直线和平面所成角
直线与平面所成的角的教案
直线与平面所成的角教学目标:1. 理解直线与平面所成的角的定义及其性质;2. 学会运用直角三角形的知识求解直线与平面所成的角;3. 能够运用直线与平面所成的角解决实际问题。
教学重点:直线与平面所成的角的定义及其性质,求解直线与平面所成的角的方法。
教学难点:直线与平面所成的角的求解,将实际问题转化为直线与平面所成的角的问题。
教学准备:直角三角形模型,平面模型,直线模型。
教学过程:一、导入(5分钟)1. 引入直线与平面所成的角的概念,让学生思考在日常生活中遇到的直线与平面所成的角,如楼梯的扶手与地面的夹角等。
2. 引导学生观察直角三角形,让学生认识到直角三角形中的直角就是直线与平面所成的角。
二、新课讲解(15分钟)1. 讲解直线与平面所成的角的定义:直线与平面相交时,直线与平面内的任意一条直线所成的角,称为直线与平面的角。
2. 讲解直线与平面所成的角的性质:直线与平面所成的角是直线与平面内的所有角中最小的角。
3. 讲解求解直线与平面所成的角的方法:利用直角三角形,将直线与平面所成的角转化为直角三角形中的角。
三、实例分析(10分钟)1. 分析实例:楼梯的扶手与地面的夹角。
2. 引导学生运用直角三角形求解直线与平面所成的角。
3. 分析实例:墙角的直角。
4. 引导学生运用直角三角形求解直线与平面所成的角。
四、课堂练习(5分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 引导学生运用直线与平面所成的角的知识解决实际问题。
五、总结与拓展(5分钟)1. 总结直线与平面所成的角的定义、性质和求解方法。
2. 拓展思维:直线与平面所成的角在现实生活中的应用,如建筑设计、导航等。
教学反思:通过本节课的学习,学生应掌握直线与平面所成的角的定义、性质和求解方法,并能运用所学知识解决实际问题。
在教学过程中,要注意引导学生观察实例,培养学生的空间想象能力。
结合练习题和实际问题,提高学生的运用能力。
六、直线与平面所成的角的测量教学目标:1. 学会使用工具(如量角器)测量直线与平面所成的角;2. 理解测量直线与平面所成角的方法及其原理;3. 能够准确地测量直线与平面所成的角。
直线和平面所成的角
案例二:机械工程中的直线和平面所成的角
总结词
机械工程中,直线和平面所成的角对于机器 的运转和性能至关重要。
详细描述
在机械设计中,直线和平面所成的角涉及到 机器的传动、导向和定位等方面。例如,在 制造精密机床时,需要精确控制导轨的角度 和位置,以确保机床的加工精度和稳定性。 同时,在机器运转过程中,直线和平面所成 的角也需要进行实时监测和调整,以确保机 器的正常运转和性能。
THANKS
感谢观看
利用向量计算
总结词
通过向量的数量积和向量的模长来计算直线和平面所成的角,是一种简便的方法 。
详细描述
首先,选取平面上任意一点,并确定一个方向向量。然后,计算这个方向向量与直 线向量的夹角的余弦值。最后,利用公式:θ = arccos(cos(θ)),其中θ为直线和平 面所成的角。
利用几何定理计算
建筑设计
在建筑设计中,可以利用直线和 平面所成的角来设计建筑物的外 观和结构,例如斜屋顶的角度和 楼梯的角度等。
机械设计
在机械设计中,可以利用直线和 平面所成的角来设计机械零件的 形状和尺寸,例如斜齿轮的角度 和轴承的角度等。
道路建设
在道路建设中,可以利用直线和 平面所成的角来设计道路的坡度 和弯度,以确保车辆安全行驶。
直线在平面上
当直线上的所有点都在平 面上时,称为直线在平面 上。
02
直线和平面所成的角
角的定义和性质
角的定义
角是由两条射线共同端点形成的平面空间,这两条射线称为角的边,而它们的公共端点称为角的顶点 。
角的性质
角的大小是由其两边的射线所夹的角度决定的,与边的长度无关。此外,角的大小不会因为角的边做 平移或旋转而改变。
直线和平面所成的角
直线与平面所成的角
直线与平面所成的角1、直线和平面所成的角,应分三种情况:(1)直线与平面斜交时,直线和平面所成的角是指此直线和它在平面上的射影所成的锐角;(2)直线和平面垂直时,直线和平面所成的角的大小为90°;(3)直线和平面平行或在平面内时,直线和平面所成的角的大小为0°.显然,斜线和平面所成角的范围是(0,);直线和平面所成的角的范围为[0,].2、一条直线和一个平面斜交,它们所成的角的度量问题(空间问题)是通过斜线在平面内的射影转化为两条相交直线的度量问题(平面问题)来解决的.具体的解题步骤与求异面直线所成的角类似,有如下的环节:(1)作﹣﹣作出斜线与射影所成的角;(2)证﹣﹣论证所作(或找到的)角就是要求的角;(3)算﹣﹣常用解三角形的方法(通常是解由垂线段、斜线段、斜线段的射影所组成的直角三角形)求出角.(4)答﹣﹣回答求解问题.在求直线和平面所成的角时,垂线段是其中最重要的元素,它可起到联系各线段的纽带的作用.在直线与平面所成的角的定义中体现等价转化和分类与整合的数学思想.3、斜线和平面所成角的最小性:斜线和平面所成的角是用两条相交直线所成的锐角来定义的,其中一条直线就是斜线本身,另一条直线是斜线在平面上的射影.在平面内经过斜足的直线有无数条,它们和斜线都组成相交的两条直线,为什么选中射影和斜线这两条相交直线,用它们所成的锐角来定义斜线和平面所成的角呢?原因是斜线和平面内经过斜足的直线所成的一切角中,它是最小的角.对于已知的斜线来说这个角是唯一确定的,它的大小反映了斜线关于平面的“倾斜程度”.根据线面所成的角的定义,有结论:斜线和平面所成的角,是这条斜线和这个平面内的直线所成的一切角中最小的角.用空间向量直线与平面所成角的求法:(1)传统求法:可通过已知条件,在斜线上取一点作该平面的垂线,找出该斜线在平面内的射影,通过解直角三角形求得.(2)向量求法:设直线l的方向向量为,平面的法向量为,直线与平面所成的角为θ,与的夹角为φ,则有sinθ=|cos φ|=.。
直线与平面所成的角的教案
直线与平面所成的角教学目标:1. 了解直线与平面所成角的概念及其几何特征。
2. 学会使用三角板和量角器测量直线与平面所成的角。
3. 能够运用直线与平面所成的角解决一些简单的问题。
教学重点:1. 直线与平面所成角的定义及其几何特征。
2. 测量直线与平面所成角的方法。
教学难点:1. 理解直线与平面所成角的定义,能够正确判断直线与平面所成的角。
2. 熟练使用三角板和量角器测量直线与平面所成的角。
教学准备:1. 三角板2. 量角器3. 教学课件或黑板教学过程:一、导入(5分钟)1. 引入新课:回顾直线与平面的位置关系,思考直线与平面可以形成哪些角。
2. 提问:什么是直线与平面所成的角?它具有哪些几何特征?二、新课讲解(15分钟)1. 讲解直线与平面所成角的定义:直线与平面相交时,直线与平面内的任意一条直线所形成的角。
2. 讲解直线与平面所成角的几何特征:它是直线与平面相交的特殊角,具有大小和方向。
3. 讲解测量直线与平面所成角的方法:使用三角板和量角器。
三、实例演示(5分钟)1. 演示如何使用三角板和量角器测量直线与平面所成的角。
2. 让学生分组进行实践,测量不同直线与平面所成的角。
四、课堂练习(5分钟)1. 布置练习题:测量给定直线与平面所成的角。
2. 学生独立完成练习题,教师巡回指导。
五、总结与布置作业(5分钟)1. 总结本节课的主要内容:直线与平面所成角的定义、几何特征和测量方法。
2. 布置作业:巩固测量直线与平面所成角的方法,解决一些简单的问题。
教学反思:本节课通过讲解和实例演示,让学生掌握了直线与平面所成角的定义、几何特征和测量方法。
在实践环节,学生能够独立使用三角板和量角器测量直线与平面所成的角,解决了实际问题。
但在教学过程中,要注意引导学生正确理解直线与平面所成角的定义,避免混淆。
可以增加一些拓展练习,提高学生的应用能力。
六、直线与平面所成角的计算教学目标:1. 理解直线与平面所成角的计算方法。
直线和平面所成的角
直线和平面所成的角直线和平面所成的角,应分三种情况:(1)直线与平面斜交时,直线和平面所成的角是指此直线和它在平面上的射影所成的锐角;(2)直线和平面垂直时,直线和平面所成的角的大小为90°;(3)直线和平面平行或在平面内时,直线和平面所成的角的大小为0°. 显然,斜线和平面所成角的范围是(0,)2π直线和平面所成的角的范围为⎥⎦⎤⎢⎣⎡2,0π.例1、 如图,在正方体AC 1中, (1)求BC 1与平面ACC 1A 1所成的角;(2)求A 1B 1与平面A 1C 1B 所成的角的余弦值.解:(1)设所求角为α,先证BD ⊥平面ACC 1A 1,则si n α=si n ∠OC 1B =211=BC OB ,故α=30 (2)△A 1B 1C 1是正三角形,且A 1B 1=B 1C 1=BB 1. ∴棱锥B 1—A 1BC 1是正三棱锥.过B 1作B 1H ⊥平面A 1BC 1,连结A 1H ,∠B 1A 1H 是A 1B 1与平面A 1C 1B 所成的角. 设A 1B 1=a ,则A 1B = a 2,得A 1H=a 36. 故c os ∠B 1A 1H=36111=B A H A ,所求角的余弦值为36. 点评:1.求线面角即求这条直线与它在平面内的射影所成的角,关键在于找或作出直线A 1B 在平面A 1B 1CD 内的射影.2.通过本例我们要进一步明确求线面角的一般步骤,平面的垂线是其中最重要的元素,它可起到联系各线段的纽带的作用,因此,找或作出平面的垂线是求线面角的关键.3.直线和平面所成的角,是刻画空间位置关系的一类基本几何量,与射影密切相关.其中线面垂直是构成射影的必要条件,而空间各种角的计算方法,都是化为平面图形角的计算.因此,掌握转化的思想方法是解决这类问题的基本功.变式练习:1.已知正方体1111ABCD A B C D -中的棱长为a ,(1) 求直线1AB 和平面1111A B C D 所成的角;(2)求直线1DB 和平面1111A B C D 所成的角的正弦值;2、在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为AA 1、AB 的中点,求EF 与平面AA 1C 1C 所成角的大小。
职高数学第九章直线与平面、平面与平面所成的角 直线与直线、直线与平面、平面与平面垂直的判定与性质
【课题】9.3 直线与直线、直线与平面、平面与平面所成的角【教学目标】知识目标:(1)了解两条异面直线所成的角的概念;(2)理解直线与平面垂直、直线与平面所成的角的概念,二面角及其平面角的概念.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】异面直线的概念与两条异面直线所成的角的概念、直线与平面所成的角的概念、二面角及其平面角的概念.【教学难点】两条异面直线所成的角的概念、二面角的平面角的确定.【教学设计】两条异面直线所成的角可用来刻画两条异面直线之间的位置关系,它是本节教学的难点.学生一般会有疑问:异面直线不相交怎么能成角?教学时要讲清概念.例1是求异面直线所成的角的巩固性题目,一般来说,这类题目要先画出两条异面直线所成的角,然后再求解.斜线在平面内的射影是本节的重要概念之一,是理解直线与平面所成的角的基础.要讲清这一概念,可采取“一边演示,一边讲解,一边画图”的方法,结合图形讲清斜线、斜足、斜线段、垂足、垂线段、斜线在平面内的射影与斜线段在平面内的射影.要讲清斜线在平面内的射影与斜线段在平面内的射影的区别.两个平面相交时,它们的相对位置可用两个平面所成的角来确定.教材从观察建筑房屋、修筑河堤两个实例,结合实验引入二面角的概念,二面角的概念可以与平面几何中的角的概念对比进行讲解.二面角的平面角的大小只与二面角的两个面的相对位置有关,而与平面角的顶点在棱上的位置无关.因此二面角的大小可以用它的平面角来度量.规定二面角的范围为[0,180].【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教 学 过 程教师 行为 学生 行为 教学 意图 时间*揭示课题9.3 直线与直线、直线与平面、平面与平面所成的角*创设情境 兴趣导入在图9−30所示的长方体中,直线1BC 和直线AD 是异面直线,度量1CBC ∠和1DAD ∠,发现它们是相等的.如果在直线AB 上任选一点P ,过点P 分别作与直线1BC 和直线AD 平行的直线,那么它们所成的角是否与1CBC ∠相等?图9−30介绍 质疑引导 分析了解 思考启发 学生思考0 5 *动脑思考 探索新知我们知道,两条相交直线的夹角是这两条直线相交所成的最小的正角.经过空间任意一点分别作与两条异面直线平行的直线,这两条相交直线的夹角叫做两条异面直线所成的角.如图9−31(1)所示,m '∥m 、n '∥n ,则m '与n '的夹角θ就是异面直线m 与n 所成的角.为了简便,经常取一条直线与过另一条直线的平面的交点作为点O (如图9−31(2))(1)讲解 说明 引领 分析思考 理解带领 学生 分析nm'm'noθ过 程行为 行为 意图 间*运用知识 强化练习在如图所示的正方体中,求下列各对直线所成的角的度数:(1)1DD 与BC ; (2)1AA 与1BC .提问 指导思考 解答领会知识21 *创设情境 兴趣导入正方体1111ABCD A B C D -中(图9−33),直线1BB 与直线AB 、BC 、CD 、AD 、AC 所成的角各是多少?可以发现,这些角都是直角.图9−33质疑 引导 分析思考启发 学生思考26*动脑思考 探索新知如果直线l 和平面α内的任意一条直线都垂直,那么就称直线l 与平面α垂直,记作α⊥l .直线l 叫做平面α的垂线,垂线l 与平面α的交点叫做垂足.画表示直线l 和平面α垂直的图形时,要把直线l 画成与平行四边形的横边垂直(如图9−34所示),其中交点A 是垂足.图9−34讲解说明引领 分析思考 理解带领 学生 分析309.3.1题图过程行为行为意图间*创设情境兴趣导入将一根木棍P A直立在地面α上,用细绳依次度量点P与地面上的点A、B、C、D的距离(图9−35),发现P A最短.质疑思考带领学生分析32*动脑思考探索新知如图9−35所示,PAα⊥,线段P A叫做垂线段,垂足A 叫做点P在平面α内的射影.直线PB与平面α相交但不垂直,则称直线PB与平面α斜交,直线PB叫做平面α的斜线,斜线和平面的交点叫做斜足.点P与斜足B之间的线段叫做点P到这个平面的斜线段.过垂足与斜足的直线叫做斜线在平面内的射影.如图9−35中,直线AB是斜线PB在平面α内的射影.从上面的实验中可以看到,从平面外一点向这个平面引垂线段和斜线段,垂线段最短.因此,将从平面外一点P到平面α的垂线段的长叫做点P到平面α的距离.讲解说明引领分析仔细分析讲解关键词语思考理解记忆带领学生分析40*创设情境兴趣导入如图9−36所示,炮兵在发射炮弹时,为了击中目标,需要调整好炮筒与地面的角度.图9−36质疑思考带领学生分析42图9−35过程行为行为意图间*动脑思考探索新知斜线l与它在平面α内的射影l'的夹角,叫做直线l与平面α所成的角.如图9−37所示,PBA∠就是直线PB与平面α所成的角.规定:当直线与平面垂直时,所成的角是直角;当直线与平面平行或直线在平面内时,所成的角是零角.显然,直线与平面所成角的取值范围是[0,90].【想一想】如果两条直线与一个平面所成的角相等,那么这两条直线一定平行吗?图9−37讲解说明引领分析仔细分析讲解关键词语思考理解记忆带领学生分析47*巩固知识典型例题例2如图9−38所示,等腰∆ABC的顶点A在平面α外,底边BC在平面α内,已知底边长BC=16,腰长AB=17,又知点A到平面α的垂线段AD=10.求(1)等腰∆ABC的高AE的长;(2)斜线AE和平面α所成的角的大小(精确到1º).分析三角形AEB是直角三角形,知道斜边和一条直角边,利用勾股定理可以求出AE的长;AED∠是AE和平面α所成的角,三角形ADE是直角三角形,求出AED∠的正弦值即可求出斜线AE和平面α所成的角.解(1) 在等腰∆ABC中,AE BC⊥,故由BC=16可得BE=8.在Rt∆AEB中,∠AEB=90°,因此222217815AE AB BE=-=-=.(2)联结DE.因为AD是平面α的垂线,AE是α的斜线,所以DE是AE在α内的射影.因此AED∠是AE和平面α所成说明强调引领观察思考主动求解通过例题进一步领会图9−38过 程行为 行为 意图 间的角. 在Rt ∆ADE 中,102sin 153AD AED AE ∠===, 所以42AED ∠≈︒.即斜线AE 和平面α所成的角约为42︒. 【想一想】为什么这三条连线都画成虚线?讲解 说明思考注意 观察 学生 是否 理解 知识 点55*运用知识 强化练习长方体ABCD −1111A B C D 中,高DD 1=4cm ,底面是边长为3cm 的正方形,求对角线D 1B 与底面ABCD 所成角的大小(精确到1′).练习9.3.2图提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况60 *创设情境 兴趣导入在建筑房屋时,有时为了美观和排除雨水的方便,需要考虑屋顶面与地面形成适当的角度(如图9−39(1));在修筑河堤时,为使它经济且坚固耐用,需要考虑河堤的斜坡与地面形成适当的角度(如图9−39(2)).在白纸上画出一条线,沿着这条线将白纸对折,然后打开进行观察.质疑引导 分析思考启发 思考63 *动脑思考 探索新知平面内的一条直线把平面分成两部分,每一部分叫做一个半平面.从一条直线出发的两个半平面所组成的图形叫做二面讲解(2)图9−39(1)过 程行为 行为 意图 间角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.以直线l (或CD )为棱,两个半平面分别为αβ、的二面角,记作二面角l αβ--(或CD αβ--)(如图9−40).过棱上的一点,分别在二面角的两个面内作与棱垂直的射线,以这两条射线为边的最小正角叫做二面角的平面角.如图9−41所示,在二面角α−l −β的棱l 上任意选取一点O ,以点O 为垂足,在面α与面β内分别作OM l ⊥、ON l ⊥,则MON ∠就是这个二面角的平面角. 说明引领 分析 仔细 分析 讲解 关键 词语思考 理解 记忆带领 学生 分析70 *创设情境 兴趣导入用纸折成一个二面角,在棱上选择不同的点作出二面角的平面角,度量它们是否相等,想一想是什么原因. 质疑 思考 启发 思考 72 *动脑思考 探索新知二面角的平面角的大小由αβ、的相对位置所决定,与顶点在棱上的位置无关,当二面角给定后,它的平面角的大小也就随之确定.因此,二面角的大小用它的平面角来度量.当二面角的两个半平面重合时,规定二面角为零角;当二面角的两个半平面合成一个平面时,规定二面角为平角.因此二面角取值范围是[0,180].平面角是直角的二面角叫做直二面角.例如教室的墙壁与地面就组成直二面角,此时称两个平面垂直.平面α与平面β垂直记作αβ⊥ 讲解 说明 引领 分析 思考 理解 记忆 带领 学生 分析76 *巩固知识 典型例题例3 在正方体1111ABCD A B C D -中(如图9−42),求二面角1D AD B --的大小.说明 强调观察通过图9−40CD图9−41loNM βαCD过 程行为 行为 意图 间图9−42解 AD 为二面角的棱, 1AA 与AB 是分别在二面角的两个面内并且与棱AD 垂直的射线,所以1A AB ∠为二面角1D AD B --的平面角.因为在正方体1111ABCD A B C D -中,1A AB ∠是直角.所以二面角1D AD B --为90°. 引领 讲解 说明思考 主动 求解例题进一步领会81*运用知识 强化练习在正方体1111ABCD A B C D -中,求二面角1A DD B --的大小.提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况86 *理论升华 整体建构 思考并回答下面的问题:异面直线所成的角、二面角的平面角的概念? 结论:经过空间任意一点分别作与两条异面直线平行的直线,这两条相交直线的夹角叫做两条异面直线所成的角.过棱上的一点,分别在二面角的两个面内作与棱垂直的射线,以这两条射线为边的最小正角叫做二面角的平面角. 质疑 归纳强调 回答 及时了解学生知识掌握情况 87 *归纳小结 强化思想引导回忆练习9.3.3题继续探索活动探究(1)读书部分:教材(2)书面作业:教材习题(3)实践调查:用发现的眼睛寻找生活中的异面直线实例【教师教学后记】【课题】9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质【教学目标】知识目标:(1)了解空间两条直线垂直的概念;(2)掌握与平面垂直的判定方法与性质,平面与平面垂直的判定方法与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与平面、平面与平面垂直的判定方法与性质.【教学难点】判定空间直线与直线、直线与平面、平面与平面垂直.【教学设计】在平面内,过一点可以作一条且只能作一条直线与已知直线垂直;在空间中,过一点作与已知直线垂直的直线,能作无数条.例1是判断异面直线垂直的巩固性题目,根据异面直线垂直的定义,只要判断它们所成的角为90即可.在判定直线与平面垂直时,要特别注意“平面内两条相交的直线”的条件.可举一些实例,以加深学生对条件的理解.两个平面互相垂直是两个平面相交的特殊情况.在日常生活和工农业生产中,两个平面互相垂直的例子非常多,教学时可以多结合一些实例,以引起学生的兴趣.例4是判断平面与平面垂直的巩固性题目,关键是在平面B AC内找到一条直线AC与1平面B1BDD1垂直.例5是巩固平面与平面垂直的性质的题目.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质 *创设情境 兴趣导入【知识回顾】如果空间两条直线所成的角是90º,那么称这两条直线互相垂直,直线a 和b 互相垂直,记作a ⊥b .【想一想】演示并画出两条相交直线垂直与两条异面直线垂直的位置关系,并回答问题:经过空间任意一点作与已知直线垂直的直线,能作几条? 介绍质疑引导分析了解 思考启发 学生思考0 5 *巩固知识 典型例题【知识巩固】例1 如图9-43,长方体ABCD -A 1B 1C 1D 1中,判断直线AB 和DD 1是否垂直.解 AB 和DD 1是异面直线,而BB 1∥DD 1,AB ⊥BB 1,根据异面直线所成的角的定义,可知AB 与DD 1成直角.因此1AB DD .图9-43说明 强调 引领讲解 说明观察 思考 主动 求解通过例题进一步领会10 *运用知识 强化练习1.垂直于同一条直线的两条直线是否平行?2.在图9−43所示的正方体中,找出与直线AB 垂直的棱,并指出它们与直线1AA 的位置关系. 提问 指导 思考 解答了解 知识 掌握 情况14 *创设情境 兴趣导入【问题】前面我们学过直线与平面垂直的概念.根据定义判断直线与平面垂直,需要判定直线与平面内的任意一条直线都垂直,这是比较困难的.那么,如何判定直线和平面垂直呢? 【观察】 我们来看看实践中工人师傅是如何做的.如图9−44所示,检验一根圆木柱和板面是否垂直.工人质疑 引导思考带领 学生 分析图9−44*巩固知识典型例题【知识巩固】例2长方体ABCD-A1B1C1D1中(如图9−45),直线AA1与平面ABCD垂直吗?为什么?图9−45解因为长方体ABCD-A1B1C1D1中,侧面ABB1A1、AA1D1D 都是长方形,所以AA1⊥AB,AA1⊥AD.且AB和AD是平面ABCD 内的两条相交直线.由直线与平面垂直的判定定理知,直线AA1⊥平面ABCD.图9−46[小提示]在实际生活中,我们采用如图9−46所示的“合页型折纸”检验直线与平面垂直,就是直线与平面垂直方法的应用.【做一做】如果只给一个卷尺,你能否判断操场中立的旗杆与底面垂直吗?图9−48α,CD⊥α,所以AB∥CD BD,CD⊥BD.设AB与CD确定平面AE∥BD,直线AE与CD交于点ACE中,因为AE=BD=5 cm,过 程行为 行为 意图 间所以 AC =22AE CE + = 22512+ =13(cm ).说明求解 理解 知识 点 37 *运用知识 强化练习1.一根旗杆AB 高8 m ,它的顶端A 挂两条10 m 的绳子,拉紧绳子并把它们的两个下端固定在地面上的C 、D 两点,并使点C 、D 与旗杆脚B 不共线,如果C 、D 与B 的距离都是6 m ,那么是否可以判定旗杆AB 与地面垂直,为什么?2.如图所示,ABC ∆在平面α内,90BAC ∠=︒,且PA α⊥于A ,那么AC 与PB 是否垂直?为什么?提问 巡视 指导 思考 解答及时 了解 学生 知识 掌握 情况42 *创设情境 兴趣导入【知识回顾】两个平面相交,如果所成的二面角是直二面角,那么称这两个平面互相垂直.平面α与平面β垂直,记作βα⊥. 画表示两个互相垂直平面的图形时,一般将两个平行四边形的一组对边画成垂直的位置,可以把直立的平面画成矩形(图9−49(1)),也可以把直立的平面画成平行四边形(图9−49(2)).【做一做】请动手画出图9−50中的两个图形. [实例]建筑工人在砌墙时,把线的一端系一个铅锤,另一端用砖压在墙壁面上(图9−50),观察系有铅锤的线与墙面是否紧贴(在铅锤处应有一空隙),即判断所砌墙面是否经过地面的垂线,以此保证所砌的墙面与地面垂直.质疑 引导 分析观察 思考带领 学生 分析β(2)α图9−49过程行为行为意图间图9−5048 *动脑思考探索新知【新知识】这种做法的依据是平面与平面垂直的判定方法:一个平面经过另一个平面的垂线则两个平面垂直.如图9−51所示,如果ABβ⊥,AB在α内,那么αβ⊥.讲解说明引领分析理解带领学生分析52*巩固知识典型例题【知识巩固】例4在正方体ABCD-A1B1C1D1(如图9−52)中,判断平面B1AC与平面B1BDD1是否垂直.图9−52解在正方体ABCD-A1B1C1D1中,B1B⊥平面ABCD,所以BB1⊥AC,在底面正方形ABCD中,BD⊥AC,因此AC⊥平面BB1D1D,因为AC在平面B1AC内,所以平面B1AC与平面B1BDD1垂直.说明强调引领讲解说明观察思考主动求解通过例题进一步领会57*创设情境兴趣导入图9−51图9−54内,连结AD.又由于BD⊥AB过 程行为 行为 意图 间222223425=+=+=AD AB BD ,故 AD =5(cm ).因为αβ⊥,AC 在平面α内,且AC ⊥AB ,AB 为平面α与β的交线,所以AC ⊥β. 因此CA ⊥AD .在直角三角形ACD 中,22222125169=+=+=CD AC AD ,故 CD =13(cm ).讲解 说明主动 求解观察 学生 是否 理解 知识 点69 *运用知识 强化练习1.如图所示,在长方体1111ABCD A B C D -中,与平面1AB 垂直的平面有 个,与平面1AB 垂直的棱有 条.2.如图所示,检查工件相邻的两个面是否垂直时,只要用曲尺的一边卡在工件的一个面上,另一边在工件的另一个面上转动一下,观察尺边是否和这个面密合就可以了,为什么? 提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况78 *理论升华 整体建构 思考并回答下面的问题:直线与平面垂直的判定与性质? 平面与平面垂直的判断与性质? 结论:直线与平面垂直的判定方法:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线与这个平面垂直.直线和平面垂直的性质:垂直于同一个平面的两条直线互相平行.平面与平面垂直的判定方法:一个平面经过另一个平面的垂线则两个平面垂直.平面与平面垂直的性质:如果两个平面垂直,那么一个平面内垂直于交线的直线与另一个平面垂直.质疑 归纳强调回答及时了解学生知识掌握情况82A BC D D AB C第1题图第2题图【教师教学后记】。
直线和平面所成角的取值范围
C
O
B
练习2:教材P.69探究 (1) 四个面的形状怎样? (2) 有哪些直线与平面垂直? (3) 任意两个平面所成的二面角的平面角 如何确定? A
B
C
D
练习3: ABCD是正方形,O是正方形的
中心,PO⊥平面ABCD , E是PC的中点,
ABCD
是正方形,
求证:(1) PC⊥平面BDE;
(2)平面PAC⊥BDE. P E D A O B C
C
在正方体ABCD-A’B’C’D’中,找出下列二面角 的平面角:
(1)二面角D’-AB-D和A’-AB-D; (2)二面角C’-BD-C和C’-BD-A. D’ C’ A’ B’ D A O B
寻找二面角的平面角 寻找二面角的 平面角
C
寻找二面角的平面角
在正方体ABCD-A’B’C’D’中,找出下列二面角 的平面角:
2.3.2平面与平面 垂直的判定
复习回顾
两直线所成角的取值范围: 直线和平面所成角的取值范围: 平面的斜线和平面 所成的角的取值范围:
1
O
A
B
复习回顾
两直线所成角的取值范围:[ 0o, 90o ]. 直线和平面所成角的取值范围:[ 0o, 90o ]. 平面的斜线和平面 所成的角的取值范围: (0o, 90o).
A B
C
练习1:如图,已知三棱锥D-ABC的三
个侧面与底面全等,且AB=AC= 3 , BC=2,求以BC为棱,以面BCD与面 BCA为面的二面角的大小? D
A B E
C
练习1:如图,已知三棱锥D-ABC的三
个侧面与底面全等,且AB=AC= 3 , BC=2,求以BC为棱,以面BCD与面 BCA为面的二面角的大小? D
直线与平面所成的角教学设计
【课题】9.3 直线与平面所成的角【教学目标】知识目标:理解直线与平面垂直、直线与平面所成的角的概念.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与平面所成的角的概念【教学难点】直线与平面所成的角的求解【教学设计】斜线在平面内的射影是本节的重要概念之一,是理解直线与平面所成的角的基础.要讲清这一概念,可采取“一边演示,一边讲解,一边画图”的方法,结合图形讲清斜线、斜足、斜线段、垂足、垂线段、斜线在平面内的射影与斜线段在平面内的射影.要讲清斜线在平面内的射影与斜线段在平面内的射影的区别.【教学备品】教学课件.【课时安排】1课时.(40分钟)【教学过程】过 程 行为 行为 意图图9−33*动脑思考 探索新知如果直线l 和平面α内的任意一条直线都垂直,那么就称直线l 与平面α垂直,记作α⊥l .直线l 叫做平面α的垂线,垂线l 与平面α的交点叫做垂足. 画表示直线l 和平面α垂直的图形时,要把直线l 画成与平行四边形的横边垂直(如图9−34所示),其中交点A 是垂足.图9−34提问 指导思考 解答领会知识*创设情境 兴趣导入将一根木棍P A 直立在地面α上,用细绳依次度量点P 与地面上的点A 、B 、C 、D 的距离(图9−35),发现P A 最短.质疑 引导 分析思考启发 学生思考*动脑思考 探索新知如图9−35所示,PA α⊥,线段P A 叫做垂线段,垂足A 叫做点P 在平面α内的射影.直线PB 与平面α相交但不垂直,则称直线PB 与平面α斜交,直线PB 叫做平面α的斜线,斜线和平面的交点叫做斜讲解 说明思考图9−35过程行为行为意图足.点P与斜足B之间的线段叫做点P到这个平面的斜线段.过垂足与斜足的直线叫做斜线在平面内的射影.如图9−35中,直线AB是斜线PB在平面α内的射影.从上面的实验中可以看到,从平面外一点向这个平面引垂线段和斜线段,垂线段最短.因此,将从平面外一点P到平面α的垂线段的长叫做点P到平面α的距离.引领分析理解带领学生分析*创设情境兴趣导入如图9−36所示,科学家用什么来衡量比萨斜塔的倾斜程度呢?图9−36质疑思考带领学生分析*动脑思考探索新知斜线l与它在平面α内的射影l'的夹角,叫做直线l与平面α所成的角.如图9−37所示,PBA∠就是直线PB与平面α所成的角.规定:当直线与平面垂直时,所成的角是直角;当直线与平面平行或直线在平面内时,所成的角是零角.显然,直线与平面所成角的取值范围是[0,90].【想一想】如果两条直线与一个平面所成的角相等,那么这两条直线一定平行吗?图9−37讲解说明引领分析仔细分析讲解关键词语思考理解记忆带领学生分析*巩固知识典型例题例2如图9−38所示,等腰∆ABC的顶点A在平面α外,底边BC在质疑思考带领学生过 程行为 行为 意图平面α内,已知底边长BC =16,腰长AB =17,又知点A 到平面α的垂线段AD =10.求(1)等腰∆ABC 的高AE 的长; (2)斜线AE 和平面α所成的角的大小(精确到1º).分析 三角形AEB 是直角三角形,知道斜边和一条直角边,利用勾股定理可以求出AE 的长;AED ∠是AE 和平面α所成的角,三角形ADE 是直角三角形,求出AED ∠的正弦值即可求出斜线AE 和平面α所成的角. 解 (1) 在等腰∆ABC 中,AE BC ⊥,故由BC =16可得BE =8.在Rt ∆AEB 中,∠AEB =90°,因此 222217815AE AB BE =-=-=.(2)联结DE .因为AD 是平面α的垂线,AE 是α的斜线,所以DE 是AE 在α内的射影.因此AED ∠是AE 和平面α所成的角. 在Rt ∆ADE 中,102sin 153AD AED AE ∠===,所以42AED ∠≈︒.即斜线AE 和平面α所成的角约为42︒. 【想一想】 为什么这三条连线都画成虚线?分析*运用知识 强化练习长方体ABCD −1111A B C D 中,高DD 1=4cm ,底面是边长为3cm 的正方形,求对角线D 1B 与底面ABCD 所成角的大小(精确到1′).练习9.3.2图讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 理解 记忆带领 学生 分析 *归纳小结 强化思提问 巡视 思考 求解及时了解图9−38过 程行为 行为 意图本次课学了哪些内容?重点和难点各是什么?指导学生知识掌握情况 *自我反思 目标检测本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何? 自我测评 1、判断:(1)若直线和平面相交,则直线与平面所成的角小于等于90度。
直线和平面所成的角与二面角
直线和平面所成的角与二面角知识要点1.直线与平面所成角的范围若θ表示直线与平面所成的角,则0°≤θ≤90°。
2.公式cosθ=cosθ1·cosθ2。
斜线AB与平面α所成的角为θ1,A为斜足,AC在α内,且与AB的射影成θ2角,∠BAC=θ, 则有cosθ=cosθ1·cosθ2。
3.公式。
如图所示,在二面角α-l-β中,A∈平面β,B∈平面α,AD⊥l于D,BC⊥l于C,AD=m,BC=n, CD=d, AB=l, 二面角α-l-β的平面角为φ,则有:。
4.公式S'=Scosθ。
如果平面多边形所在平面与平面所成角为,这个平面多边形及其在平面内的射影的面积分别为S、S',那么S'=Scosθ。
5. 向量知识(1);(2)(3)a·b=|a|·|b|cosθ (其中θ是a与b的夹角)(4)若a=(x1,y1,z1), b=(x2,y2,z2), 则:a·b=x1x2+y1y2+z1z2。
典型题目例1.如图,在棱长为a的正方体OABC-O'A'B'C'中,E、F分别是棱AB、BC上的动点,且AE=BF。
(1)求证:A'F⊥C'E;(2)当三棱锥B'-BEF的体积取得最大值时,求二面角B'-EF'B的大小。
(结果用反三角函数表示)。
(1)证明:如图所示,以O为原点建立空间直角坐标系,设AE=BF=x, 则A'(a,0,a), F(a-x,a,0), C'(0,a,a,), E(a,x,0)。
∵,∴ A'F⊥C'E。
(2)解:记BF=x, BE=y, 则x+y=a, 三棱锥B'-BEF的体积,当且仅当,时,取得最大值。
过B作BD⊥EF交EF于D,连B'D,B'D⊥EF,∴∠B'DB是二面角B'-EF-B的平面角。
2019年高中数学湘教版选修2-1讲义+精练:第3章3.6直线与平面、平面与平面所成的角含答案
3.6直线与平面、平面与平面所成的角[读教材·填要点]1.直线与平面所成的角(1)定义:如果直线l 与平面α垂直,l 与平面α所成的角θ为直角,θ=π2.如果直线l 与平面α不垂直,则l 在α内的射影是一条直线l ′,将l 与l ′所成的角θ定义为l 与平面α所成的角.(2)范围:θ∈⎣⎡⎦⎤0,π2. (3)计算:作直线l 的方向向量v 和平面α的法向量n ,并且可选v 与n 所成的角θ1∈⎣⎡⎦⎤0,π2,则l 与平面α所成的角 θ=π2-θ1,sin θ=cos_θ1=|v ·n ||v |·|n |.2.二面角(1)定义:从一条直线l 出发的两个半平面α,β组成的图形叫作二面角,记作α-l -β. (2)二面角的平面角过二面角α-l -β的棱l 上任意一点O 作垂直于棱l 的平面,分别与两个面α,β相交得到两条射线OA ,OB ,则∠AOB 称为二面角α-l -β的平面角.(3)二面角的范围二面角的平面角的度数在0°~180°范围内,特别当二面角α-l -β是90°时称它为直二面角,此时称两个面α,β相互垂直.3.两个平面所成的角两个相交平面,以交线为棱可以构成四个二面角,其中最小的一个二面角称为这两个平面所成的角,取值范围是⎝⎛⎭⎫0,π2.两个平行平面所成的角为0°. [小问题·大思维]1.当一条直线l 与一个平面α的夹角为0时,这条直线一定在平面内吗? 提示:不一定,这条直线可能与平面平行.2.设直线l 与平面α所成的角为θ,l 的方向向量为a ,平面α的法向量为n ,如何用a 和n 求角θ?提示:sin θ=|cos 〈a ,n 〉|=|a ·n ||a |·|n |.3.二面角的法向量的夹角与二面角的平面角的大小有什么关系? 提示:相等或互补.求直线与平面所成的角如图,在四棱锥P -ABCD 中,底面为直角梯形,AD ∥BC ,∠BAD =90°,PA ⊥底面ABCD ,且PA =AD =AB =2BC ,M ,N 分别为PC ,PB 的中点.求BD与平面ADMN 所成的角θ.[自主解答] 如图所示,建立空间直角坐标系,设BC =1, 则A (0,0,0),B (2,0,0),D (0,2,0),P (0,0,2), 则N (1,0,1),∴BD ―→=(-2,2,0),AD ―→=(0,2,0),AN ―→=(1,0,1). 设平面ADMN 的一个法向量为n =(x ,y ,z ), 则由⎩⎪⎨⎪⎧n ·AD ―→=0,n ·AN ―→=0,得⎩⎪⎨⎪⎧y =0,x +z =0,取x =1,则z =-1, ∴n =(1,0,-1).∵cos 〈BD ―→,n 〉=BD ―→·n |BD ―→|·|n |=-28·2=-12,∴sin θ=|cos 〈BD ―→,n 〉|=12.又0°≤θ≤90°,∴θ=30°.利用向量法求直线与平面所成角的步骤为: (1)确定直线的方向向量和平面的法向量; (2)求两个向量夹角的余弦值; (3)确定向量夹角的范围;(4)确定线面角与向量夹角的关系:向量夹角为锐角时,线面角与这个夹角互余;向量夹角为钝角时,线面角等于这个夹角减去90°.1.如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2.求直线PA 与平面DEF 所成角的正弦值.解:如图,以点A 为原点,AB ,AC ,AP 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系A -xyz .由AB =AC =1,PA =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝⎛⎭⎫12,0,0,E ⎝⎛⎭⎫12,12,0,F ⎝⎛⎭⎫0,12,1. ∴PA ―→=(0,0,-2),DE ―→=⎝⎛⎭⎫0,12,0,DF ―→=⎝⎛⎭⎫-12,12,1. 设平面DEF 的法向量为n =(x ,y ,z ). 则⎩⎪⎨⎪⎧n ·DE ―→=0,n ·DF ―→=0,即⎩⎨⎧(x ,y ,z )·⎝⎛⎭⎫0,12,0=0,(x ,y ,z )·⎝⎛⎭⎫-12,12,1=0.解得⎩⎪⎨⎪⎧x =2z ,y =0.取z =1,则平面DEF 的一个法向量为n =(2,0,1). 设PA 与平面DEF 所成的角为θ,则 sin θ=|cos 〈PA ―→,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪PA ―→·n | PA ―→|·|n |=55, 故直线PA 与平面DEF 所成角的正弦值为55.求二面角如图,四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形.(1)证明:O 1O ⊥底面ABCD .(2)若∠CBA =60°,求二面角C 1-OB 1-D 的余弦值.[自主解答] (1)证明:因为四边形ACC 1A 1和四边形BDD 1B 1均为矩形,所以CC 1⊥AC ,DD 1⊥BD ,又CC 1∥DD 1∥OO 1,所以OO 1⊥AC ,OO 1⊥BD , 因为AC ∩BD =O ,所以O 1O ⊥底面ABCD .(2)因为四棱柱的所有棱长都相等,所以四边形ABCD 为菱形,AC ⊥BD .又O 1O ⊥底面ABCD ,所以OB ,OC ,OO 1两两垂直.如图,以O 为原点,OB ,OC ,OO 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系.设棱长为2,因为∠CBA =60°,所以OB =3,OC =1, 所以O (0,0,0),B 1(3,0,2),C 1(0,1,2), 平面BDD 1B 1的一个法向量为n =(0,1,0), 设平面OC 1B 1的法向量为m =(x ,y ,z ),则由m ⊥OB 1―→,m ⊥OC 1―→,所以⎩⎪⎨⎪⎧3x +2z =0,y +2z =0.取z =-3,则x =2,y =23, 所以m =(2,23,-3),所以cos 〈m ,n 〉=m·n |m ||n |=2319=25719.由图形可知二面角C 1-OB 1-D 的大小为锐角, 所以二面角C 1-OB 1-D 的余弦值为25719.利用法向量求二面角的步骤为: (1)确定两平面的法向量; (2)求两法向量的夹角的余弦值; (3)确定二面角的范围;(4)确定二面角与面面角的关系:二面角范围的确定要通过图形观察,法向量一般不能体现出来.2.(2016·全国卷Ⅰ)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E -BC -A 的余弦值.解:(1)证明:由已知可得AF ⊥DF ,AF ⊥FE , 所以AF ⊥平面EFDC . 又AF ⊂平面ABEF , 故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G .由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF ―→的方向为x 轴正方向,|GF ―→|为单位长,建立如图所示的空间直角坐标系G -xyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则DF =2,DG =3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°. 从而可得C (-2,0,3).所以EC ―→=(1,0,3),EB ―→=(0,4,0),AC ―→=(-3,-4,3),AB ―→=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量, 则⎩⎪⎨⎪⎧n ·EC ―→=0,n ·EB ―→=0,即⎩⎨⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC ―→=0,m ·AB ―→=0,同理可取m =(0,3,4). 则cos 〈n ,m 〉=n ·m |n ||m |=-21919. 由图知,二面角E -BC -A 为钝角, 故二面角E -BC -A 的余弦值为-21919.解题高手 多解题 条条大路通罗马,换一个思路试一试已知PA ⊥平面ABC ,AC ⊥BC ,PA =AC =1,BC =2,求二面角A -PB -C 的余弦值. [解] 法一:如图所示,取PB 的中点D ,连接CD . ∵PC =BC =2, ∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A -PB -C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12.又∵AE =AP ·AB PB =32,CD =1,AC =1,AC ―→=AE ―→+ED ―→+DC ―→,且AE ―→⊥ED ―→,ED ―→⊥DC ―→,∴|AC ―→|2=|AE ―→|2+|ED ―→|2+|DC ―→|2+2|AE ―→|·|DC ―→|cos(π-θ),即1=34+14+1-2·32·1·cos θ,解得cos θ=33. 故二面角A -PB -C 的余弦值为33. 法二:由法一可知,向量DC ―→与EA ―→的夹角的大小就是二面角A -PB -C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB 的中点,D ⎝⎛⎭⎫12,22,12. 又PE EB =AP 2AB 2=13,即E 分PB ―→的比为13.∴E ⎝⎛⎭⎫34,24,34,EA ―→=⎝⎛⎭⎫14,-24,-34,DC ―→=⎝⎛⎭⎫-12,-22,-12,|EA ―→|=32,|DC ―→|=1,EA ―→·DC ―→=14×⎝⎛⎭⎫-12+⎝⎛⎭⎫-24×⎝⎛⎭⎫-22+⎝⎛⎭⎫-34×⎝⎛⎭⎫-12=12. ∴cos 〈EA ―→,DC ―→〉=EA ―→·DC ―→| EA ―→|·|DC ―→|=33.故二面角A -PB -C 的余弦值为33. 法三:如图所示建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP ―→=(0,0,1),AB ―→=(2,1,0),CB ―→=(2,0,0), CP ―→=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·AP ―→=0,m ·AB ―→=0⇒⎩⎪⎨⎪⎧ (x ,y ,z )·(0,0,1)=0,(x ,y ,z )·(2,1,0)=0⇒⎩⎪⎨⎪⎧y =-2x ,z =0.令x =1,则m =(1,-2,0).设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎪⎨⎪⎧n ·CB ―→=0,n ·CP ―→=0⇒⎩⎪⎨⎪⎧ (x ′,y ′,z ′)·(2,0,0)=0,(x ′,y ′,z ′)·(0,-1,1)=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′. 令y ′=-1,则n =(0,-1,-1), ∴cos 〈m ,n 〉=m ·n |m |·|n |=33.∴二面角A -PB -C 的余弦值为33.1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A .120°B .60°C .30°D .以上均错解析:设直线l 与平面α所成的角为θ, 则sin θ=|cos 120°|=12,又∵0<θ≤90°,∴θ=30°. 答案:C2.若正三棱锥的侧面都是直角三角形,则侧面与底面所成的二面角的余弦值为( ) A.63B.33C.23 D.13解析:设正三棱锥P -ABC ,PA ,PB ,PC 两两互相垂直,设PA =PB=PC =a .取AB 的中点D ,连接PD ,CD ,易知∠PDC 为侧面PAB 与底面ABC 所成的角.易求PD =22a ,CD =62a , 故cos ∠PDC =PD DC =33.答案:B3.在边长为a 的正△ABC 中,AD ⊥BC 于D ,沿AD 折成二面角B -AD -C 后,BC =12a ,这时二面角B -AD -C 的大小为( )A .30°B .45°C .60°D .90°解析:由定义知,∠BDC 为所求二面角的平面角, 又BC =BD =DC =12a ,∴△BDC 为等边三角形,∴∠BDC =60°. 答案:C4.若一个二面角的两个面的法向量分别为m =(0,0,3),n =(8,9,2),则这个锐二面角的余弦值为________.解析:cos 〈m ,n 〉=(0,0,3)·(8,9,2)382+92+22=2149=2149149.答案:21491495.正方体ABCD -A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成的角的正弦值是________. 解析:如图,以DA ,DC ,DD 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,取正方体的棱长为1,则A (1,0,0),B (1,1,0),C 1(0,1,1),易证AC 1―→是平面A 1BD 的一个法向量.又AC 1―→=(-1,1,1), BC 1―→=(-1,0,1).所以cos 〈AC 1―→,BC 1―→〉=1+13×2=63.所以BC 1与平面A 1BD 所成角的正弦值为63. 答案:636.(2017·江苏高考)如图,在平行六面体ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B -A 1D -A 的正弦值.解:在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E . 因为AA 1⊥平面ABCD , 所以AA 1⊥AE ,AA 1⊥AD .如图,以{AE ―→,AD ―→,AA 1―→}为正交基底,建立空间直角坐标系A -xyz . 因为AB =AD =2, AA 1=3,∠BAD =120°,则A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3). (1)A 1B ―→=(3,-1,-3),AC 1―→=(3,1,3). 则cos 〈A 1B ―→,AC 1―→〉=A 1B ―→·AC 1―→|A 1B ―→||AC 1―→|=3-1-37×7=-17. 因此异面直线A 1B 与AC 1所成角的余弦值为17.(2)可知平面A 1DA 的一个法向量为AE ―→=(3,0,0). 设m =(x ,y ,z )为平面BA 1D 的一个法向量, 又A 1B ―→=(3,-1,-3),BD ―→=(-3,3,0), 则⎩⎪⎨⎪⎧m ·A 1B ―→=0,m ·BD ―→=0,即⎩⎪⎨⎪⎧3x -y -3z =0,-3x +3y =0.不妨取x =3,则y =3,z =2,所以m =(3,3,2)为平面BA 1D 的一个法向量,从而cos 〈AE ―→,m 〉=AE ―→·m | AE ―→||m |=333×4=34. 设二面角B -A 1D -A 的大小为θ,则|cos θ|=34.因为θ∈[0,π],所以sin θ=1-cos 2θ=74. 因此二面角B -A 1D -A 的正弦值为74.一、选择题1.若平面α的一个法向量n =(2,1,1),直线l 的一个方向向量为a =(1,2,3),则l 与α所成角的正弦值为( )A.176B.216 C .-216D.213解析:∵cos 〈a ,n 〉=a ·n|a |·|n |=(1,2,3)·(2,1,1)1+4+9·22+1+1=2+2+314×6=216.∴l 与α所成角的正弦值为216. 答案:B2.如图,过边长为1的正方形ABCD 的顶点A 作线段EA ⊥平面AC ,若EA=1,则平面ADE 与平面BCE 所成的二面角的大小是( )A .120°B .45°C .135°D .60°解析:以A 为原点,分别以AB ,AD ,AE 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系A -xyz ,则E (0,0,1),B (1,0,0),C (1,1,0),EB ―→=(1,0,-1),EC ―→=(1,1,-1).设平面BCE 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧x -z =0,x +y -z =0,可取n =(1,0,1),又平面EAD 的法向量为AB ―→=(1,0,0),所以cos 〈n ,AB ―→〉=12×1=22,故平面ADE 与平面BCE 所成的二面角为45°.答案:B3.在直角坐标系中,已知A (2,3),B (-2,-3),沿x 轴把直角坐标系折成平面角为θ的二面角A -Ox -B ,使∠AOB =90°,则cos θ为( )A .-19B.19C.49D .-49解析: 过A ,B 分别作x 轴垂线,垂足分别为A ′,B ′.则AA ′=3,BB ′=3,A ′B ′=4,OA =OB =13,折后,∠AOB =90°,∴AB =OA 2+OB 2=26.由AB ―→=AA ′―→+A ′B ′―→+B ′B ―→,得|AB ―→|2=|AA ′―→|2+|A ′B ′―→|2+|B ′B ―→|2+2|AA ′―→|·|B ′B ―→|·cos(π-θ). ∴26=9+16+9+2×3×3×cos(π-θ), ∴cos θ=49.答案:C4.已知平面α内有一个以AB 为直径的圆,PA ⊥α,点C 在圆周上(异于点A ,B ),点D ,E 分别是点A 在PC ,PB 上的射影,则( )A .∠ADE 是二面角A -PC -B 的平面角 B .∠AED 是二面角A -PB -C 的平面角 C .∠DAE 是二面角B -PA -C 的平面角D .∠ACB 是二面角A -PC -B 的平面角解析:选项A 错误,若DE ⊥PC ,则PC ⊥平面ADE ,所以PC ⊥AE ,又AE ⊥PB ,所以AE ⊥平面PBC ,同理可证:AD ⊥平面PBC ,这是不可能的.选项B 正确,因为PA ⊥BC ,AC ⊥BC ,所以BC ⊥平面PAC ,所以AD ⊥BC ,又AD ⊥PC ,且PC ∩BC =C ,所以AD ⊥平面PBC ,又因为AE ⊥PB ,所以DE ⊥PB ,所以∠AED 为二面角A -PB -C 的平面角.选项C 错误,因为PA ⊥平面α,所以PA ⊥AC 且PA ⊥AB ,所以∠CAB 为二面角B -PA -C 的平面角,因此,∠DAE 不是二面角B -PA -C 的平面角.选项D 错误,在△PAC 中,∠PAC =90°,所以AC 与PC 不垂直,因此,∠ACB 不是二面角A -PC -B 的平面角.答案:B 二、填空题5.如图所示,已知正三棱柱ABC -A 1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则直线AD 与平面B 1DC 夹角的正弦值为________.解析:不妨设正三棱柱ABC -A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D⎝⎛⎭⎫32,-12,2,则CD ―→=⎝⎛⎭⎫32,-12,2, CB 1―→=(3,1,2),设平面B 1DC 的法向量为 n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD ―→=0,n ·CB 1―→=0,解得n =(-3,1,1). 又∵DA ―→=⎝⎛⎭⎫32,-12,-2, ∴sin θ=|cos 〈DA ―→,n 〉|=45.答案:456.正△ABC 与正△BCD 所在平面垂直,则二面角A -BD -C 的正弦值为________.解析:取BC 中点O ,连接AO ,DO .建立如图所示空间直角坐标系,设BC=1,则A ⎝⎛⎭⎫0,0,32,B ⎝⎛⎭⎫0,-12,0, D⎝⎛⎭⎫32,0,0.∴OA ―→=⎝⎛⎭⎫0,0,32,BA ―→=⎝⎛⎭⎫0,12,32,BD ―→=⎝⎛⎭⎫32,12,0.由于OA ―→=⎝⎛⎭⎫0,0,32为平面BCD 的法向量,可进一步求出平面ABD 的一个法向量n =()1,-3,1,∴cos 〈n ,OA ―→〉=55,sin 〈n ,OA ―→〉=255.∴二面角A -BD -C 的正弦值为255. 答案:2557.已知三棱锥S -ABC 中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为________.解析:建立如图所示空间直角坐标系,则S (0,0,3),A (0,0,0),B (3,1,0),C (0,2,0).∴AB ―→=(3,1,0), SB ―→=(3,1,-3),SC ―→=(0,2,-3). 设平面SBC 的法向量为n =(x ,y ,z ). 则⎩⎪⎨⎪⎧n ·SB ―→=3x +y -3z =0,n ·SC ―→=2y -3z =0.令y =3,则z =2,x =3,∴n =(3,3,2). 设AB 与平面SBC 所成的角为θ,则sin θ=|cos 〈n ,AB ―→〉|=|n ·AB ―→||n |·|AB ―→|=3+34×2=34.答案:348.在体积为1的直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AC =BC =1,求直线A 1B 与平面BB 1C 1C 所成角的正弦值为________.解析:由题意,可得体积V =CC 1·S △ABC =CC 1·12·AC ·BC =12CC 1=1,∴CC 1=2.A 1(1,0,2).建立如图所示空间直角坐标系,得点B (0,1,0),则A 1B ―→=(-1,1,-2),又平面BB 1C 1C 的法向量为n =(1,0,0).设直线A 1B 与平面BB 1C 1C 所成的角为θ,A 1B ―→与n 的夹角为φ, 则cos φ=A 1B ―→·n |A 1B ―→|·|n |=-66,∴sin θ=|cos φ|=66, 即直线A 1B 与平面BB 1C 1C 所成角的正弦值为66. 答案:66三、解答题9.如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值. 解:(1)交线围成的正方形EHGF 如图所示. (2)作EM ⊥AB ,垂足为M , 则AM =A 1E =4,EM =AA 1=8. 因为四边形EHGF 为正方形, 所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,所以AH =10.以D 为坐标原点,DA ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8), FE ―→=(10,0,0), HE ―→=(0,-6,8).设n =(x ,y ,z )是平面EHGF 的法向量,则⎩⎪⎨⎪⎧n ·FE ―→=0,n ·HE ―→=0,即⎩⎪⎨⎪⎧10x =0,-6y +8z =0,所以可取n =(0,4,3). 又AF ―→=(-10,4,8),故|cos 〈n ,AF ―→〉|=|n ·AF ―→||n ||AF ―→|=4515.所以AF 与平面EHGF 所成角的正弦值为4515.10.(2017·全国卷Ⅱ)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值. 解:(1)证明:取PA 的中点F ,连接EF ,BF . 因为E 是PD 的中点,所以EF ∥AD ,EF =12AD .由∠BAD =∠ABC =90°,得BC ∥AD , 又BC =12AD ,所以EF 綊BC ,所以四边形BCEF 是平行四边形,CE ∥BF , 又BF ⊂平面PAB ,CE ⊄平面PAB , 故CE ∥平面PAB .(2)由已知得BA ⊥AD ,以A 为坐标原点,AB ―→的方向为x 轴正方向,|AB ―→|为单位长度,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC ―→=(1,0,-3),AB ―→=(1,0,0).设M (x ,y ,z )(0<x <1),则BM ―→=(x -1,y ,z ),PM ―→=(x ,y -1,z -3). 因为BM 与底面ABCD 所成的角为45°, 而n =(0,0,1)是底面ABCD 的法向量, 所以|cos 〈BM ―→,n 〉|=sin 45°,|z |(x -1)2+y 2+z 2=22, 即(x -1)2+y 2-z 2=0. ① 又M 在棱PC 上,设PM ―→=λPC ―→, 则x =λ,y =1,z =3-3λ. ②由①②解得⎩⎪⎨⎪⎧x =1+22,y =1,z =-62(舍去),或⎩⎪⎨⎪⎧x =1-22,y =1,z =62,所以M ⎝⎛⎭⎫1-22,1,62,从而AM ―→=⎝⎛⎭⎫1-22,1,62. 设m =(x 0,y 0,z 0)是平面ABM 的法向量, 则⎩⎪⎨⎪⎧m ·AM ―→=0,m ·AB ―→=0,即⎩⎪⎨⎪⎧(2-2)x 0+2y 0+6z 0=0,x 0=0,所以可取m =(0,-6,2). 于是cos 〈m ,n 〉=m ·n |m ||n |=105.由图知二面角M -AB -D 为锐角, 因此二面角M -AB -D 的余弦值为105.。
论立体几何中的所成角问题
论立体几何中的所成角问题所成角问题是立体几何中很重要的一部分,它包括了三种角:直线与直线所成角,直线与平面所成角以及平面和平面所成角。
讨论所成角问题主要是要讨论用什么方法去寻找这些角。
一、直线与直线所成角(就是指异面直线所成角)直线与直线所成角是立体几何的所成角问题中最简单的一种,只需要在固定一点之后把 两条直线都平移,使它们都过这一点就可以了。
通过平移就可以把求两条异面直线所成角的问题转变为求平面中两条相交直线所夹角的问题了。
要注意的是求直线与直线所成角的时候,我们找到的那个角是这两条直线的所成角或者它的补角。
它的范围是⎥⎦⎤ ⎝⎛2,0π。
二、 直线与平面所成角直线与平面所成角的找法就是在直线上找到一点,然后往那个平面内做垂线,得到直线在那个平面内的射影。
线面成角就是直线与它在那个平面内的射影所夹的角。
直线与平面所成角不存在补角的问题。
它的范围是⎥⎦⎤⎢⎣⎡2,0π。
三、 平面与平面所成角(就是所谓的二面角)面面成角是立体几何中的所成角问题中的重点,一般来说考试测验都会把二面角作为重点考核的对象,也是学生最头痛的一类问题。
我们大概可以把找二面角平面角的方法归结为以下几类:1、 按照定义来找二面角的平面角从二面角的棱上一点在两个平面内分别作垂直于棱的射线,两条射线所夹的角就是二面角的平面角。
2、 利用三垂线定理来寻找二面角的平面角这个方法是寻找二面角的平面角最常用的。
首先要找到一条垂线,这条垂线指的是要垂直于其中的一个面。
垂线上有两点是我们要关注的,一点是垂足,另外一点是它与另一个面的交点。
其次我们可以过这两点中的任意一点在那个平面内做棱的垂线,再连接垂足和另外一点,得到一条我们连接的线段。
我们找到的二面角的平面角就是那条垂直于棱的线段和我们所连接的线段所夹的角。
这种方法不适用与两个互相垂直的面。
3、 二面角中的特殊情况有时候我们可以通过证明两个平面是垂直的以得到它们的二面角的平面角是90度。
直线和平面所成的角与二面角
直线和平面所成的角与二面角【高考导航】立体几何中的角大致可分为三种,即线线角,线面角,平面与平面所成的二面角.立体几何计算问题几乎都与三种空间角的计算有关,是高考立体几何检测的热点内容,题型上一般以解答题进行考查,难度适中,如1993全国理5分;1995全国文5分;1996全国4分;2002北京4分;1996上海12分;2002全国理12分;2002新课程12分;2002上海春12分;2003北京春5分;2004北京14分;2004广东12分等.【学法点拨】本节内容有斜线在平面上的射影,斜线与平面所成的角,公式cosθ=cosθ1·cosθ2,最小角定理,二面角的概念,二面角的平面角,两个平面垂直的判定定理及性质定理,对于本节知识的学习要了解线面角、半平面与半平面所成二面角以及异面直线所成角,在求法上一般都是转化为平面的角,具体地,通常应用“线线角抓平移,线面角抓射影,面面角抓平面角,利用向量抓法向量”而达到化归的目的.要注意对平面角的拼求和各种角的定义及取值范围.空间角的计算步骤是“一作,二证,三计算”.“作”即在图形中若无所求空间角的平面角,应先作出来;“证”指明自己所找或所作的角即为所求角;“计算”在平面几何图形内把角求出.在三种角的计算中要特别注意二面角的作法及求法,注意cosθ=cosθ1·cosθ2在线面角求值中的应用,注意利用射影面积公式S′=S·cosθ求二面角,对于平面与平面垂直的判定与性质的学习,可以与直线与直线垂直,直线与平面垂直的判定与性质联系起来,应用时注意三种垂直之间的相互转化.同时在学习中培养空间的想象能力、解决问题的能力以及逻辑推理能力和运算能力.【基础知识必备】一、必记知识精选平面的斜线和平面所成的角.(1)直线与平面所成角①范围:0°≤α≤90°当α=0°时,直线在平面内或直线平行于平面;当α=90°时,直线垂直于平面;当0°<α<90°时,直线与平面斜交.②最小角定理:直线与平面斜交,过斜足在平面内作直线,这些线与斜线所成角中射影与斜线所成角最小.③cosθ=cosθ1·cosθ2.④作法:作出直线和平面所成角,关键是作垂线,找射影.(2)二面角①定义:由一条直线出发的两个半平面组成的图形叫二面角.②二面角的平面角:定义:以二面角的棱上任意一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.对概念的理解要注意:平面角的两边分别在二面角的两个半平面内;平面角的二边都和二面角的棱垂直.③二面角平面角的求法:直接法:所谓直接法即先作出二面角的平面角,经过证明后再进行计算,常用的直接法有三:(a)利用平面角的定义;(b)利用三垂线定理;(c)过一点作棱的垂面.间接法:所谓间接法,就是不作出二面角的平面角,而利用公式cos θ=S S 射影.此方法也叫射影法.也可利用两半平面法向量的夹角求二面角.注意当直接作出二面角的平面角有一定难度时,一般才采用间接法求二面角大小. ④二面角的范围是0°≤θ≤180°,可从两个半平面“重合”、“相交”和“共面”各种情况考虑,重合时θ=0°;相交时,0°<θ<180°;共面时,θ=180°.(3)两个平面垂直的判定①定义:如果两相交平面所成二面角是直二面角,那么这两个平面互相垂直.两个平面互相垂直是两个平面相交的特殊情况,若两个相交平面所成的二面角是直二面角,则称这两个平面互相垂直,它和平面几何里两条直线互相垂直的概念类似.②判定定理:如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.即⎭⎬⎫⊂⊥βαl l ⇒β⊥α.简言之,“线面垂直⇒面面垂直”.(4)两个平面垂直的性质①如果两个平面互相垂直,那么它们所成二面角的平面角是直角.②性质定理:如果两个平面互相垂直,那么一个平面内垂直于交线的直线垂直于另一个平面.即⎭⎬⎫⊥⊂=⊥l a a l ,,ββαβα ⇒a ⊥α.简言之,“面面垂直⇒线面垂直”. ③如果两个平面互相垂直,那么过一个平面内一点和另一个平面垂直的直线,必在此平面内.④如果一个平面和二个相交平面都垂直,那么它就和它们的交线垂直.(5)从两个平面垂直的判定定理和性质定理中可看出,平面与平面的垂直问题可转化为直线与平面的垂直问题,即从线面垂直可推出面面垂直,反过来,由面面垂直又可推出线面垂直,这说明线面垂直与面面垂直之间有密切关系,可以互相转化.二、重点难点突破本节的重点是斜线在平面上射影的概念,斜线与平面所成角的概念,二面角的概念,两个平而垂直的判定定理.对于斜线在平面上的射影可通过具体作图具体体验,要注意O 点选取的任意性及斜线在平面上的射影是直线不是线段,斜线与平面所成角要紧扣概念,了解范围.本节的难点是cos θ=cos θ1·cos θ2的灵活应用,二面角的平面角.对于二面角的平面角和平面中角的概念作类比,注意化归思想的应用,二面角的考查在1993至2004高考十一年间有十年都有涉及,是考试热点,应重视.三、易错点和易忽略点导析在求二面角时,忽略二面角的范围,用反三角函数表示角出现错误或确定平面角出现错误.【例】 已知∠AOB=90°,过O 点引∠A O B 所在平面的斜线O C ,与O A 、O B 分别成45°、60°角测以O C 为棱的二面角A-O C-B 大小为________.错解:如图9-7-1所示,在O C 上取一点C ,使O C=1.过C 分别作CA ⊥O C 交O A 于A ,CB ⊥O C 交O B 于B.则AC=1,O A=2,BC=3,O B=2.在Rt △A O B 中,AB 2=O A 2+O B 2=6.在△ABC 中,由余弦定理,得cos ∠ACB=-33.∴∠ACB=arccos 33,即二面角A-O C-B 为arccos 33.正确解法:如图9-7-1所示,在O C 上取一点C ,使O C=1,过C 分别作CA ⊥O C 交O A 于A ,CB ⊥O C 交O B 于B ,则AC=1,O A=2,BC=3,O B=2.在Rt △A O B 中,AB 2=O A 2+O B 2=6,得cos ∠ACB=-33.∴∠ACB=π-arccos 33.即二面角A-O C-B 为π-arccos 33.错解分析:混淆了二面角的范围[0,π]与异面直线所成角的范围(0,2π],且对于反三角函数的表示不熟悉.【综合应用创新思维点拨】一、学科内综合思维点拨【例1】 已知D 、E 分别是正三棱柱ABC 一A 1B 1C 1的侧棱AA 1和BB 1上的点,且A 1D=2B 1E=B 1C 1.求过D 、E 、C 1的平面与棱柱的下底面所成二面角的大小.思维入门指导:在图9-7-2上,过D 、E 、C 1的面与棱柱底面只给出一个公共点C 1,而没有画出它与棱柱底面所成二面角的棱,因此还需找出它与底面的另一个公共点,进而再求二面角的大小.解:在平面M 1B 1B 内延长DE 和A 1B 1交于F ,则F 是面DEF 与面A 1B 1C 1的公共点,C 1也是这两个面的公共点,连结C 1F ,C 1F 为这两个面的交线,所求的二面角就是D-C 1F-A 1.∵A 1D ∥B 1E ,且A 1D=2B 1E ,∴E 、B 1分别为DF 和A 1F 的中点.∵A 1B 1=B 1F=B 1C 1,∴FC 1⊥A 1C 1.又面AA 1C 1C ⊥面A 1B 1C 1,FC 1在面A 1B 1C 1内,∴FC 1⊥面AA 1C 1C.而DC 1在面AA 1C 1C 内,∴FC 1⊥DC 1.∴∠DC 1A 1是二面角D-FC 1-A 1的平面角.由已知A 1D=B 1C=A 1C 1,∴∠DC 1A 1=4π.故所求二面角的大小为4π.点拨:当所求的二面角没有给出它的棱时,可通过公理1和公理2,找出二面角的两个面的两个公共点,从而找出它的棱,进而求其平面角的大小.需要注意的是,若利用cos θ=1111DEC C B A SS △△求二面角的大小,作为解答题,高考中是要扣分的,因为它不是定理.【例2】 设△ABC 和△DBC 所在的两个平面互相垂直,且AB=BC=BD ,∠ABC=∠DBC=120°.求:(1)直线AD 与平面BCD 所成角的大小;(2)异面直线AD 与BC 所成的角的大小;(3)二面角A-BD-C 的大小.思维入门指导:本题主要考查对空间三种角的“作一证一求”.在解题时要合理利用题中条件.解:(1)如图9-7-3所示,在平面ABC 内,过A 作AH ⊥BC ,垂足为H ,则AH ⊥平面DBC ,连结DH ,故∠ADH 为直线AD 与平面BCD 所成的角.由题设知,△AHB ≌△DHB ,则DH ⊥BH ,AH=DH.∴∠ADH=45°为所求.(2)∵BC ⊥DH ,且DH 为AD 在平面BCD 上的射影,∴BC ⊥AD ,故AD 与BC 所成的角为90°.(3)过H 作HR ⊥BD ,垂足为R ,连结AR ,则由三垂线定理知AR ⊥BD ,故∠ARH 为二面角A-BD-C 的平面角的补角.设BC=a ,则由题设得AH=DH=23a ,BH=21a ,BD=BC=a.在△HDB 中,求得HR=43a.∴tan ∠ARH=HR AH =2.故二面角A-BD-C 的大小为π-arctan2.点拨:本题是一道中档难度的立体几何综合题.这种试题命题的目的是考查立体几何重点知识,并且使之能覆盖较多的知识点.二、应用思维点拨【例3】 如图9-7-4所示,边长AC=3,BC=4,AB=5的三角形简易遮阳棚,其A ,B 是地面上南北方向两个定点,正西方向射出的太阳光线与地面成30°角.试问:遮阳棚ABC 与地面成多大角度时,才能保证遮影面ABD 面积最大?思维入门指导:太阳影子实质可理解为射影面积,从而本题可转化为二面角的有关问题进行探讨,那么首先应作出纯数学图形,结合图形进行分析求解.解:易知△ABC 为直角三角形,由C 点引AB 的垂线,垂足为Q ,连结DQ ,则应有DQ 为CQ 在地面上的斜射影,且AB 垂直于平面CQD ,如图9-7-5.∵太阳光与地面成30°角,∴∠CDQ=30°.在△ABC 中,可算得CQ=512,在△CQD 中,由正弦定理,有︒30sin CQ =QCD QD ∠sin .即QD=524sin ∠QCD.为了使平面ABD 的面积最大,需QD 最大,这只有当∠QCD=90°时才可达到.从而∠CQD=60°.故当遮阳棚ABC 与地面成60°角时,才能保证遮影面ABD 面积最大.点拨:从研究中可看出只有当遮阳棚所在平面与太阳光线垂直时,才能挡住最多的光线,被遮阳的地面面积才能获得最大值.利用这个结论,也很容易得出所求值为60°,参看图9-7-6.三、创新思维点拨【例4】 如图9-7-7,在四面体ABCD 中,AB=AD=3,BC=CD=3,AC=10,BD=2.(1)平面ABD 与平面BCD 是否垂直,证明你的结论;(2)求二面角A-CD-B 的正切值;(3)求异面直线BC 与AD 所成角的余弦值.思维入门指导:(1)判断垂直需要寻找符合面面垂直判定定理的条件.(2)(3)求空间的角要先转化为平面相交直线所成角,然后进行求解.解:(1)平面ABD ⊥平面BCD.证明如下:设BD 的中点为E ,连AE 、CE.∵AB=AD ,∴AE ⊥BD.同理CE ⊥BD.∴AE=22BE AB -=13-=2, CE=22BE BC -=19-=22. 又AC=10,∴AC 2=AF 2+CE 2.∴∠AEC=90°.∴AE ⊥EC.又AE ⊥BD ,∴AE ⊥平面BCD.又AE ⊂平面ABD ,∴平面ABD 上平面BCD.(2)作EF ⊥CD 于F ,连AF.∵AE ⊥平面BCD ,由三垂线定理得,AF ⊥CD ,∴∠AFE 就是二面角A-CD-B 的平面角,EF=ED ·sin ∠EDF=ED ·CD EC=1×322=322.∴tan ∠AFE=EF AE =3222=23.即二面角A-CD-B 的正切值为23.(3)解法一:取AB 的中点M ,AC 的中点N ,连MN 、ME 、NE.则ME ∥21AD ,MN ∥21BC. ∴∠NME 是异面直线BC 与AD 所成角或其补角.∵MN=21BC=23, ME=21AD=23, NE=21AC=210,由余弦定理,cos ∠NME=ME MN NE ME MN ∙-+2222=93>0.∴∠NME 为锐角.∴∠NME 就是异面直线BC 与AD 所成角,其余弦值为93.解法二:在平面BCD 内作□BCGD(如图9-7-8),连结AG ,则DG ∥BC ,∴∠ADG 是直线BC 与AD 所成角或者其补角.∵BD ∥CG ,EC ⊥BD ,∴EC ⊥CG.又∵AE ⊥平面BCD ,∴AC ⊥CG ,CG=BD=2,DG=BC=3.在Rt △ACG 中,AG=22CG AC +=14,cos ∠ADG=DG AD AG DG AD ∙-+2222=3321493∙-+=93.∴直线BC 与AD 所成角的余弦值为93.点拨:本题的(1)设问新颖,属开放式,增加了问题的灵活度,对空间想象能力、推理、判断能力要求更高,近年高考中像这样开放式设问题的试题较多,是高考命题的一个热点.本题的(3)求异面直线所成角,要化归为相交线所成角,解法一利用中位线性质将两异面直线所成角转化为相交直线所成角,解法二过一直线上一点作另一直线的平行线.应注意异面直线所成角一定是锐角或直角.四、高考思维点拨【例5】 (2002,河南、江苏)四棱锥P —ABCD 的底面是边长为a 的正方形PB ⊥面ABCD.(1)若面PAD 与面ABCD 所成的二面角为60°,求这个四棱锥的体积;(2)证明:无论四棱锥的高怎样变化,面PAD 与面PCD 所成的二面角恒大于90°. 思维入门指导:解答第(1)问,基本思路是寻找面PAD 与底面ABCD 所成的二面角的平面角,进而求棱锥的高和体积;也可以通过侧面△PDA 在底面的射影面积与二面角的关系求解;还可以补形为正四棱柱求解,但此法较繁琐.解答第(2)问,首先要找出面PAD 与面PCD 所成的二面角的平面角,也即找出一个垂直于PD 的平面,转化为在平面上研究该平面角的大小.(1)解法一:∵PB ⊥面ABCD ,∴BA 是PA 在面ABCD 上的射影.又DA ⊥AB ,∴PA ⊥DA.∴∠PAB 是面PAD 与面ABCD 所成的二面角的平面角.∴∠PAB=60°.而PB 是四棱锥P —ABCD 的高,PB=AB ·tan60°=3a ,∴V 锥=31·3a ·a 2=33a 3.解法二:如图9-7-9,∵PB ⊥面ABCD ,连结BD ,则△ABD 是△APD 在面ABCD 上的射影, ∴APD ABDS S △△=cos60°.又S △ABD =21a 2,∴S △APD =21212a =a 2.由PB ⊥AD ,AD ⊥AB ,得AD ⊥面PAB.∴AD ⊥AP.∴PA=AD S APD 21△=a a 212=2a.在Rt △PAB 中,PB=22)2(a a -=3a ,∵PB 是四棱推P —ABCD 的高,∴V 锥=31·3a ·a 2=33a 3. (2)证法一:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为全等三角形.作AE ⊥DP ,垂足为E ,连结EC ,如图9-7-10,则△ADE ≌△CDE ,∴AE=CE ,∠CED=90°.故∠CEA 是面PAD 与面PCD 所成的二面角的平面角.设AC 与DB 相交于点O ,连结E O ,则E O ⊥AC ,22a=O A <AE <AD=a ,且AD=2O A.在△AEC 中,cos ∠AEC=EC AE OA EC AE ∙∙-+2)2(222=2)2)(2(AE OA AE OA AE -+<0.所以,面PAD 与PCD所成的二面角恒大于90°.证法二:如图9-7-10,同证法一,得∠CEA 是面PAD 与面PCD 所成的二面角的平面角.设PB=h ,则PA 2=h 2+a 2,PD 2=h 2+2a 2.在Rt △PAD 中,AE=PD ADPA ∙=22222a h a h a ++. 在△AEC 中,∵AE=EC ,∴cos ∠AEC=EC AE AC EC AE ∙-+2222=222AE a AE -=1-22AE a =1-22222a h a h ++=-222a h a +<0.∴∠AEC 是钝角.即面PAD 与面PCD 所成的二面角恒大于90°.点拨:本题以《立体几何》课本的一道复习题为基础,通过题中某个元素的变动,导出某个“恒定”的结论,创设出一个新的问题,与课本的习题一气呵成,构成一个完美的题组,给人以完整、清新、自然的感觉,是一道颇具创意的试题.本题的第(1)题,出自于课本复习参考题九B 组第6组,它只改变问题的表述,并不改变问题的本质,考查线面、线线垂直关系的逻辑推理和解直角三角形、求棱锥体积的运算,是对考生的基本要求.五、经典类型题思维点拨【例6】 如图9-7-11,三棱柱O AB -O 1A 1B 1,平面O BB 1O 1⊥平面O AB ,∠O 1O B=60°,∠A O B=90°,且O B=OO 1=2, O A=3.求:二面角O 1-AB-O 的大小;思维入门指导:根据题意利用二面角的定义,找出二面角的平面角,运用解三角形的知识求出.解:取O B 的中点D ,连结O 1D ,则O 1D ⊥O B.∵平面O BB 1O 1⊥平面O AB ,∴O 1D ⊥平面O AB.过点D 作AB 的垂线,垂足为E ,连结O 1E ,则O 1E ⊥AB.∴∠DE O 1为二面角O 1-AB-O 的平面角.由题设得O 1D=3,sin ∠O BA=22OB OA OA +=721. ∴DE=DB ·sin ∠O BA=721.∵在Rt △O 1DE 中,tan ∠DE O 1=DE DO 1=7.∴∠DE O 1=arctan 7.即二面角O 1-AB-O 的大小为arctan 7.六、探究性学习点拨【例7】 在直角梯形ABCD 中,∠D=∠BAD=90°,AD=DC=21AB=a(如图9-7-12(1)),将△ADC 沿AC 折起,使D 到D ′,记面ACD ′为α,面ABC 为β,面BCD ′为λ.(1)若二面角α-AC-β为直二面角(如图9-7-12(2)),求二面角β-BC-λ的大小;(2)若二面角α-AC-β为60°(如图9-7-12(3)),求三棱锥D ′一ABC 的体积.思维入门指导:本题是一道由平面图形折叠形成的立体几何问题.主要考查空间想象力和图形对应关系,也考查了立体几何的常规计算——二面角计算和体积计算.解:(1)在直角梯形ABCD 中,由已知△DAC 为等腰直角三角形,∴AC=2a ,∠CAB=45°. 由AB=2a ,可推得BC=AC=2a ,∴AC ⊥BC.取AC 的中点E ,连结D ′E ,如图9-7-13,则D ′E ⊥AC.∵二面角α-AC-β为直二面角,∴D ′E ⊥β.又∵BC ⊂平面β,∴BC ⊥D ′E.∴BC ⊥α.而D ′C ⊂α,∴BC ⊥D ′C.∴∠D ′CA 为二面角β-BC-λ的平面角.由于∠D ′CA=45°,∴二面角β-BC-λ为45°.(2)如图9-7-14,取AC 的中点E ,连结D ′E ,再过D ′作D ′O ⊥β,垂足为O ,连结O E.∵AC ⊥D ′E ,∴AC ⊥O E.∴∠D ′E O 为二面角α-AC-β的平面角.∴∠D ′E O =60°.在Rt △D ′OE 中,D ′E=21AC=22a ,D ′O =D ′E ·sin60°=22a ·23=46a.∴V D ′-ABC =31S △ABC ·D ′O =31×21AC ·BC ·D ′O =61×2a ×2a ×46a=126a 3.点拨:本题立意简明,考查了空间图形的基本推理和运算,对于折叠问题,空间图形中大多数数据靠平面图形计算去赋值,这是解决这类问题的通常思考方法,题目难度中档,有一定的区分度.【强化练习题】A 卷:教材跟踪练习题 (60分 45分钟)一、选择题(每小题5分,共30分)1.在正三棱柱ABC -A 1B 1C 1中,若AB=2BB 1;则AB 1与C 1B 所成角的大小为( )A.60°B.90°C.105°D.75°2.直线l 与平面α斜交成n °角,则l 与α内任意直线所成角中,最小与最大的角分别是( )A.n °与90°B.180°-n °与n °C.n °与180°-n °D.以上都不是3.PA 、PB 、PC 是从P 点出发的三条射线,每两条射线的夹角均为60°,那么直线PC 与平面PAB 所成角的余弦值是( ) A.21 B.22C.33D.364.二面角α-AB-β的平面角是锐角,C 是面α内的一点(它不在棱AB 上),点D 是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任意一点,那么( )A.∠CEB=∠DEBB.∠CEB >∠DEBC.∠CEB <∠DEBD.∠CEB 与∠DEB 的大小关系不能确定5.在空间四边形ABCD 中,M 、N 分别为AB 、CD 的中点,且AD=4,BC=6,MN=19,则AD 与BC 所成角的余弦值和所成角分别为( ) A.-21,32π B.-21,3π C.21,3π D.21,32π6.已知a 、b 是异面直线,A ,B ∈α,A 1,B 1∈b ,AA 1⊥α,AA 1⊥b ,BB 1⊥b ,且AB=2,A1B1=1,则α与b所成的角等于()A.30°B.45°C.60°D.75°二、填空题(每小题4分,共16分)7.在正方体ABCD--A1B1C1D1中,BD1与平面A1B1C1D1所成角的正切值为________.8.AB∥平面α,AC⊥α于C,BD是α的斜线,D是斜足,若AC=9,BD=63,则BD与α所成的角为________.9.过一个平面的垂线和这个平面垂直的平面有________.10.一条长为a的线段夹在互相垂直的两平面之间,它和这两个平面所成角分别为45°和30°,由这线段的两个端点向两个平面引垂线,那么垂足间的距离是________.三、解答题(每小题7分,共14分)11.如图9-7-15,A是△BCD所在平面外一点,AB=AD,∠ABC=∠ADC=90°.E是BD的中点.求证:平面AEC⊥平面ABD,平面AEC⊥平面BDC.12.设E为正方体ABCD—A1B1C1D1的棱CC1的中点,求平面AB1E和底面A1B1C1D1所成角的余弦值.B卷:综合应用创新练习题(90分 90分钟)一、学科内综合题(10分)1.如图9-7-16,以正四棱锥V—ABCD底面中心O为坐标原点建立空间直角坐标系O一xyz,其中O x∥BC,O y∥AB,E为VC中点,正四棱锥底面边长为2a,高为h.(1)求cos<BE,DE>;(2)记面BCV为α,面DCV为β,若∠BED是二面角α-VC-β的平面角,求∠BED.二、应用题(10分)2.一个气象探测气球以14m/min的垂直分速度由地面上升,经过10min后,由观察点D测得气球在D的正东,仰角为45°;又过10min后,测得气球在D的北偏东60°,仰角为60°.若气球是直线运动,求风向与风速.三、创新题(60分)(一)教材变型题(10分)3.(P46习题9.7第4题变型)山坡与水平面成30°角,坡面上有一条与山底水平线成30°角的直线小路,某人沿小路上坡走了一段路程后升高了100米,则此人行走的路程为________.(二)一题多解(15分)4.如图9-7-17,在正方体ABCD-A1B1C1D1中,E、F分别为AA1、AB之中点,求EF和平面ACC1A1所成角的大小.(三)一题多变(15分)5.如图9-7-18,过正方形ABCD 的顶点A 作PA ⊥平面ABCD ,设PA=AB=a. ①求二面角B-PC-D 的大小;②求平面PAB 和平面PCD 所成二面角的大小.(1)一变:四边形ABCD 是菱形,且∠ABC=60°,其他条件不变,求二面角B-PC-D 的大小.(四)新解法题(1O 分)6.△ABC 的边BC 在平面α内,A 在平面α上的射影为A ′,当∠BAC=60°,AB 、AC 与平面α所成角分别为30°和45°时,求cos ∠BA ′C 的值.(五)新情境题(10分)7.如图9-7-19,在底面是直角梯形的四棱锥S -ABCD 中,∠ABC=90°,SA ⊥面ABCD ,SA=AB=BC=1,AD=21.(1)求四棱锥S —ABCD 的体积;(2)求面SCD 与面SBA 所成的二面角的正切值. 四、高考题(10分)8.(2001,京、蒙、皖春)已知VC 是△ABC 所在平面外的一条斜线,点N 是V 在平面ABC 上的射影,如图9-7-20,且在△ABC 的高CD 上,AB=a ,VC 与AB 之间的距离为h ,点M ∈VC.(1)求证:∠MDC 是二面角M-AB-C 的平面角; (2)当∠MDE=∠CVN 时,求证:VC ⊥平面AMB ;(3)若∠MDC=∠CVN=θ(0<θ<2π),求四面体MABC 的体积.加试题:竞赛趣味题(10分)已知正方体ABCD -A ′B ′C ′D ′的棱长为1,在AC 上取一点P ,过P 、A ′,B ′三点作的平面与底面所成二面角为α,过P 、B ′、C ′三点作的平面与底面所成的二面角为β,求α+β的最小值.【课外阅读】巧用向量法求空间角众所周知,解决立体几何问题,“平移是手段,垂直是关键”,向量的运算中:两向量的共线易解决平行问题,向量的数量积则易解决垂直、两向量所成角及线段的长度等问题.一般来说,当掌握了用向量的方法解决立体几何问题这套强有力的工具时,应该说不仅会降低学习的难度,而且增强了可操作性,为学生提供了崭新的视角,丰富了思维结构,消除了学生对立体几何学习所产生的畏惧心理,更有利于新课改、新理念、新教材的教学实验.本文主要是谈利用向量法求解空间角的问题.角这一几何量本质上是对直线与平面位置关系的定量分析,其中转化的思想十分重要,三种空间角都可转化为平面角来计算,可以进一步转化为向量的夹角求解.1.求两条异面直线所成的角异面直线所成的角α利用与它们平行的向量,转化为向量的夹角θ问题,但θ∈[0,π],α∈(0,2π],所以cos α=|cos θ|=ba ba ∙.【例1】 (2002,上海春季)如图9-7-21,三校柱O AB —O 1A 1B I ,平面O B 1⊥平面O AB ,∠O 1O B=60°,∠A O B=90°,且O B=OO 1=2,O A=3,求异面直线A 1B 与A O 1所成角的大小.思维入门指导:用平移A 1B 或A O 1的方法求解,是很困难的,于是我们很自然地想到向量法求解.充分利用∠A O B=90°,建立空间直角坐标系,写出有关点及向量的坐标,将几何问题转化为代数问题计算.解:建立如图9-7-21所示的空间直角坐标系,则O (0,0,0),O 1(0,1,3),A(3,0,0),A 1(3,13),B (0,2,0).∴B A 1=OB -1OA =(-3,1,-3),1OA =OA -1OO =(3,-1,3).设异面直线所成的角为α,则cos α=71.故异面直线A 1B 与A O 1所成的角的大小为arccos 71.点拨:(1)以向量为工具,利用空间向量的坐标表示,空间向量的数量积计算公式,异面直线所成角问题思路自然,解法灵活简便;(2)也可以直接用自由向量OA =a ,OB =b ,1OO =c 表示1OA 与A 1,然后再来解.2.求直线与平面所成的角在求平面的斜线与平面所成的角时,一般有两种思考的途径,如图9-7-22,一种是按定义得∠P O H=<OP ,OH >;另一种方法是利用法向量知识,如图9-7-22,平面α的法向量为n ,先求OP 与n 的夹角,注意P O 与α所成角θ与<OP ,n >的关系,于是就有sin θ=|cos<OP ,n>|.【例2】 (2002,天津、山西、江西)如图9-7-23,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求直线AC 1与侧面AB 1所成的角的大小.思维入门指导:利用正三棱柱的性质,建立适当的空间直角坐标系,写出有关点的坐标,求角时有两种思路,一是由定义找出线面角,取A 1B 1中点M ,连结C 1M ,证明∠C 1AM 是AC 1与面A 1B 所成的角;另一种是利用平面AB 1的法向量n =(λ,x ,y ),求解.解法一:建立如图9-7-23所示的空间直角坐标系,则A(0,0,0),B(0,a ,0),A 1(0,0,2a),C 1(-23a ,2a ,2a),取A 1B 1中点M ,则M(0,2a ,2a),连结AM ,MC 1,有1MC =(-23a ,0,0),=(0,a ,0),1AA =(0,0,2a).由于1MC ·AB =0,1MC ·1AA =0,∴MC 1⊥面AB 1.∴∠C 1AM 是AC 1与侧面AB 1所成的角θ.∵1AC =(-23a ,2a ,2a),AM =(0,2a ,2a),∴1AC ·AM =0+42a +2a 2=492a .而|1AC |=2222443a a a ++=3a ,||=2224a a +=23a ,∴cos<1AC ,AM >=233492a a a ∙=23.∴<1AC ,>=30°,即AC 1与侧面AB 1所成的角为30°.解法二(法向量法):(接法一)1AA =(0,0,2a ).设侧面A 1B 的法向量n =(λ,x ,y).所以n ·AB =0,且n ·1AA =0,∴ax=0,且2ay=0.∴x=y=0,故n =(λ,0,0).∵1AC =(-23a ,2a ,2a),∴cos<1AC ,n >=1=a a 3||23∙∙-λλ=-||2λλ.∴sin θ=|cos<1AC ,n >|=21.∴θ=30°.点拨:充分利用图形的几何特征建立适当的空间直角坐标系.再用向量有关知识求解线面角.解法二给出了一般的方法,先求平面法向量与斜线夹角,再进行换算.3.求二面角利用向量法求二面角的平面角有两种途径,一是根据二面角的平面角的定义,如图9-7-24,AB ⊥l ,CD ⊥l ,AB ⊂α,CD ⊂β,则二面角α- l -β的大小为<AB ,CD >.另一种方法是利用两平面的法向量的夹角求解,但应注意法向量n 1、n 2的夹角与二面角的大小是相等或互补的.【例3】 (2001,全国)如图9-7-25,在底面是一直角梯形的四棱锥S 一ABCD 中,AD∥BC ,∠ABC=90°,SA ⊥平面AC ,SA=AB=BC=1,AD=21,求面SCD 与面SBA 所成的角.思维入门指导:本题是“无棱”的二面角,利用向量法求二面角大小更显示了向量工具的魅力.抓住AD 、AB 、AS 两两互相垂直建立坐标系,用待定系数法求出面SAB 、面SCD 的法向量,再求其夹角.解:如图9-7-25,建立空间直角坐标系,则A(0,0,0),B(0,1,0),C(1,1,0),D(21,0,0),S(0,1,0),得DC =(21,1,0),SD =(21,0,-1),SC =(1,1,-1).设平面SDC 的法向量为n 1=(x 1,y 1,z 1).∵n 1⊥面SDC ,∴n 1⊥DC ,n 1⊥SD ,n 1⊥SC .设平面SAB 的法向量为n 2=(x 2,y 2,z 2),则 SA =(0,0,-1),SB =(0,-1,1).∴⎪⎩⎪⎨⎧=∙=∙.0,022SA n n ∴⎩⎨⎧=+-=-.0,0222z y z∴x 2=y 2=0.∴n 2=(x 2,0,0). ∴cos<n 1,n 2>=||||2121n n n n ∙=||414100221212121x x x x x x ∙++++=||322121x x x x =±36.∵面SAB 与面SCD 所成角的二面角为锐角θ,∴cos θ=|cos<n 1,n 2>|=32=36. ∴θ=arccos 36.故面SCD 与面SBA 所成的角大小为arccos 36.点拨:本题考查了空间向量的坐标表示,空间向量的数量积,空间向量垂直的充要条件,空间向量的夹角公式和直线与平面垂直的判定,考查了学生的运算能力,综合运用所学知识解决问题的能力.参考答案A 卷一、1.B 点拨:如答图9-7-1建立空间直角坐标系O 一xyz.设高为h ,则AB=2h ,可得A(0,-22h ,h),B(0,22h ,h),B 1(0,22h ,0),C 1(26h ,0,0).则1AB =(0,2h ,-h),1BC =(26h ,-22h ,-h). ∵1AB ·1BC =O ×26h+2h ·(-22h)+h 2=0,∴1AB ⊥1BC .2.A 点拨:直线与平面斜交时,斜线和面所成角是斜线与面内所有直线所成角中最小的,且最大角为直角.3.C 点拨:构造正方体如答图9-7-2所示,过点C 作C O ⊥平面PAB ,垂足为O ,则O 是正△ABP 的中心,于是∠CP O 为PC 与平面PAB 所成的角.设PC=a ,则P O =32PD=33a.故cos ∠CP O =PC PO=33.4.B 点拨:结合图形,可先比较tan ∠CEB 与tan ∠DEB 的大小,即可得到答案.5.C 点拨:取BD 的中点P ,连PM 、PN ,则PM=2,PN=3,然后用余弦定理可求得.6.C二、7.22点拨:如答图9-7-3,连结B 1D 1,则∠B 1D 1B 为BD 1与面A 1B 1C 1D 1所成角,tan∠B 1DB=111D B BB =22.8.3π点拨:过B 作BE ⊥α,垂足为E ,如答图9-7-4,连结DE ,则∠BDE 为直线BD 与α所成角.在Rt △BED 中易知∠BDE=60°.9.无数个 点拨:由直线和平面垂直的判定定理可知满足条件有无数个.10.2a三、11.证明:∵AB=AD ,∠ABC=∠ADC=90°,AC=AC , ∴Rt △ABC ≌Rt △ADC.∴BC=CD. 又∵E 为BD 的中点,∴CE ⊥BD.又AB=AD ,且E 为BD 的中点,∴AE ⊥BD ,则BD ⊥平面ACE.又BD ⊂平面ABD ,BD ⊂平面BCD ,∴平面ABD ⊥平面AEC ,平面BDC ⊥平面AEC. 点拨:本题关键证明BD ⊥面ACE.12.解:如答图9-7-5,设正方体的棱长为a ,在△AB 1E 中,AB 1=2a ,B 1E=25a ,AE=23a.∴cos ∠AB 1E=E B AB AE E B AB 11221212∙∙-+=aa a a a 252249452222∙∙-+=1010.∴sin ∠AB 1E=10103.∴S E AB 1△=21·AB 1·B 1E ·sin ∠AB 1E=21×2a ·25a ×10103=43a 2.又S 111C B A △=21·a ·a=21a 2,∴cos θ=E AB C B A S S 1111△△=224321a a =32. 即平面AB 1E 与底面A 1B 1C 1D 1所成角的余弦值为32.B 卷一、1.解:(1)依题意,B(a ,a ,0),C(-a ,a ,0),D(-a ,-a ,0),E(-2a ,2a ,2h),∴=(-23a ,-2a ,2h ),=(2a ,23a ,2h).∴BE ·DE =(-23a ·2a )+(-2a ·23a )+2h ·2h =-232a +42h ,||=222)2()2()23(h a a +-+-=221021h a +,|DE |=222)2()2()23(h a a ++=221021h a +.由向量的数量积公式,有cos<BE ,DE >==22222210211021423h a h a h a +∙++-=2222106h a h a ++-.(2)∵∠BED 是二面角α-VC-β的平面角, ∴BE ⊥CV ,即有BE ·CV =0.又由C (-a ,a ,0),V (0,0,h ),得CV =(a ,-a ,h),且=(-23a ,-2a ,2h), ∴BE ·=-23a +22a +22h =0.即h=a 2,此时有cos<BE ·DE >=2222106h a h a ++-=2222)2(10)2(6a a a a ++-=-31,∴∠BED=<,>=arccos(-31)=π-arccos 31.点拨:应用空间向量注意坐标系的建立及点的坐标的确定. 二、2.解:以水平放置的平面α的地面,根据题意画出空间图形如答图9-7-6所示.10min 后气球位置为A ,又10min 后气球位置为B ,A 、B 在平面α的射影分别为A 1、B 1,且AA 1=14×10=140(m),BB 1=14×20=280(m),∠A 1DB 1=30°,∠A 1DA=45°,∠B 1DB=60°,于是,得A 1D=A 1A=140m ,B 1D=B 1Bcot60°=3280(m). 在△A 1DB 1中,A 1B 21=1402+(3280)2-2·140·3280·23=31402(m). 因此,风速为1011B A =3314(m/min).∵B 1D 2=A 1D 2+A 1B 21,∴∠DA 1B 1=90°. 故风向为正北. 点拨:要使问题得以解决,其关键在于能否建立起一个能表示观察点D 与该气球的相对位置之间关系的几何模型,因为有了几何模型我们就能根据其立体图形进行相关的计算,求。
直线与平面所成的角-教学课件
目录
直线与平面所成的角的基本概念 直线与平面所成的角的计算方法 直线与平面所成的角的实际应用 常见问题解答
01
CHAPTER
直线与平面所成的角的基本概念
直线与平面没有交点,即直线完全位于平面之外。
直线与平面平行
直线与平面有一个交点,即直线的一部分位于平面之内。
直线与平面相交
建筑学中的应用
机械设计
在机械设计中,直线与平面所成的角对于确定机器的运转效率和精度至关重要。例如,在确定机器的旋转轴、导轨和传动装置的角度时,需要考虑这些角度。
制造工艺
在制造工艺中,直线与平面所成的角可以帮助工程师确定零件的加工精度和装配质量。例如,在加工和装配机械零件时,需要考虑这些角度。
机械工程中的应用
利用几何性质计算直线与平面所成的角
03
CHAPTER
直线与平面所成的角的实际应用
建筑设计
在建筑设计中,直线与平面所成的角对于确定建筑物的外观、结构和稳定性至关重要。例如,在确定建筑物的倾斜角度、屋顶的排水方向和建筑物的日照效果时,需要考虑这些角度。
结构分析
在建筑结构分析中,直线与平面所成的角可以帮助工程师确定结构的稳定性。例如,在分析建筑物在不同方向上的受力情况时,需要考虑这些角度。
在电路设计中,直线与平面所成的角对于确定电子元件的连接方式和信号传输质量至关重要。例如,在确定电路板上的线路角度和元件布局时,需要考虑这些角度。
电路设计
在通信工程中,直线与平面所成的角可以帮助工程师确定信号的传输方向和覆盖范围。例如,在确定天线的设计和安装角度时,需要考虑这些角度。
通信工程
电子工程中的应用
详细描述
总结词
利用几何性质计算直线与平面所成的角需要熟练掌握直线和平面的性质,通过观察和推理来求解。
直线和面所成角的正弦值公式
直线和面所成角的正弦值公式。
一、直线和面所成角的正弦值公式
直线和面所成角的正弦值公式是一种常用化学方程式,可以用来表示两个直线之间或两个平面之间所形成的夹角的正弦值,也就是说这个公式可以用来测量两个给定的直线或平面之间的夹角的大小。
直线和面所成角的正弦值公式的表达式可以表示如下:
sinθ=|AB|/|AB x AC|
其中,θ表示两个直线之间或两个平面之间形成的夹角的大小;AB和AC分别表示两个平面或两个直线的法向量;|AB|表示AB的模;|AB x AC|表示AB和AC之间的叉积,也就是AB和AC的向量积。
由于直线和面所成角的正弦值公式是一种物理学上的几何公式,因此它可以用来表示任意两个平面或者直线之间形成的夹角的正弦值。
例如,当AB和AC分别是给定的两个平面的法向量时,即可以通过上面的公式来计算出两个平面之间形成的夹角的正弦值,从而得到两个平面之间的夹角的大小。
同样地,当AB和AC分别是给定的两个直线的法向量时,也可以通过上述正弦值公式来计算出两个直线之间形
成的夹角的正弦值,从而得到两个直线之间的夹角的大小。
此外,在应用直线和面所成角的正弦值公式时,还需要注意一些其他的问题。
首先,在使用正弦值公式前,必须确保AB和AC所代表的两个平面或者直线都是有效的,即这两个平面或直线不能是平行的。
其次,当计算夹角的正弦值时,必须确定AB和AC的叉乘结果的正负号,以确定夹角的正弦值的正负号。
总之,直线和面所成角的正弦值公式是一种有效的几何公式,可以用来测量任意两个平面或者直线之间形成的夹角的大小。
它可以帮助我们更好地理解物理学中的几何结构,并使用它来求解物理学中的几何问题。
直线和平面所成的角与二面角
1、斜线和平面的夹角
一个平面的斜线和它在这 个平面内的射影的线和平面垂直,那 么就说直线和平面所成的角是 直角;如果直线和平面平行或 在平面内,那么说直线和平面 所成的角是00的角。
cos =cos1cos 2
平面的斜线和它在平面内 的射影的所成的角,是这条斜线 和这个平面内任一条直线所成的 角中最小的角。
(2)SC与平面ABC所成角的正弦值。
例1、已知AB为平面 的一条斜线,
AO , O为垂足, B为斜足,
BC为
ABC 60, 内的一条直线,
OBC 45
平面
,求斜线AB和
所成的角。
例2、四面体S-ABC中,SA、SB、SC 两两垂直,SAB 45, SBC 60,求: (1)BC与平面SAB所成的角;
直线与平面所成的角的余弦值
直线与平面所成的角的余弦值
直线与平面所成的角的余弦值可以通过向量的点乘和模的乘积来计算。
设直线的方向向量为a,平面的法向量为n,则直线与平面所成的角的余弦值为它们的点乘除以它们的模的乘积的绝对值,即cosθ = |a·n| / (|a| |n|)。
其中,|a·n|表示a和n的点乘,|a|表示向量a的模,|n|表示向量n的模。
这个公式可以帮助我们计算直线与平面所成角的余弦值。
另外,如果已知直线的方向向量a和平面的法向量n的具体数值,可以直接代入公式进行计算。
这样我们就可以得到直线与平面所成角的余弦值。
当然,还可以通过其他方法来计算直线与平面所成角的余弦值,比如利用向量和坐标的关系进行计算。
总之,通过适当的方法和公式,我们可以准确地计算出直线与平面所成角的余弦值。
直线和平面所成的角最新
3. 直三棱柱 直三棱柱ABC-A1B1C1中, A1A=2,∠BAC = 900 AB=AC=1, 则AC1与截面 1CC1所成角的余弦 与截面BB 值为_________ . 值为
布置作业:
• 习题2-5 • 第三题 • 补充题如下:
练习: 练习 =(4,5,3),则平面 1、已知 AB =(2,2,1), AC =(4,5,3),则平面 ABC的一个法向量是 的一个法向量是______ ABC的一个法向量是______ . 2、如果平面的一条斜线与它在这个平面上的射 a b 影的方向向量分别是 =(1,0,1), =(0,1, ),那么这条斜线与平面所成的角是 那么这条斜线与平面所成的角是______ 1),那么这条斜线与平面所成的角是______ .
θ
= n , s −
P l A
θ
B
π
结论: sinθ = cos n, s
2
例一:在单位正方体 ABCD − A B C D 1 1 1 1 中,求对角线 A1C 与平面ABCD的夹 角 θ 的正弦值。
A1 B1
A
z
D1
C1
D C
y
x
B
练习: 正方体 ABCD − A1 B1C1 D1 的棱长为1.
P l α A B
博爱县第二中学:张勋福 博爱县第二中学:
回顾
一、线线角: 线线角:
直线与直线所成角的范围: 直线与直线所成角的范围:
[0, ] 2
π
线线夹角与两线方向向量间的关系: 线线夹角与两线方向向量间的关系:
设直线CD的方向向量为a,AB的方向向量为b
θ
b
a
a
θ= a, b
|
θ =π − a , b
高中数学例题:直线和平面所成的角
高中数学例题:直线和平面所成的角例5.如图,三棱锥A-SBC 中,∠BSC=90°,∠ASB=∠ASC=60°,SA=SB=SC 。
求直线AS 与平面SBC 所成的角。
【思路点拨】确定AS 在平面SBC 上的射影是关键,即找过点A 的平面SBC 的垂线。
因为∠ASB=∠ASC=60°,SA=SB=SC ,所以△ASB 与△ASC 都是等边三角形。
因此,AB=AC 。
【解析】取BC 的中点D ,连接AD ,SD ,则AD ⊥BC 。
设SA=a ,则在Rt △SBC 中,BC =,CD SD ==。
在Rt △ADC 中,2AD ==,则AD 2+SD 2=SA 2,所以AD ⊥SD 。
又BC ∩SD=D ,所以AD ⊥平面SBC 。
因此,∠ASD 即为直线AS 与平面SBC 所成的角。
在Rt △ASD 中,2SD AD a ==,所以∠ASD=45°,即直线AS 与平面SBC 所成的角为45°。
【总结升华】求直线与平面所成的角的步骤:作角,即作出或找到斜线与它的射影所成的角;证角,即证明所作的角即为所求;求角,求角或角的三角函数值。
其中作角是关键,而确定斜线在平面内的射影是作角的突破口。
举一反三:【变式1】 (1)正方体ABCD —A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为( )A .3B .3C .23D .3 (2)已知三棱锥S —ABC 中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA=3,那么直线AB 与平面SBC 所成角的正弦值为( )A B C D .34【答案】(1)D (2)D。
直线和平面所成的角教案
课题:直线和平面所成的角一、复习提问一)直线和平面的位置关系有哪几种二)平面的斜线及斜线在平面内的射影的定义:平面的垂线:垂直于平面的直线。
P平面的斜线:与平面相交但不垂直的直线。
AO射影:过垂足和斜足的直线叫做斜线在平面上的射影。
二、问题引入:若直线与平面相交,则这条斜线和这个平面内任一直线所成的角中最小的角是哪一只三、重要结论 :平面的斜线和它在平面内的射影所成的角, 是这条斜线和这个平面内任一直线所成的角中最小的角 .四、直线和平面所成的角一)斜线和平面所成的角的概念一个平面的斜线和它在这个平面内的射影的夹角叫做斜线和平面所成的角二)规定:(1)如果直线和平面垂直,就说直线和平面所成的角是直角 .(2)如果直线和平面平行或在平面内,就说直线和平面所成角是强调:直线和平面所成的角的范围是:0 ,90.三)线面角求法: 直线与平面所成的角,一般先确定直线与平面的交点(斜足),然后在直线上取一点(除斜足外)作平面的垂线,再连接垂足和斜足(即得直接在平面内的射影) ,最后解由垂线、斜线、射影所组成 P 的直角三角形,求出直线与平面所成的角。
步骤:“一作”、“二证”、“三解”;关键:确定斜线在平面内的射影;思考: 两条直线和一个平面所成的角相等,这两条直线一定平行吗QP 1五、例题精讲:例 1:在单位正方体 ABCD A 1B 1C 1 D 1 中,试求直线 BD 1 与平面 ABCD 所成的正弦角 .D 1C例 2:在正方体 ABCD —A 1 1 1D 1中,求:1B C A1 D 1 B 1直线 A 1B 和平面 A 1B 1CD 所成的角;C 1例 3.已知 PA ⊥矩形 ABCD 所在的平面, M 、N 分别是 AB 、A 1DCD B 1CPC 的中点,AB且PA AD 3,AB 2,DCAB0 的角.求直线MN与平面ABCD所成角;例 4:求正四面体的侧棱与底面所成角的正弦值。
A六、课堂小结:一)直线和平面所成角的定义及其合理性 .二)初步掌握求直线和平面所成角的方法步骤:①作(找)出角;②证明(认定)角;③(在BD 三角形中)求出角 .C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.4.4斜线在平面内的射影 9.4.5直线和平面所成的角
四.斜线在平面内的射影
p
1.垂线、斜线、射影
(1)垂线
Q
过一点向平面引垂线,垂足叫做这
点在这个平面上的射影;
这点与垂足间的线段叫做这点到这 个平面的垂线段。
如图,点Q是_点_P_在_平_面_ 内_的_射_影_ _线_段_PQ_是点P到平面 的垂线段
是__A_B_、__A_C__在_平__面___内__的__射__影_,则有
OB=OC AB=AC
A
OB>OC AB >AC
AB=AC OB=OC AB >AC OB>OC
B
O
C
A
2.射影定理
从平面外一点向
这个平面所引的垂线
O
C
段和斜线段中, B
(1)射影相等的两条斜线段相等,射 影较长的斜线段也较长
BO是AO在内 的 射 影
AOB是AO与所成的角 O
B
说明:
①一条直线垂直与平面,它们所成的角 是直角;
②一条直线和平面平行,或在平面内, 它们所成的角是0 的角。
③直线和平面所成角的范围是[0,90]
l是平面 的斜线,点O是斜足,A是l 上任意一点,AB是平面 的垂线,B是垂 足,直线OB是l在内的射影, ∠AOB (记作θ)是l与平面 所成的角.
(2)相等的斜线段的射影相等,较长 的斜线段的射影也较长
(3)垂线段比任何一条斜线段都短
练习
1.点P是△ABC所在平面外一点,且P点到 △ABC三个顶点距离相等,则P点在△ABC
所在平面上的射影是△ABC的_外 心。
P
A
C
O
B
练习
2.判断下列说法是否正确
(1)两条平行直线在同一平面内的射影一
定是平行直线
()
(2)两条相交直线在同一平面内的射影
一定是相交直线
()
(3)两条异面直线在同一平面内的射影要 么是平行直线,要么是相交直线 ( )
(4)若斜线段长相等,则它们在平面内的
射影长也相等
()
五.直线和平面所成的角
1.定义
平面的一条斜线和它在平面内的射影
所成的锐角,叫做这条直线和这个平面所
成的角。
A
AB
说明:②斜线上 任意一点在平面 上的射影,一定 在斜线的射影上。
A
E
BC
F
思考:
①从平面外一点向这个平面引的垂线段 和斜线段,它们的射影和线段本身之间 有什么关系?
②从平面外一点向这个平面所引的垂线 段和斜线段AB、AC、AD、AE…中,那 一条最短?
A
几何画板测量
BC
E
D
如图,AO是平面 的垂线段,AB、 AC是平面 的斜线段, OB、OC分别
(2)斜线
一条直线和一个平面相交,但不和
这个平面垂直,这条直线叫做这个平面
的斜线.
P
斜线和平面的交点
叫做斜足。
从平面外一点向平 面引斜线,这点与斜
R
足间的线段叫做这点
到这个平面的斜线段
思考:平面外一点到一个平面的垂线段有 几条?斜线段有几条?
说明:①平面外一
P
点到这个平面的垂
线段有且只有一条,
而这点到这个平面 的斜线段有无数条
所成的锐角,叫做这条直线和这个平面所
成的角。
A
AB
BO是AO在内 的 射 影
AOB是AO与所成的角ห้องสมุดไป่ตู้ O
B
2、定理及推论
2.定理: 斜线和平面所成的角,是这条 斜线和平面内经过斜足的直线所成的一切 角中最小的角。
推论:斜线和平面所成的角,是这条 斜线和平面内任意的直线所成的一切 角中最小的角。
OD是 内不同于OB的
Al
任一直线,过点A引AC
垂直于OD,垂足为C.
θ与∠AOD的大 小关系如何?
O
B
CD
2斜θ与线.定∠和理AO平:D面的斜内大线小经和关过平系斜面如足何所的?成直的线角所,成是的这一条切
角中最小的角。 Al
O
B
CD
平拓在si面nR展t所△:A成斜AAOOB的B线中角和,, 是在这Rt 条△斜AO线C中和,平 面si内n任AO意D的 直AC线 所∵A成B<的A一C,切角AO中 最∴s小inθ的<角sin∠。AOD
T
Q
RS
(3)射影
过斜线上斜足以外的一点向平面引 垂线,过垂足和斜足的直线叫做斜线在 这个平面上的射影.
垂足与斜足间的线段叫做这点到平
面的斜线段在这个平面上的射影.
A 如图:直_线_B_C_是斜线AC
在 内的射影,线段BC是
BC
_斜_线_段_AC_在__内_的_射_影_
思考:斜线上的一个点在平面上的射 影会在哪呢?
∴θ<∠AOD
例1.如图,AO是平面π的斜线,AB ⊥ 平面π于B,OD是π内不与OB重合的直 线,∠AOB= ,∠BOD= , ∠AOD= ,求证:cos =cos cos
A
O
B
CD
例2.在正方体ABCD-A1B1C1D1中, 求A1B与平面BB1D1D所成的角
小结
一、斜线在平面内的射影 1、垂线、斜线、射影
2、射影定理
2.射影定理
A
从平面外一点向
这个平面所引的垂线
段和斜线段中,
OC B
(1)射影相等的两条斜线段相等,射 影较长的斜线段也较长
(2)相等的斜线段的射影相等,较长 的斜线段的射影也较长
(3)垂线段比任何一条斜线段都短
二、直线和平面所成的角
1、定义
1.直线和平面所成的角定义
平面的一条斜线和它在平面内的射影