65 一次函数图象的应用(第二课时) 课堂教学设计PPT课件
合集下载
一次函数第二课时ppt课件

比例函数的图象是直线,那么一次函数的图
象也会是一条直线吗? 它们图象之间有什么
关系?一次函数的图像又有什么性质呢?
y
y
0
x
0
x
新知探究
试在同一坐标系中画出函数y=-6x与y=-6x+5的图象.
解: 函数y=-6x与y=-6x+5中,自变量x的取值范围 是任意实数,列表表示几对对应值(填空):
x
-2
1
(1,1)
(1,0.5)01源自X你画出的图象与教材上
-1
的相同吗?
操作探究
画出函数y=x+1,y=-x+1, y=2x+1,y=-2x+1的图象.
y=-x+1
y=x+1
y
y=2x+1
2
··
x
o··1
y=-2x+l
观察四个函数的图像,分析在一次函数解析式 y=kx+b(k, b是常数,k≠0)中,k、b的正负对函数 图象有什么影响?
函数y=-6x的图象经过原点,
01
x
函数y=-6x+5的图象与y轴交于 点_(0_,_5_)_,即它可以看作由直
线y=-6x向_上___平移__5___个单
位长度而得到。
比较两个函数解析式。试解释这是为什么?
归纳猜想
根据上面的操作,考虑一次函数 y=kx+b(k≠0)的图象是什么形状,
它与直线y=kx有什么关系?
观察归纳
观察前面一次函数的图象,可 以发现规律:当k>0时,直线y=kx+b 从左向右上升; k<0时直线y=kx+b 从左向右下降.由此得出一次函数 y=kx+b (k,b是常数,k≠ 0)具有 如下性质:
《一次函数的图象》第二课时教学课件2 公开课课件

作业 习题6.4
蔡琰(作者有待考证)的《胡笳十八拍》 郭璞的《游仙诗》 鲍照的《拟行路难》 庾信的《拟咏怀》 都特别喜欢。不过都是组诗,太长了,就不贴了orz。
最后还想推一下萧绎的《幽逼诗》四首:
【南史曰:元帝避建邺则都江陵,外迫强敌,内失人和。魏师至,方征兵四方,未至而城见克。在幽逼求酒,饮之,制诗四绝。后为梁王詧所害。】 南风且绝唱,西陵最可悲。今日还蒿里,终非封禅时。 人世逢百六,天道异贞恒。何言异蝼蚁,一旦损鲲鹏。 松风侵晓哀,霜雰当夜来。寂寥千载后,谁畏轩辕台。 夜长无岁月,安知秋与春。原陵五树杏,空得动耕人。
24 6
x
-2
-4
畅所欲言:
观察以下两组一次函数解析式你想到了什么?
(1) y 1 x y 1 x 1
3
3
(2) y 4x y 4x 1
y 1 x1 3
y 4x 1
练一练:
1.下列一次函数中,y的值随x的增大 而减小的有_(_2_) __(_4_) _。
(1) y=10x-9
y=-x+6 y
y=-x
6
y=2x+6
y=5x
4
2
观察与思考二: -6 -4 -2 o
24 6
x
-2
-4
说说四条直线与y轴的交点坐标分别是?由 此你发现直线y=kx+b与y轴的交点坐标与谁的 值有关?具体说说有怎样的关系?
y=-x+6 y
y=-x
6
4
2
y=2x+6
y=5x
观察与思考三:
-6 -4 -2 o
y
y 5 x5
4
6
4
2
-6 -4 -2 o -2
蔡琰(作者有待考证)的《胡笳十八拍》 郭璞的《游仙诗》 鲍照的《拟行路难》 庾信的《拟咏怀》 都特别喜欢。不过都是组诗,太长了,就不贴了orz。
最后还想推一下萧绎的《幽逼诗》四首:
【南史曰:元帝避建邺则都江陵,外迫强敌,内失人和。魏师至,方征兵四方,未至而城见克。在幽逼求酒,饮之,制诗四绝。后为梁王詧所害。】 南风且绝唱,西陵最可悲。今日还蒿里,终非封禅时。 人世逢百六,天道异贞恒。何言异蝼蚁,一旦损鲲鹏。 松风侵晓哀,霜雰当夜来。寂寥千载后,谁畏轩辕台。 夜长无岁月,安知秋与春。原陵五树杏,空得动耕人。
24 6
x
-2
-4
畅所欲言:
观察以下两组一次函数解析式你想到了什么?
(1) y 1 x y 1 x 1
3
3
(2) y 4x y 4x 1
y 1 x1 3
y 4x 1
练一练:
1.下列一次函数中,y的值随x的增大 而减小的有_(_2_) __(_4_) _。
(1) y=10x-9
y=-x+6 y
y=-x
6
y=2x+6
y=5x
4
2
观察与思考二: -6 -4 -2 o
24 6
x
-2
-4
说说四条直线与y轴的交点坐标分别是?由 此你发现直线y=kx+b与y轴的交点坐标与谁的 值有关?具体说说有怎样的关系?
y=-x+6 y
y=-x
6
4
2
y=2x+6
y=5x
观察与思考三:
-6 -4 -2 o
y
y 5 x5
4
6
4
2
-6 -4 -2 o -2
《一次函数图像的应用》第二课时教学课件

s /米 你还能用其他方法解决上述问题吗? 120 100 80 60
l2
l1
40
20
-4
-3
-2
-1 O
1
2
3
4
5
6
7
8
9
10 11 12
t /分
课堂小结
你有哪些收获?有什么困惑? 当一个坐标系中出现多个函数 图象时,你怎样处理?
作业布置 习题6.7 1、2
12 14
t /分
(5)当 A 逃到离海岸12海里的公海时,B 将 无法对其进行检查。照此速度, B 能否在 A 逃入公海前将其拦截?
从图中可以看出,l1 与 l2 交点P的纵坐标小于12,
10 8 6 4 2 O 2 4 6 8 10 12 14
s /海里
l2 A
P
l1 B
这说明在 A 逃 入公海前,我 边防快艇 B能 够追上 A。
当销售量为2吨时,销售收入= 2000 元,
y/元
6000
L1 销售收入
5000
4000
3000
2000 1000
x/吨 O
1 2 3 4 5 6
l2 反映了该公司产品的销售成本与销售量的关系, 根据图意填空:
当销售成本=4500元时,销售量= 5 吨;
y/元
6000 5000
l2 销售成本
4000
s /海里
8 6 4 2 O 2 4 6 8 10 12 1415 t
l2 A
l1 B
这表明,15 分钟时 B尚 未追上 A。
/分
(4)如果一直追下去,那么 B 能否追A?
如图延伸l1 、l2 相交于点P。
s /海里
l2
l1
40
20
-4
-3
-2
-1 O
1
2
3
4
5
6
7
8
9
10 11 12
t /分
课堂小结
你有哪些收获?有什么困惑? 当一个坐标系中出现多个函数 图象时,你怎样处理?
作业布置 习题6.7 1、2
12 14
t /分
(5)当 A 逃到离海岸12海里的公海时,B 将 无法对其进行检查。照此速度, B 能否在 A 逃入公海前将其拦截?
从图中可以看出,l1 与 l2 交点P的纵坐标小于12,
10 8 6 4 2 O 2 4 6 8 10 12 14
s /海里
l2 A
P
l1 B
这说明在 A 逃 入公海前,我 边防快艇 B能 够追上 A。
当销售量为2吨时,销售收入= 2000 元,
y/元
6000
L1 销售收入
5000
4000
3000
2000 1000
x/吨 O
1 2 3 4 5 6
l2 反映了该公司产品的销售成本与销售量的关系, 根据图意填空:
当销售成本=4500元时,销售量= 5 吨;
y/元
6000 5000
l2 销售成本
4000
s /海里
8 6 4 2 O 2 4 6 8 10 12 1415 t
l2 A
l1 B
这表明,15 分钟时 B尚 未追上 A。
/分
(4)如果一直追下去,那么 B 能否追A?
如图延伸l1 、l2 相交于点P。
s /海里
一次函数图象的应用课件

一次函数图象的应 用ppt课件
目 录
• 一次函数图象的概述 • 一次函数图象在实际生活中的应用 • 一次函数图象与其他数学知识的结合应用 • 一次函数图象的应用实例分析 • 总结与展望
01
一次函数图象的概述
一次函数图象的定义
01
02
03
一次函数图象
一次函数y=kx+b(k≠0 )的图象是一条直线。
教学方法单一
部分教师在教授一次函数图象时 ,过于注重理论教学,缺乏实际 应用的结合,导致学生难以理解
其实际意义和应用价值。
技术应用不足
现代技术如几何画板、数学软件等 在课堂上的应用不足,限制了学生 对于函数图象动态变化的理解。
学生实践机会少
由于应试教育的影响,学生往往缺 乏实际操作和实践的机会,导致对 一次函数图象的理解停留在理论层 面。
对未来应用的展望与期待
加强技术与教学的结合
期待未来能更多地利用现代技术,使一次函数图象的教学更加生 动、形象,提高学生的学习兴趣和参与度。
注重实际应用与问题解决
希望教师在教学中能更多地引入实际问题,让学生在实际操作中理 解和掌握一次函数图象的应用。
培养学生的创新思维
期待未来的一次函数图象教学能够更加注重培养学生的创新思维和 解决问题的能力,而不仅仅是知识的灌输。
们的位置。
ቤተ መጻሕፍቲ ባይዱ
连线
用直线将这些点连接起 来,形成一次函数的图
象。
验证
根据题目要求或实际应 用需要,验证所绘制的 图象是否符合实际情况
。
02
一次函数图象在实际生活 中的应用
一次函数图象在物理中的应用
总结词
物理现象的数学描述
详细描述
目 录
• 一次函数图象的概述 • 一次函数图象在实际生活中的应用 • 一次函数图象与其他数学知识的结合应用 • 一次函数图象的应用实例分析 • 总结与展望
01
一次函数图象的概述
一次函数图象的定义
01
02
03
一次函数图象
一次函数y=kx+b(k≠0 )的图象是一条直线。
教学方法单一
部分教师在教授一次函数图象时 ,过于注重理论教学,缺乏实际 应用的结合,导致学生难以理解
其实际意义和应用价值。
技术应用不足
现代技术如几何画板、数学软件等 在课堂上的应用不足,限制了学生 对于函数图象动态变化的理解。
学生实践机会少
由于应试教育的影响,学生往往缺 乏实际操作和实践的机会,导致对 一次函数图象的理解停留在理论层 面。
对未来应用的展望与期待
加强技术与教学的结合
期待未来能更多地利用现代技术,使一次函数图象的教学更加生 动、形象,提高学生的学习兴趣和参与度。
注重实际应用与问题解决
希望教师在教学中能更多地引入实际问题,让学生在实际操作中理 解和掌握一次函数图象的应用。
培养学生的创新思维
期待未来的一次函数图象教学能够更加注重培养学生的创新思维和 解决问题的能力,而不仅仅是知识的灌输。
们的位置。
ቤተ መጻሕፍቲ ባይዱ
连线
用直线将这些点连接起 来,形成一次函数的图
象。
验证
根据题目要求或实际应 用需要,验证所绘制的 图象是否符合实际情况
。
02
一次函数图象在实际生活 中的应用
一次函数图象在物理中的应用
总结词
物理现象的数学描述
详细描述
一次函数 的图像和性质-第二课时-课件

y减少 x增大
性质:(2)当k 0时,y随x的
增大而_减__小__,这时函数的 图象从左到右_下__降__.
板书设计:
19.2.2一次函数(2) 一次函数的图象和性质 1.一次函数的图象:一条直线 2.简单画法:两点法 3.性质:k>0时,y随x增大而增大.
k<0时,y随x增大而减少.
返回
教学评价 在教学过程中力求不断调动学
生的认知需求和探索心理,通过生生 “对话”,生师“对话”,“做数学, 议数学”,让学生参与知识的发生、 发现和运用的全过程,在宽松的学习 环境中展示自己,建立自信,体验发 现的乐趣,感受数学思想.
返回
(1)什么叫正比例函数、一次函数?它们之间 有什么关系?
(2)正比例函数图象形状是什么样的?
(3)正比例函数y kx( k 是常数, k 0)中, k
的正负对函数的图象有什么影响?
2.引入新课:
一次函数 y kx b( k , b 是常数,k 0)中, k b 的值对函数的图象有什么影响? (1) k 0 (2) k 0
返回
教法分析
1. 数形结合----列举归纳法 2.由特殊到一般的方法 3.类比法 4.使用多媒体课件应用于课堂,增强知识
的直观性,增大课堂容量.
返回
学法分析
画图观察 → 自主学习 → 合作交流 → 类比归纳
1.初步培养学生用事物相互联系和发展变化的观点来 分析问题,从而认识事物之间是相互联系和有规律地变 化着的.
x
0
1
y 2x -1
-1
1
y -0.5x 1
1
0.5
y y 2x 1
· · 1
(1,1)
·(1,0.5)
《一次函数的图象》第二课时教学课件

6.3 一次函数的图像(二)
本节课学习目标:
1、掌握正比例函数图象的特点; 2、理解一次函数的性质。
做一做
在同一直角坐标系内作出正比例
函数
y
1 2
x, y x, y 3 x, y 2 x,
的图象。
y
1 2
x, y x, y 3 x, y 2 x,
y
y 2 x
3 2 1 -3 -2 -1 0 -1 -2 -3 1 2 3
作函数图象的一般步骤: 列表、描点、连线
x
做一做
(1)作出一次函数y=-2x+5的图象。
(2)在所在的图象上取几个点,找出 它们的横坐标和纵坐标,并验证它们是否 都满足关系y=-2x+5.
列表:
x
y=-2x+5
…
…
y
6
0
2.5
…
…
5
0
想一想
(1)x从0开始逐渐增大时,y=2x+6和 y=5x哪一个的值先达到20?这说明了什么?
(2)直线y= -x与y= -x+6的位置关 系如何?
(3)直线y=2x+6与y= -x+6的位置关系如何?
挑战自己
1、y=x+1与坐标轴的交点坐标?
2、y=(-3 k+1) x+2 k-1的图象 经过原点,确定k的值? 3、写出m的3个值,使相应的一次 函数y=(2m-1)x+2的值都是随着x值 的增大而减小.
4、一次函数y=kx+b的图象如图 所示,则k < 0,b< 0
y
o
x
5、一次函数y=ax+b与y=ax+c(a>0)在同一 坐标系中的图象可能是( A )
本节课学习目标:
1、掌握正比例函数图象的特点; 2、理解一次函数的性质。
做一做
在同一直角坐标系内作出正比例
函数
y
1 2
x, y x, y 3 x, y 2 x,
的图象。
y
1 2
x, y x, y 3 x, y 2 x,
y
y 2 x
3 2 1 -3 -2 -1 0 -1 -2 -3 1 2 3
作函数图象的一般步骤: 列表、描点、连线
x
做一做
(1)作出一次函数y=-2x+5的图象。
(2)在所在的图象上取几个点,找出 它们的横坐标和纵坐标,并验证它们是否 都满足关系y=-2x+5.
列表:
x
y=-2x+5
…
…
y
6
0
2.5
…
…
5
0
想一想
(1)x从0开始逐渐增大时,y=2x+6和 y=5x哪一个的值先达到20?这说明了什么?
(2)直线y= -x与y= -x+6的位置关 系如何?
(3)直线y=2x+6与y= -x+6的位置关系如何?
挑战自己
1、y=x+1与坐标轴的交点坐标?
2、y=(-3 k+1) x+2 k-1的图象 经过原点,确定k的值? 3、写出m的3个值,使相应的一次 函数y=(2m-1)x+2的值都是随着x值 的增大而减小.
4、一次函数y=kx+b的图象如图 所示,则k < 0,b< 0
y
o
x
5、一次函数y=ax+b与y=ax+c(a>0)在同一 坐标系中的图象可能是( A )
《一次函数》PPT课件(第2课时)

k = -1,
{2k + b = 0,
由题意得
k = -1,
{b = 2.
解得
∴y=-x+2.
利用一次函数解决实际问题
例3“黄金1号”玉米种子的价格为5 元/kg,如果一次
购买2 kg 以上的种子,超过2 kg 部分的种子的价格打
8 折.
(1)填写下表:
购买量/kg 0.5 1 1.5 2 2.5 3 3.5 4 …
子按 4元/kg计价. 因此,写函数解析式与画函数图象时,
应对0 ≤ ≤ 2和x>2分段讨论.
解: (2)设购买量为x千克,付款金额为y元.
当0 ≤ ≤ 2时,y=5x;
当x>2时,y=4(x-2)+10=4x+2.
5 x(0≤x≤2),
y
4 x 2( x 2).
分段函数
注意:1.它是一个函数;
y
注意:此题有两种情况.
2
解:设一次函数的解析式为y=kx+b(k≠0).
∵一次函数y=kx+b的图象过点(0,2),
O
∴b=2.
则
2
∵一次函数的图象与x轴的交点是( ,0),
k
1
2
2
2
k
2, 解得k=1或-1.
∴此一次函数的解析式为y=x+2或y=-x+2.
x
y=kx+b(k≠0).
把x=3,y=5;x=-4,y=9 分别代入上式,得
3k+b=5,
-4k+b=-9,
k=2,
解方程组得
b=-1.
这个一次函数的解析式为 y=2x-1.
一次函数的应用课件(共31张PPT)

(0,b)
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6
…
所拼得四边形的周长L
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6
…
所拼得四边形的周长L
一次函数的图像与坐标轴的交点 ppt课件

第二课时 一次函数的图象 (与坐标轴交点)
已知函数y=2x-4
(1)画出它的图象;
(2)写出这条直线与x轴、y轴交点的坐标;
(3)求这条直线与两坐标轴所围成的三角 形的面积。
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
234
-3
-4
三 2 1 24 2
2
1.已知一次函数y=-x+2,求其与两 坐标轴所围成的三角形的面积?
2.已知一次函数y=x+3,求其与两坐
标轴所围成的三角形的面积?
3.已知一次函数y=4x-2,求其与两坐 标轴所围成的三角形的面积?
3.直线 y=4x与-x2轴的交点坐标是 ,与y 轴的交点坐标是______
4.直线 y=-与x-x轴1 的交点坐标是 , 与y轴的交点坐标是_____
思考题
已知一次函数y=2x+4,求其与两 坐标轴所围成的三角形的面积?
y=2x+4 y
分析: (0, 4 ) (-2 ,0)
B▪4
3
24
1
A 2 -4 -3 -▪2 -1 O -1 1 -2
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
例1:画出一次函数y=2x+4的图象
(1)直线y=2x+4与x轴的交点坐标是 ______,与y轴的交点坐标是_______.
1、直线y=-3x+4与x轴的交点坐标是 ______,与y轴的交点坐标是______.
2.直线y=-x+2与x轴的交点坐标是 , 与y轴的交点坐标是_____
已知函数y=2x-4
(1)画出它的图象;
(2)写出这条直线与x轴、y轴交点的坐标;
(3)求这条直线与两坐标轴所围成的三角 形的面积。
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
234
-3
-4
三 2 1 24 2
2
1.已知一次函数y=-x+2,求其与两 坐标轴所围成的三角形的面积?
2.已知一次函数y=x+3,求其与两坐
标轴所围成的三角形的面积?
3.已知一次函数y=4x-2,求其与两坐 标轴所围成的三角形的面积?
3.直线 y=4x与-x2轴的交点坐标是 ,与y 轴的交点坐标是______
4.直线 y=-与x-x轴1 的交点坐标是 , 与y轴的交点坐标是_____
思考题
已知一次函数y=2x+4,求其与两 坐标轴所围成的三角形的面积?
y=2x+4 y
分析: (0, 4 ) (-2 ,0)
B▪4
3
24
1
A 2 -4 -3 -▪2 -1 O -1 1 -2
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
例1:画出一次函数y=2x+4的图象
(1)直线y=2x+4与x轴的交点坐标是 ______,与y轴的交点坐标是_______.
1、直线y=-3x+4与x轴的交点坐标是 ______,与y轴的交点坐标是______.
2.直线y=-x+2与x轴的交点坐标是 , 与y轴的交点坐标是_____
一次函数的图像的应用课件

解二元不等式
将二元不等式转化为解一次不 等式的形式来求解。
一次函数的一些重要公式
1
两点式公式
根据两点坐标来表示一次函数的解析式。
2
点斜式公式
根据过某一点的斜率来表示一次函数的解析式。
3
截距式公式
根据截距和斜率的值来表示一次函数的解析式。
一次函数图像的变换
1 平移
通过改变截距或斜率来实现图像在平面上平移。
一次函数图像的性质
1 单调性
斜率大于0时,函数单调 递增;小于0时,函数单 调递减。
2 交点坐标
两个一次函数的交点坐标 可以通过联立两个函数得 到。
3 平移
可以通过变换截距和斜率 来使得函数图像水平或垂 直地平移。
一次函数在坐标系中的位置
1
左右方向
斜率大于0时向右倾斜;小于0时向左倾斜。
2
上下方向
预算线
表示消费者在一个给定预算内 所能购买的各种物品数量的函 数。
生产函数
将劳动和资本的投入变量与产 出的数量变量联系起来。
营销中的一次函数应用
1 价格弹性
价格弹性表示价格微小变化时需求量的变化。可以用一次函数的斜率来描述。
2 广告效果
广告效果与广告费用之间可能存在一次函数关系,以确定最佳广告费用。
一次函数的特征
斜率
斜率描述了直线的倾斜程度。公式为 Δy/Δx。
截距
截距表示了直线在y轴上的截距值。当x = 0时的纵坐 标。
如何画出一次函数图像
1
找到斜率
2
从截距处开始,沿着x轴移动单位长度,
再移动相应的单位斜率,得到直线上的
第二个点。
3
找到截距
先将x设为0,求出y轴截距。
北师大版八年级数学上册《一次函数的图象》一次函数PPT课件(第2课时)

4.画出函数y=x+1的图象,并根据图象回答: (1)x为何值时,y的值为0? (2)y为何值时,x的值为0? (3)x为何值时,y随x的增大而增大?
解:过点(0,1),(-1,0)画出函数图象如图所示.
(1)当x=-1时,y=0. (2)当y=1时,x=0. (3)x取任意实数,y都随x的增大而增大.
y
y=x+1
1
-1 O -1
1
x
课堂小结
一次函数的图象
一次函数y=kx+b的图象是_一__条__直__线___,只要确定两个点,就可画 出一次函数图象. 一次函数y=kx+b的图象也称为__直__线__y_=_k_x_+_b___.
课堂小结
一次函数的性质
一次函数y=kx+b的图象经过__点__(_0_,b_)_. 当_k_>__0__时,y的值随着x值的增大而增大; 当__k_<__0_时,y的值随着x值的增大而减小.
-2
-3
-4 -5
y=-2x+1
2.在同一坐标系中画出函数y=-2x的图象. 比较两个函数图象.
这两个函数的图象形状都是__一__条__直__线_, 并且倾斜程度_相__同___. 函数y=-2x的图象经过原点,函数y=-2x+1 的图象与y轴交于点__(__0_,__1_),它可以看作 由直线y=-2x向___上___平移___1___个单位长 度得到.
k的符号决定直线从左到右呈上升趋势还是下降趋势,
k>0时,呈上升趋势;k<0时,呈下降趋势. b的符号决定直线与y轴交点的位置, b>0时,直线与y轴的交点在x轴的上方; b<0时,直线与y轴的交点在x轴的下方; b=0时,直线经过原点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
学习目标 预习 展示 互动 生成 达标 拓展
谈谈收获
预习
温故知新
6
1、想一想:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
6000
问1:这个图象与前一节课 L1 所看到的图象有何不同?
5000 4000 3000
L2
问2:你能说出这两 个函 数代表的函数 的自变量
y/元
6000 5000 4000 3000 2000
根据图象回答:
L1
.
5)L1对应的函数表达 L2 式为 y=1000x 。
L2对应的函数表达
式是 y=500x+2000。
.1000 0 1 2 3 4 5 6 x/吨
学习目标 预习 展示 互动 生成 达标 拓展
谈谈收获
展示
11
小明和爸爸沿相同的路线从家到体育馆
海B
A
公
能否追上 A? 岸
海
可以看出,当t=15时,l1上对应点在l2上对应点的下方。
s /海里
8 6 4 2
l2 A l1 B
这表明, 15分钟时 B 尚未追上 A。
O
2 4 6 8 10 12 1415 t /分
(4)如果一直追下去, 海 B
A
公
那么 B 能否追上 A? 岸
海
如图延伸l1 、l2 相交于点P。
L2 销售成本是 3000 元。
3000
2)当销售为6吨时,
销售收入是 6000 元。
2000
1000
.
销售成本是 5000 元。 该公司赢利 1000 元。
0 1 2 3 4 5 6 x/吨
2、试一试:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
正向公海方向行驶。边防局迅速派出快艇B 追赶(如下图),
海 B
A
公
岸
海
下图中 l1 ,l2 分别表示 B 离岸起两船相对于海岸 海
B
A
公
的距离s与追赶时间t之 岸
海
间的关系。
根据图象回答下列问题:
(1)哪条线表示 B 到海岸距离与追赶时间之间的关系?
s /海里
8 6 4 2
l2 A l1 B
解:观察图象,得 当t=0时,B距海 岸0海里,即S=0, 故 l1 表示 B 到海 岸的距离与追赶时 间之间的关系;
10 s /海里
8 6 4 2
l2 A P l1 B
这说明在 A 逃入公海前, 我边防快艇 B 能够追上 A。
O
2 4 6 8 10 12 14 t /分
你还能用其他方法解决上述问题吗?
8 s/海里
7 6 5 4 3 2 1
l2 y2=0.2x+5
l1 y1=0.5x
t/分
1 2 3 4 5 6 7 8 9 10
与因变量分别指什么?
2000
问3:你能说出x轴、y轴
1000
分别表示什么量?
0 1 2 3 4 5 6 x/吨
2、试一试:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
6000 5000
4000
根据图象回答:
L1 1)当销售为2吨时, 销售收入是 2000 元。
4 、15分钟时,小明走了 3 千米,爸爸走 了 2 千米 , 小明 在前 爸爸 在后?20 分钟呢?25分钟呢? 5、A点的坐标是(20,4),表示什么含义?
6、若从家到体育馆仅有3千米,爸爸能追上 小明吗? 不能
互动
学习目标 预习 展示 互动 生成 达标 拓展
谈谈收获
你来试一试
15
例:我边防局接到情报,近海处有一可疑船只A
1、 l1 表示小明行驶的路程与时间的关系
2 、 爸爸 先到,先到 5 分钟
3、 从家到体育馆 6 千米,二人的速度
分别 v小明=0.2千米/分 ,v爸爸=0.4千米/分。
s(千米)
6 5 4 3 2 1
l2 l1
A
20分钟时, 爸爸在离家 4千米的地 方追上小明。
0 5 10 15 20 25 30
(5)当A逃到离海岸12海里的公海时,B将无法对其进 行检查.照此速度,B能否在A逃入公海前将其拦截?
“龟兔赛跑”是同学们熟悉的寓言故事,如图所 示,路程s与时间t之间的关系,那么可以知道: (1)这是一次__5_0_0__米赛跑; (2)赛跑中,兔子共睡了__4_0__分钟; (3)龟在这次赛跑中的速度为___1_0__米/分钟.
O
2 4 6 8 10
t /分
(2)A、B 哪个速度快?
t从0增加到10时,
海B
岸
l2的纵坐标增加了2,
l1的纵坐标增加了5,
s /海里
8
l2 A
7
6 5
l1 B
4
2
O
2 4 6 8 10
t /分
A
公
海
即10分内, A 行驶了2海里, B 行驶了5海里, 所以 B 的速度快。
(3)15分钟内 B
去看篮球赛,小明骑自行车先走,爸爸骑电 动车去追,如图:l1和l2分别表示两人行驶的 路程s与时间t之间的关系,根据图像回答。
s(千米)
6 5 4 3 2 1
l2 l1
A
0 5 10 15 20 25 30
t (分)
s(千米)
6 5 4 3 2 1
l2 l1
A
0 5 10 15 20 25 30
t (分)
你还能用其他方法解决上述问题吗?
8 s/海里
A l2 (1)哪条线表示B到海岸的
7
距离与追赶时间的关系?
6
5
B l1 (2)A,B哪个速度快?
4
3
(3)15分钟内B能否追
2
上A?
1
t/分 y1=0.5x
1 2 3 4 5 6 7 8 9 10
y2=0.2x+5
(4)如果一直追下去,那么B能否追上A
1
大庆65中学创新课堂教学模式
六环节课堂教学模式
2
大庆65中学创新课堂教学模式
6.5 一次函数的应用 (第二课时)
среда, 16 сентября 2020 г. 3
学习目标
学习目标 预习
1、进一步训练学生的
展示 互动
识图能力 .
生成 达标
2、能利用函数图象解
拓展
谈谈收获 决简单的实际问题.
y/元
6000 5000 4000 3000 2000
1000
0
12
根据图象回答:
L1 3)当销售量为 4 时,
.
销售收入等于销售成本。 L2 4)当销售量大于4吨时,
该公司赢利。
(即收入大于成本)。
当销售量 小于4吨 时,
该公司亏损
3 4 5 6 x/吨(即收入小于成本)。
2、试一试:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
s /海里
8 6 4 2
l2 A P l1 B
O
2 4 6 8 10 12 14 t /分
因此,如果一直 追下去,那么 B 一定能追上 A。
(5)当 A 逃到离海岸
12海里的公海时,B 将
海B
A
公
无法对其进行检查。照此 岸
海
速度, B 能否在 A 逃
入公海前将其拦截?
从图中可以看出,l1 与 l2 交点P的纵坐标小于12,