材料力学第6章弯曲变形
材料力学(理工科课件)第六章 弯曲变形)
§6-1 基本概念及工程实例 (Basic concepts and example problems)
一、工程实例(Example problem)
(Deflection of Beams)
但在另外一些情况下,有时却要求构件具有较大的弹性变 形,以满足特定的工作需要.
例如,车辆上的板弹簧,要求有足够大的变形,以缓解车辆受
M 0 w 0
x
O
M 0 w 0
M
(Deflection of Beams)
w (1 w )
2 3 2
M ( x) EI
2 w 与 1 相比十分微小而可以忽略不计,故上式可近似为
w"
M ( x) EI
(6.5)
此式称为 梁的挠曲线近似微分方程(differential equation of the deflection curve) 近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项; (3) tan w w( x )
x Cx D
4
(Deflection of Beams)
边界条件x=0 和 x=l时, w 0
梁的转角方程和挠曲线方程 A 分别为 q 2 3 3 (6lx 4 x l ) 24 EI qx 2 3 3 w (2lx x l ) 24 EI 最大转角和最大挠度分别为 在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
A a l D B
b
(Deflection of Beams)
解: 梁的两个支反力为
FRA F FRB F b l a l
x
l x
F FRA
A 1 a D b 2
第6节(弯曲变形)
Mechanics of Materials
中南大学土木建筑学院力学系
Department of Mechanics of School of Civil Engineering and Architecture of Central South University
第六章 弯曲变形 第一节 概述
Fx Fl
转角方程
EI(x)1Fx2FlxC
2 挠度方程
E Iv(x)1F x31F lx2C xD 62
EI
d2v dx2
Fx Fl
EI(x)1Fx2FlxC
2
E Iv(x)1F x31F lx2C xD 62
⑶ 确定积分常数
EI(0)1F02Fl0C0
2 E Iv(0 )1F 0 31F l0 2 C 0D 0
EI(x)b2F l x2C1
E I(x)b 2 F l x2F 2(xa)2C 2
挠度方程
EIv(x)b6F l x3C1xD1 E Iw (x ) b 6 F lx 3F 6(x a )3 C 2xD 2
⑶ 确定积分常数
v(0)E 1 I(b 6 F l03C 10D 1)0
v (l) E 1 I[ b 6 F ll3 F 6(l a )3 C 2 l D 2 ] 0
max
(0)
Fl2 3EI
(x) 0
x (3 3)l 3
(33)l F l3
F l3
vm a xv(
) 0 .0 6 4 2
3 93E I
E I
例:简支梁AB如图所示(图中a > b),承受集中载荷F作 用,梁的弯曲刚度为EI。求此梁的挠曲轴方程和转角方程, 并确定挠度的最大值。
材料力学第六章 弯曲变形
4
2
C
B
)
=
A
( A)q C
l q
( B )q
(b)
B
( wC )q
l
θ B ( θ B )q ( θ B ) M e
+
Me
(c)
Mel ql 24 EI 6 EI
3
A
B
( B ) M e
( A ) MC ( wC ) M
e
e
l
例题3
AB梁的EI为已知,求梁中间C截面挠度.
F1l 2 F2 la 0.4 400 200 B ( ) 16 EI 3 EI 210 1880 16 3 +0.423 10-4 (rad)
F1l a F2a F2a l wC 5.19 106 m 16 EI 3 EI 3 EI wmax w (3)校核刚度: l l
x A
dx
F
x
C' dω
B
d tg dx
二、挠曲线的微分方程
1.纯弯曲时曲率与弯矩的关系
M EI
1
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1 M ( x) ( x) EI
2.由数学得到平面曲线的曲率
F
1 | w | 3 2 2 ( x) (1 w )
q
A x B
w w F wq
+
w wF wq
例1 已知:EI, F,q .求C点挠度 F q
A
C a a
B
Fa 3 ( wC )F 6 EI
材料力学第6章弯曲变形
M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程
(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2
3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl
材料力学-第六章
第15单元第六章 弯曲变形§6-1 引言应用:梁的刚度问题,静不定梁,压杆稳定挠曲轴:变弯后的梁轴(当外力位于梁对称面内时,挠曲线为平面曲线)。
挠度()y x : 横截面形心的位移 转角()θx :横截面绕中性轴的转角挠曲轴方程:()y y x = (挠曲轴的解析表达式)()tg dy dxy x θ=='()θθ≈='tg y x(通常θ<︒1=0.01745弧度)§6-2 梁变形基本方程目的:求()y x ,()()[]θx y x =' 途径:建立微分方程求解 一、挠曲轴微分方程1.中性层曲率表示的弯曲变形公式()1ρ=M x EI(其中M 可以通过弯矩方程表示为x 的函数,ρ为曲率半径,它可由'y 和''y 表示) 2.由数学()11232ρ=±''+'y y3.挠曲轴微分方程()()±''+'=y y M x EI1232(1) 4.方程简化,挠曲轴近似微分方程 小变形,()'≈<y θ0.0175(弧度)'<<y 21112+'≈y ((1)式分母等于1)正负号确定——确定坐标系:y 向上''>y 0(从数学) ''<y 0M >0(本书规定) M <⇒选正号()∴''=y M x EI二、积分法计算梁的变形()θ='=+⎰y M x EI dx C()y M x EIdx Cx D =++⎰⎰C 、D 为积分常数,它由位移边界与连续条件确定。
三、位移边界与连续条件边界条件:固定端 y A A ==00,θ 固定铰,活动铰 0,0==F E y y 自由端:无位移边界条件 连续条件 y y C C C C 左右左右===00θθy y y y B BG G G G 左右左右左右===θθ例1:()M x M =0,()''=y x M EI 0()()θ='=+y x M EI x C 0()y x M EIx Cx D =++022由()()y D y C 00000=='==()()∴==y x M EIxx M EIx022θ例2:求挠曲轴微分方程AB 段: BC 段''=y M EI x l 10 ''=-⎛⎝ ⎫⎭⎪y M EI x l201y M EI x lC xD =++03116 y M EI x l x C x D =-⎛⎝ ⎫⎭⎪++0322262边界和连续条件()y 100= ()y l 20=y l y l 1222⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪(连续条件)'⎛⎝ ⎫⎭⎪='⎛⎝ ⎫⎭⎪y l y l 1222 (光滑条件)四个方程定4个常数()()y x M x lEI x l 1022244=- ()()y x M x l EIl2024=-例3:1.画剪力弯矩图2.列挠曲线的位移和连续条件3.画挠曲线大致形状(注明凹凸性与拐点) 位移与连续条件 A :()y 100= B:()()()()a y a y a y a y 2121'='=,C:()()020232==a y a y ,()()a y a y 2232'=' D:无挠曲线大致形状的画法 (1)根据弯矩图定凹凸性, +→⋃-→⋂,(2)弯矩图过零点处为拐点 (3)支座限定支座处的位移§6-3 计算梁位移的奇异函数法奇异函数法仍属积分法。
材料力学6弯曲变形
=
M 0 L2 9 3EI Z
<[f ]
刚度满足要求。 刚度满足要求。
例二、长度为 的梁 的梁AC, 为常数, 例二、长度为L的梁 ,其EI为常数,在自由端承受集 为常数 中力P(如图),试求自由端C的挠度和转角 ),试求自由端 的挠度和转角。 中力 (如图),试求自由端 的挠度和转角。 外力分析: 解: 1)外力分析:
解: 1)外力分析: )外力分析: M0 M0 RA = (↓), R B = (↑ ) L L 2)内力分析:(M方程 方程) )内力分析: 方程
3)挠曲线方程和转角方程: )挠曲线方程和转角方程:
M0 M(x) = − x (0 ≤ x ≤ L ) L
M0 2 d2V M0 EIzθ= − x +C x EIz 2 = − 2L dx L M0 3 EI z V = − x + Cx + D 6L
思考题: 思考题:求VB
试用叠加法求C截面的挠度和转角 例5、试用叠加法求C截面的挠度和转角 (I2=2I1)。
EI 2 A a C a EI1
A
C a
m0= Pa A a P
解:(1)BC段变形,AC段刚化 :(1)BC段变形,AC段刚化 段变形 ( VC(1) = 0 θ C1) = 0 B (2)AC段变形 BC段刚化 段变形, (2)AC段变形,BC段刚化 P 3 2 Pa Pa VCP = ( ↑) θ CP = ( ) 3EI 2 2EI 2 B Pa 2 ( ) Pa 3 θ Cm0 = VCm0 = ( ↑) EI 2 2 EI 2 P 5Pa 3 VC( 2 ) = VCP + VCm0 = ( ↑) 6 EI 2 3Pa 2 B ( θ C2 ) = θ CP + θ Cm0 = ( ) 2 EI 2 (3)总变形 (3)总变形
工程力学c材料力学部分第六章 弯曲变形
A l/2
C l
B
解:此梁上的荷载可视为 正对称和反对称荷载的叠加, 正对称和反对称荷载的叠加, 如图所示。 如图所示。 正对称荷载作用下:
q/2
5(q / 2)l 4 5ql 4 wC1 = − =− 384 EI 768 EI
B
(q / 2)l 3 ql 3 θ A1 = −θ B1 = =− 24 EI 48EI
w P A a D
a
A C a H a B
EI
Pl 3 wB = − 3 EI
P
B
l
Pl 2 θB = − 2 EI
P A a 2a 2a C B
P/2
P/2 B
P/2
=
A
+
P/2
力分解为关于中截面的对称和反对称力( )之和的形式。 解:将P力分解为关于中截面的对称和反对称力(P/2)之和的形式。 力分解为关于中截面的对称和反对称力 显然,在反对称力( / )作用下, 显然,在反对称力(P/2)作用下,wc=0 对称力作用的简支梁, 对称力作用的简支梁,可以等效为悬臂梁受到两个力的作用 的问题。 的问题。
wA=0 θA=0
B
②、变形连续条件 变形连续条件: 连续条件
P A C θC左 wC左= wC右, =θ C右 B
的悬臂梁, 例1:图示一弯曲刚度为 的悬臂梁,在自由端受一集中力 作 :图示一弯曲刚度为EI的悬臂梁 在自由端受一集中力F 试求梁的挠曲线方程,并求最大挠度及最大转角。 用,试求梁的挠曲线方程,并求最大挠度及最大转角。 解:① 建立坐标系并写出弯矩方程 ①
在小变形情况下, 曲线弯曲平缓, 在小变形情况下,挠曲线弯曲平缓,
∴ w′ ≪ 1
2
材料力学知识点
第六章弯曲变形知识要点1、弯曲变形的概念1)、挠曲线弯曲变形后梁的轴线变为挠曲线。
平面弯曲时,挠曲线为外力作用平面内的平面曲线。
2)、平面弯曲时的变形在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。
1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系3)、平面弯曲时的位移1》挠度2》转角挠度和转角的正负号由所选坐标系的正方向来确定。
沿y轴正方向的挠度为正。
转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。
4)、挠曲线近似微分方程5)、受弯曲构件的刚度条件,2、积分法求梁的挠度和转角由积分常数C、D由边界条件和连续性条件确定。
对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。
因此除了用边界条件外,还要用连续性条件确定所有的积分常数。
边界条件:支座对梁的位移(挠度和转角)的约束条件。
连续条件:挠曲线的光滑连续条件。
悬臂梁边界条件:固定端挠度为0,转角为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等简支梁边界条件:固定绞支座或滑动绞支座处挠度为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等连接铰链处,左右两端挠度相等,转角不等3、叠加原理求梁的挠度和转角1)、叠加原理各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。
2)、叠加原理的限制叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求:1》弯矩M2》4、弯曲时的超静定问题——超静定梁1)、超静定梁约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。
材料力学 第6章 梁的弯曲变形
(c)
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
在本章所取的坐标系中,
上凸的曲线w″为正值,下凸的为负值。
如图6-5所示。 按弯矩正负号的规定,正弯矩对应着负的w″, 负弯矩对应着正的w″,故(c)式
w
M (x)
(1
w2 )3 2
EI z
在小变形情况下, w dw 是一个很小的量, dx
则 w'2为高阶微量,可略去不计,故
挠曲线的近似微分方程
M x
w EI z
EIw''= −M (x)
(6-1b)
图6-5
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
6.4 积分法计算梁的变形
对于等直梁,可以直接积分,计算梁的挠度和转角。 将式(6-1b)积分一次,得到
EIw′ = EIθ = −∫ M (x) dx + C
maxFl 2 2EI来自A xyF
θmax B
x
wmax
l
图6-7 例题 6-1 图
wm a x
Fl 3 3EI
θ max为正值,表明梁变形后,截面B顺时针转动;
wmax为正值,表明点B位移向下。
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
例题6-2 一简支梁受均布荷载q作用,如图6-8所示。试求梁的转角方程和 挠度方程, 并确定最大挠度和A、B截面的转角。设梁的弯曲刚度为EI。
A x
y
F
θmax B
x
wmax
l
进行两次积分,得到
EIw EI Flx Flx2 C
(a)
2
EIw Flx2 Fx3 Cx D
精品课件-材料力学(张功学)-第6章
图6-4
6.1 引 言
解(1)求约束力。建立坐标系如图所示,求得约束力为
方向均竖直向上。
FAy
b l
F
,
FBy
a l
F
(2)写出弯矩方程。由于集中力加在两支座之间,弯矩方
程在AC、BC两段各不相同。
AC段:
M
1(
x)
b l
Fx
w(a )w(a ), (a ) (a )
(f)
利用式(e)和式(f),即可解得
D1 D2 0,
C1
C2
Fb(b 6l
2
l
2
)
于是,求得梁的转角方程和挠曲线方程分别为
6.1 引 言
AC段:
EI (x) Fb(3x2 b2 l 2 )
6l
EIw(x) Fbx[x3 (b2 l 2 )x] 6l
(a) (b) (c)
6.1 引 言
确定积分常数C和D的边界条件为:在固定端截面处,挠度 和转角均为零。即
w00, 00
将(b)、(c)两式代入,得
D0, C0
将所得积分常数代入(b)、(c)两式,得到梁的转角方程和挠
度方程分别为
(x)dw
1
Wx 2 (
Wlx )
dx EI 2
w(x) 1 (Wx 3 Wlx 2 ) EI 6 2
6.1 引 言 显然在自由端处转角与挠度最大,即当x=l时,得
m
ax
B
1 EI
(Wl 2
2
Wl
2
Wl 2 )
2EI
1 Wl 3 Wl 3 Wl 3
材料力学第六章
在横力弯曲时,梁横截面上除弯矩 M 外还有剪力 FS ,但工程上常用的 梁,当梁的长度大于横截面高度 10 倍时, FS 对梁的位移影响很小,可略去
不计,所以上式仍可应用。但此时, M 和 都是 x 的函数。即
M (x)
(x) EI
从高等数学可知,平面曲线的曲率可写成
d2 y
(x)
1
第六节 简单超静定梁的解法
对梁某方向的位移起限制作用的物体称为约束。在超静定梁中,超过了维持 梁的静力平衡所必需的约束,称为多余约束,相应的约束力(包括约束力偶), 称为多余约束力。
解超静定梁的方法较多,本书介绍变形比较法,步骤如下。 (1)判断超静定次数。梁上未知约束力的个数与独立的平衡方程数之差, 称为超静定次数。对于给定的梁,解题时首先应判断它是静定的,还是超静定的。 如果是超静定的,要确定超静定的次数。 (2)解除超静定梁的多余约束,并代之以多余约束力,所得系统称为静定 基。在多余约束处寻找变形协调条件。 (3)写出变形协调条件和物理条件,得到补充方程。 (4)将补充方程和平衡方程联立,即可求解。
,
FAy
ql
坐标为 x 的截面上的弯矩为
M (x) qlx 1 ql2 1 qx2 22
列挠曲线近似微分方程并积分,有
EI
d2 y dx2
qlx
1 2
ql 2
1 2
qx2
EI
dy dx
EI
ql
x2 2
1 ql2x 2
q 6
x3
C1
(a)
EIy
ql
x3 6
1 4
ql2 x2
1 qx4 24
C1x
该处的挠度 y 0 ,截面转角 0 ;铰支座处的边界条件,挠度 y 0 。
材料力学课件第六章1 弯曲变形
2 F 1 3 (0) Fl (0) 2 C (0) D 0 6 2 D0
解得: C 0, 6、确定挠曲线方程和转角方程: F EIw ' x 2 Flx 2 F Fl 2 EIw x 3 x 6 2 7、求截面位移
由方程所确定的曲率:
1 3 2 2 ( x) dw 1 dx
d w dx2 dw 1 dx
2 2
d 2w dx2
y
w x
x
3
F
因此有:
2
2
M ( x) EI
dw d 2 w M ( x) 又 1 得: 2 dx EI dx
二、画AB、DE受力图
三、变形协调条件 三、建立补充方程
v AB中 vDE中
( P RC ) L RC L2 48EI1 48EI 2
3 1 3
D
E
3 I 2 L1 P 解得:RC 3 3 I 2 L1 I1 L2 I1 L3 P 2 AB梁负担:P RC 3 3 I 2 L1 I1 L2
ห้องสมุดไป่ตู้
水平位移 2、弯曲变形的度量: (1)截面位移及特点: •横截面形心的竖向线位移 •横截面绕中性轴的角位移。 •横截面形心的水平线位移, 较竖向线位移小许多。
(2)度量变形的基本量: •挠度w: 横截面形心的竖向线位移,向上为正。 •截面转角θ :横截面绕中性轴的角位移,逆时针为正。
3、弯曲变形简化计算 (1)简化: 认为截面只有竖向位移。 y (2)简化后问题的特点: •挠曲线方程为挠度方程:
《材料力学》第六章-弯曲变形
当载荷P处于梁中点,即b=l/2时,xl=0.5l;
当载荷P移至支座B,即b→0时
x1
l2 0.577l 3
即使在这种极端的情况下,最大挠度的位置距中 点只有0.077l,也就是说点的位置影响甚小,最大挠 度总是发生在梁跨中点的附近。可以认为在工程中 当有一集中力作用在简支梁上时,梁的最大挠度发 生在梁的中点,其结果误差不超过3%。
§6.1 工程中的弯曲变形问题
工程中有些受弯构件在载荷作用下虽能满足强度 要求,但由于弯曲变形过大,刚度不足,仍不能保证 构件的正常工作,成为弯曲变形问题。
出现“爬坡”现象
使齿轮啮合力沿齿宽分布极 不均匀,加速齿轮的磨损。
一、挠度和转角
构件的弯曲变形通常用截面的挠度和转角度量。
梁在横向力作用下发生弯曲变形, y
§6.3 用积分法求弯曲变形
一、积分法求弯曲变形 w Mx
EI
积分
挠曲线近似微分方程
w E 1IM xd x C
积分
转角方程
w E 1IM xd x CD x 挠曲线方程
式中C和D是待定的积分常数,可根据梁的具体条件来确定。
积分法计算梁的变形的步骤: 1.建立梁截面的弯矩方程式M(x); 2.代人挠曲线近似微分方程式,并积分; 3.确定积分常数,得到具体的挠度和转角方程式; 4.求梁任一截面的转角和挠度。
令
w1 10 F 2lx b12-F 6lb l2-b2 0
当a>b时,x1<a,wmax发生在AC段内。
得: x1
l2 -b2 3
wm若求最大转角,求θA、θB,比较大小,取其大者。
当
x1
l2 -b2 3
wmax-
Fb 9
材料力学 第6章 弯曲变形
6-1 弯曲变形的实例
弯曲变形
摇臂钻床的摇臂或车床的主轴变形过大,就会 影响零件的加工精度,甚至会出现废品。
第6章
6-1 弯曲变形的实例
弯曲变形
桥式起重机的横梁变形过大,则会使小车行走困难, 出现爬坡现象。
第6章
6-1 弯曲变形的实例
弯曲变形
但在另外一些情况下,有时却要求构件具有较大的 弹性变形,以满足特定的工作需要。 例如,车辆上的板弹簧,要求有足够大的变形,以 缓解车辆受到的冲击和振动作用。
F l [ ( x a)3 x 3 (l 2 b 2 ) x] 6 EIl b
F l 1 [ ( x a) 2 x 2 (l 2 b 2 )] 2 EIl b 3
第6章
6-5 叠加法求梁的位移 叠加法求梁的挠曲线
弯曲变形
梁在若干个载荷共同作用时的挠度或转角, 等于在各个载荷单独作用时的挠度或转角的代 数和。这就是计算弯曲变形的叠加原理。
3. 增大梁的弯曲刚度:主要增大I值,在截面面积不变的情况下,采用
适当形状,尽量使面积分布在距中性轴较远的地方。例如:工字形、箱 形等。
q
A B l B l A
q
A
q
B
第6章
6-7 提高弯曲刚度的一些措施
弯曲变形
第6章
6-7 提高弯曲刚度的一些措施
弯曲变形
1) 支承条件:
y
w 0; w 0
弯曲变形
y
y
w0
F A
w0
2) 连续条件:挠曲线是光滑连续唯一的
C
B
w|
x C
w|
x C
, |
x C
|
材料力学第六章
解 1)将梁上的载荷分解
wC wC1 wC2 wC3
B B1 B2 B3
2)查表得3种情形下C截面的 挠度和B截面的转角。
wC1
5ql 4 384EI
wC 2
ql 4 48EI
ql 4 wC3 16EI
B1
ql 3 24EI
B1
ql 3 16EI
B3
ql 3 3EI
wC1
wC2 wC3
3)进行变形比较,列出变形协调
条件
wB 0
4)叠加法
wB (wB )F (wB )FBy 0
MA A
MFAAy A
FAy A
A
MA A FA y
MA A AA
MA A A
F
B
C
2a (a) B
aF C
2a
Ba C
((ba))
B B (b)
F C
C
(c)
FBy F
B
FF C
BB
(c)
FBy
CC
B12 a
Fa 2l 3EI
w1 wB11 wB12
w2
B2a
Fl 2a 16 EI
w w1 w2
用叠加法求跨度中点挠度
解: wc wc1 wc2
由于 wc wc2
=
故
wc
1 2
wc1
1 5q0l 4 5q0l 4 2 384EI 768EI
-
解: wc wc1 wc2
当 d w 0 时,w为极值
dx
EI1
Fb 2l
x2 1
Fb 6l
(l 2
b2 )
E I 2
Fb 2l
x22
材料力学 第六章 弯曲变形
M E F A 0 .5l M 0 解得: Q E 2 P , M E 0
FA Q 0
M A F A M 0
FA
(3)计算截面A+ 和D-的剪力和弯矩
Y 0 M 0
A
同理:
FA 0 P D D
M D Q D
Q D P
Q ( x ) FA qx ql qx 0 x l 2 2 1 M ( x ) FA x qx x qlx q x 2 2 2 2 0 xl
l /2 M
ql 2
x
M ( x) |x0 0
M ( x ) |x l 0
l /2
ql 2 8
求弯矩的极值点:
O
B 1
1 — 1截面:
Q1 FB
1
M1
m2 M 1 0
Q1
FB
M 1 FB ( l x1 ) m1 m 2
4. 剪力、弯矩的正负与横向外力偶的关系
Q2 FA P
a
M 2 F A x 2 P ( x 2 a ) m1 m 2
Q1 FB
一端为固定铰支座一端为活动铰支座。 2、外伸梁 一端或两端向外伸出的简支梁。
3、悬臂梁 一端固定支座一端自由。
§6-3 剪力与弯矩
一、剪力和弯矩
步骤: (1)先求约束反力FA 、FB ; y a P1
x
m
P2
P3
x
A y
m
B
(2)由截面法求横截面上的内力; FA (如:求 m — m 截面的内力)
说明:
Q向下假设为正; M逆时针假设为正。 Q向上假设为正; M顺时针假设为正。
材料力学第四版课件 第六章 弯曲变形
ql
3
()
2
24 EI
Fl ()
(q
A
16 EI
3
q
A
ql
Fl
2
( )
24 EI
16 EI
例6.5:图示外伸梁,其抗弯刚度为EI,求B截 面的转角和C截面的挠度.
2
2
l
EIw 2 M 2 F
x F ( x a)
2
转角方程
b x F ( x a) C2 l 2 2
3 3
b x F ( x a) C 2x D 2 挠度方程 EIw 2 F l 6 6
F A a l C b B
(3)确定积分常数 边界条件: 在 x = 0 处, w1 0 在 x = l 处, w2 0 C点的连续条件: 在 x = a 处, w1 w2 , w1 w2 再将边界条件和连续条件分别代入 AC与CB的转角方程与闹曲轴方程中。
F B
当 x 0 时 : q 0, w 0
q
w 1 EI
1 EI
( FLx
1 2
2
1 2
Fx
2
C)
3
(
FLx
1 6
Fx
Cx D )
4.根据边界条件确定积分常数
当 x 0 时 : q 0, w 0
解得
C 0; D 0
5.得到转角方程和挠度方程,计算B截面的 挠度和转角
B
(4) 根据边界条件求积分常数 当x=0 和 x=l 时, w = 0
EIq EIw
EIw ql 12 x
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ql
x
2
l
ql 2
积分得
EEw Iwql x2qx3C
Ew Iqlx2qx3q3l
46
C0,D0 4 6 24
E EIIwwqlx3qx4CxD 12 24
EIwqlx3qx4q3lx 12 24 24
③、 确定积分常数 x0, wA 0 xl , wB 0
D0
m ax2 q 4lE A 3Im B axw 2m q 4alE x3 I35 8q 4lE 4w I
12
6-3
桥式起重机的大梁和建筑中的一些梁都可以简化为简支梁,
梁的自重就是均布载荷。讨论在均布载荷作用下,简支梁的弯曲变形。
解: ② ① 、 、 E挠M 弯I曲wx矩线方近qq程2ll似xx微M分q2q(方xxx)2程2 q2l
x
q 2
x2
w
A
q
ቤተ መጻሕፍቲ ባይዱ
EI
Bx
22
②、 EEw Iwql xqx2 22
§ 6.3 用积分法求弯曲变形
9
一、两次积分法
d2w dx2
M( x) EI
边 界 条 件 积 分 常 数 的 计连算续 条 件
d dw xM E (xI)dxC
光 滑 条 件
wM E (x)Idx dC x xD
二、刚度条件
刚 度 校 核
w
w
刚 度 条 件 的 应载用荷 设 计
max
§ 6.1 工程中的弯曲变形问题
4
一、弯曲实例: 二、受力特征:
1、横向力作用。 2、力偶作用,力偶的矢量方向垂直于 轴向方向。
三、变形特征:
梁轴由直线变成曲线。 梁:以弯曲变形为主要变形的杆件。
5
第六章 梁的弯曲变形
—— 变形分析和刚度设计
西
南
§6-1 工程中的弯曲变形问题
科
技
大
§6-2 挠曲线的近似微分方程
则转角、挠度方程分别为
代入数据, F = 200 N,l = 50 mm。E = 210 GPa,
EIwFx2 Flx 2
EIw Fx3Flx2 62
d = 10 mm, I d4 491mm4
64
得 B0.002r4a2d
BwB
Fl 2 2 EI
,
wB
Fl 3 3 EI
wB0.080 m5m
§ 6.3 用积分法求弯曲变形
d2w dx2
M(x) EI
8
第六章 梁的弯曲变形
—— 变形分析和刚度设计
西
南
§6-1 工程中的弯曲变形问题
科
技
大
§6-2 挠曲线的近似微分方程
学
土
§6-3 用积分法求梁的变形
木
工
程
§6-4 用叠加法求梁的变形
与
建
筑
§6-5 简单超静定梁
学
院
§6-6 梁的刚度条件及提高梁刚度的措施
富
裕
Y.FU, Dept. of Civil Engineering and Architecture, Southwest University of Science and Technology
镗刀杆简化为悬臂梁。如图建立 坐标系,任意横截面上的弯矩为
M(x) F(lx)
挠曲线近似微分方程为
Ew IM(x) F (lx)F xFl 积分得 Ew I Fx2 FlxC
2 EIw Fx3Fxl2CxD
62
w
F
A x
B B w B x
l
§ 6.3 用积分法求弯曲变形
11
6-2 径向切削力 F = 200 N,镗刀杆直径
材料力学第6章弯曲变
2
西
南
科
技
第六章
大 学
土
木
梁的弯曲变形
工 程
与
建
—— 变形分析和刚度设计
筑 学
院
富 裕
Y.FU, Dept. of Civil Engineering and Architecture, Southwest University of Science and Technology
m C ax C0,2D q 4 lE q3 2Il4m 0 3 a x2w q 4lE m 3aIx3 w5 8q x4w lE l4 /m 2Iax 35 8q 4lE 4I
w
d = 10 mm,外伸长度 l = 50 mm。材料弹性模
F
量 E = 210 GPa。求截面 B 的转角和挠度。
A
B B
积分得
Ew IFx2FlxC 2
EIw Fx3Fxl2C xD 62
x l
w B x
确定积分常数 x x 0 0,: w w A0 , Aw 0 , 0 wA 0 C C C 0 0,0 ,D ,D D 0 0 0
6
w
x
§ 6.2 挠曲线近似微分方程
7
纯弯曲时:
1 M
w
EI
忽略剪力对变形的影响 :
1 M(x)
(x) EI
M 0 w0
三、挠曲线近似微分方程:
(1x)(1w w 2)32
M 0 w0
x
w 表示转角,在计算中单位为弧度,故 2 与 1 相比很小。
1 w
(x)
d2w dx2
M(x) EI
3
第六章 梁的弯曲变形
—— 变形分析和刚度设计
西
南
§6-1 工程中的弯曲变形问题
科
技
大
§6-2 挠曲线的近似微分方程
学
土
§6-3 用积分法求梁的变形
木
工
程
§6-4 用叠加法求梁的变形
与
建
筑
§6-5 简单超静定梁
学
院
§6-6 梁的刚度条件及提高梁刚度的措施
富
裕
Y.FU, Dept. of Civil Engineering and Architecture, Southwest University of Science and Technology
截 面 设 计
max
§ 6.3 用积分法求弯曲变形
10
6-2 镗刀在工件上镗孔,为保证镗孔精度,镗刀杆的弯曲变形不能过大。
设径向切削力 F = 200 N,镗刀杆直径 d = 10 mm,外伸长度 l = 50 mm。材料 弹性模量 E = 210 GPa。求镗刀杆上安装镗刀头的截面 B 的转角和挠度。
§ 6.2 挠曲线近似微分方程
一、基本概念:
w
挠曲线: 变形后梁的轴线
挠度:
横 截 面 形梁 心轴 在方 向 的 位 移
转角:
横截面绕中性轴转过的 角度
逆时针为正!
二、挠度与转角:
设挠曲线方程为: ww(x)
转角、挠度关系为: tan d w
l
dx
由于小变形,截面形心在 x 方向位移忽略不计!
学
土
§6-3 用积分法求梁的变形
木
工
程
§6-4 用叠加法求梁的变形
与
建
筑
§6-5 简单超静定梁
学
院
§6-6 梁的刚度条件及提高梁刚度的措施
富
裕
Y.FU, Dept. of Civil Engineering and Architecture, Southwest University of Science and Technology