湖南师范大学基础数学专业考研
2020年湖南师范大学605高等数学基础考研专业课考试大纲(含参考书目)

湖南师范大学硕士研究生入学考试自命题考试大纲
(含参考书目清单)
考试科目代码:[605] 考试科目名称:高等数学基础
一、考试形式与试卷结构
1)试卷成绩及考试时间:
本试卷满分为150分,考试时间为180分钟。
2)答题方式:闭卷、笔试
3)试卷内容结构
各部分内容分值比重为:
函数与极限10%
一元函数的微积分 20%
多元函数微积分 20%
无穷级数 10%
行列式10%
矩阵 10%
向量组 20%
4)题型结构
a: 计算题,9小题,每小题10分,共90分
b: 应用题,2小题,每小题15分,共30分
c: 证明题,2小题,每小题15分,共30分
二、考试内容与考试要求。
湖南师大数学培养方案

基础数学专业硕士研究生培养方案一、培养目标本专业主要培养从事数学基础理论及应用研究和教学的高层次人才;要求学生掌基础数学领域的基础知识、具有宽广的知识面,并深入了解某一子学科的专业知识;能熟练地掌握一门外国语;身体健康;毕业后能独立地从事教学、科研及其它实际工作。
二、本专业总体慨况、优势与特色基础数学(Pure Mathematics)是数学学科的基础和核心部分,它不仅是其它数学学科的基础,而且也是自然科学、技术科学和社会科学等必不可少的语言、工具和方法,同时高科技的发展和计算机的广泛应用也为基础数学的研究提供了更广阔的发展前景。
我校具有数学一级学科博士学位授予权,具有数学博士后流动站。
在代数、函数论、微分方程、组合数学、拓扑学等领域具有很好的研究基础。
各方向都建立了一支年龄机构合理、研究水平高、稳定的研究队伍,各方向均取得了许多重要的科研成果。
三、本专业研究方向及简介1. 代数学2. 函数论3. 拓扑学4. 微分方程5. 组合与优化五、专业课程开设具体要求课程编号:010********课程名称:泛函分析英文名称:Functional Analysis任课教师:徐景实适应学科、方向:基础数学、计算数学、概率论与数理统计、应用数学、运筹学与控制论预修课程:数学分析、实变函数主要内容:熟悉距离空间、赋范线性空间、Banach空间、Hilbert空间的基本定理,熟练掌握线性算子和线性泛函的表示、弱收敛性和线性算子的谱等。
了解广义函数的概念和运算。
主要教材及参考文献:1、张恭庆.泛函分析讲义(上、下册)[M].科学出版社.*****2、夏道衍.实变函数论与泛函分析[M].高等教育出版社.3.、定光桂.巴那赫空间引论[M].科学出版社,1999.4、J.B.Conway.A Course in Functional Analysis (2nd Ed.)[M].GTM. 96 Springer-Verlag,1990.C-algebras and Operator theory[M].Academic Press,1990.**********5、G.J.Murphy.课程编号:010********课程名称:代数拓扑英文名称:Algebraic Topology任课教师:郭瑞芝适应学科、方向:基础数学、应用数学预修课程:点集拓扑、近世代数主要内容:商空间、基本群、多面体及其单纯同调、奇异同调、范畴与函子、奇异同调群相对奇异同调、正合同调序列、切除定理、多面体的同调群及其应用、CW-复形、上同调群。
湖南师范大学学科教学(数学)考研·分数线·参考书目·录取人数·奖学金制度

湖南师范大学学科数学专业考情分析“平生不做皱眉事,世上应无切齿人”▼▼收到了很多小可爱的私信,在备考过程中有各种各样的疑问,其中考研小白最大的问题肯定是定学校和定专业的疑惑,下面小编将大家普遍感到疑惑的地方,以下方的形式为考研儿解惑,希望帮助大家快速锁定专业和备考资料,如有其他疑问也可文末留言,小编定耐心解答噢~一、院校介绍湖南师范大学创建于1938 年,位于历史文化名城长沙,是国家“211工程”重点建设的大学,国家“双一流”建设高校,教育部与湖南省重点共建“双一流”建设高校,教育部普通高等学校本科教学工作水平评估优秀高校,湖南省“世界一流学科建设高校”。
截至2019年3月,学校现有7个校区,占地274 余亩,建筑面积125余万平方米。
主校区西偎麓山,东濒湘江,风光秀丽,是全国绿化“400佳”单位之一。
学校设有24个学院,现招生本科专业83个,本科和研究生教育覆盖哲学、经济学、法学、教育学、文学、历史学、理学、工学、医学、管理学、艺术学等11大学科门类。
学校拥有伦理学、英语语言文学、中国近现代史、发育生物学、理论物理、基础数学等6个国家重点学科,学科外国语言文学入选国家“世界一流”建设学科,教育学、数学、哲学、中国语言文学、生物学5个学科入选湖南省“国内一流建设学科”,法学、马克思主义理论、体育学、新闻传播学、物理学、化学、地理学、音乐与舞蹈学、美术学、政治学、心理学、中国史、生态学、理论经济学、统计学等15个学科入选湖南省“国内一流培育学科”; 化学、临床医学2个学科进入IESI前1% ;学校先后同42个国家和地区的177所大学和机构建立合作与交流关系。
学校图书馆藏书400余万册,其中古籍22万余册,订购各类文献数据库103个。
学校主办14 种公开发行的学术期刊,其中全国中文核心期刊7种。
建校以来,学校已为国家输送毕业生50余万人,培养了一大批国际学生和港澳台学生,校友遍布海内外。
在校学生4万余人,其中研究生1万余人,长短期国际学生近1200人,已形成多规格、多层次的办学格局。
湖南师范大学基础数学专业考研

湖南师范大学基础数学专业考研1、本学科点形成的历史与现状基础数学是“关系到整个科学技术的发展”(钱学森)的基础研究学科。
湖南师范大学自建校以来,一直致力于该学科的建设与发展。
该学科在过去五十年中,为国家特别是我省培养了大批以数学教师为主的数学人才,包括一批拔尖的教学研究人才。
我校毕业的本科生研究生中,已有一大批成为中学特级、高级教师。
近年来,我们也为国内外大学输送了大批高层次人才,有很多成为国内外著名高等院校和科研机构的教授和研究员,2000年总理基金获得者孙笑涛研究员,就是我校七九级学生,并曾留校工作。
近二十年来,本学科的发展有了显著的加快,在学校政策的指导下,把科学研究用作为学科建设的重要内容,通过大力引进和积极培养,提高了教师科研水平和整体素质。
职称结构、学历层次、年龄结构等有了明显的改善,科研与教学有了较大的进步。
形成了以基础教学为核心、覆盖数学主要学科并以理论物理、计算机科学相互渗透的高水平的学科群。
本学科自1982年起招收硕士研究生,1995年获硕士学位授予权,1996年成为湖南省重点建设学科,2000年获博士学位授予权,2000年起招收博士生。
本学科现有教授30人,副教授32人,其中国家“有突出贡献中青年专家”2人,博士生导师9人,具有博士学位的教师24人。
已成为以培养数学教育人才为主数学高级人才的培养中心。
2、主要研究方向的特色及发展前景(1)常微分方程与分歧理论:主要研究常微分方程的分支和浑沌理论、泛函微分方程稳定性和奇点的分歧理论。
这是近二十年来国内外发展迅速且内容丰富、应用广泛的一个研究领域。
该方向科研成果深受国内外同行的关注,多次在国际会议上报告。
(2)代数学:主要研究代数表示论及其应用、量子群的代数结构、代数k理论和代数同调理论等。
该方向科研成果多次在国际会议报告并被国内外同行应用,为代数表示论在中国学派的创立作出了贡献,并率先用代数表示论方法研究正则代数,对非交换代数几何有很好的研究前景。
010-958-数学基础综合考试大纲-学科教学

湖南师范大学硕士研究生入学考试自命题考试大纲考试科目代码:[958] 考试科目名称:数学基础综合一、试卷结构1) 试卷成绩及考试时间本试卷满分为150分,考试时间为180分钟。
2)答题方式:闭卷、笔试3)试卷内容结构数学分析部分60% 线性代数部分40%4)题型结构a: 单项选择题,8小题,每小题4分,共32分b: 填空题,6小题,每小题4分,共24分c: 解答题(包括证明题),9小题,每小题分,共94分二、考试内容与考试要求(一)数学分析部分1、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求(1)理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. (2)了解函数的有界性、单调性、周期性和奇偶性.(3)理解复合函数及分段函数的概念,了解反函数及隐函数的概念.(4)掌握基本初等函数的性质及其图形,了解初等函数的概念.(5)理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.(6)掌握极限的性质及四则运算法则.(7)掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.(8)理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.(9)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.(10)了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.2、一元函数微分学考试内容导数和微分的概念导数的几何意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求(1)理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,理解函数的可导性与连续性之间的关系.(2)掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.(3)了解高阶导数的概念,会求简单函数的高阶导数.(4)会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.(5)理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.(6)掌握用洛必达法则求未定式极限的方法.(7)理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.(8)会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.3、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求(1)理解原函数的概念,理解不定积分和定积分的概念.(2)掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.(3)会求有理函数、三角函数有理式和简单无理函数的积分.(4)理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.(5)了解反常积分的概念,会计算反常积分.(6)掌握用定积分表达和计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积.4、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求(1)理解多元函数的概念,理解二元函数的几何意义.(2)了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.(3)理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.(4)理解方向导数与梯度的概念,并掌握其计算方法.(5)掌握多元复合函数一阶、二阶偏导数的求法.(6)了解隐函数存在定理,会求多元隐函数的偏导数.(7)了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.(8)了解二元函数的二阶泰勒公式.(9)理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5、多元函数积分学考试内容二重积分的概念、性质、计算和应用考试要求(1)理解二重积分的概念,了解二重积分的性质,了解二重积分的中值定理.(2)掌握二重积分的计算方法(直角坐标、极坐标).6、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求(1)理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.(2)掌握几何级数与级数的收敛与发散的条件.(3)掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法和柯西(Caucy)积分判别法.(4)掌握交错级数的莱布尼茨判别法.(5)了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.(6)理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.(7)了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.(8)了解函数展开为泰勒级数的充分必要条件.(9)掌握ex,sinx,(1+x)c,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.7、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程考试要求(1)了解微分方程及其阶、解、通解、初始条件和特解等概念.(2)掌握变量可分离的微分方程及一阶线性微分方程的解法.(3)会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.(4)理解线性微分方程解的性质及解的结构.(5)掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.(6)会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.(二)高等代数1、多项式考试内容数域,一元多项式,整除的概念,最大公因式,因式分解定理,重因式,多项式函数,复系数与实系数多项式的因式分解,有理系数多项式。
湖南师范大学750数学基础综合-课程与教学论2021年考研专业课初试大纲

湖南师范大学硕士研究生入学考试自命题科目考试大纲考试科目代码:750 考试科目名称:数学基础综合一、考试内容及要点(一)数学分析部分1、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要点(1)理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.(2)了解函数的有界性、单调性、周期性和奇偶性.(3)理解复合函数及分段函数的概念,了解反函数及隐函数的概念.(4)掌握基本初等函数的性质及其图形,了解初等函数的概念.(5)理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.(6)掌握极限的性质及四则运算法则.(7)掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.(8)理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.(9)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.(10)了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.2、一元函数微分学考试内容导数和微分的概念 导数的几何意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 考试要点(1)理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,理解函数的可导性与连续性之间的关系.(2)掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.(3)了解高阶导数的概念,会求简单函数的高阶导数.(4)会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.(5)理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.(6)掌握用洛必达法则求未定式极限的方法.(7)理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.(8)会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.3、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要点(1)理解原函数的概念,理解不定积分和定积分的概念.(2)掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.(3)会求有理函数、三角函数有理式和简单无理函数的积分.(4)理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.(5)了解反常积分的概念,会计算反常积分.(6)掌握用定积分表达和计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积.4、多元函数微分学考试内容多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念有界闭区域上多元连续函数的性质 多元函数的偏导数和全微分 全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数 方向导数和梯度 空间曲线的切线和法平面 曲面的切平面和法线 二元函数的二阶泰勒公式 多元函数的极值和条件极值 多元函数的最大值、最小值及其简单应用考试要点(1)理解多元函数的概念,理解二元函数的几何意义.(2)了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.(3)理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.(4)理解方向导数与梯度的概念,并掌握其计算方法.(5)掌握多元复合函数一阶、二阶偏导数的求法.(6)了解隐函数存在定理,会求多元隐函数的偏导数.(7)了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.(8)了解二元函数的二阶泰勒公式.(9)理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5、多元函数积分学考试内容二重积分的概念、性质、计算和应用 考试要点(1)理解二重积分的概念,了解二重积分的性质,了解二重积分的中值定理.(2)掌握二重积分的计算方法(直角坐标、极坐标).6、无穷级数考试内容常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法 初等函数的幂级数展开式考试要点(1)理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.p(2)掌握几何级数与级数的收敛与发散的条件.(3)掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法和柯西(Caucy )积分判别法.(4)掌握交错级数的莱布尼茨判别法.(5)了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.(6)理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.(7)了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.(8)了解函数展开为泰勒级数的充分必要条件.(9)掌握,sinx , ,及的麦克劳林(Maclaurin )展开式,会用x e c x )1( 它们将一些简单函数间接展开为幂级数.(二)高等代数1、多项式考试内容数域,一元多项式,整除的概念,最大公因式,因式分解定理,重因式,多项式函数,复系数与实系数多项式的因式分解,有理系数多项式。
010-750_数学基础综合-课程与教学论

页眉内容湖南师范大学硕士研究生入学考试自命题考试大纲考试科目代码:[750] 考试科目名称:数学基础综合一、试卷结构1) 试卷成绩及考试时间本试卷满分为300分,考试时间为180分钟。
2)答题方式:闭卷、笔试3)试卷内容结构数学分析部分120% 线性代数部分80%4)题型结构a: 单项选择题,约70分b: 填空题,约50分c: 解答题(包括证明题),约180分二、考试内容与考试要求(一)数学分析部分1、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求(1)理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. (2)了解函数的有界性、单调性、周期性和奇偶性.(3)理解复合函数及分段函数的概念,了解反函数及隐函数的概念.(4)掌握基本初等函数的性质及其图形,了解初等函数的概念.(5)理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.(6)掌握极限的性质及四则运算法则.(7)掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.(8)理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.(9)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.(10)了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.2、一元函数微分学考试内容导数和微分的概念导数的几何意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求(1)理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,理解函数的可导性与连续性之间的关系.(2)掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.(3)了解高阶导数的概念,会求简单函数的高阶导数.(4)会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.(5)理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.(6)掌握用洛必达法则求未定式极限的方法.(7)理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.(8)会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.3、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求(1)理解原函数的概念,理解不定积分和定积分的概念.(2)掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.(3)会求有理函数、三角函数有理式和简单无理函数的积分.(4)理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.(5)了解反常积分的概念,会计算反常积分.(6)掌握用定积分表达和计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积.4、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求(1)理解多元函数的概念,理解二元函数的几何意义.(2)了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.(3)理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.(4)理解方向导数与梯度的概念,并掌握其计算方法.(5)掌握多元复合函数一阶、二阶偏导数的求法.(6)了解隐函数存在定理,会求多元隐函数的偏导数.(7)了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.(8)了解二元函数的二阶泰勒公式.(9)理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5、多元函数积分学考试内容二重积分的概念、性质、计算和应用考试要求(1)理解二重积分的概念,了解二重积分的性质,了解二重积分的中值定理.(2)掌握二重积分的计算方法(直角坐标、极坐标).6、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求(1)理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.(2)掌握几何级数与p级数的收敛与发散的条件.(3)掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法和柯西(Caucy)积分判别法.(4)掌握交错级数的莱布尼茨判别法.(5)了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.(6)理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.(7)了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.(8)了解函数展开为泰勒级数的充分必要条件.(9)掌握ex,sinx,(1+x)c,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.7、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程考试要求(1)了解微分方程及其阶、解、通解、初始条件和特解等概念.(2)掌握变量可分离的微分方程及一阶线性微分方程的解法.(3)会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.(4)理解线性微分方程解的性质及解的结构.(5)掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.(6)会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.(二)高等代数1、多项式考试内容数域,一元多项式,整除的概念,最大公因式,因式分解定理,重因式,多项式函数,复系数与实系数多项式的因式分解,有理系数多项式。
010-958-数学基础综合考试大纲-学科教学

湖南师范大学硕士研究生入学考试自命题考试大纲考试科目代码:[958] 考试科目名称:数学基础综合一、试卷结构1) 试卷成绩及考试时间本试卷满分为150分,考试时间为180分钟。
2)答题方式:闭卷、笔试3)试卷内容结构数学分析部分60% 线性代数部分40%4)题型结构a: 单项选择题,8小题,每小题4分,共32分b: 填空题,6小题,每小题4分,共24分c: 解答题(包括证明题),9小题,每小题分,共94分二、考试内容与考试要求(一)数学分析部分1、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求(1)理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. (2)了解函数的有界性、单调性、周期性和奇偶性.(3)理解复合函数及分段函数的概念,了解反函数及隐函数的概念.(4)掌握基本初等函数的性质及其图形,了解初等函数的概念.(5)理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.(6)掌握极限的性质及四则运算法则.(7)掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.(8)理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.(9)理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.(10)了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.2、一元函数微分学考试内容导数和微分的概念导数的几何意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求(1)理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,理解函数的可导性与连续性之间的关系.(2)掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.(3)了解高阶导数的概念,会求简单函数的高阶导数.(4)会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.(5)理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.(6)掌握用洛必达法则求未定式极限的方法.(7)理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.(8)会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.3、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求(1)理解原函数的概念,理解不定积分和定积分的概念.(2)掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.(3)会求有理函数、三角函数有理式和简单无理函数的积分.(4)理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.(5)了解反常积分的概念,会计算反常积分.(6)掌握用定积分表达和计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积.4、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求(1)理解多元函数的概念,理解二元函数的几何意义.(2)了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.(3)理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.(4)理解方向导数与梯度的概念,并掌握其计算方法.(5)掌握多元复合函数一阶、二阶偏导数的求法.(6)了解隐函数存在定理,会求多元隐函数的偏导数.(7)了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.(8)了解二元函数的二阶泰勒公式.(9)理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5、多元函数积分学考试内容二重积分的概念、性质、计算和应用考试要求(1)理解二重积分的概念,了解二重积分的性质,了解二重积分的中值定理.(2)掌握二重积分的计算方法(直角坐标、极坐标).6、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求(1)理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.(2)掌握几何级数与级数的收敛与发散的条件.(3)掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法和柯西(Caucy)积分判别法.(4)掌握交错级数的莱布尼茨判别法.(5)了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.(6)理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.(7)了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.(8)了解函数展开为泰勒级数的充分必要条件.(9)掌握ex,sinx,(1+x)c,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.7、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程考试要求(1)了解微分方程及其阶、解、通解、初始条件和特解等概念.(2)掌握变量可分离的微分方程及一阶线性微分方程的解法.(3)会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.(4)理解线性微分方程解的性质及解的结构.(5)掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.(6)会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.(二)高等代数1、多项式考试内容数域,一元多项式,整除的概念,最大公因式,因式分解定理,重因式,多项式函数,复系数与实系数多项式的因式分解,有理系数多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南师范大学基础数学专业考研
1、本学科点形成的历史与现状
基础数学是“关系到整个科学技术的发展”(钱学森)的基础研究学科。
湖南师范大学自建校以来,一直致力于该学科的建设与发展。
该学科在过去五十年中,为国家特别是我省培养了大批以数学教师为主的数学人才,包括一批拔尖的教学研究人才。
我校毕业的本科生研究生中,已有一大批成为中学特级、高级教师。
近年来,我们也为国内外大学输送了大批高层次人才,有很多成为国内外著名高等院校和科研机构的教授和研究员,2000年总理基金获得者孙笑涛研究员,就是我校七九级学生,并曾留校工作。
近二十年来,本学科的发展有了显著的加快,在学校政策的指导下,把科学研究用作为学科建设的重要内容,通过大力引进和积极培养,提高了教师科研水平和整体素质。
职称结构、学历层次、年龄结构等有了明显的改善,科研与教学有了较大的进步。
形成了以基础教学为核心、覆盖数学主要学科并以理论物理、计算机科学相互渗透的高水平的学科群。
本学科自1982年起招收硕士研究生,1995年获硕士学位授予权,1996年成为湖南省重点建设学科,2000年获博士学位授予权,2000年起招收博士生。
本学科现有教授30人,副教授32人,其中国家“有突出贡献中青年专家”2人,博士生导师9人,具有博士学位的教师24人。
已成为以培养数学教育人才为主数学高级人才的培养中心。
2、主要研究方向的特色及发展前景
(1)常微分方程与分歧理论:主要研究常微分方程的分支和浑沌理论、泛函微分方程稳定性和奇点的分歧理论。
这是近二十年来国内外发展迅速且内容丰富、应用广泛的一个研究领域。
该方向科研成果深受国内外同行的关注,多次在国际会议上报告。
(2)代数学:主要研究代数表示论及其应用、量子群的代数结构、代数k理论和代数同调理论等。
该方向科研成果多次在国际会议报告并被国内外同行应用,为代数表示论在中国学派的创立作出了贡献,并率先用代数表示论方法研究正则代数,对非交换代数几何有很好的研究前景。
(3)函数论方向:主要研究调和分析、函数逼近、小波理论、解析函数空间、复变涵数几何等。
多次解决一些著名的猜想,引起国内同行的广泛关注。
在小波应用研究中亦有可喜成果,并已实现成果的应用和产业化。
(4)数理方程方向:主要研究非线性偏微分方程数值方法、有限元方法等。
该研究方向取得了较好的成果,在中国首次发现有限元的超收敛法,为中国超收敛学派的产生和发展起了非常重要的作用。
(5)概率统计基础理论:主要研究马尔科夫过程理论及应用、超过程、随机流、路径空间、高维统计、扩散过程与随机场。
该方向的研究为国内外同行注目,受到国内外高度评价。
已解决了超规则q过程的存在性,开创了对马氏过程爆发后性质的研究,对超过程、随机流、路径空间的研究已引起国际上著名专家的注意。
另外,在组合数学方向近年来也取得了一批引人注目的成果,奥赛数学的研究已有了很好的开端。
3、目前在国内同类学科中所具有的优势和不足。
本学科已形成以国内著名教授为核心、中青年教授博士为主体、科研创造气氛活跃的学术队伍。
已形成多个稳定的研究方向,承担着10余项国家自然科学基金重点项目和面上项目,并有2项研究进入国家“973”研究课题,取得了一批具有国际先进水平的在国内外有影响的工作,有的研究工作在国际上处于领先地位。
与国内同类学科相比,学术带头人水平高,科研工作活跃。
特别是已拥有一批稳定年轻的学术带头人和学术骨干,科研发展潜力很大,在基础数学的主要研究方向都有高水平、有特色的研究队伍。
1996年以来,每年约有40多篇文章在国内外重点学术刊物上发表,约10余篇被sci摘录。
以上实验结果显示流感病毒ha和a能够诱导小鼠产生中和抗体,中和致死量流感病毒。
但发现,虽然小鼠能够存活,小鼠肺部病毒并未全部消除。
所以我们试着将ha和n1:1混合给药以免疫小鼠希望能提高功效。
实验结果显示:小鼠非但能在致死量病毒感染下存活,而且病毒感染后3天,小鼠肺部几乎没有病毒存在,我们认为这一发现在临床上非常有意义。
因为在现有灭活疫苗中,ha成分占48%,而成分只占5%,注射现有流感病毒灭活疫苗,只能诱导产生ha抗体,而无法诱导产生a抗体,因为量太少无法刺激人体免疫器官产生抗体。
现在有些老年患者注射流感病毒灭活疫苗后效果不佳,其原因可能因为抗ha抗体无法使肺部病毒全部消失,而且老年人免疫力低下,残留在肺部的流感病毒可能死灰复燃,造成致死性肺炎。
根据上述试验结果。
小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好的辅导班(如果经济条件允许的情况下)。
2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。
加油!。