二次函数知识点归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数知识点归纳
一.二次函数的一般形式:y=ax2+bx+c(a≠0)。强调a≠0.
二.性质
1.
2.y=ax2+c
3.y=a(x-h)2+k
4.
注:顶点在y轴上无一次项(或顶点的横坐标为0):顶点在x轴上函数是一个完全平方式(或顶点的纵坐标为0)
三.二次函数的三种形式:1.当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。2.当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。3.当已知抛物线与x轴的交点或交点横坐标时,通常设为
交点式y =a(x -x 1)(x -x 2)
四.平移
五.如何将实际问题转化为二次函数问题,从而利用二次函数的性质解决最大利润问题,最大面积问题。
练习
1.已知函数4m m 2
x )2m (y -++=是关于x 的二次函数,求:(1)满足条件的m 值;
(2)m 为何值时,抛物线有最低点?求出这个最低点.这时当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,函数有最大值?最大值是什么?这时当x 为何值时,y 随x 的增大而减小?
2.抛物线y =x 2+bx +c 的图象向左平移2个单位。再向上平移3个单位,得抛物线y =x 2-2x +1,求:b 与c 的值。
3.通过配方,求抛物线y =12
x 2-4x +5的开口方向、对称轴及顶点坐标,再画出图象。
4.根据下列条件,求出二次函数的解析式。
(1)抛物线y =ax 2+bx +c 经过点(0,1),(1,3),(-1,1)三点。
(2)抛物线顶点P(-1,-8),且过点A(0,-6)。
(3)已知二次函数y =ax 2+bx +c 的图象过(3,0),(2,-3)两点,并且以x =1为对称轴。 (4)已知二次函数y =ax 2+bx +c 的图象经过一次函数y =-
2
3x +3的图象与x 轴、y 轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y =a(x -h)2+k 的形式。
5.如图,已知直线AB 经过x 轴上的点A(2,0),且与抛物线y =ax 2相交于B 、C 两点,已知B 点坐标为(1,1)。 (1)求直线和抛物线的解析式; (2)如果D 为抛物线上一点,使得△AOD 与△OBC 的面积相等,求D
点坐标。
6.如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C。
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标,
(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标。
7. 如果一条抛物线的形状与y=-1
3
x2+2的形状
相同,且顶点坐标是(4,-2),则它的解析式是_____。
8.开口向上的抛物线y=a(x+2)(x-8)与x轴交于A、B两点,与y轴交于C 点,若∠ACB=90°,则a=_____。
9.已知抛物线y=ax2+bx+c的对称轴为x=2,且过(3,0),则a+b+c=
______。
10.如图(1),二次函数y=ax2+bx+c图象如图所示,则下列结论成立的是( )
A.a>0,bc>0 B. a<0,bc<0 C. a>O,bc<O D. a<0,bc >0
11.已知二次函数y=ax2+bx+c图象如图(2)所示,那么函数解析式为( ) A.y=-x2+2x+3 B. y=x2-2x-3
C.y=-x2-2x+3 D. y=-x2-2x-3
12.若二次函数y=ax2+c,当x取x
1、x
2
(x
1
≠x
2
)时,函数值相等,则当x取
x 1+x
2
时,函数值为( )
A.a+c B. a-c C.-c D. c
13.已知二次函数y=ax2+bx+c图象如图(3)所示,下列结论中:①abc>0,②b=2a;③a+b+c<0,④a-b+c>0,正确的个数是( )
A.4个 B.3个 C. 2个 D.1个
14、解答题。
已知抛物线y=x2-(2m-1)x+m2-m-2。
(1)证明抛物线与x轴有两个不相同的交点,
(2)分别求出抛物线与x轴交点A、B的横坐标x
A 、x
B
,以及与y轴的交点的
纵坐标yc(用含m的代数式表示)
(3)设△ABC的面积为6,且A、B两点在y轴的同侧,求抛物线的解析式。
15.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售
量y(件)与销售单价x(元/件)可近似看做—次函数y=kx+
b的关系,如图所示。
(1)根据图象,求一次函数y=kx+b的表达式,
(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,①试用销售单价x表示毛利润S;②试问销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时的销售量是多少?
16.某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形的边长为x,面积为S平方米。
(1)求出S与x之间的函数关系式;
(2)请你设计一个方案,使获得的设计费最多,并求出这个设计费用;
(3)为了使广告牌美观、大方,要求做成黄金矩形,请你按要求设计,并计算出可获得的设计费是多少?(精确到元) (参与资料:①当矩形的长是宽与(长+宽)的比例中项时,这样的矩形叫做黄金矩形,②5≈2.236)
17.如图,有长为24米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可使用长度a=10米)。
(1)如果所围成的花圃的面积为45平方米,试求宽AB的长;
(2)按题目的设计要求,能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法,如果不能请说明
理由.