=, ⑤BDF ABC S S ∆∆=5,其中正确结论的序号是________。
考点:相似三角形、全等三角形分析:GA ⊥AB ,CB ⊥AB ,得GA ∥CB ,得BFC GFA ∆≈∆,得FBFGCB AG =,又AB=CB ,所以FBFGAB AG =,①正确;由题可证BAG CBD ∆≅∆,可得GA=AD ,CDB G ∠=∠,又可证DFA GFA ≅∆,得ADF G ∠=∠,∴CDB ADF ∠=∠,②正确;由DFA GFA ≅∆可得GF=DF ,∵DEF Rt ∆中,斜边FD ≠直角边EF ,∴FE GF ≠,③错误;由BFC GFA ∆≈∆及GA=AD=21AB 得,21=FC AF 又∵ABC ∆是等腰直角三角形,∴CB AC 2=,所以AB AF 32=,④正确;过点F 做AB 的垂线,垂足为H ,可得31=CB FH ,∴BDF ABC S S ∆∆=6,故⑤错误。
解答:①②④三.解答题(本大题有8小题,第17~19题每题6分,第20、21题每题10分,第24题12分,共66分)解析:(1)原式=5+5-9=0(2)原式=222121x x x x ++--=解析:2231x --<,得x<3考点:菱形的性质;平行四边形的判定; 分析:(1)根据菱形的性质得到AB ∥CD ,AB=CD ,由条件推理可知BECD是平行四边形。
(2)菱形的性质 解析:(1)四边形ABCD 是菱形,∵AB ∥CD ,AB=CD 又∵BE=AB , ∴BE ∥CD ,BE=CD ∴四边形BECD是平行四边形, ∴BD=EC(2)∵平行四边形BECD ∴BD∥CE,∴50ABO B ∠=∠= 又∵四边形ABCD是菱形,∵AC⊥BD,∵9040BAO ABO ∠=-∠=(1)3264%50÷=天(2)轻微污染天数天数是5天;表示优的圆心角度数是836057.650⨯=(3)83236529250+⨯=(天)估计该市这一年达到优和良的总天数为292天。
考点:一次函数性质与反比例函数性质分析:利用联立方程,取值,求解,根据数形结合的思想解题。
解析:把A(2,3)代入2myx=得m=6把A(2,3)C(8,0)代入1y kx b=+得3208k bk b=+⎧⎨=+⎩,解得124kb⎧=-⎪⎨⎪=⎩所以这两个函数的解析式为1142y x=-+,26yx=解得1161xy=⎧⎨=⎩2223xy=⎧⎨=⎩∴当x<0或2<x<6时,12y y>考点:综合应用题,二次函数分析:根据题意列式子,这个式子是个二次函数,根据二次函数的最值求法,求6142yxy x⎧=⎪⎪⎨⎪=-+⎪⎩最值;当y=0时,不亏不盈。
(1)1400-50x(2)要使租赁公司公司日益不盈不亏,即y=0即25014004800x x -+-=250(14)5000x --+∴当日租出14辆时,租赁公司的最大收益最大,最大值为5000元。
(3)要使租赁公司日收益不盈不亏,即y=0即250(14)5000x --+=0 ∴当日租出4辆时,租赁公司日益不盈不亏。
考点:矩形的性质,图形旋转,平行四边形性质 解析:(1)3:1(写成3也对);60°24、在平面直角坐标系xOy 中,点P 是抛物线2x y =上的一个动点(点P 在第一象限内),连结OP ,过点O 做OP 的垂线交抛物线于另一点Q ,连结PQ 。
交y 轴于点M ,作PA ⊥x 轴于点A ,QB ⊥x 轴于点B ,设点P 的横坐标为m 。
(1)如图①,当2=m 时,①求线段OP 的长和POM ∠tan 的值;②在y 轴上找一点C ,使OCQ ∆是等腰三角形,求点C 的坐标; (2)如图②,连结AM 、BM ,分别与OP 、OQ 相交于点D 、E , ①用含m 的代数式表示点Q 的坐标; ②求证:四边形ODME 是矩形。
考点:二次函数的应用、三角函数、等腰三角形的性质、矩形的判定 分析:(1)①将P 点横坐标带入得到P 点的坐标即可得OP 的长度;PA ∥MO ,得AP OPOPA POM =∠=∠tan tan ;②设点Q 的坐标为(n ,n 2),由QOB POM ∠=∠tan tan 得到Q 的横坐标,得出OQ 的长度,分成OQ=OC 、OQ=CQ 、CQ=CO 进行讨论;(2)①由题意易证BOQ APQ ∆≈∆,由比例线段可得出关系式;②∵︒=∠90EOD ,只要证明ODME 是平行四边形即可。
解答:。