外文译文译文
英文文献翻译
外文文献原稿和译文原稿Sodium Polyacrylate:Also known as super-absorbent or “SAP”(super absorbent polymer), Kimberly Clark used to call it SAM (super absorbent material). It is typically used in fine granular form (like table salt). It helps improve capacity for better retention in a disposable diaper, allowing the product to be thinner with improved performance and less usage of pine fluff pulp. The molecular structure of the polyacrylate has sodium carboxylate groups hanging off the main chain. When it comes in contact with water, the sodium detaches itself, leaving only carboxylions. Being negatively charged, these ions repel one another so that the polymer also has cross-links, which effectively leads to a three-dimensional structure. It has hige molecular weight of more than a million; thus, instead of getting dissolved, it solidifies into a gel. The Hydrogen in the water (H-O-H) is trapped by the acrylate due to the atomic bonds associated with the polarity forces between the atoms. Electrolytes in the liquid, such as salt minerals (urine contains 0.9% of minerals), reduce polarity, thereby affecting superabsorbent properties, especially with regard to the superabsorbent capacity for liquid retention. This is the main reason why diapers containing SAP should never be tested with plain water. Linear molecular configurations have less total capacity than non-linear molecules but, on the other hand, retention of liquid in a linear molecule is higher than in a non-linear molecule, due to improved polarity. For a list of SAP suppliers, please use this link: SAP, the superabsorbent can be designed to absorb higher amounts of liquids (with less retention) or very high retentions (but lower capacity). In addition, a surface cross linker can be added to the superabsorbent particle to help it move liquids while it is saturated. This helps avoid formation of "gel blocks", the phenomenon that describes the impossibility of moving liquids once a SAP particle gets saturated.History of Super Absorbent Polymer ChemistryUn til the 1980’s, water absorbing materials were cellulosic or fiber-based products. Choices were tissue paper, cotton, sponge, and fluff pulp. The water retention capacity of these types of materials is only 20 times their weight – at most.In the early 1960s, the United States Department of Agriculture (USDA) was conducting work on materials to improve water conservation in soils. They developed a resin based on the grafting of acrylonitrile polymer onto the backbone of starch molecules (i.e. starch-grafting). The hydrolyzed product of the hydrolysis of this starch-acrylonitrile co-polymer gave water absorption greater than 400 times its weight. Also, the gel did not release liquid water the way that fiber-based absorbents do.The polymer came to be known as “Super Slurper”.The USDA gave the technical know how several USA companies for further development of the basic technology. A wide range of grating combinations were attempted including work with acrylic acid, acrylamide and polyvinyl alcohol (PVA).Since Japanese companies were excluded by the USDA, they started independent research using starch, carboxy methyl cellulose (CMC), acrylic acid, polyvinyl alcohol (PVA) and isobutylene maleic anhydride (IMA).Early global participants in the development of super absorbent chemistry included Dow Chemical, Hercules, General Mills Chemical, DuPont, National Starch & Chemical, Enka (Akzo), Sanyo Chemical, Sumitomo Chemical, Kao, Nihon Starch and Japan Exlan.In the early 1970s, super absorbent polymer was used commercially for the first time –not for soil amendment applications as originally intended –but for disposable hygienic products. The first product markets were feminine sanitary napkins and adult incontinence products.In 1978, Park Davis (d.b.a. Professional Medical Products) used super absorbent polymers in sanitary napkins.Super absorbent polymer was first used in Europe in a baby diaper in 1982 when Schickendanz and Beghin-Say added the material to the absorbent core. Shortly thereafter, UniCharm introduced super absorbent baby diapers in Japan while Proctor & Gamble and Kimberly-Clark in the USA began to use the material.The development of super absorbent technology and performance has been largely led by demands in the disposable hygiene segment. Strides in absorption performance have allowed the development of the ultra-thin baby diaper which uses a fraction of the materials – particularly fluff pulp – which earlier disposable diapers consumed.Over the years, technology has progressed so that there is little if any starch-grafted super absorbent polymer used in disposable hygienic products. These super absorbents typically are cross-linked acrylic homo-polymers (usually Sodium neutralized).Super absorbents used in soil amendments applications tend to be cross-linked acrylic-acrylamide co-polymers (usually Potassium neutralized).Besides granular super absorbent polymers, ARCO Chemical developed a super absorbent fiber technology in the early 1990s. This technology was eventually sold to Camelot Absorbents. There are super absorbent fibers commercially available today. While significantly more expensive than the granular polymers, the super absorbent fibers offer technical advantages in certain niche markets including cable wrap, medical devices and food packaging.Sodium polyacrylate, also known as waterlock, is a polymer with the chemical formula [-CH2-CH(COONa)-]n widely used in consumer products. It has the ability to absorb as much as 200 to 300 times its mass in water. Acrylate polymers generally are considered to possess an anionic charge. While sodium neutralized polyacrylates are the most common form used in industry, there are also other salts available including potassium, lithium and ammonium.ApplicationsAcrylates and acrylic chemistry have a wide variety of industrial uses that include: ∙Sequestering agents in detergents. (By binding hard water elements such as calcium and magnesium, the surfactants in detergents work more efficiently.) ∙Thickening agents∙Coatings∙Fake snowSuper absorbent polymers. These cross-linked acrylic polymers are referred to as "Super Absorbents" and "Water Crystals", and are used in baby diapers. Copolymerversions are used in agriculture and other specialty absorbent applications. The origins of super absorbent polymer chemistry trace back to the early 1960s when the U.S. Department of Agriculture developed the first super absorbent polymer materials. This chemical is featured in the Maximum Absorbency Garment used by NASA.译文聚丙烯酸钠聚丙烯酸钠,又可以称为超级吸收剂或者又叫高吸水性树脂,凯博利克拉克教授曾经称它为SAM即:超级吸收性物质。
毕业论文英文参考文献与译文
Inventory managementInventory ControlOn the so-called "inventory control", many people will interpret it as a "storage management", which is actually a big distortion.The traditional narrow view, mainly for warehouse inventory control of materials for inventory, data processing, storage, distribution, etc., through the implementation of anti-corrosion, temperature and humidity control means, to make the custody of the physical inventory to maintain optimum purposes. This is just a form of inventory control, or can be defined as the physical inventory control. How, then, from a broad perspective to understand inventory control? Inventory control should be related to the company's financial and operational objectives, in particular operating cash flow by optimizing the entire demand and supply chain management processes (DSCM), a reasonable set of ERP control strategy, and supported by appropriate information processing tools, tools to achieved in ensuring the timely delivery of the premise, as far as possible to reduce inventory levels, reducing inventory and obsolescence, the risk of devaluation. In this sense, the physical inventory control to achieve financial goals is just a means to control the entire inventory or just a necessary part; from the perspective of organizational functions, physical inventory control, warehouse management is mainly the responsibility of The broad inventory control is the demand and supply chain management, and the whole company's responsibility.Why until now many people's understanding of inventory control, limited physical inventory control? The following two reasons can not be ignored:First, our enterprises do not attach importance to inventory control. Especially those who benefit relatively good business, as long as there is money on the few people to consider the problem of inventory turnover. Inventory control is simply interpreted as warehouse management, unless the time to spend money, it may have been to see the inventory problem, and see the results are often very simple procurement to buy more, or did not do warehouse departments .Second, ERP misleading. Invoicing software is simple audacity to call it ERP, companies on their so-called ERP can reduce the number of inventory, inventory control, seems to rely on their small software can get. Even as SAP, BAAN ERP world, the field ofthese big boys, but also their simple modules inside the warehouse management functionality is defined as "inventory management" or "inventory control." This makes the already not quite understand what our inventory control, but not sure what is inventory control.In fact, from the perspective of broadly understood, inventory control, shouldinclude the following:First, the fundamental purpose of inventory control. We know that the so-called world-class manufacturing, two key assessment indicators (KPI) is, customer satisfaction and inventory turns, inventory turns and this is actually the fundamental objective of inventory control.Second, inventory control means. Increase inventory turns, relying solely on the so-called physical inventory control is not enough, it should be the demand and supply chain management process flow of this large output, and this big warehouse management processes in addition to including this link, the more important The section also includes: forecasting and order processing, production planning and control, materials planning and purchasing control, inventory planning and forecasting in itself, as well as finished products, raw materials, distribution and delivery of the strategy, and even customs management processes.And with the demand and supply chain management processes throughout the process, it is the information flow and capital flow management. In other words, inventory itself is across the entire demand and supply management processes in all aspects of inventory control in order to achieve the fundamental purpose, it must control all aspects of inventory, rather than just manage the physical inventory at hand.Third, inventory control, organizational structure and assessment.Since inventory control is the demand and supply chain management processes, output, inventory control to achieve the fundamental purpose of this process must be compatible with a rational organizational structure. Until now, we can see that many companies have only one purchasing department, purchasing department following pipe warehouse. This is far short of inventory control requirements. From the demand and supply chain management process analysis, we know that purchasing and warehouse management is the executive arm of the typical, and inventory control should focus on prevention, the executive branch is very difficult to "prevent inventory" for the simple reason that they assessment indicatorsin large part to ensure supply (production, customer). How the actual situation, a reasonable demand and supply chain management processes, and thus set the corresponding rational organizational structure and is a question many of our enterprisesto exploreThe role of inventory controlInventory management is an important part of business management. In the production and operation activities, inventory management must ensure that both the production plant for raw materials, spare parts demand, but also directly affect the purchasing, sales of share, sales activities. To make an inventory of corporate liquidity, accelerate cash flow, the security of supply under the premise of minimizing Yaku funds, directly affects the operational efficiency. Ensure the production and operation needs of the premise, so keep inventories at a reasonable level; dynamic inventory control, timely, appropriate proposed order to avoid over storage or out of stock; reduce inventory footprint, lower total cost of inventory; control stock funds used to accelerate cash flow.Problems arising from excessive inventory: increased warehouse space andinventory storage costs, thereby increasing product costs; take a lot of liquidity, resultingin sluggish capital, not only increased the burden of payment of interest, etc., would affect the time value of money and opportunity income; finished products and raw materials caused by physical loss and intangible losses; a large number of enterprise resource idle, affecting their rational allocation and optimization; cover the production, operation of the whole process of the various contradictions and problems, is not conducive to improve the management level.Inventory is too small the resulting problems: service levels caused a decline in the profit impact of marketing and corporate reputation; production system caused by inadequate supply of raw materials or other materials, affecting the normal production process; to shorten lead times, increase the number of orders, so order (production) costs; affect the balance of production and assembly of complete sets.NotesInventory management should particularly consider the following two questions:First, according to sales plans, according to the planned production of the goods circulated in the market, we should consider where, how much storage.Second, starting from the level of service and economic benefits to determine howto ensure inventories and supplementary questions.The two problems with the inventory in the logistics process functions.In general, the inventory function:(1)to prevent interrupted. Received orders to shorten the delivery of goods fromthe time in order to ensure quality service, at the same time to prevent out of stock.(2)to ensure proper inventory levels, saving inventory costs.(3)to reduce logistics costs. Supplement with the appropriate time interval compatible with the reasonable demand of the cargo in order to reduce logistics costs, eliminate or avoid sales fluctuations.(4)ensure the production planning, smooth to eliminate or avoid sales fluctuations.(5)display function.(6)reserve. Mass storage when the price falls, reduce losses, to respond to disasters and other contingencies.About the warehouse (inventory) on what the question, we must consider the number and location. If the distribution center, it should be possible according to customer needs, set at an appropriate place; if it is stored in central places to minimize the complementary principle to the distribution centers, there is no place certain requirements. When the stock base is established, will have to take into account are stored in various locations in what commodities.库存管理库存控制在谈到所谓“库存控制”的时候,很多人将其理解为“仓储管理”,这实际上是个很大的曲解。
外文翻译译文
2.3.2 公制,标准尺寸图梯形齿廓标准同步皮带由聚氨酯与钢或芳纶抗拉元件制成。
符号T代表梯形齿廓标准带。
WHM公司与国内GmbH公司和德国的Hanover公司合作,在1995年前后联合开发了这种同步带。
MULCO团体在德国以Synchroflex为品牌名发行这种同步带,之后又在欧洲发行。
在1997年这种带被标准化了,其标准为DIN772。
这些带遍布世界各地,并可作为成型的环形带,无尽的连接带和开口带使用。
具有梯形齿廓和公制标准尺寸,AT同步带是T型同步带的一个发展。
它们由由聚氨酯与钢或芳纶抗拉元件制成。
与T型同步带先比,AT型同步带有更宽的齿形截面和更强的抗拉构件。
AT型同步带一个特殊的特点是带齿齿隙紧靠带轮槽底座。
德国的MULCO和Hanover公司开发了这种类型的同步带,并在1980年左右以Synchroflex为品牌发行了这种带。
这些带遍布世界各地,并可作为成型的环形带,无尽的连接带和开口带使用。
这些带ISO 13050 标准用符号H表示,也被称为HTD同步带。
HTD代表大扭矩驱动。
这种同步带是由氯丁橡胶与玻璃纤维抗拉元件和聚酰胺纤维织物制成,并由在1973年引领美国市场的Gates公司开发。
曲齿的几何形状是圆形,较大的齿高显然增加了齿承载能力和抗牙跳能力。
这种带在世界各地都可以看到,许多制造商都参与它的生产。
它们也用聚氨酯,任选与钢丝帘线或芳纶抗拉元件制造。
用户可以从无尽的成型带,开口带和连续挤压环形带中选择使用。
这些带ISO 13050 标准用符号R表示,也被称为RPP同步带。
RPP代表橡胶抛物线。
1985年意大利的公司开发了这种双抛物线齿廓的同步带,他们是由氯丁橡胶与玻璃纤维抗拉元件和聚酰胺纤维织物制成。
这种类型的同步带主要发行在欧洲南部,许多制造商都参与它们的生产。
它们也用聚氨酯,任选钢丝帘线或芳纶抗拉元件制造。
用户可以从无尽的成型带,开口带和连续挤压环形带中选择使用。
这些带ISO 13050 标准用符号S表示,也被称为STD同步带。
外文参考文献译文及原文
目录1介绍 (1)在这一章对NS2的引入提供。
尤其是,关于NS2的安装信息是在第2章。
第3章介绍了NS2的目录和公约。
第4章介绍了在NS2仿真的主要步骤。
一个简单的仿真例子在第5章。
最后,在第.8章作总结。
2安装 (1)该组件的想法是明智的做法,以获取上述件和安装他们的个人。
此选项保存downloadingtime和大量内存空间。
但是,它可能是麻烦的初学者,因此只对有经验的用户推荐。
(2)安装一套ns2的all-in-one在unix-based系统 (2)安装一套ns2的all-in-one在Windows系统 (3)3目录和公约 (4)目录 (4)4运行ns2模拟 (6)ns2程序调用 (6)ns2模拟的主要步骤 (6)5一个仿真例子 (8)6总结 (12)1 Introduction (13)2 Installation (15)Installing an All-In-One NS2 Suite on Unix-Based Systems (15)Installing an All-In-One NS2 Suite on Windows-Based Systems (16)3 Directories and Convention (17)Directories and Convention (17)Convention (17)4 Running NS2 Simulation (20)NS2 Program Invocation (20)Main NS2 Simulation Steps (20)5 A Simulation Example (22)6 Summary (27)1介绍网络模拟器(一般叫作NS2)的版本,是证明了有用在学习通讯网络的动态本质的一个事件驱动的模仿工具。
模仿架线并且无线网络作用和协议(即寻址算法,TCP,UDP)使用NS2,可以完成。
一般来说,NS2提供用户以指定这样网络协议和模仿他们对应的行为方式。
外文翻译及中文译文
车床用于车外圆、端面和镗孔等加工的机床称作车床。
车削很少在其他种类的机床上进行,因为其他机床都不能像车床那样方便地进行车削加工。
由于车床除了用于车外圆还能用于镗孔、车端面、钻孔和铰孔,车床的多功能性可以使工件在一次定位安装中完成多种加工。
这就是在生产中普遍使用各种车床比其他种类的机床都要多的原因。
两千多年前就已经有了车床。
现代车床可以追溯到大约1797年,那时亨利•莫德斯利发明了一种具有把主轴和丝杆的车床。
这种车床可以控制工具的机械进给。
这位聪明的英国人还发明了一种把主轴和丝杆相连接的变速装置,这样就可以切削螺纹。
车床的主要部件:床身、主轴箱组件、尾架组件、拖板组、变速齿轮箱、丝杆和光杆。
床身是车床的基础件。
它通常是由经过充分正火或时效处理的灰铸铁或者球墨铸铁制成,它是一个坚固的刚性框架,所有其他主要部件都安装在床身上。
通常在球墨铸铁制成,它是一个坚固的刚性框架,所有其他主要部件都安装在床身上。
通常在床身上面有内外两组平行的导轨。
一些制造厂生产的四个导轨都采用倒“V”,而另一些制造厂则将倒“V”形导轨和平面导轨结合。
由于其他的部件要安装在导轨上并(或)在导轨上移动,导轨要经过精密加工,以保证其装配精度。
同样地,在操作中应该小心,以避免损伤导轨。
导轨上的任何误差,常常会使整个机床的精度遭到破坏。
大多数现代车床的导轨要进行表面淬火处理。
以减少磨损和擦伤,具有更大的耐磨性。
主轴箱安装在床身一端内导轨的固定位置上。
它提供动力。
使工件在各种速度下旋转。
它基本上由一个安装在精密轴承中的空心轴和一系列变速齿轮---类似于卡车变速箱所组成,通过变速齿轮,主轴可以在许多中转速的旋转。
大多数车床有8~18中转速,一般按等比级数排列。
在现代车床上只需扳动2~4个手柄,就能得到全部挡位的转速。
目前发展的趋势是通过电气的或机械的装置进行无级变速。
由于车床的精度在很大程度上取决于主轴,因此主轴的结构尺寸较大,通常安装在紧密配合的重型圆锤滚子轴承或球轴承中。
毕业设计(论文)外文原文及译文
毕业设计(论文)外文原文及译文一、外文原文MCUA microcontroller (or MCU) is a computer-on-a-chip. It is a type of microcontroller emphasizing self-sufficiency and cost-effectiveness, in contrast to a general-purpose microprocessor (the kind used in a PC).With the development of technology and control systems in a wide range of applications, as well as equipment to small and intelligent development, as one of the single-chip high-tech for its small size, powerful, low cost, and other advantages of the use of flexible, show a strong vitality. It is generally better compared to the integrated circuit of anti-interference ability, the environmental temperature and humidity have better adaptability, can be stable under the conditions in the industrial. And single-chip widely used in a variety of instruments and meters, so that intelligent instrumentation and improves their measurement speed and measurement accuracy, to strengthen control functions. In short,with the advent of the information age, traditional single- chip inherent structural weaknesses, so that it show a lot of drawbacks. The speed, scale, performance indicators, such as users increasingly difficult to meet the needs of the development of single-chip chipset, upgrades are faced with new challenges.The Description of AT89S52The AT89S52 is a low-power, high-performance CMOS 8-bit microcontroller with 8K bytes of In-System Programmable Flash memory. The device is manufactured using Atmel's high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with In-System Programmable Flash on a monolithic chip, the Atmel AT89S52 is a powerful microcontroller which provides a highly-flexible and cost-effective solution to many embedded control applications.The AT89S52 provides the following standard features: 8K bytes ofFlash, 256 bytes of RAM, 32 I/O lines, Watchdog timer, two data pointers, three 16-bit timer/counters, a six-vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89S52 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power-down mode saves the RAM contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset.Features• Compatible with MCS-51® Products• 8K Bytes of In-System Programmable (ISP) Flash Memory– Endurance: 1000 Write/Erase Cycles• 4.0V to 5.5V Operating Range• Fully Static Operation: 0 Hz to 33 MHz• Three-level Program Memory Lock• 256 x 8-bit Internal RAM• 32 Programmable I/O Lines• Three 16-bit Timer/Counters• Eight Interrupt Sources• Full Duplex UART Serial Channel• Low-power Idle and Power-down Modes• Interrupt Recovery from Power-down Mode• Watchdog Timer• Dual Data Pointer• Power-off FlagPin DescriptionVCCSupply voltage.GNDGround.Port 0Port 0 is an 8-bit open drain bidirectional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.Port 0 can also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pullups.Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program verification. External pullups are required during program verification.Port 1Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups.In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively.Port 1 also receives the low-order address bytes during Flash programming and verification.Port 2Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pullups.Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.Port 3 also serves the functions of various special features of the AT89S52, as shown in the following table.Port 3 also receives some control signals for Flash programming and verification.RSTReset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives High for 96 oscillator periods after the Watchdog times out. The DISRTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISRTO, the RESET HIGH out feature is enabled.ALE/PROGAddress Latch Enable (ALE) is an output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSENProgram Store Enable (PSEN) is the read strobe to external program memory. When the AT89S52 is executing code from external program memory, PSENis activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPPExternal Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for internal program executions.This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming.XTAL1Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2Output from the inverting oscillator amplifier.Special Function RegistersNote that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.Timer 2 Registers:Control and status bits are contained in registers T2CON and T2MOD for Timer 2. The register pair (RCAP2H, RCAP2L) are the Capture/Reload registers for Timer 2 in 16-bit capture mode or 16-bit auto-reload mode.Interrupt Registers:The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the six interrupt sources in the IP register.Dual Data Pointer Registers: To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers areprovided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR AUXR1 selects DP0 and DPS = 1 selects DP1. The user should always initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.Power Off Flag:The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to “1” during power up. It can be set and rest under software control and is not affected by reset.Memory OrganizationMCS-51 devices have a separate address space for Program and Data Memory. Up to 64K bytes each of external Program and Data Memory can be addressed.Program MemoryIf the EA pin is connected to GND, all program fetches are directed to external memory. On the AT89S52, if EA is connected to VCC, program fetches to addresses 0000H through 1FFFH are directed to internal memory and fetches to addresses 2000H through FFFFH are to external memory.Data MemoryThe AT89S52 implements 256 bytes of on-chip RAM. The upper 128 bytes occupy a parallel address space to the Special Function Registers. This means that the upper 128 bytes have the same addresses as the SFR space but are physically separate from SFR space.When an instruction accesses an internal location above address 7FH, the address mode used in the instruction specifies whether the CPU accesses the upper 128 bytes of RAM or the SFR space. Instructions which use direct addressing access of the SFR space. For example, the following direct addressing instruction accesses the SFR at location 0A0H (which is P2).MOV 0A0H, #dataInstructions that use indirect addressing access the upper 128 bytes of RAM. For example, the following indirect addressing instruction, where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).MOV @R0, #dataNote that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space.Timer 0 and 1Timer 0 and Timer 1 in the AT89S52 operate the same way as Timer 0 and Timer 1 in the AT89C51 and AT89C52.Timer 2Timer 2 is a 16-bit Timer/Counter that can operate as either a timer or an event counter. The type of operation is selected by bit C/T2 in the SFR T2CON (shown in Table 2). Timer 2 has three operating modes: capture, auto-reload (up or down counting), and baud rate generator. The modes are selected by bits in T2CON.Timer 2 consists of two 8-bit registers, TH2 and TL2. In the Timer function, the TL2 register is incremented every machine cycle. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency.In the Counter function, the register is incremented in response to a1-to-0 transition at its corresponding external input pin, T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since two machine cycles (24 oscillator periods) are required to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, the level should be held for at least one full machine cycle.InterruptsThe AT89S52 has a total of six interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (Timers 0, 1, and 2), and the serial port interrupt. These interrupts are all shown in Figure 10.Each of these interrupt sources can be individually enabled or disabledby setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once.Note that Table 5 shows that bit position IE.6 is unimplemented. In the AT89S52, bit position IE.5 is also unimplemented. User software should not write 1s to these bit positions, since they may be used in future AT89 products. Timer 2 interrupt is generated by the logical OR of bits TF2 and EXF2 in register T2CON. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine may have to determine whether it was TF2 or EXF2 that generated the interrupt, and that bit will have to be cleared in software.The Timer 0 and Timer 1 flags, TF0 and TF1, are set at S5P2 of the cycle in which the timers overflow. The values are then polled by the circuitry in the next cycle. However, the Timer 2 flag, TF2, is set at S2P2 and is polled in the same cycle in which the timer overflows.二、译文单片机单片机即微型计算机,是把中央处理器、存储器、定时/计数器、输入输出接口都集成在一块集成电路芯片上的微型计算机。
外文文献及译文
外文文献及译文译文一作者:Wikipedia来源:/wiki/History_of_the_Indian_caste_system,2007年12 年15月访问。
历史上印度的种姓制度起源关于种姓制度的发源地,至今仍然模糊。
2001年,由犹他州大学的Michael率领的人员进行遗传研究,发现印度人和欧洲人具有相称的种姓职级,上层种姓与欧洲人最为相似,而低种姓是越来越像亚洲人。
研究人员认为,印欧发言者从西北大陆进入印度,参与或是取代了原dravidian发言者的发言。
后来他们可能已经建立了种姓制度,并把自己放在较高种姓。
研究报告的结论认为,印度的种姓“是最有可能成为原亚洲在遗传亲缘关系种姓的起源,其在西欧亚大陆外加剂的影响下形成亚洲人和欧洲人在职级方面的相关性差异。
””因为本研究采取了单一的地理区域即印度的样本,所以调查结果是否可以一概而论仍有待调查1995年乔安娜等人进行了早期的研究,斯坦福大学已得出的结论是“三个独特基因种姓群体没有明确的分离线”,尽管如此“还是能推断出一些根据种姓类聚的从属关系”。
2002-03年度汤匙,吉维席尔德等人得出结论认为“自从新世纪以来印度部落和种姓的人口基因获得主要来自南部和西部的亚洲人,并已获得从外部地区流入的有限基因”。
2006年印度国家生物制品研究所进行遗传研究,从32部落和45种姓群体的男子测试样本中得出结论认为:印度人已获得极少数印欧发言者的基因。
根据2006年伊斯梅尔等人的一项研究表明,印度孕产妇基因库中的绝大数(> 98 %)与印第安欧洲和dravidian的基因有或多或少的统一。
,而inavsions后,晚世纪解决可能已大部分是男性介导。
研究得出结论认为,“低种姓群体有可能起源于同层次进行记名表决时出现内部的部落群体与蔓延的新石器时代的农民,比雅利安人的到来大大提前”,“印支欧洲人建立了自己的上种姓的同时,这已经发展成种姓一样内部结构的部落”。
人工智能与专家系统外文文献译文和原文
人工智能与专家系统外文文献译文和原文AI研究仍在继续,但与MIS和DDS等计算机应用相比,研究热情的减弱使人工智能的研究相对落后。
然而,在研究方面的不断努力一定会推动计算机向人工智能化方向发展。
2.AI领域AI现在已经以知识系统的形式应用于商业领域,既利用人类知识来解决问题。
专家系统是最流行的基于知识的系统,他是应用计算机程序以启发方式替代专家知识。
Heuritic术语来自希腊eureka,意思是“探索”。
因此,启发方式是一种良好猜想的规则。
启发式方法并不能保证其结果如同DSS系统中传统的算法那样绝对化。
但是启发式方法提供的结果非常具体,以至于能适应于大部分情况启发式方法允许专家系统能像专家那样工作,建议用户如何解决问题。
因为专家系统被当作顾问,所以,应用专家系统就可以被称为咨询。
除了专家系统外,AI还包括以下领域:神经网络系统、感知系统、学习系统、机器人、AI硬件、自然语言处理。
注意这些领域有交叉,交叉部分也就意味着这个领域可以从另一个领域中收益。
3.专家系统的吸引力专家系统的概念是建立在专家知识能够存储在计算机中并能被其他人应用这一假设的基础上的。
专家系统作为一种决策支持系统提供了独无二的能力。
首先,专家系统为管理者提供了超出其能力的决策机会。
比如,一家新的银行投资公司可以应用先进的专家系统帮助他们进行选择、决策。
其次,专家系统在得到一个解决方案的同时给出一步步的推理。
在很多情况下,推理本身比决策的结果重要的多。
4.专家系统模型专家系统模型主要由4个部分组成:用户界面使得用户能与专家系统对话;推理引擎提供了解释知识库的能力;专家和工程师利用开发引擎建立专家系统。
1.用户界面用户界面能够方便管理者向专家系统中输入命令、信息,并接受专家系统的输出。
命令中有具体化的参数设置,引导专家系统的推理过程。
信息以参数形式赋予某些变量。
(1)专家系统输入现在流行的界面格式是图形化用户界面格式,这种界面与Window有些相同的特征。
外文译文范例
外文资料Rural Labor Movements in Egypt and Their Impact onthe State, 1961-1992Looney, RobertJames Toth's highly informative study of Egypt develops the idea that the tarahil or migrant farm workers in Egypt unexpectedly contributed to the making of Egypt's recent history and in shaping the country's national development. His arguments are developed by first examining the struggles taking place inside the rural regime of accumulation and the methods of control each side employed to regulate conflicts over pay and working conditions. This involves not only describing the workers' way of life, standard of living, and the labor processes in both village agriculture and migrant labor, but also identifying the asymmetric relationships and negotiations involved in mutually defining the effort price formula.Toth demonstrates how initially these institutional relations remained local since direct state intervention was relatively limited before the 1960s. Once the state did step in, however, local conflicts diminished while the struggles between workers and their government acquired greater importance. State policies formulated since 1960 repeatedly altered the equation between labor and capital. Toth then shows that the struggle between the government and those who opposed its regulation then became an important motor force in creating Egypt's recent history.Following a carefully laid out introduction, Chapter 2 describes a composite migrant labor trip to work sites on the perimeter of Egypt's northern Delta region where the author conducted field-work in 1980-82. Here the emphasis is placed on introducing the migrant farm workers, describing the variety of social and economic relationships that keep these laborers at the bottom of Egypt's social pyramid. Chapter 3 examines why poor village farm laborers in Egypt repeatedly take up migrant work. In this section the author demonstrates that rural workers in Egypt are channeled into this occupation by the limitations imposed by seasonal unemployment, debt, gender stereotypes, and the country's economic underdevelopment. Chapter 4 develops the methods by which migrant workers exercise some control over valorization by using "weapons of the weak" and other stealth techniques, which enable them to overcome their hardship and poverty.In general, these early chapters discuss the rural regime of accumulation and the local mode of regulation found in the countryside, bridging both village agriculture and migrant labor camp activities. Toth finds these conditions replicated throughout the Egyptian countryside, both north and south. This general picture provides insights into the myriad of tactics and techniques thatregulated the valorization process at home and afar and that conditioned village lives and camp experiences. Yet despite the double-sided nature of these controls they remained insufficient to prevent first a wholesale flight of farm workers escaping the unsatisfactory conditions of village agriculture, and then later a widespread exodus that rejected the drudgery of both farm and migrant employment and seized upon new urban job opportunities that rural workers believed could improve their lives.The next sections focus on the period after 1960 when the conflicts between labor and capital ceased to have merely local consequences and began to acquire a broader, more national dimension. Chapters 5 through 8 examine the outcomes when Egypt's model of regulation came to include a greater regulatory role for the government. For in this zeal to stabilize and safeguard the national economy, the state ironically came instead to transpose and transform it.Four important years are examined: 1961, 1964, 1977 and 1992 when the course of Egyptian development was strongly influenced by the rural workers and their contentious relationship with the state. Chapters 5 and 6 analyze the outcome of the surge of rural workers who left agriculture employment behind in the 1960s and increasingly took up full-time migrant labor in building the High Dam at Aswan and reclaiming new agricultural land in Tahrir Province. Chapters 7 and 8 examine the results of the large scale movement of rural workers who later in the 1970s deserted both complementary types of employment, farm and migrant labor for similar but more rewarding construction jobs in Egypt's expanding cities and towns.Thus this section of the study focuses on decline of Egypt's agricultural and national economies, generated in good part by rural labor's physical exodus from the countryside in response to both village conflicts and state plans and projects. In 1974 the declining national economy turned around, spearheaded by skilled urban construction workers emigrating abroad who were then replaced at home by large numbers of rural laborers dissatisfied with both farm and migrant employment.Once migrant workers left both agricultural and migrant labor and moved into urban areas, they ceased to be a significant force in the countryside except insofar as their growing scarcity continued to generate production problems in the village and at migrant labor work sites. These latter chapters then focus on tarahil labor in the urban informal sector and the shantytowns to understand how their rural experience shaped their city life, and how these workers continued to affect Egypt's development. Here, further deterioration of class relations and government legitimacy aggravated by ex-rural workers who, having now migrated to the cities, nonetheless continued to be economically and politically disenfranchised.By comparing Egypt's current situation with the phases proposed by regulation theory, Toth successfully demonstrates that it has been the movements of tarahil migrant farm workers thathave significantly contributed to preventing Egypt's successful transition to cooperative peripheral Fordism. Toth's painstaking work based on years of fieldwork is a major contribution to our understanding of the dynamics of development in Egypt. It is highly recommended to anyone searching for a deeper understanding of the economic problems facing this complex country.Article source: University of Florida Press, 1999:265-268.中文译文1961-1992年埃及农村劳动力的转移及其对国家的影响罗伯特鲁尼詹姆斯关于埃及非常翔实的研究表明,埃及流动农业工人对埃及近代的历史和国家的发展做出了出人意料的贡献。
外文参考文献译文及原文
广东工业大学华立学院本科毕业设计(论文)外文参考文献译文及原文系部城建学部专业土木工程年级 2011级班级名称 11土木工程9班学号 23031109000学生姓名刘林指导教师卢集富2015 年5 月目录一、项目成本管理与控制 0二、Project Budget Monitor and Control (1)三、施工阶段承包商在控制施工成本方面所扮演的作用 (2)四、The Contractor's Role in Building Cost Reduction After Design (4)一、外文文献译文(1)项目成本管理与控制随着市场竞争的激烈性越来越大,在每一个项目中,进行成本控制越发重要。
本文论述了在施工阶段,项目经理如何成功地控制项目预算成本。
本文讨论了很多方法。
它表明,要取得成功,项目经理必须关注这些成功的方法。
1.简介调查显示,大多数项目会碰到超出预算的问……功控制预算成本。
2.项目控制和监测的概念和目的Erel and Raz (2000)指出项目控制周期包括测量成……原因以及决定纠偏措施并采取行动。
监控的目的就是纠偏措施的...标范围内。
3.建立一个有效的控制体系为了实现预算成本的目标,项目管理者需要建立一……被监测和控制是非常有帮助的。
项目成功与良好的沟通密...决( Diallo and Thuillier, 2005)。
4.成本费用的检测和控制4.1对检测的优先顺序进行排序在施工阶段,很多施工活动是基于原来的计……用完了。
第四,项目管理者应该检测高风险活动,高风险活动最有...重要(Cotterell and Hughes, 1995)。
4.2成本控制的方法一个项目的主要费用包括员工成本、材料成本以及工期延误的成本。
为了控制这些成本费用,项目管理者首先应该建立一个成本控制系统:a)为财务数据的管理和分析工作落实责任人员b)确保按照项目的结构来合理分配所有的……它的变化--在成本控制线上准确地记录所有恰...围、变更、进度、质量)相结合由于一个工程项目......虑时间价值影响后的结果。
外文翻译--创业板市场
外文文献翻译译文一、外文原文原文:China's Second BoardI. Significance of and events leading to the establishment of a Second BoardOn 31 March 2009 the China Securities Regulatory Commission (CSRC issued Interim Measures on the Administration of Initial Public Offerings and Listings of Shares on the ChiNext [i.e., the Second Board, also called the Growth Enterprise Market] ("Interim Measures"), which came into force on 1 May 2009. This marked the creation by the Shenzhen Stock Exchange of the long-awaited market for venture businesses. As the original plan to establish such a market in 2001 had come to nothing when the dotcom bubble burst, the market's final opening came after a delay of nearly 10 years.Ever since the 1980s, when the Chinese government began to foster the development of science and technology, venture capital has been seen in China as a means of supporting the development of high-tech companies financially. The aim, as can be seen from the name of the 1996 Law of the People's Republic of China on Promoting the Conversion of Scientific and Technological Findings into Productivity ,was to support the commercialization of scientific and technological developments. Venture capital funds developed gradually in the late 1990s, and between then and 2000 it looked increasingly likely that a Second Board would be established. When the CSRC published a draft plan for this in September 2000, the stage was set. However, when the dotcom bubble (and especially the NASDAQ bubble) burst, this plan was shelved. Also, Chinese investors and venture capitalists were probably not quite ready for such a move.As a result, Chinese venture businesses sought to list on overseas markets (a so-called "red chip listing") from the late 1990s. However, as these listings increased, so did the criticism that valuable Chinese assets were being siphoned overseas.On thepolicy front, in 2004 the State Council published Some Opinions on Reform, Opening and Steady Growth of Capital Markets ("the Nine Opinions"), in which the concept of a "multi-tier capital market" was presented for the first time. A first step in this direction was made in the same year, when an SME Board was established as part of the Main Board. Although there appear to have been plans to eventually relax the SME Board's listing requirements, which were the same as those for companies listed on the Main Board, and to make it a market especially for venture businesses, it was decided to establish a separate market (the Second Board) for this purpose and to learn from the experience of the SME Board.As well as being part of the process of creating a multi-tier capital market, the establishment of the Second Board was one of the measures included in the policy document Several Opinions of the General Office of the State Council on Providing Financing Support for Economic Development ("the 30 Financial Measures"), published in December 2008 in response to the global financial crisis and intended as a way of making it easier for SMEs to raise capital.It goes without saying that the creation of the Second Board was also an important development in that it gives private equity funds the opportunity to exit their investments. The absence of such an exit had been a disincentive to such investment, with most funds looking for a red chip listing as a way of exiting their investments. However, with surplus savings at home, the Chinese authorities began to encourage companies to raise capital on the domestic market rather than overseas. This led, in September 2006, to a rule making it more difficult for Chinese venture businesses to list their shares on overseas markets. The corollary of this was that it increased the need for a means whereby Chinese private equity funds could exit their investments at an early opportunity and on their own market. The creation of the Second Board was therefore a belated response to this need.II. Rules and regulations governing the establishment of the Second BoardWe now take a closer look at some of the rules and regulations governing the establishment of the Second Board.First , the Interim Measures on the Administration of Initial Public Offerings andListings of Shares on the ChiNext, issued by the CSRC on 31 March 2009 with effect from 1 May 2009. The Interim Measures consist of six chapters and 58 articles, stipulating issue terms and procedures, disclosure requirements, regulatory procedures, and legal responsibilities.First, the General Provisions chapter. The first thing this says (Article 1) is: "These Measures are formulated for the purposes of promoting the development of innovative enterprises and other growing start-ups" This shows that one of the main listing criteria is a company's technological innovativeness and growth potential. The Chinese authorities have actually made it clear that, although the Second Board and the SME Board are both intended for SMEs of similar sizes, the Second Board is specifically intended for SMEs at the initial (rather than the growth or mature) stage of their development with a high degree of technological innovativeness and an innovative business model while the SME Board is specifically intended for companies with relatively stable earnings at the mature stage of their development. They have also made it clear that the Second Board is not simply a "small SME Board." This suggests to us that the authorities want to see technologically innovative companies listing on the Second Board and SMEs in traditional sectors listing on the SME Board.Next, Article 7 says: "A market access system that is commensurate with the risk tolerance of investors shall be established for investors on the ChiNext and investment risk shall be fully disclosed to investors." One noteworthy feature is the adoption of the concept of the "qualified investor" in an attempt to improve risk control.Furthermore, Article 8 says: "China Securities Regulatory Commission (hereinafter, CSRC) shall, in accordance with law, examine and approve the issuer’s IPO application and supervise the issuer’s IPO activities. The stock exchange shall formulate rules in accordance with law, provide an open, fair and equitable market environment and ensure the normal operation of the ChiNext." Until the Second Board was established, it was thought by some that the stock exchange had the right to approve new issues. Under the Interim Measures, however, it is the CSRC that examines and approves applications.First, offering conditions. Article 10 stipulates four numerical conditions for companies applying for IPOs.Second, offering procedures. The Interim Measures seek to make sponsoring securities companies more responsible by requiring them to conduct due diligence investigations and make prudential judgment on the issuer’s growth and render special opinions thereon.Third, information disclosure. Article 39 of the Interim Measures stipulates that the issuer shall make a statement in its prospectus pointing out the risks of investing in Second Board companies: namely, inconsistent performance, high operational risk, and the risk of delisting. Similarly,Fourth, supervision. Articles 51 and 52 stipulate that the stock exchange (namely, the Shenzhen Stock Exchange) shall establish systems for listing, trading and delisting Second Board stocks, urge sponsors to fulfill their ongoing supervisory obligations, and establish a market risk warning system and an investor education system.1. Amendments to the Interim Measures on Securities Issuance and Listing Sponsor System and the Provisional Measures of the Public Offering Review Committee of the China Securities Regulatory Commission2. Rules Governing the Listing of Shares on the ChiNext of Shenzhen Stock Exchange Next, the Shenzhen Stock Exchange published Rules Governing the Listing of Shares on the ChiNext of Shenzhen Stock Exchange on 6 June (with effect from 1 July).3. Checking investor eligibility As the companies listed on the Second Board are more risky than those listed on the Main Board and are subject to more rigorous delisting rules (see above), investor protection requires that checks be made on whether Second Board shares are suitable for all those wishing to invest in them.4. Rules governing (1) application documents for listings on the ChiNext and (2) prospectuses of ChiNext companies On 20 July the CSRC published rules governing Application Documents for Initial Public Offerings and Listings of Shares on the ChiNext and Prospectuses of ChiNext Companies, and announced that it would begin processing listing applications on 26 July.III. Future developmentsAs Its purpose is to "promote the development of innovative enterprises and other growing start-ups",the Second Board enables such companies to raise capital by issuing shares. That is why its listing requirements are less demanding than those of the Main Board but also why it has various provisions to mitigate risk. For one thing, the Second Board has its own public offering review committee to check how technologically specialized applicant companies are, reflecting the importance attached to this. For another, issuers and their controlling shareholders, de facto controllers, and sponsoring securities companies are subject to more demanding accountability requirements. The key factor here is, not surprisingly, disclosure. Also, the qualified investor system is designed to mitigate the risks to retail investors.Once the rules and regulations governing the Second Board were published, the CSRC began to process listing applications from 26 July 2009. It has been reported that 108 companies initially applied. As of mid-October, 28 of these had been approved and on 30 October they were listed on the Second Board.As of 15 December, there are 46 companies whose listing application has been approved by CSRC (including the above-mentioned 28 companies). They come from a wide range of sectors, especially information technology, services, and biopharmacy. Thus far, few companies in which foreign private equity funds have a stake have applied. This is because these funds have tended to go for red-chip listings.Another point is movement between the various tiers of China's multi-tier capital market. As of early September, four companies that are traded on the new Third Board had successfully applied to list on the Second Board. As 22 new Third Board companies meet the listing requirements of the Second Board on the basis of their interim reports for the first half of fiscal 2009, a growing number of companies may transfer their listing from the new Third Board to the Second Board. We think this is likely to make the new Third Board a more attractive market for private equity investors.The applicants include companies that were in the process of applying for a listing on the SME Board. The CSRC has also made it clear that it does not see theSecond Board simply as a "small SME Board" and attaches great importance to the companies' innovativeness and growth potential. Ultimately, whether or not such risks can be mitigated will depend on whether the quality of the companies that list on the Second Board improves and disclosure requirements are strictly complied with. For example, according to the rules governing Prospectuses of ChiNext Companies, companies are required to disclose the above-mentioned supplementary agreements as a control right risk. The point is whether such requirements will be complied with.Since there is a potentially large number of high-tech companies in China in the long term, whether or not the Second Board becomes one of the world's few successful venture capital markets will depend on whether all these rules and regulations succeed in shaping its development and the way in which it is run.The authorities clearly want to avoid a situation where the Second Board attracts a large number of second-rate companies and becomes a vehicle for market abuse as it would then run the risk of becoming an illiquid market shunned by investors who have lost trust in it. Indeed, such has been the number of companies applying to list on the Second Board that some observers have expressed concern about their quality.There has also been some concern about investor protection. For example, supplementary agreements between private equity funds and issuers pose a risk to retail investors in that they may suddenly be faced with a change in the controlling shareholder. This is because such agreements can result in a transfer of shares from the founder or controlling shareholder to a private equity fund if the company fails to meet certain agreed targets or in a shareholding structure that is different from the apparent one, for example. The problem of low liquidity, which has long faced the new Third Board market, where small-cap high-tech stocks are also traded, also needs to be addressed.Meanwhile, the Second Board's Public Offering Review Committee was officially established on 14 August. It has 35 members. A breakdown reveals that the number of representatives of the CSRC and the Shenzhen Stock Exchange has been limited to three and two, respectively, to ensure that the committee has the necessary number of technology specialists. Of the remainder, 14 are accountants, six lawyers,three from the Ministry of Science and Technology, three from the China Academy of Sciences, two from investment trust companies, one from an asset evaluation agency, and one from the National Development and Reform Commission (NDRC). It has been reported that the members include specialists in the six industry fields the CSRC considers particularly important for Second Board companies (namely, new energy, new materials, biotechnology and pharmaceuticals, energy conservation and environmental protection, services and IT).Source: Takeshi Jingu.2009.“China's Second Board”. Nomura Journal of Capital Markets Winter 2009 V ol.1 No.4.pp.1-15.二、翻译文章译文:中国创业板市场一、建立创业板市场及其意义2009年3月31日中国证券监督管理委员会(以下简称“中国证监会”)发行《中国证监会管理暂行办法》,首次在创业板市场上[即,第二个板,也叫创业板市场](“暂行办法”) 公开募股,从 2009年的5月1日开始生效,这标志着深圳证券交易所市场这个人们期待已久的合资企业即将诞生。
外文译文
附:外文译文译文美国:个性与职业匹配程度对企业绩效的影响目前,企业希望能招聘合适的人才,以谋求在竞争的商业环境中能更好的发展;个人希望在求职时脱颖而出,获得一份适合自己的理想职业。
然而,个人需要在就业前做好职业规划,了解自己的个性类型,以便找到合适的工作。
个性类型与职业的匹配高度相关,如果一个人能根据其个性类型找到一份适合的工作,那么他就能获得更好的职业发展。
因此,对于企业和个人而言,个性类型与职业匹配的研究具有指导意义。
个性类型与职业匹配理论综述Pervin和John(1997)认为,个性是个人在对情境作反应时所表现出的结构性质与动态性质,意指个性代表一种个人有别于他人的持久性质。
Scott和Dvaid(1996)认为“由于个人个性的不同,因此会影响其对情景感受的差异,此种差异将削弱强势情境的假设。
所以组织强势情境对个人的影响并非一致的”。
所以,外在环境虽然会对性格有影响,但却不是决定性的因素。
霍兰德提出了可以让实践者很容易应用的个性-职业匹配理论。
霍兰德职业兴趣测量表和RIASEC序列就是由霍兰德、惠特尼、科罗和理查德斯于1969年提出的。
霍兰德的理论在兴趣测量、职业分类和就业指导等方面都有深远的影响。
尽管有各种各样的个性-职业匹配模型,但是将其归为两大类:一类关注员工的就业意愿和职位供给之间的关系,员工的就业意愿可以看作是他们的需要、目标、价值、兴趣和偏好;另一类则关注员工的能力和职位要求,员工的能力可以用他的教育、经验、智力、能力等来刻画,而职位要求看作是工作的环境、工作的强度、能力要求和任务要求等。
霍兰德的个性-职业匹配理论由于其易用性,广为人们所应用。
但是在霍兰德的个性-职业匹配理论中没有明晰的就个性与职业的匹配如何影响个人工作效率、工作满意度和工作稳定性的内在机制做出详细的阐述,所以是对霍兰德个性-职业模型进行了完善。
个性类型和职业环境类型的划分及衡量(一)个性类型和职业环境类型的划分对个性类型与职业类型进行分类,沿用霍兰德将人类的个性分为六种类型的划分,即:实际型(R型)、研究型(I型)、艺术型(A型)、社会型(S型)、企业型(E型)、传统型(C型),因此简称RIASEC 类型(见图1)。
外文文献翻译译文
环境管理会计(EMA)是管理会计发展的趋势Christine Jasch摘要:组织机构和会计师们为什么应该关心环境问题?来自供应链、资金提供商、监管机构以及其他利益相关者对于环境绩效及其信息披露的压力,导致组织机构的与环境相关的成本不断增加。
但同时提高环境绩效能够带来潜在的货币利益这一观点也逐渐得到人们的认同,传统的会计实务不能充分提供对于环境管理和与之相关的战略决策所需要的信息。
由于联合国可持续发展事务署下的环境管理会计工作组的成立,以及由它主办的出版物的发行,环境管理会计得到了促进和提升。
最近,国际会计师联合会发行了一份关于环境管理会计的指导性文件,这将进一步推动环境管理会计在会计师中的应用。
这期《清洁生产》杂志的关于环境管理会计的这个特别问题,侧重于它的方法论背景,以及来自澳大利亚、奥地利、阿根廷、加拿大、日本和立陶宛的案例研究经验。
正文:环境问题伴随者相关费用,收入和利益,正被世界上大多数国家的公民,政府组织,合作型领导人给予越来越多的关注.但是,有一个越来越广泛的共识,那就是,传统的会计不能为合理的支持在环境管理责任方面的决策制定提供准确的信息.为了填补这个差距,目前,EMA的新兴领域已经受到持续增加的关注.在19世纪九十年代早期,美国环保署是第一个成立了正式的项目去促进EMA的采纳的国家机构.从那时起,在30个国家的组织已经开始推动和落实EMA的许多不同类型的与环保相关的管理措施. 对于EMA的广泛关注是由于联合国可持续发展事务司对EMA的提倡以及其对EMA书籍的委托出版。
国际会计师联合会决定授权在由联合国科学发展司EMA工作组发表的最早的关于EMA 两本出版物的基础上发展一个关于EMA的指导性文件以整合关于EMA的最好的信息并与此同时进行必要的更新和添加.这个文件既不是有规定的要求的标准,也不是个描述性研究报告.它意在成为一个提供指导性信息的文件,作为监管要求,标准和纯粹信息的中间地带.这样, 它的目标是提供了一个总体框架和EMA的定义是相当全面,这是一致的可能与其他现有的,广泛应用于环境会计框架与EMA必须通力合作,以减少一些就这一重要议题的国际混乱功能。
外文翻译资料及译文
附录C:外文翻译资料Article Source:Business & Commercial Aviation, Nov 20, 2000. 5-87-88 Interactive Electronic Technical Manuals Electronic publications can increase the efficiency of your digital aircraft and analogtechnicians.Benoff, DaveComputerized technical manuals are silently revolutionizing the aircraft maintenance industry by helping the technician isolate problems quickly, and in the process reduce downtime and costs by more than 10 percent.These electronic publications can reduce the numerous volumes of maintenance manuals, microfiche and work cards that are used to maintain engines, airframes, avionics and their associated components."As compared with the paper manuals, electronic publications give us greater detail and reduced research times," said Chuck Fredrickson, general manager of Mercury Air Center in Fort Wayne, Ind.With all the advances in computer hardware and software technologies, such as high quality digital multimedia, hypertext and the capability to store and transmit digital multimedia via CD-ROMs/ networks, technical publication companies have found an effective, cost-efficient method to disseminate data to technicians.The solution for many operators and OEMs is to take advantage of today's technology in the form of Electronic Technical Manuals (ETM) or Interactive Technical Manuals (IETM). An ETM is any technical manual prepared in digital format that has the ability to be displayed using any electronic hardware media. The difference between the types of ETM/IETMs is the embedded functionality and implementation of the data."The only drawback we had to using ETMs was getting enough computers to meet our technicians' demand," said Walter Berchtold, vice president of maintenance at Jet Aviation's West Palm Beach, Fla., facility.A growing concern is the cost to print paper publications. In an effort to reduce costs, some aircraft manufacturers are offering incentives for owners to switch from paper to electronic publications. With an average printing cost of around 10 cents per page, a typical volume of a paper technical manual can cost the manufacturer over $800 for each copy. When producing a publication electronically, average production costs for a complete set of aircraft manuals are approximately $20 per copy. It is not hard to see the cost advantages of electronic publications.Another advantage of ETMs is the ease of updating information. With a paper copy, the manufacturer has to reprint the revised pages and mail copies to all the owners. When updates are necessary for an electronic manual, changes can either be e-mailed to theowners or downloaded from the manufacturer's Web site.So why haven't more flight departments converted their publications to ETM/IETMs? The answer lies in convincing technicians that electronic publications can increase their efficiency."We had an initial learning curve when the technicians switched over, but now that they are familiar with the software they never want to go back to paper," said Fredrickson.A large majority of corporate technicians also said that while they like the concept of having a tool that aids the troubleshooting process, they are fearful to give up all of their marked-up paper manuals.In 1987, a human factors study was conducted by the U.S. government to compare technician troubleshooting effectiveness, between paper and electronic methodology, and included expert troubleshooting procedures with guidance through the events. Results of the project indicated that technicians using electronic media took less than half the time to complete their tasks than those using the paper method, and technicians using the electronic method accomplished 65 percent more in that reduced time.The report also noted that new technicians using the electronic technical manuals were 12-percent more efficient than the older, more experienced technicians. (Novices using paper took 15 percent longer than the experts.)It is interesting that 90 percent of the technicians who used the electronic manuals said they preferred them to the paper versions. This proved to the industry that with proper training, the older technicians could easily transition from paper to electronic media.Electronic publications are not a new concept, although how they are applied today is. "Research over the last 20 years has provided a solid foundation for today's IETM implementation," said Joseph Fuller of the U.S. Naval Surface Warfare Center. "IETMs such as those for the Apache, Comanche, F-22, JSTAR and V-22 have progressed from concept to military and commercial implementation."In the late 1970s, the U.S. military investigated the feasibility of converting existing paper and microfilm. The Navy Technical Information Presentation System (NTIPS) and the Air Force Computer- based Maintenance Aid System (CMAS) were implemented with significant cost savings.The report stated that transition to electronic publications resulted in reductions in corrective maintenance time, fewer false removals of good components, more accurate and complete maintenance data collection reports, reduction in training requirements and reduced system downtime.The problem that the military encountered was ETMs were created in multiple levels of complexity with little to no standardization. Options for publications range from simple page-turning programs to full-functioning automated databases.This resulted in the classification of ETMs so that the best type of electronic publication could be selected for the proper application.Choosing a LevelWith all of the OEM and second- and third-party electronic publications that are available it is important that you choose the application level that is appropriate for your operation.John J. Miller, BAE Systems' manager of electronic publications, told B/CAthat "When choosing the level of an ETM/IETM, things like complexity of the aircraft and its systems, ease of use, currency of data and commonality of data should be the deciding factors; and, of course, price. If operational and support costs are reduced when you purchase a full-functioning IETM, then you should purchase the better system."Miller is an expert on the production, sustainment and emerging technologies associated with electronic publications, and was the manager of publications for Boeing in Philadelphia.Electronic publications are classified in one of five categories. A Class 1 publication is a basic electronic "page turner" that allows you to view the maintenance manual as it was printed. With a Class 2 publication all the original text of the manual is viewed as one continuous page with no page breaks. In Class 3, 4 and 5 publications the maintenance manual is viewed on a computer in a frame-based environment with increasing options as the class changes. (See sidebar.)Choosing the appropriate ETM for your operation is typically limited to whatever is being offered on the market, but since 1991 human factors reports state the demand has increased and, therefore, options are expected to follow.ETM/IETM ProvidersCompanies that create ETM/IETMs are classified as either OEM or second party provider. Class 1, 3 and 4 ETM/IETMs are the most commonly used electronic publications for business and commercial operators and costs can range anywhere from $100 to $3,000 for each ETM/ IETM. The following are just a few examples ofETM/IETMs that are available on the market.Dassault Falcon Jet offers operatorsof the Falcon 50/50EX, 900/900EX and 2000 a Class 4 IETM called the Falcon Integrated Electronic Library by Dassault (FIELD). Produced in conjunction with Sogitec Industries in Suresnes Cedex, France, the electronic publication contains service documentation, basic wiring, recommended maintenance and TBO schedules, maintenance manual, tools manual, service bulletins, maintenance and repair manual, and avionics manual.The FIELD software allows the user to view the procedures and hot- link directly to the Illustrated parts catalog. The software also enables the user to generate discrepancy forms, quotation sheets, annotations in the manual and specific preferences for each user.BAE's Miller said most of the IETM presentation systems have features called "Technical Notes." If a user of the electronic publication notices a discrepancy or needs to annotate the manual for future troubleshooting, the user can add a Tech Note (an electronic mark-up) to the step or procedure and save it to the base document. The next time that or another user is in the procedure, clicking on the tech note icon launches a pop-up screen displaying the previous technician's comments. The same electronic transfer of tech notes can be sent to other devices by using either a docking station or through a network server. In addition, systems also can use "personal notes" similar to technical notes that are assigned ID codes that only the authoring technician can access.Requirements for the FIELD software include the minimum of a 16X CD-ROM drive,Pentium II 200 MHz computer, Windows 95, Internet Explorer 4 SP 1 and Database Access V3.5 or higher.Raytheon offers owners of Beech and Hawker aircraft a Class 4 IETM called Raytheon Electronic Publication Systems (REPS). The REPS software links the frame-based procedures with the parts catalog using a single CD-ROM.Raytheon Aircraft Technical Publications said other in- production Raytheon aircraft manual sets will be converted to the REPS format, with the goal of having all of them available by 2001. In addition Raytheon offers select Component Maintenance Manuals (CMM). The Class 1 ETM is a stand-alone "page-turner" electronic manual that utilizes the PDF format of Adobe Acrobat.Other manufacturers including Bombardier, Cessna and Gulfstream offer operators similar online and PDF documentation using a customer- accessed Web account.Boeing is one manufacturer that has developed an onboard Class 5 IETM. Called the Computerized Fault Reporting System (CFRS), it has replaced the F-15 U.S. Air Force Fault Reporting Manuals. Technologies that are currently being applied to Boeing's military system are expected to eventually become a part of the corporate environment.The CFRS system determines re-portable faults by analyzing information entered during a comprehensive aircrew debrief along with electronically recovered maintenance data from the Data Transfer Module (DTM). After debrief the technicians can review aircraft faults and schedule maintenance work to be performed. The maintenance task is assigned a Job Control Number (JCN) and is forwarded electronically to the correct work center or shop. Appropriate information is provided to the Air Force's Core Automated Maintenance System (CAMS).When a fault is reported by pilot debrief, certain aircraft systems have the fault isolation procedural data on a Portable Maintenance Aid (PMA). The JCN is selected on a hardened laptop with a wireless Local Area Network (LAN) connection to the CFRS LAN infrastructure. The Digital Wiring Data System (DWDS) displays aircraft wiring diagrams to the maintenance technician for wiring fault isolation. On completion of maintenance, the data collected is provided to the Air Force, Boeing and vendors for system analysis.Third party IETM developers such as BAE Systems and Dayton T. Brown offer OEMs the ability to subcontract out the development of Class 1 through 5 ETM/IETMs. For example, Advantext, Inc. offers PDF and IPDF Class 1 ETMs for manufacturers such as Piper and Bell Helicopters. Technical publications that are available include maintenance manuals, parts catalogs, service bulletins, wiring diagrams, service letters and interactive parts ordering forms.The difference between the PDF and IPDF version is that the IPDF version has the ability to search for text and include hyperlinks. A Class 1 ETM, when printed, is an exact reproduction of the OEM manuals, including any misspellings or errors. Minimum requirements for the Advantext technical publications is a 486 processor, 16 MB RAM with 14 MB of free hard disk space and a 4X CD-ROM or better.Aircraft Technical Publishers (ATP) offers Class 1, 2 and 3 ETM/ IETMsfor the Beechjet 400/400A; King Air 300/ 350, 200 and 90; Learjet 23/24/25/28/29/35/36/55; Socata TB9/10/20/21 and TBM 700A; Sabreliner 265-65, -70 and -80; andBeech 1900. The libraries can include maintenance manuals, Illustrated parts bulletins, wiring manuals, Airworthiness Directives, Service Bulletins, component maintenance manuals and structural maintenance manuals. System minimum requirements are Pentium 133 MHz, Windows 95 with 16 MB RAM, 25 MB free hard disk space and a 4X CD-ROM or better.Additional providers such as Galaxy Scientific are providing ETM/ IETMs to the FAA. This Class 2, 3 and 4 publication browser is used to store, display and edit documentation for the Human Factors Section of the administration."Clearly IETMs have moved from research to reality," said Fuller, and the future looks to hold more promise.The Future of Tech PubsThe use of ETM/IETMs on laptop and desktop computers has led research and development corporations to investigate the human interface options to the computer. Elements that affect how a technician can interface with a computer are the work environment, economics and ease of use. Organizations such as the Office of Naval Research have focused their efforts on the following needs of technicians: -- Adaptability to the environment.-- Ease of use.-- Improved presentation of complex system relationship.-- Maximum reuse and distribution of engineering data.-- Intelligent data access.With these factors in mind, exploratory development has begun in the areas of computer vision, augmented reality display and speech recognition.Computer vision can be created using visual feedback from a head- mounted camera. The camera identifies the relative position and orientation of an object in an observed scene, and the object is used to correlate the object with a three-dimensional model. In order for a computer vision scenario to work, engineering data has to be provided through visually compatible software.When systems such as Sogitech's View Tech electronic publication browser and Dassault Systemes SA's Enovia are combined, a virtual 3D model is generated.The digital mockup allows the engineering information to directly update the technical publication information. If a system such as CATIA could be integrated into a Video Reference System (VRS), then it could be possible that a technician would point the camera to the aircraft component, the digital model identifies the component and the IETM automatically displays the appropriate information.This example of artificial intelligence is already under development at companies like Boeing and Dassault. An augmented reality display is a concept where visual cues are presented to users on a head-mounted, see-through display system.The cues are presented to the technician based on the identification of components on a 3D model and correlation with the observed screen. The cues are then presented as stereoscopic images projected onto the object in the observed scene.In addition a "Private Eye" system could provide a miniature display of the maintenance procedure that is provided from a palm- size computer. Limited success hascurrently been seen in similar systems for the disabled. The user of a Private Eye system can look at the object selected and navigate without ever having to touch the computer. Drawbacks from this type of system are mental and eye fatigue, and spatial disorientation.Out of all the technologies, speech recognition has developed into an almost usable and effective system. The progression through maintenance procedures is driven by speaker-independent recognition. A state engine controls navigation, and launches audio responses and visual cues to the user. Voice recognition software is available, although set up and use has not been extremely successful.Looking at other industries, industrial manufacturing has already started using "Palm Pilot" personal digital assistants (PDAs) to aid technicians in troubleshooting. These devices allow the technician to have the complete publication beside them when they are in tight spaces. "It would be nice to take the electronic publications into the aircraft, so we are not constantly going back to the work station to print out additional information," said Jet Aviation's Berchtold.With all the advantages that a ETM/ IETM offers it should be noted that electronic publications are not the right solution all of the time, just as CBT is not the right solution for training in every situation. Only you can determine if electronic publications meet your needs, and most technical publication providers offer demo copies for your review. B/CA IllustrationPhoto: Photograph: BAE Systems' Christine Gill prepares a maintenance manual for SGML conversion BAE Systems; Photograph: Galaxy Scientific provides the FAA's human factors group with online IETM support.; Photograph: Raytheon's Class 4 IETM "REPS" allows a user to see text and diagrams simultaneously with hotlinks to illustrated parts catalogs.外文翻译资料译文部分文章出处:民航商业杂志,2000-11-20,5-87-88交互式电子技术手册的电子出版物可以提高数字飞机和模拟技术的效率。
5、外文文献翻译(附原文)产业集群,区域品牌,Industrial cluster ,Regional brand
外文文献翻译(附原文)外文译文一:产业集群的竞争优势——以中国大连软件工业园为例Weilin Zhao,Chihiro Watanabe,Charla-Griffy-Brown[J]. Marketing Science,2009(2):123-125.摘要:本文本着为促进工业的发展的初衷探讨了中国软件公园的竞争优势。
产业集群深植于当地的制度系统,因此拥有特殊的竞争优势。
根据波特的“钻石”模型、SWOT模型的测试结果对中国大连软件园的案例进行了定性的分析。
产业集群是包括一系列在指定地理上集聚的公司,它扎根于当地政府、行业和学术的当地制度系统,以此获得大量的资源,从而获得产业经济发展的竞争优势。
为了成功驾驭中国经济范式从批量生产到开发新产品的转换,持续加强产业集群的竞争优势,促进工业和区域的经济发展是非常有必要的。
关键词:竞争优势;产业集群;当地制度系统;大连软件工业园;中国;科技园区;创新;区域发展产业集群产业集群是波特[1]也推而广之的一个经济发展的前沿概念。
作为一个在全球经济战略公认的专家,他指出了产业集群在促进区域经济发展中的作用。
他写道:集群的概念,“或出现在特定的地理位置与产业相关联的公司、供应商和机构,已成为了公司和政府思考和评估当地竞争优势和制定公共决策的一种新的要素。
但是,他至今也没有对产业集群做出准确的定义。
最近根据德瑞克、泰克拉[2]和李维[3]检查的关于产业集群和识别为“地理浓度的行业优势的文献取得了进展”。
“地理集中”定义了产业集群的一个关键而鲜明的基本性质。
产业由地区上特定的众多公司集聚而成,他们通常有共同市场、,有着共同的供应商,交易对象,教育机构和其它像知识及信息一样无形的东西,同样地,他们也面临相似的机会和威胁。
在全球产业集群有许多种发展模式。
比如美国加州的硅谷和马萨诸塞州的128鲁特都是知名的产业集群。
前者以微电子、生物技术、和风险资本市场而闻名,而后者则是以软件、计算机和通讯硬件享誉天下[4]。
外文文献翻译原文+译文
外文文献翻译原文Analysis of Con tin uous Prestressed Concrete BeamsChris BurgoyneMarch 26, 20051、IntroductionThis conference is devoted to the development of structural analysis rather than the strength of materials, but the effective use of prestressed concrete relies on an appropriate combination of structural analysis techniques with knowledge of the material behaviour. Design of prestressed concrete structures is usually left to specialists; the unwary will either make mistakes or spend inordinate time trying to extract a solution from the various equations.There are a number of fundamental differences between the behaviour of prestressed concrete and that of other materials. Structures are not unstressed when unloaded; the design space of feasible solutions is totally bounded;in hyperstatic structures, various states of self-stress can be induced by altering the cable profile, and all of these factors get influenced by creep and thermal effects. How were these problems recognised and how have they been tackled?Ever since the development of reinforced concrete by Hennebique at the end of the 19th century (Cusack 1984), it was recognised that steel and concrete could be more effectively combined if the steel was pretensioned, putting the concrete into compression. Cracking could be reduced, if not prevented altogether, which would increase stiffness and improve durability. Early attempts all failed because the initial prestress soon vanished, leaving the structure to be- have as though it was reinforced; good descriptions of these attempts are given by Leonhardt (1964) and Abeles (1964).It was Freyssineti’s observations of the sagging of the shallow arches on three bridges that he had just completed in 1927 over the River Allier near Vichy which led directly to prestressed concrete (Freyssinet 1956). Only the bridge at Boutiron survived WWII (Fig 1). Hitherto, it had been assumed that concrete had a Young’s modulus which remained fixed, but he recognised that the de- ferred strains due to creep explained why the prestress had been lost in the early trials. Freyssinet (Fig. 2) also correctly reasoned that high tensile steel had to be used, so that some prestress would remain after the creep had occurred, and alsothat high quality concrete should be used, since this minimised the total amount of creep. The history of Freyssineti’s early prestressed concrete work is written elsewhereFigure1:Boutiron Bridge,Vic h yFigure 2: Eugen FreyssinetAt about the same time work was underway on creep at the BRE laboratory in England ((Glanville 1930) and (1933)). It is debatable which man should be given credit for the discovery of creep but Freyssinet clearly gets the credit for successfully using the knowledge to prestress concrete.There are still problems associated with understanding how prestressed concrete works, partly because there is more than one way of thinking about it. These different philosophies are to some extent contradictory, and certainly confusing to the young engineer. It is also reflected, to a certain extent, in the various codes of practice.Permissible stress design philosophy sees prestressed concrete as a way of avoiding cracking by eliminating tensile stresses; the objective is for sufficient compression to remain after creep losses. Untensionedreinforcement, which attracts prestress due to creep, is anathema. This philosophy derives directly from Freyssinet’s logic and is primarily a working stress concept.Ultimate strength philosophy sees prestressing as a way of utilising high tensile steel as reinforcement. High strength steels have high elastic strain capacity, which could not be utilised when used as reinforcement; if the steel is pretensioned, much of that strain capacity is taken out before bonding the steel to the concrete. Structures designed this way are normally designed to be in compression everywhere under permanent loads, but allowed to crack under high live load. The idea derives directly from the work of Dischinger (1936) and his work on the bridge at Aue in 1939 (Schonberg and Fichter 1939), as well as that of Finsterwalder (1939). It is primarily an ultimate load concept. The idea of partial prestressing derives from these ideas.The Load-Balancing philosophy, introduced by T.Y. Lin, uses prestressing to counter the effect of the permanent loads (Lin 1963). The sag of the cables causes an upward force on the beam, which counteracts the load on the beam. Clearly, only one load can be balanced, but if this is taken as the total dead weight, then under that load the beam will perceive only the net axial prestress and will have no tendency to creep up or down.These three philosophies all have their champions, and heated debates take place between them as to which is the most fundamental.2、Section designFrom the outset it was recognised that prestressed concrete has to be checked at both the working load and the ultimate load. For steel structures, and those made from reinforced concrete, there is a fairly direct relationship between the load capacity under an allowable stress design, and that at the ultimate load under an ultimate strength design. Older codes were based on permissible stresses at the working load; new codes use moment capacities at the ultimate load. Different load factors are used in the two codes, but a structure which passes one code is likely to be acceptable under the other.For prestressed concrete, those ideas do not hold, since the structure is highly stressed, even when unloaded. A small increase of load can cause some stress limits to be breached, while a large increase in load might be needed to cross other limits. The designer has considerable freedom to vary both the working load and ultimate load capacities independently; both need to be checked.A designer normally has to check the tensile and compressive stresses, in both the top and bottom fibre of the section, for every load case. The critical sections are normally, but not always, the mid-span and the sections over piers but other sections may become critical ,when the cable profile has to be determined.The stresses at any position are made up of three components, one of which normally has a different sign from the other two; consistency of sign convention is essential.If P is the prestressing force and e its eccentricity, A and Z are the area of the cross-section and its elastic section modulus, while M is the applied moment, then where ft and fc are the permissible stresses in tension and compression.c e t f ZM Z P A P f ≤-+≤Thus, for any combination of P and M , the designer already has four in- equalities to deal with.The prestressing force differs over time, due to creep losses, and a designer isusually faced with at least three combinations of prestressing force and moment;• the applied moment at the time the prestress is first applied, before creep losses occur,• the maximum applied moment after creep losses, and• the minimum applied moment after creep losses.Figure 4: Gustave MagnelOther combinations may be needed in more complex cases. There are at least twelve inequalities that have to be satisfied at any cross-section, but since an I-section can be defined by six variables, and two are needed to define the prestress, the problem is over-specified and it is not immediately obvious which conditions are superfluous. In the hands of inexperienced engineers, the design process can be very long-winded. However, it is possible to separate out the design of the cross-section from the design of the prestress. By considering pairs of stress limits on the same fibre, but for different load cases, the effects of the prestress can be eliminated, leaving expressions of the form:rangestress e Perm issibl Range Mom entZ These inequalities, which can be evaluated exhaustively with little difficulty, allow the minimum size of the cross-section to be determined.Once a suitable cross-section has been found, the prestress can be designed using a construction due to Magnel (Fig.4). The stress limits can all be rearranged into the form:()M fZ PA Z e ++-≤1 By plotting these on a diagram of eccentricity versus the reciprocal of the prestressing force, a series of bound lines will be formed. Provided the inequalities (2) are satisfied, these bound lines will always leave a zone showing all feasible combinations of P and e. The most economical design, using the minimum prestress, usually lies on the right hand side of the diagram, where the design is limited by the permissible tensile stresses.Plotting the eccentricity on the vertical axis allows direct comparison with the crosssection, as shown in Fig. 5. Inequalities (3) make no reference to the physical dimensions of the structure, but these practical cover limits can be shown as wellA good designer knows how changes to the design and the loadings alter the Magnel diagram. Changing both the maximum andminimum bending moments, but keeping the range the same, raises and lowers the feasible region. If the moments become more sagging the feasible region gets lower in the beam.In general, as spans increase, the dead load moments increase in proportion to the live load. A stage will be reached where the economic point (A on Fig.5) moves outside the physical limits of the beam; Guyon (1951a) denoted the limiting condition as the critical span. Shorter spans will be governed by tensile stresses in the two extreme fibres, while longer spans will be governed by the limiting eccentricity and tensile stresses in the bottom fibre. However, it does not take a large increase in moment ,at which point compressive stresses will govern in the bottom fibre under maximum moment.Only when much longer spans are required, and the feasible region moves as far down as possible, does the structure become governed by compressive stresses in both fibres.3、Continuous beamsThe design of statically determinate beams is relatively straightforward; the engineer can work on the basis of the design of individual cross-sections, as outlined above. A number of complications arise when the structure is indeterminate which means that the designer has to consider, not only a critical section,but also the behaviour of the beam as a whole. These are due to the interaction of a number of factors, such as Creep, Temperature effects and Construction Sequence effects. It is the development of these ideas whichforms the core of this paper. The problems of continuity were addressed at a conference in London (Andrew and Witt 1951). The basic principles, and nomenclature, were already in use, but to modern eyes concentration on hand analysis techniques was unusual, and one of the principle concerns seems to have been the difficulty of estimating losses of prestressing force.3.1 Secondary MomentsA prestressing cable in a beam causes the structure to deflect. Unlike the statically determinate beam, where this motion is unrestrained, the movement causes a redistribution of the support reactions which in turn induces additional moments. These are often termed Secondary Moments, but they are not always small, or Parasitic Moments, but they are not always bad.Freyssinet’s bridge across the Marne at Luzancy, started in 1941 but not completed until 1946, is often thought of as a simply supported beam, but it was actually built as a two-hinged arch (Harris 1986), with support reactions adjusted by means of flat jacks and wedges which were later grouted-in (Fig.6). The same principles were applied in the later and larger beams built over the same river.Magnel built the first indeterminate beam bridge at Sclayn, in Belgium (Fig.7) in 1946. The cables are virtually straight, but he adjusted the deck profile so that the cables were close to the soffit near mid-span. Even with straight cables the sagging secondary momentsare large; about 50% of the hogging moment at the central support caused by dead and live load.The secondary moments cannot be found until the profile is known but the cablecannot be designed until the secondary moments are known. Guyon (1951b) introduced the concept of the concordant profile, which is a profile that causes no secondary moments; es and ep thus coincide. Any line of thrust is itself a concordant profile.The designer is then faced with a slightly simpler problem; a cable profile has to be chosen which not only satisfies the eccentricity limits (3) but is also concordant. That in itself is not a trivial operation, but is helped by the fact that the bending moment diagram that results from any load applied to a beam will itself be a concordant profile for a cable of constant force. Such loads are termed notional loads to distinguish them from the real loads on the structure. Superposition can be used to progressively build up a set of notional loads whose bending moment diagram gives the desired concordant profile.3.2 Temperature effectsTemperature variations apply to all structures but the effect on prestressed concrete beams can be more pronounced than in other structures. The temperature profile through the depth of a beam (Emerson 1973) can be split into three components for the purposes of calculation (Hambly 1991). The first causes a longitudinal expansion, which is normally released by the articulation of the structure; the second causes curvature which leads to deflection in all beams and reactant moments in continuous beams, while the third causes a set of self-equilibrating set of stresses across the cross-section.The reactant moments can be calculated and allowed-for, but it is the self- equilibrating stresses that cause the main problems for prestressed concrete beams. These beams normally have high thermal mass which means that daily temperature variations do not penetrate to the core of the structure. The result is a very non-uniform temperature distribution across the depth which in turn leads to significant self-equilibrating stresses. If the core of the structure is warm, while the surface is cool, such as at night, then quite large tensile stresses can be developed on the top and bottom surfaces. However, they only penetrate a very short distance into the concrete and the potential crack width is very small. It can be very expensive to overcome the tensile stress by changing the section or the prestress。
本科毕业设计(论文)外文翻译译文
本科毕业设计(论文)外文翻译译文学生姓名:院(系):油气资源学院专业班级:物探0502指导教师:完成日期:年月日地震驱动评价与发展:以玻利维亚冲积盆地的研究为例起止页码:1099——1108出版日期:NOVEMBER 2005THE LEADING EDGE出版单位:PanYAmericanYEnergyvBuenosYAiresvYArgentinaJPYBLANGYvYBPYExplorationvYHoustonvYUSAJ.C.YCORDOVAandYE.YMARTINEZvYChacoYS.A.vYSantaYCruzvYBolivia 通过整合多种地球物理地质技术,在玻利维亚冲积盆地,我们可以减少许多与白垩纪储集层勘探有关的地质技术风险。
通过对这些远景区进行成功钻探我们可以验证我们的解释。
这些方法包括盆地模拟,联井及地震叠前同时反演,岩石性质及地震属性解释,A VO/A V A,水平地震同相轴,光谱分解。
联合解释能够得到构造和沉积模式的微笑校正。
迄今为止,在新区有七口井已经进行了成功钻探。
基质和区域地质。
Tarija/Chaco盆地的subandean 褶皱和冲断带山麓的中部和南部,部分扩展到玻利维亚的Boomerange地区经历了集中的成功的开采。
许多深大的泥盆纪气田已经被发现,目前正在生产。
另外在山麓发现的规模较小较浅的天然气和凝析气田和大的油田进行价格竞争,如果他们能产出较快的油流而且成本低。
最近发现气田就是这种情况。
接下来,我们赋予Aguja的虚假名字就是为了讲述这些油田的成功例子。
图1 Aguja油田位于玻利维亚中部Chaco盆地的西北角。
基底构造图显示了Isarzama背斜的相对位置。
地层柱状图显示了主要的储集层和源岩。
该油田在Trija和冲积盆地附近的益背斜基底上,该背斜将油田和Ben i盆地分开(图1),圈闭类型是上盘背斜,它存在于连续冲断层上,Aguja有两个主要结构:Aguja中部和Aguja Norte,通过重要的转换压缩断层将较早开发的“Sur”油田分开Yantata Centro结构是一个三路闭合对低角度逆冲断层并伴随有小的摆幅。
20外文文献翻译原文及译文参考样式
20外⽂⽂献翻译原⽂及译⽂参考样式华北电⼒⼤学科技学院毕业设计(论⽂)附件外⽂⽂献翻译学号: 0819******** 姓名:宗鹏程所在系别:机械⼯程及⾃动化专业班级:机械08K1指导教师:张超原⽂标题:Development of a High-PerformanceMagnetic Gear年⽉⽇⾼性能磁齿轮的发展1摘要:本⽂提出了⼀个⾼性能永磁齿轮的计算和测量结果。
上述分析的永磁齿轮有5.5的传动⽐,并能够提供27 Nm的⼒矩。
分析表明,由于它的弹簧扭转常数很⼩,因此需要特别重视安装了这种⾼性能永磁齿轮的系统。
上述分析的齿轮也已经被应⽤在实际中,以验证、预测其效率。
经测量,由于较⼤端齿轮传动引起的磁⼒齿轮的扭矩只有16 Nm。
⼀项关于磁齿轮效率损失的系统研究也展⽰了为什么实际⼯作效率只有81%。
⼀⼤部分磁损耗起源于轴承,因为机械故障的存在,此轴承的备⽤轴承在此时是必要的。
如果没有源于轴的少量磁泄漏,我们估计能得到⾼达96%的效率。
与传统的机械齿轮的⽐较表明,磁性齿轮具有更好的效率和单位体积较⼤扭矩。
最后,可以得出结论,本⽂的研究结果可能有助于促进传统机械齿轮向磁性齿轮发展。
关键词:有限元分析(FEA)、变速箱,⾼转矩密度,磁性齿轮。
⼀、导⾔由于永久磁铁能产⽣磁通和磁⼒,虽然⼏个世纪过去了,许多⼈仍然着迷于永久磁铁。
,在过去20年的复兴阶段,正是这些优点已经使得永久磁铁在很多实际中⼴泛的应⽤,包括在起重机,扬声器,接头领域,尤其是在永久磁铁电机⽅⾯。
其中对永磁铁的复兴最常见于效率和转矩密度由于永磁铁的应⽤显著提⾼的⼩型机器的领域。
在永久磁铁没有获取⾼度重视的⼀个领域是传动装置的领域,也就是说,磁⼒联轴器不被⼴泛⽤于传动装置。
磁性联轴器基本上可以被视为以传动⽐为1:1磁⼒齿轮。
相⽐标准电⽓机器有约10kN m/m的扭矩,装有⾼能量永久磁铁的磁耦有⾮常⾼的单位体积密度的扭矩,变化范围⼤约300–400 kN 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编译器创建一个 新的文档,编码 成Java字节码。 任何能够运行 Java的设备都能 够将该文件解释/ 翻译成某种东西 它可以运行。编 译的字节码是平 台独立的。
你的朋友没有物 理的Java机器, 但他们都有一个 虚拟的Java机器 (用软件实现) 在他们的电子小 工具中运行。 虚拟机读取并运行字 节码。
Java 2的
Java5.0
可爱的名字和标p 志。 有趣的使 用。 很多 bugs.Aplets都是 大事
更有能力,更友 善。 成为非常 受欢迎。 更好 的GUI代码。
更多的权力,更容易 与发展。 除了增加一千多个类 之外,Java 5.0(称 为“Tiger”)还增加 了主要的改动 语言本身,使程序员 更容易(至少在理论 上),并赋予其它语 言流行的新功能。
重庆科技学院学生毕业设计(论文)
外文译文
学
院
电气与信息工程学院 计科1401 代 戍 2014441679
专业班级 学生姓名 学 号
学生毕业设计(论文)原创性声明
本人以信誉声明:所呈交的毕业设计(论文)是在导师的指导下进行的设计(研究)工 作及取得的成果,设计(论文)中引用他(她)人的文献、数据、图件、资料均已明确标注出, 论文中的结论和结果为本人独立完成,不包含他人成果及为获得重庆科技学院或其它教育机构的 学位或证书而使用其材料。与我一同工作的同志对本设计(研究)所做的任何贡献均已在论文中 作了明确的说明并表示了谢意。
大小-5;
while(x> 3){myDog.play();
{myDog.play
while(x> 3)
不 要担心你是否了解这一点呢! 这里的 一切都在本书中详细解释,大部分在前40 页 ) 。 如 果 Java 与 过 去 使 用 的 语 言 相 似,其中一些将很简单。 如果不是,不 要担心。 我们会到达那里......
该译文源自《Head First Java_Good_Version 》 1.深入了解Java
cO
来吧,水好大! 我们将立 即着手编写一些代码,然 后编译并运行它。 我们正 在讲语法,循环和分支, 并看看什么让Java如此酷。 你会编码很快。
Java带你到新的地方。 从简单的版本到1.02版本的懦弱版本,Java以其友好的语法,面 向对象的特性,内存管理以及最好的 - 可移植性的承诺引诱程序员。 一次写入/运行的 诱惑力太强了。 随着程序员与错误,局限性,以及噢,是一个事实,一个忠实的跟随者 爆发了。 但那是很久以前的事了。 如果你刚刚入门
1.2Java原理
您将输入一个源代码文件,使用javac编译器进行译,然后在Java虚拟机上运行 编译的字节码。 import java.awt。 ' ; import java.awt.event。'; 班级{ public void buildInvite() {Frame f = new Frame (); 标签I =新标签(“蒂 姆的派对”); 按钮b =新的按钮(“你打 赌”); 按钮c =新按钮(“拍 摄我”); Panel p = new Panel(); p.add(I) )II更多代码在这 里... } 文件编辑窗口帮助 请求 方法方t()0 aload_0 1 invokespecial#1 <Method ng.Objec() > 2回报 方法void buildlnvite() 3#2 <Class java.awt.Frame> dup invokespecial#3 输出代 <Method 码) java.awt.Frame()> Java虚拟机将加 载.Class文件并解析后 执行
Cotttpiler
编译Party.java 运行javac文件你会
得到第二个文件 party.class . 编译器生成的 Party.class文件 组成变成了字节码 的东西。编译代 码:Party.class
P a r t y . c l a s s
1.3 Java简史
Java1.0 Java
int size = 27; name =“Fido”;
String 将一个变量纳入...'siu'并赋予其值27 定义size=27,字符串name=fide dog的大小减5
狗myDog =新狗(名字,大小); x =大小-5; if(x <15)myDog.bark(8);
while(x> 3){myDog.play();} int [] numList = {2,4,6,8}; 是 System.out.print( “你好”); System.out.print(“Dog:”+ 称); String num =“8”; int z = Integer.parseint(num); 名
公开课 Class{}类
公开课狗{
void bark() {}method
you are here ►
8
1.6一个Java类得运行
当JVM开始运行时,它会在命令行查找您给出的类。 然后 它开始寻找一个看起来完全一样的专门编写的方法: public static void main(String [] args){//你的代码在这里 接下来,JVM运行主方法的大括号l}之间的所有内容。 每个Java应用程序必须至少有一个e 类,并且至少有一个主要方法(每个类没有一个主;每个应用程序只有一个主)。 这是一 o enin lv.rly brate 个 Vv.soft.clas 的玻璃 分类 s.getfritrin (dv.h ) gString! MyFirstApp ( 类 我会考虑它 上市 retv.rn tyye。 无效 意味着没有 retv.rn “alv.e.“ 抽象的 主要 ("规则 ! “)
you are here ►
9
1.7 写一个带有主类的类
在Java中,一切都在一个班级中进行。 您将输入您的源代码文件(使用.java扩展名),然 后将其编译为新的类文件(使用.r:lass扩展名)。 当你运行你的程序时,你真的在 运 行一个类。运行程序意味着告诉Java虚拟机(JVM)“加载Hello类,然后开始执行它的 main()方法。继续运行'直到main中的所有代码都完成了。”在第2章中,我们深入了解 整个课程,但现在,您需要考虑的是,我该如何编写Java代码才能运行? 这一切都以main ()开头。main()方法是程序开始运行的地方。不管你的程序有多大(换句话说,不管 有多少班.你的程序使用),必须有一个main()方法来实现滚动。
方法方()0 aload_0
...,
1 invokespecial#1 <Method ng.Objec t()>
..
虚拟 Machit1
资源
Cotttpiler
输出 (代 码)
创建一个源文 档。 使用已建 立的协议(在 本例中为Java 语言)。
通过源代码编 译器运行您的 文档。 编译器 检查错误,并 且不会让您编 译,直到它确 信所有内容都 能正常运行。
Java,你很幸运。 我们中的一些人不得不在雪地上行走五英里,双脚上山(赤脚),甚至
可以让最小的小程序工作。 但是,为什么呢,你会骑上当今更时尚,更快,更强大的 Java。
1
1.1 Java的工作方式
目标是编写一个应用程序(在本例中为互动派对邀 请函),并使其适用于您朋友拥有的任何设备
互动派对邀请的 源代码。
}
();
int [] numList = {2,4,6,8}; 是 System.out.print ( “ 你 好 ” ) ; System.out.print(“Dog:”+ 名 称); String num =“8”; int z = Integer.parseint(num); 尝试{ readTheFile( “MYFILE.TXT”); } catch ( FileNotFoundException ex ) {System.out • print ( “ File not found”); }
你在这里►
5
一个编写好的Java小案例 编写例子 看看编写Java是多 么容易。
int = 27;= String intsize size 27; name =“Fido”; “Fido”;
Strห้องสมุดไป่ตู้ng name = x =
狗myDog =新狗(名字,大小); x =大 狗myDog =新狗(名字,大小);
1.02
Java2.0 Java 1.
Java3. 快多了。 可以(有时)以本地 数据运行。 严肃, 强大。 有三种版 本:Micro Edition (J2ME),Standard Edition(J2SE)和 Enterprise Edition (J2EE)。 成为新企业(尤其是 基于网络)和移动应 用程序的首选语言。
t 圣
(我们将会 这样做
上市
静态的
Systern.OUt.print
说打印到标准ov.tyv.t
I
(de-tav.lts to tommand-linextTime()“”- tlosin brate的主要方法tlosin brate的 MyFirstAyy不要担心其他的错误error或是异常exception,现在可以开始运行run或启动线程 start。
引言
Head FirstJava是Java和面向对象编程中的一门综合性学习经验,这本书可以帮助你学习 Java,Jane uage,它有一个独特的方法帮你学习,让你快速陈伟一个伟大的程序员,你将学习通 用的基础知识,线程化编程,和分布式编程,当你学习完本书后你甚至可以自己编写一个游戏, 甚至聊天的社交软件也是没有任何问题。
you are here ►
7