高一数学 集合 重难点解析 人教版
2020-2021学年高一数学(人教A版2019必修第一册)集合的概念重难点突破(解析版)
突破1.1 集合的概念一、考情分析二、经验分享【知识点一、集合的概念】 1.集合与元素一般地,我们把___________统称为元素,用小写拉丁字母a,b,c,⋅⋅⋅表示.把___________组成的总体叫做集合,用大写拉丁字母A,B,C,⋅⋅⋅表示.说明:组成集合的元素可以是数、点、图形、多项式,也可以是人或物等. 2.元素与集合的关系如果a 是集合A 的元素,就说a 属于集合A ,记作___________;如果a 不是集合A 中的元素,就说a 不属于集合A ,记作___________.注意:a A ∈与a A ∉取决于元素a 是否是集合A 中的元素.根据集合中元素的确定性可知,对任何元素a 与集合A ,a A ∈与a A ∉这两种情况中必有一种且只有一种成立. 3.集合中元素的特征(1)___________:集合中的元素是否属于这个集合是确定的,即任何对象都能明确它是或不是某个集合的元素,两者必居其一.这是判断一组对象是否构成集合的标准.(2)___________:给定集合的元素是互不相同的.即对于一个给定的集合,它的任何两个元素都是不同的.(3)___________:集合中各元素间无先后排列的要求,没有一定的顺序关系.4.集合相等只要构成两个集合的元素是一样的,我们就称这两个集合是相等的.【知识点二、常用的数集及其记法】1.全体___________组成的集合称为非负整数集(或自然数集),记作N;2.所有___________组成的集合称为正整数集,记作*N或+N;3.全体___________组成的集合称为整数集,记作Z;4.全体___________组成的集合称为有理数集,记作Q;5.全体___________组成的集合称为实数集,记作R.N表示正整数集,不包括0,注意区分.易错点:N为非负整数集(即自然数集),包括0,而*【知识点三、集合的表示方法】1.列举法把集合的元素___________出来,并用花括号“{}”括起来表示集合的方法叫做列举法.注意:(1)用列举法表示的集合,集合中的元素之间用“,”隔开,另外,集合中的元素必须满足确定性、互异性、无序性.R表示所有实数是错误的,应是R.(2)“{}”含有“所有”的含义,因此用{}2.描述法用集合所含元素的___________表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的___________.说明:用描述法表示集合应写清楚该集合中的代表元素,即代表元素是数、有序实数对、集合,还是其他形式.3.Venn图的概念我们经常用平面上___________的内部代表集合,这种图称为Venn图.说明:(1)表示集合的Venn图的边界是封闭曲线,它可以是圆、矩形、椭圆,也可以是其他封闭曲线.(2)Venn图表示集合时,能够直观地表示集合间的关系,但集合元素的公共特征不明显.三、题型分析重难点1 集合的概念判断指定的对象的全体能否构成集合,关键在于能否找到一个明确的标准,使得对于任何一个对象,都能确定它是否是给定集合中的元素.注意:构成集合的元素除常见的数、式、点等数学对象外,还可以是其他任意确定的对象.【名师点睛】集合中元素的三个特性:(1)确定性:集合中的元素是确定的,即任何一个对象都必须明确它是或不是某个集合的元素,两者必居其一.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任意两个元素都是不同的.(3)无序性:集合中元素的排列无先后顺序,任意调换集合中元素的位置,集合不变.判断指定的对象能不能组成集合,关键是看作为集合的元素是否具有确定性,也就是能否找到一个明确的标准.例1、考察下列每组对象,能组成一个集合的是()①成都七中高一年级聪明的学生②直角坐标系中横、纵坐标相等的点③不小于3的正整数④3的近似值.A.①②B.③④C.②③D.①③【思路分析】根据集合元素的明确性,可得①④当中的对象不明确,故不能构成集合;而②③当中的对象符合集合元素的性质,可以构成集合.【答案】解:对于①,“某高中高一年级聪明的学生”,其中聪明没有明确的定义,故不能构成集合;对于②,“直角坐标系中横、纵坐标相等的点”,符合集合的定义,能构成集合;对于③,“不小于3的正整数”,符合集合的定义,能构成集合;对于④,“的近似值”,对近似的精确度没有明确定义,故不能构成集合.综上所述,只有②③能构成集合,①④不能构成集合.故选:C.【点睛】本题给出几组对象,要求我们找出能构成集合元素的对象,着重考查了集合元素的性质和集合的定义等知识,属于基础题.【变式训练1】.下面给出的四类对象中,构成集合的是()A.某班个子较高的同学B.大于2的整数C.身高175cm以上的老师D.长寿的人【答案】BC【解析】“某班个子较高的同学”不能构成集合.这种描述方法描述的对象不确定,因为没有规定身高多高为个子较高,所以构不成集合;“大于2的整数”能够构成集合.它是一个明确的数集,集合中的元素都是大于2的整数;“身高175cm以上的老师”可以构成集合.“长寿的人”不能构成集合.因为年龄多大归长寿没有标准,所以“长寿的人”所含的对象不确定,所以不能构成集合.所以,构成集合的是“大于2的整数”.故选:BC.重难点2 元素与集合的关系元素与集合之间有且仅有“属于(∈)”和“不属于(∉)”两种关系,且两者必居其一.判断一个对象是否为集合中的元素,关键是看这个对象是否具有集合中元素的特征.若集合是用描述法表示的,则集合中的元素一定满足集合中元素的共同特征,可据此列方程(组)或不等式(组)求解参数;若a A∈,且集合A是用列举法表示的,则a一定等于集合A的其中一个元素,由此可列方程(组)求解.例2、(2019秋•东阳市校级月考)设集合A={x|x>2},则()A.∅∈A B.0∈A C.2∈A D.【思路分析】由集合A={x|x>2},得∅⊊A,0∉A,2∉A,∈A.【答案】解:∵集合A={x|x>2},∴∅⊊A,故A错误;0∉A,故B错误;2∉A,故C错误;∈A,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查元素与集合的关系、集合与集合的关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.【变式训练1】集合12{|3A x Z yx=∈=+,}y Z∈的元素个数为()A.4 B.5 C.10 D.12【答案】由题意,集合12{|3A x Z yx=∈=+,}y Z∈中的元素满足x是整数,且y是整数,由此可得x=﹣15,﹣9,﹣7,﹣6,﹣5,﹣4,﹣2,﹣1,0,1,3,9;此时y的值分别为:﹣1,﹣2,﹣3,﹣4,﹣6,﹣12,12,6,4,3,3,1,符合条件的x共有12个,故选:D.【点睛】本题求集合中元素的个数,着重考查了集合元素的性质和用大写字母表示数集等知识,属于基础 【变式训练2】已知集合{|0}A x x a =-,若2A ∈,则a 的取值范围为( ) A .(,2]-∞- B .(,2]-∞C .[2,)+∞D .[2,)-+∞【答案】C【解析】因为集合{|0}A x x a =-,所以{}|A x x a =,又因为2A ∈,则2a ,即[2,)a ∈+∞,故选:C .【变式训练3】下列关系中,正确的有( ) A .B .13Q ∈C .Q Z ⊆D .{}0∅∈【答案】AB【解析】选项A:由空集是任何非空集合的真子集可知,本选项是正确的; 选项B:13是有理数,故13Q ∈是正确的; 选项C:所有的整数都是有理数,故有Z Q ⊆,所以本选项是不正确的;选项D; 由空集是任何集合的子集可知,本选项是不正确的,故本题选AB. 【变式训练4】设集合A 中含有三个元素3,x ,x 2﹣2x . (1)求实数x 应满足的条件; (2)若﹣2∈A ,求实数x .【答案】(1)由集合元素的互异性可得:x ≠3,x 2﹣2x ≠x 且x 2﹣2x ≠3, 解得x ≠﹣1,x ≠0且x ≠3.(2)若﹣2∈A ,则x =﹣2或x 2﹣2x =﹣2.由于x 2﹣2x =(x ﹣1)2﹣1≥﹣1, 所以x =﹣2.重难点3 集合的表示方法对于元素较少的集合宜采用列举法表示,用列举法表示集合时,要求元素不重复、不遗漏、不计次序;对于元素较多的集合宜采用描述法表示.但是对于有些元素较多的集合,如果其中的元素具有规律性,那么也可以用列举法表示,常用省略号表示多个元素.但要注意不要忽略集合中元素的代表形式. 例3、选择适当的方法表示下列集合: (1)1和70组成的集合;(2)大于1且小于70的自然数组成的集合.(3)大于1且小于70的实数组成的集合.(4)平面直角坐标系中函数2y x =-+图象上的所有点组成的集合. 【答案】答案详见解析.(4)设平面直角坐标系中函数2y x =-+图象上的所有点组成的集合为E ,函数2y x =-+图象上的点可以用坐标(,)x y 表示,则有{(,)|2}x y y x =-+. 【变式训练1】已知集合2{|8160}A x R ax x =∈-+=.(1)若A 中只有1个元素,试求实数a 的值,并用列举法表示集合A ; (2)若集合A 中有2个元素,求实数a 的取值范围.【思路分析】(1)集合A ={ax 2﹣8x +16=0}只有一个元素,等价于方程有且只有一个解,分类讨论,即可得到结论;(2)集合A ={kx 2﹣8x +16=0}有2个元素,等价于一元二次方程判别式△>0,解不等式,即可得到结论. 【答案】解:(1)当a =0时,原方程变为﹣8x +16=0,x =2,此时集合A ={2};当k ≠0时要使一元二次方程ax 2﹣8x +16=0有一个实根,需△=64﹣64a =0,即a =1.此时方程的解为x 1=x 2=4.集合A ={4},满足题意.综上所述,实数a 的值为0或1,当a =0时,集合A ={2};当a =1时,集合A ={4}. (2)若集合A 中有2个元素,由题意得:a ≠0时要使一元二次方程ax 2﹣8x +16=0有2个实根, 需△=64﹣64a >0,即a <1, 综上:a <1且a ≠0.【点睛】本题考查集合的表示,考查学生思路分析转化问题的能力,属于基础题. 重难点4 集合相等从集合相等的概念入手,寻找两个集合中元素之间的关系,看一个集合中的元素与另一集合中的哪个元素相等,一般需要分类讨论,在求出参数值后,要注意检验是否满足集合中元素的互异性及是否使有关的代数式有意义。
人教版高一数学必修一集合知识点以及习题
精心整理高一数学必修 1第一章集合一、集合有关概念1.集合的含义:一定范围的、确定的、可区别的事物,当作一个整体来看待,就叫作集合,简称集,其中各事物叫作集合的元素或简称元。
Venn图:4、集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)注意:BA与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B(5≥5,且5≤5,则5=5) 实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A?A②真子集:如果A?B,且A?B那就说集合A是集合BC≠Φ,A∩C=Φ,求m的值1.已知A={x|3-3x>0},则下列各式正确的是() A.3∈AB.1∈AC.0∈AD.-1?A2.下列四个集合中,不同于另外三个的是() A.{y|y=2}B.{x=2}C.{2}D.{x|x2-4x+4=0}3.下列关系中,正确的个数为________.①∈R;②?Q;③|-3|?N*;④|-|∈Q.4.已知集合A={1,x,x2-x},B={1,2,x},若集合A与集合B相等,求x的值.5.下列命题中正确的()①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}可以用列举法表示.A.只有①和④B.只有②和③C.只有②D.以上语句都不对2(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.故所求的a的取值范围是a≤-或a=0.1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()A.{x|x≥3}B.{x|x≥2}C.{x|2≤x<3}D.{x|x≥4}2.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=() A.{3,5}B.{3,6}C.{3,7}D.{3,9}3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项的个数是()A.1B.2 C.3D.4二、填空题5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.6.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.三、解答题7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=?,。
人教版高中数学必修一知识点和重难点
人教版高中数学必修一————各章节知识点与重难点第一章集合与函数概念1.1 集合1.1.1集合的含义与表示【知识要点】1、集合的含义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
2、集合的中元素的三个特性(1)元素的确定性;(2)元素的互异性;(3)元素的无序性2、“属于”的概念我们通常用大写的拉丁字母A,B,C, ……表示集合,用小写拉丁字母a,b,c, ……表示元素如:如果a是集合A的元素,就说a属于集合A 记作a∈A,如果a不属于集合A 记作a∉A 3、常用数集及其记法非负整数集(即自然数集)记作:N;正整数集记作:N*或N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R4、集合的表示法(1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
(2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}(3)图示法(Venn图)1.1.2 集合间的基本关系【知识要点】1、“包含”关系——子集一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B2、“相等”关系如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B A B B A且⇔⊆⊆3、真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A⊂B(或B⊃A)4、空集不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集.1.1.3 集合的基本运算【知识要点】1、交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作“A 交B”),即A∩B={x| x∈A,且x∈B}.2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
高一数学 集合 知识全析 人教版
数学集合【学习目标】1.理解集合的概念,会判断一个陈述句所指的对象可否构成集合.2.了解元素属于或不属于某集合的意义,了解集合的三大特性.3.了解有限集、无限集、空集的意义,能正确使用常用数集的名称和符号.4.懂得什么是列举法,什么是描述法,掌握这两种集合表示的符号和特征,并会用它们正确地表示一些简单的集合.【学习障碍】本节是这章的起始课,在学习过程中,会遇到以下障碍:1.对集合概念的理解模糊不清.2.对集合中元素的三大特性理解不到位.3.对集合的两种表示方法“列举法、描述法”,书写不规范,理解欠深刻.4.对空集的认识不透彻.【学习策略】Ⅰ.学习导引1.预习课本P4~6.2.本节的重点是集合的基本概念与表示方法,难点是运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合.关于集合的概念,本课时主要有以下几个:(1)集合:某些指定的对象集在一起就成为一个集合.常用大写字母A、B、C等来表示.(2)常用的数集及记法:①非负整数集(自然数集)全体非负整数的集合.记作N.②正整数集:非负整数集内排除0的集合.记作N*或N+.③整数集:全体整数的集合.记作Z.④有理数集:全体有理数的集合.记作Q.⑤实数集:全体实数的集合.记作R.(3)元素及元素与集合的关系:元素:集合中的每个对象叫做这个集合的元素.常用小写字母a,b,c,……来表示.如果a是集合A中的元素,就说a属于A,记作a∈A,否则a∉A.(4)列举法:把集合中的元素一一列举出来,写在大括号“{}”内,元素与元素之间用“,”分开,这样的表示方法叫列举法.(5)描述法:用确定的条件表示某些对象是否属于这个集合的方法叫描述法.(6)有限集:含有有限个元素的集合叫有限集.(7)无限集:含有无限个元素的集合叫无限集.(8)空集:不含任何元素的集合叫空集.记作∅.Ⅱ.知识拓宽1.集合的另外一种表示方法——图示法.瑞士数学家Euler(欧拉)首创了用图形表示集合.英国逻辑学家Venn(文恩)重新采用了这一方法,并加以定义:画一条封闭的曲线,用它的内部来表示集合.例{1,2,3}可以用下图来表示:2.数集与点集.例{1,2,4}是数集,该集合内的元素是由数1,2,4组成的;{(1,2),(1,1)}是点集.该集合内的元素是由平面内的两个点(1,2)与(1,1)组成的.Ⅲ.障碍分析1.怎样理解集合的概念?①集合是一原始概念.集合中指定的对象不仅仅是“数,点,……”还可以是任意的事物.如“某校高三全体学生”组成一个集合,“和x+y=0垂直的所有直线”组成一个集合.也就是说组成集合的对象具有任意性.②“集在一起”含有两层意思:其一是组成集合的对象形成了一个整体;其二是集在一起的对象之间没有一定的顺序关系,是无序的.2.集合中元素的三大特性是什么?如何理解?我们知道集合中的元素必须具有三大特性“确定性,互异性,无序性.”①确定性:是指集合中的元素必须是确定的,即任何一个对象都能判断它是或不是某个集合的元素,二者必居其一.如“接近于0的实数”接近由于没有一个确定的界性,故0.001是否属于这个集合不能判断,所以这不能组成一个集合.②互异性:是指集合中的元素互不相同,即同一个集合中不能出现同一个元素两次,如:{1,0,a2}表示一个集合,则 a≠±1.③无序性:集合中的元素无先后顺序,如{1,2}与{2,1}是同一个集合.[例1]下列各组集合中,每个集合的意义是否相同?为什么?①{1,5},{(1,5)},{(5,1)},{5,1}②{x|x=0},{(x,y)|x=0,y∈R}③{x∈R|x2-ax-1=0},{a∈R|方程x2-ax-1=0有实根}思路:在解题时应注意集合的概念及集合中元素的特征.解:①{1,5}是由两个数1,5组成的集合,根据集合中元素的无序性,它与{5,1}是同一个集合;{(1,5)}是由一个点(1,5)构成的单元素集合,由于(1,5)和(5,1)表示两个不同的点,所以{(5,1)}{(1,5)}是两个不同的集合.②{x|x=0}中的元素是数轴上的一个点,{(x,y)|x=0,y∈R}中的元素是直角坐标平面内的一系列点,这两个集合的元素根本不同.因此,它们是不同的集合.③集合{x∈R|x2-ax-1=0}中的元素x是方程x2-ax+1=0的解,而集合{a∈R|方程x2-ax-1=0有实根}中的元素a是使方程x2-ax-1=0有实根的字母系数的取值范围.这两个集合中的元素的含义也是不同的,因而这两个集合也是不同的.点评:判断两个集合是否相同,不仅元素的个数要相同,两个集合中的元素都应相同,而根据集合的无序性,两个集合中元素的顺序可以不相同.3.列举法与描述法的书写及各自的优缺点是什么?(1)本小节列举法与描述法所使用的集合记法,依据的是新的国家标准如下的规定:∈A是明确的.此外,要弄清描述法中各部分的意义,在{x∈A|p(x)}中:x为该集合中元素的代号,它指明了该集合中的元素是“谁”,是“什么”;A是特定条件;p(x)是该集合中元素所有的公共属性、特征.(3)列举法是一种符号语言,而描述法是一种普通语言,一个集合的表示形式并不惟一.如:用描述法表示的集合{x|(x-1)2(x-2)=0},也可用列举法{1,2}来表示.二者各有优缺点,应根据具体问题确定采用哪种表示法.但无限集不宜用列举法,因为无限集中的元素不能被一一列举出来,而没有列举出来的元素往往难以确定.[例2]用列举法表示下列集合:(1)A ={x ∈N |x -99∈N }; (2)B ={x-99∈N |x ∈N }; (3)C ={y|y =-x 2+6,x ∈N ,y ∈N };(4)D ={(x ,y)|y =-x 2+6,x ∈N ,y ∈N };思路:首先,应充分注意四个集合的各自特点:集合A 中的元素是自然数x ,它必须满足条件x -99也是自然数; 集合B 中的元素是自然数x-99,它必须满足条件x 也是自然数; 集合C 中的元素是自然数y ,它必须满足的条件是二次函数y =-x 2+6(x ∈N )的函数值的取值范围.集合D 中的元素是点,这些点必须满足的条件是它们在二次函数y =-x 2+6的图象上,且横坐标、纵坐标都必须是自然数.解:(1)当x =0,6,8这三个自然数时,x-99=1,3,9也是自然数. ∴A = {0,6,8}(2)由(1)知,B ={1,3,9}.(3)由y =-x 2+6,x ∈N ,y ∈N 知,y ≤6,∴x =0,1,2时,y =6,5,2符合题意.∴C ={2,5,6}.(4)点(x ,y)满足条件y =-x 2+6,x ∈N ,y ∈N ,则有⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==.2,2;5,1;6,0y x y x y x ∴D ={(0,6),(1,5),(2,2)}误区点评:本题中A 与B ,C 与D 这两组集合,看起来似乎是一致的,其真实含义各异,而在集合学习中这种似是而非的关系经常可见.因而在解题时,应细心审题,注意区别.4.空集的特殊性在哪里?空集是不含任何元素的集合,但它不能写成{},{0},{∅},0的形式,只能写成“∅”的形式. Ⅳ.思维拓展[例3](课本P 6练习)用适当的方法表示下列集合:(1)由4与6的所有公倍数组成的集合;(2)所有正偶数组成的集合;(3)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数的集合. 思路:(1)与(2)是无限集,应用描述法表示,而(3)是有限集,可用列举法表示. 解:(1){x |x =12n ,n ∈N *},也可以表示成:{4与6的公倍数},{12的倍数},{x |k =12x ,k ∈N *} (2){x |x =2n ,n ∈N *}或{正偶数}.(3){1,2,3,12,13,21,23,31,32,123,132,213,231,312,321}. 点评:①集合的表示方法并不惟一,如(1)(2).②(1)集合不能写成{12的倍数集}或{12的所有倍数},因为大括号{}已包含有“集”和“所有”的意思. Ⅴ.探究学习设A 是数集,满足若a ∈A ,则a-11∈A ,且∉1∉A . (1)若2∈A ,则A 中至少含有哪些元素.(2)A 能否为单元素集合?若能,求出来;若不能,则说明理由.(3)若a ∈A ,则1-a1且A 中元素吗?说明理由.【同步达纲练习】一、选择题1.在“①很大的有理数;②方程x 2+1=0的实数根;③直角坐标平面的第二象限的一些点;④所有等腰直角三角形”中,能够表示成集合的是A .②B .②③④C .②④D .①②③④2.方程组⎩⎨⎧=-=+13y x y x 的解集是 A .{2,1} B .{x =2,y =1} C .{(2,1)} D .{(x ,y)|(2,1)}3.下列四个关系式中,正确的是 A . ∅∈{a } B . ∅∈{∅} C .{a }∈{a ,b }D .{a }∈a 4.下列各题中的M 与P 表示同一个集合的是A .M ={(1,-3)} P ={(-3,1)}B .M =∅ P ={0}C .M ={y |y =x 2+1,x ∈R } P ={(x ,y)|y =x 2+1,x ∈R }D .M ={y |y =x 2+1,x ∈R } P ={t |t =(y -1)2+1,y ∈R }二、填空题5.设21∈{x |x 2-ax -25=0},则a =_________. 6.设A ={x |x =2k ,k ∈Z },B ={x |x =2k -1,k ∈Z },C ={x |x =4k +1,k ∈Z },a ∈A ,b ∈B ,则a +b ∈_________.填(A 或B 或C)7.{n |5n 是整数,|n |≤20}=_________. 三、解答题8.若-3∈{a 2-2a -3,2a 2-a -4,a 2+1},求实数a 的值构成的集合.9.若集合A ={x ∈R |6+3<x ≤10}(1)A 是有限集还是无限集?(2)3+17是不是集合A 的元素. (3)53是否是集合A 的元素.参考答案【同步达纲练习】一、1.C 提示:因为“大”“一些”没有具体的界线.2.D 提示:因为⎩⎨⎧=-=+13y x y x 的解为⎩⎨⎧==12y x 写成集合的形式为{(x ,y)|(2,1)}.3.B 提示:{∅}中∅是其中的元素.4.D 提示:因为(1,-3)与(-3,1)是不同的点,而C 中M 是数集,P 是点集.二、5.-29 提示:由题意知21是x 2-ax -25=0的一个根,所以,252141--a =0,所以a =-29 6.B 提示:因为A 是偶数集,B 是奇数集.∴a +b 是奇数.即a +b ∈B . 7.{-4,-3,-2,0,2,3,4} 提示:{n |5n 是整数,|n |≤20}={-4,-3,-2,0,2,3,4} 三、8.解:∵-3∈{a 2-2a -3,2a 2-a -4,a 2+1}.∴a 2-2a -3=-3或2a 2-a -4=-3.∴a =0,2,1,-21. 经检验a =0,2,1,-21均合题意. ∴a 的值构成的集合为{0,2,1,-21}. 9.(1)因为大于6+3且小于或等于10的实数有无穷多,所以集合A 是无限集.(2)∵(17)2-(3+3)2=5-63<0, ∴17<3+3,∴3+17<6+3.故3+17∉A .(3)∵(6+3)2-(53)2=123-36<0, ∴6+3<53<10,故53∈A .。
人教版高中数学必修1集合教案
集 合教学目标: 1、理解集合的概念和性质.2、了解元素与集合的表示方法.3、熟记有关数集.4、培养学生认识事物的能力.教学重点: 集合概念、性质教学难点: 集合概念的理解教学过程:1、 定义:集合:一般地,某些指定的对象集在一起就成为一个集合(集).元素:集合中每个对象叫做这个集合的元素.由此上述例中集合的元素是什么?例(1)的元素为1、3、5、7,例(2)的元素为到两定点距离等于两定点间距离的点,例(3)的元素为满足不等式3x-2> x+3的实数x ,例(4)的元素为所有直角三角形,例(5)为高一·六班全体男同学.一般用大括号表示集合,{ … }如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。
则上几例可表示为……为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}2(1)确定性;(2)互异性;(3)无序性.3、元素与集合的关系:隶属关系元素与集合的关系有“属于∈”及“不属于∉(∉ 也可表示为 )两种。
如A={2,4,8,16},则4∈A ,8∈A ,32 A.∈∉集合的元素通常用小写的拉丁字母表示,如:a 是集合A 的元素,就说a 属于集A 记作a ∈A ,相反,a 不属于集A 记作 a ∉A (或a A )注:1、集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……2、“∈”的开口方向,不能把a ∈A 颠倒过来写。
4注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。
(2)非负整数集内排除0的集。
记作N *或N + 。
Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *请回答:已知a+b+c=m ,A={x|ax 2+bx+c=m},判断1与A 的关系。
1.1.2 集合间的基本关系教学目标:1.理解子集、真子集概念;2.会判断和证明两个集合包含关系;3.理解 ”、“⊆”的含义; 4.会判断简单集合的相等关系;5.渗透问题相对的观点。
数学人教版高中一年级必修1 高一数学集合教学案(4课时)
高一数学《集合》教学案一、教材分析(一)学习目标Ⅰ、知识与技能:1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
Ⅱ、过程与方法:通过讲练结合让学生在实践中突破重点和难点,并对易错、易混点重新认定,达到熟练应用的地板。
情感态度与价值观:让学生在重新审视的基础上重新定位对知识的把握,在充分发挥学习的主动性地基础上提高自己在学习中的信心和进一步学习数学的兴趣。
(二)重点、难点重点:理解集合之间包含与相等的含义,能识别给定集合的子集;理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
难点:能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
二、教学计划:四课时三、教学设计第一课时1.1.1《集合的概念》一、课题引入阅读教材中的章头引言二、概念形成与深化1、集合的概念(1)对象:阅读课本P 3(2)集合:把一些能够 的 的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.(3)元素:集合中每个 叫做这个集合的元素,元素通常用 表示2、元素与集合的关系(1)属于:记作:A a ___;(2)不属于:记作:A a ___;(1) 参加2008北京奥运会的中国代表团的所有成员构成的集合; 其中元素为(2) 三角形的全体构成的集合; 其中元素为(3) 方程方程21x =的解的全体构成的集合; 其中元素为(4) 不等式122x x +>+的解的全体构成的集合. 其中元素为 你能指出各个集合的元素吗?各个集合的元素与集合之间是什么关系?3、集合中元素的性质”年轻人”、“较小的有理数”能否分别构成一个集合,为什么? 集合中元素的性质(1) ;(2) ;(3)_____________.(1) 节头图是中国体育代表团步入亚特兰大奥林匹克体育场的照片,代表团有309名成员;(2) 平面上与一个定点O 的距离等于定长r 的点的全体;(3) 方程12x x +=+的解的全体.4、空集: 集合,记作 .5、集合分类(1)含有 个元素的集合叫做有限集(2)含有 个元素的集合叫做无限集6、常用数集及其表示方法(1)自然数集: 的集合.记作 ;(2)正整数集: 的集合.记作 ;(3)整数集: 的集合.记作 ;(4)有理数集: 的集合.记作 ;(5)实数集: 的集合.记作 。
人教版高一数学集合必考知识点归纳
(每日一练)人教版高一数学集合必考知识点归纳单选题1、已知集合A={x|1<x<3},B={x|3<x<6}则A∩B=()A.(1,3)B.(1,6)C.(−1,3)D.∅答案:D解析:利用集合的交集运算求解.因为集合A={x|1<x<3},B={x|3<x<6},所以A∩B=∅故选:D2、设集合A={x|3x−1<m},若1∈A且2∉A,则实数m的取值范围是()A.2<m<5B.2≤m<5C.2<m≤5D.2≤m≤5答案:C解析:直接根据元素和集合之间的关系,列式求解即可.因为集合A={x|3x−1<m},而1∈A且2∉A,∴3×1−1<m且3×2−1≥m,解得2<m≤5.故选:C.小提示:本题主要考查元素与集合的关系,对描述法表示集合的理解,属于基础题.3、已知全集U={−1,0,1,2,3},集合A={0,1,2},B={−1,0,1},则(∁U A)∩B=A.{−1}B.{0,1}C.{−1,2,3}D.{−1,0,1,3}答案:A解析:本题根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查.C U A={−1,3},则(C U A)∩B={−1}故选:A小提示:易于理解集补集的概念、交集概念有误.填空题4、已知集合U={﹣2,﹣1,0,1,2,3},A={﹣1,0,1},B={1,2},则∁U(A∪B)=___________. 答案:{﹣2,3}解析:依题意求出并集A,B再计算补集.解:∵U={﹣2,﹣1,0,1,2,3},A={﹣1,0,1},B={1,2},∴A∪B={﹣1,0,1,2},∁U(A∪B)={﹣2,3}.所以答案是:{﹣2,3}.5、设集合A={x|−3≤x≤2},B={x|k−1≤x≤2k+1},且A⊇B,则实数k的取值范围是______________(写成集合形式).答案:{k|k<−2或−2≤k≤12}解析:由B⊆A知,集合B为A的非空子集或空集,列出满足的包含关系,求得k的范围.由B⊆A知,集合B为A的非空子集或空集,即{k−1≥−3 2k+1≤2k−1≤2k+1或k−1>2k+1,解得k<−2或−2≤k≤12所以答案是:{k|k<−2或−2≤k≤12}。
高一上学期期中考重难点归纳总结(解析版)--人教版高中数学精讲精练必修一
【答案】B
【解析】由 A 1,3, 5 , B 3, 4, 5 ,得 A B 1,3, 4,5 ,
所以 ðU A B 2, 6 ,
故选:B
2.(2023 秋·江苏盐城·高一校联考期末)设全集U R ,集合 A x x 2 , B x x 2 或 x 6,则
A ðU B ( ) A.x x 2
秋·辽宁抚顺·高一抚顺一中校考阶段练习)已知集合
M
x∣x
m
1 6
,m
Z
,
N
x∣x
n
1
,
n
Z
,
P
x∣x
p
1 , p Z ,则 M
,N
, P 的关系为(
)
23
26
A. M N P
B. M N P
C. M N P
D. N P M
【答案】B
【解析】因为 M
∣ x x
m1,
m
Z
所以实数 a 的取值范围是{a | 0 a 4} .
故选:D
考点五 不等式的性质
【例 5】(2023 秋·上海浦东新 )已知 a b c d ,下列选项中正确的是( )
A. a d b c
B. a c b d
C. ad bc
D. ac bd
【答案】B
【解析】对于选项 A,因为 a 3,b 2,c 1, d 10 ,满足 a b c d ,但不满足 a d b c ,所以选项 A
数是( ) A.0
B.1
C.2
D.4
【答案】C
【解析】因为 A x, y x y 0 , B x, y | x2 2y2 1 ,
所以集合 A 是直线 x y 0 上的点的集合,集合 B 是椭圆 x2 2y2 1 上的点的集合; 因为 M A B ,所以若要求 M 中的元素个数,只需联立方程即可;
人教A版高一数学必修1集合知识点总结
高一数学必修1集合知识点总结集合的含义与表示知识点总结一、课标要求《课程标准》对本课内容的要求是:能够了解集合的含义,知道常用数集的表示方法,了解集合元素的三个性质,会用适当的方法表示集合.集合知识是整个高中学习的基础,使学生掌握和使用数学语言表述数学问题的基础.通过学习集合知识,可以使学生更好的理解数学中的集合语言,可以使学生逐步运用集合的观点和思想分析数学问题.二、本节知识要点(1)集合的含义与表示;(2)元素与集合之间的关系与表示;(3)集合元素的三个基本性质;(4)常用数集的表示;(5)集合的两种表示方法(列举法和描述法);(6)集合的分类.三、集合的含义与表示一般地,指定的某些对象的全体称为集合.集合中的每个对象叫做这个集合的元素.集合用大写字母来表示,集合的元素与小写字母来来表示.四、元素与集合之间的关系与表示元素与集合之间是从属关系:若元素a在集合A中,就说元素a属于集合A,记作a∈;若元素a不在集合A中,则称元素a不属于集合A,记作Aa∉.A要求会判断元素与集合之间的从属关系.五、集合元素的三个基本性质集合中的元素具有确定性、互异性和无序性.确定性给定一个集合,它的的元素必须是确定的.也就是说,给定一个集合,任何一个元素属于或不属于这个集合,也就确定了.互异性给定一个集合,它的元素是互不相同的.即同一个集合中的元素不能重复出现.在用列举法表示集合时,相同的元素算作集合的一个元素.无序性 集合中的元素是没有顺序的.如果构成两个集合的元素是相同的,那么就称这两个集合相等.六、常用数集的表示自然数集N ; 正整数集N +或N *; 整数集Z ; 有理数集Q ; 实数集R .七、集合的两种表示方法集合有两种常用表示方法,即列举法和描述法.此外还有韦恩图法(Venn 图法). 列举法把集合的元素一一列举出来,并用大括号“{}”括起来表示集合的方法叫做列举法.用列举法表示集合时要注意以下几点:(1)元素之间必须用逗号隔开;(2)元素不能重复(即集合的元素要满足互异性);(3)元素之间无先后顺序(集合的元素具有无序性);(4)表示有规律的无限集时,必须把元素间的规律表示清楚后才可以使用省略号,如﹛1 , 2 , 3 , … ﹜;(5)注意a 与{}a 的表示是有区别的:a 表示的是一个元素,{}a 表示的是只有一个元素a 的集合.二者具有从属关系,及a A ∈.列举法常用来表示有限集或有规律的无限集.描述法定义 用集合所含元素的共同特征表示集合的方法叫做描述法.记作(){}x P I x ∈,其中x 为集合的代表元素,I 表示元素x 的取值范围,()x P 表示集合的元素所具有的共同特征.第二定义 用确定的条件表示某些对象属于一个集合的方法,称为描述法.注意:“共同特征”或“确定的条件”可以说是方程,也可以是不等式(组)等.如集合{}0322=--=x x x A ,集合{}062<-=x x B .用描述法表示集合时要注意以下几点:(1)写清集合中的代表元素,如实数或有序实数对,从而正确表示数集和点集;(2)用简洁准确的语言表示集合中元素的共同特征;(3)不能出现未被说明的字母,如集合{}n x Z x 2=∈中的n 未被说明,应正确表示为{}Z n n x Z x ∈=∈,2或{}Z x n x x ∈=,2;(4)元素的取值范围,从上、下文来看,如果是明确的,可以省略.如集合{}02=+∈x x R x ,也可以写作{}02=+x x x .(5)出现多层描述时,应正确使用“或”、“且”、“非”等逻辑联结词;(6)所有描述的内容都要写在大括号内;(7)识别描述法表示的集合时,要看清代表元素,正确区分数集和点集.当集合所含元素较多或元素的共同特征不明显时,适合用描述法来表示集合.例1. 用两种方法表示二元一次方程组⎩⎨⎧=-=+152y x y x 的解. 注意:二元一次方程组的解是有序实数对,所以在表示二元一次方程组的解时,要表示为点集的形式.解:解二元一次方程组⎩⎨⎧=-=+152y x y x 得:⎩⎨⎧==12y x 用列举法表示为(){}1,2,用描述法表示为()⎭⎬⎫⎩⎨⎧⎩⎨⎧==12,y x y x . 提示:(){}1,2与(){}2,1表示的是两个不同的集合.例2. 指出集合{}12-=x y x 与集合(){}12,-=x y y x 的区别.注意:区分数集和点集的关键在于代表元素.用描述法表示集合时记作(){}x P I x ∈,其中x 表示的就是代表元素,它可以是一个数字(数集),也可以是有序实数对(点集).解:集合{}12-=x y x 表示的是一个数集,它表示函数解析式12-=x y 中自变量的取值范围,所以{}=-=12x y x R ;集合(){}12,-=x y y x 表示的是一个点集,它表示函数12-=x y 的图象上所有点的坐标.例3. 用合适的方法表示下列集合:(1)文房四宝;(2)2019年9月3日,新乡市平原示范区所辖乡镇;(3)平面直角坐标系中,第二象限的点构成的集合.注意:在用描述法表示集合时,元素之间必须用逗号隔开,不要用错标点符号.点集的代表元素为有序实数对.解:(1){}砚纸墨笔,,,;(2){}师寨镇桥北乡原武镇韩董庄乡祝楼乡,,,,;(3)(){}0,0,><y x y x 且.例4. 分别用列举法和描述法表示下列集合:(1)方程022=-x 的所有实数根组成的集合;(2)由大于10小于15的所有整数组成的集合.注意:在用描述法表示集合时,代表元素的取值范围,如果从上、下文来看是明确的,可以省略.解:(1)列举法:{}2,2-; 描述法:{}022=-∈x R x 或{}022=-x x .(2)列举法:﹛11 , 12 , 13 , 14﹜;描述法:{}1511<<∈x Z x .八、集合的分类集合按所含元素个数的多少可以分为有限集、无限集和空集含有有限个元素的集合叫做有限集.含无限个元素的集合叫做无限集. 不含任何元素的集合叫做空集,记作∅.如方程012=+x 的实数根组成的集合{}012=+∈x R x 就是一个空集,即{}∅==+∈012x R x .九、重要结论:判断形如02=++c bx ax 的方程的实数根的个数的方法是:(1)当0=a 时,方程可化为0=+c bx 的形式:①当0≠b 时,方程有唯一一个实数根bc x -=; ②当0,0==c b 时,方程有无数个实数根;③当0,0≠=c b 时,方程没有实数根;(2)当0≠a 时,原方程为关于x 的一元二次方程:①若042>-=∆ac b ,则方程有两个不相等的实数根;②若042=-=∆ac b ,则方程有两个相等的实数根(此种情况下表示方程的实数根组成的集合时,集合只有一个元素);③若042<-=∆ac b ,则方程没有实数根.提示:在讨论集合元素的个数时,一定要注意分类讨论.例4. 已知集合{}R a x ax R x A ∈=++∈=,0122.(1)若A 中只有一个元素,求a 的值;(2)若A 中至多有一个元素,求a 的取值范围.分析:先弄清楚集合A 的本质.集合A 是由方程0122=++x ax 的实数根组成的集合,该方程中含有参数a ,为含参方程.(1)集合A 中只有一个元素,指的是方程0122=++x ax 只有一个实数根,该方程可以说一次方程()0=a ,也可以是二次方程()0≠a ,注意分类讨论;(2)集合A 中至多有一个元素,指的是方程0122=++x ax 只有一个实数根或没有实数根.解:(1)当0=a 时,原方程可化为:012=+x ,解之得:21-=x ,集合⎭⎬⎫⎩⎨⎧-=21A ,符合题意;当0≠a 时,∵0122=++x ax 只有一个实数根∴044=-=∆a ,解之得:1=a综上,当0=a 或1=a 时, A 中只有一个元素;(2)当A 中只有一个元素时,由(1)可知:0=a 或1=a ;当A 中没有元素时,即方程0122=++x ax 没有实数根∴044<-=∆a ,解之得:1>a综上,当0=a 或a ≥1时,A 中至多有一个元素.例5. 实数集A 满足条件:A ∉1,若A a ∈,则A a∈-11. (1)若A ∈2,求A ; (2)集合A 能否为单元素集合?若能,求出A ;若不能,请说明理由;(3)求证:A a∈-11. 分析:本题重点考查集合元素的三个基本性质:确定性、互异性和无序性. (1)解:∵A ∈2,12≠ ∴A ∈-=-1211 ∵11,1≠-∈-A ∴()A ∈=--21111 ∵121,21≠∈A ∴A ∈=-22111 ∴=A ﹛2 , 1- , 21﹜; (2)解:A 不能为单元素集合.理由如下:若A 为单元素集合,则有aa -=11,整理得:012=+-a a ∵()031412<-=⨯--=∆ ∴方程012=+-a a 没有实数根∴A 不能为单元素集合;(3)证明:若A a ∈,则A a ∈-11 ∴A aa a a ∈-=-=--1111111. 习题1. 已知集合{{}0232=+-=x ax x A .(1)若A 为空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值;(3)若A 中至多有一个元素,求a 的取值范围.集合间的基本关系知识点总结本节知识点(1)Venn 图,表示集合的图示法;(2)子集的含义及表示;(3)集合相等;(4)真子集的含义及表示;(5)空集的含义及其性质;(6)子集、真子集个数的确定.知识点一 Venn 图在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn 图(韦恩图).这种表示集合的方法叫做图示法.关于Venn 图:(1)Venn 图的边界是封闭的曲线,它可以是椭圆、圆、矩形,也可以是其它的封闭曲线;(2)用Venn 图表示集合的优点是能直观地反映集合之间的关系,缺点是集合元素的共同特征不明显.知识点二 子集的含义及表示子集反映的是集合之间的包含关系.一般地,对于两个集合A , B ,如果集合A 中的任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作B A ⊆(或A B ⊇),读作“A 含于B ”(或“B 包含A ”).对子集的理解:(1)B A ⊆的Venn 图表示:(2)B A ⊆的符号表述:对任意的A x ∈,都有B x ∈.(3)若集合A 中存在不属于集合B 的元素时,则集合A 不是集合B 的子集.子集的性质:(1)任何一个集合都是它本身的子集(包括后面的空集,即∅⊆∅);(2)传递性:若C B B A ⊆⊆,,则C A ⊆.子集的应用根据集合之间的关系可以确定参数的值或取值范围.若B A ⊆,在未指明A 非空时,要分两种情况进行讨论:①∅=A ;②∅≠A .知识点三 集合相等如果集合A 是集合B 的子集(B A ⊆),且集合B 是集合A 的子集(A B ⊆),此时集合A 与集合B 的元素是一样的,集合A 与集合B 相等,叫做B A =. 上面也即互为子集的两个集合相等.集合B A =的符号表述:若B A ⊆,且A B ⊆,则B A =.如何证明两个集合相等对于两个集合A , B ,若要证明B A =,只需证明B A ⊆与A B ⊆均成立即可. 如何判断两个集合相等(1)当两个集合为有限集时,若两个集合的元素个数相同,且都含有相同的元素,则这两个集合相等.(2)当两个集合为无限集时,若两个集合的代表元素满足的条件一致,则两个集合相等.注意:集合相等与集合的形式无关,形式不同的两个集合也可以相等.如{}{}2,130=<<∈x Z x .知识点四 真子集的含义及表示如果集合B A ⊆,但存在元素B x ∈,且A x ∉,我们称集合A 是集合B 的真子集,记作B A ≠⊂(或A B ≠⊃),读作“A 真含于B ”(或“B 真包含A ”).对真子集的理解:(1)B A ≠⊂的Venn 图表示:(2)B A ≠⊂的符号表述:若B A ⊆,且B A ≠,则B A ≠⊂. (3)若B A ≠⊂,则B 中至少存在一个A 中没有的元素.(4)规定∅是任何非空集合的真子集,即若∅≠A ,则A ≠⊂∅.子集与真子集的关系若B A ⊆,则B A =或B A ≠⊂.知识点五 空集的含义及其性质不含任何元素的集合叫做空集,记作∅.空集的性质:(1)空集是任何集合的子集(包括空集).(2)空集的只有一个子集,是空集,即它本身.(3)空集是任何非空集合的真子集,即若∅≠A ,则A ≠⊂∅.重要提醒:在由集合间的关系确定参数的值或参数的取值范围时,注意对空集的讨论.知识点六 子集、真子集个数的确定若集合A 含有n 个元素,则集合A :(1)含有n 2个子集;(2)含有12-n 个非空子集;(3)含有12-n 个真子集;(4)含有22-n 个非空真子集.知识点七 关于集合为空集的重要结论(1)若集合{}∅=≤≤=n x m x A ,则n m >;(2)若集合{}∅=<<=n x m x A ,则m ≥n ;(3)若集合{}∅=<≤=n x m x A 或{}∅=≤<=n x m x A ,则m ≥n .以上结论雅慧你要熟记在心,在解决由集合间的关系确定参数取值范围的问题时要会灵活运用,并注意分类讨论(如关于空集的讨论).例1. 已知集合{}41>-<=x x x A 或,{}32+≤≤=a x a x B ,若A B ⊆,求实数a 的取值范围.分析:这是一道由集合间的关系确定参数的取值范围的问题,注意数形结合思想和分类讨论思想的应用.因为A B ⊆,集合B 中含有参数,所以分为两种情况:①∅=B ;②∅≠B .对于∅≠B 这种情况,要借助于数轴来完成对参数的约束,从而可以确定参数的取值范围.最后需要说明的是,参数的取值范围要表示成集合的形式.解:∵A B ⊆,{}32+≤≤=a x a x B ,∴分为两种情况:①当∅=B 时,32+>a a ,解之得:3>a ;②当∅≠B 时,则有:⎩⎨⎧-<++≤1332a a a 或⎩⎨⎧>+≤4232a a a ,解之得:4-<a 或a <2≤3. 综上,实数a 的取值范围为{}24>-<a a a 或.集合的基本运算知识点总结本节知识点:(1)并集. (2)交集. (3)全集与补集. (4)德·摩根定律.知识点一 并集自然语言 一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A与集合B 的并集,记作B A ,读作“A 并B ”.符号语言 {}B x A x x B A ∈∈=或, .图形语言(用Venn 图表示并集) 图中阴影部分表示两个集合的并集.(1)A 与B 有公共元素,相互不包含 (2)A 与B 没有公共部分(3)B A ≠⊂ (4)A B ≠⊂(5)B A =对并集的理解(1)求两个集合的并集是集合的一种运算,结果仍是一个集合,它是由属于集合A 或集合B 的元素组成的.(2)并集概念中的“或”指的是只要满足其中一个条件即可.符号语言“B x A x ∈∈或,”分为三种情况:①A x ∈,但B x ∉; ②A x ∉,但B x ∈; ③A x ∈,且B x ∈.(3)根据集合元素的互异性,在求两个集合的并集时,两个集合中的公共元素在并集中只能出现一次.并集的性质求并集的方法(1)求两个有限集的并集 按照并集的定义进行计算,但要特别注意集合元素的互异性.(2)求两个无限集的并集 借助于数轴进行计算.注意两个集合的并集等于这两个集合在数轴上对应的图形所覆盖的全部范围.知识点二 交集自然语言 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为集合A与集合B 的交集,记作B A ,读作“A 交B ”.符号语言 {}B x A x x B A ∈∈=且, .图形语言(用Venn 图表示交集) 图中阴影部分表示两个集合的并集.如下页图所示.(1)A 与B 有部分公共元素 (2)A 与B 无公共元素,∅=B A(3)若A B ≠⊂,则B B A = (4)若B A ≠⊂,则A B A = (5)B A B A ==对交集的理解(1)求两个集合的交集是集合的一种运算,结果仍是一个集合,它是由属于集合A 且属于集合B 的所有元素组成的集合,及两个集合的公共元素所组成的集合. (2)交集概念中的“所有”二字不能省略,否则会漏掉一些元素,一定要将两个集合中的相同元素(公共元素)全部找出来.(3)当集合A 与集合B 没有公共元素时,不能说集合A 与集合B 没有交集,而是交集为空集,.交集的性质AA B BA B求交集的方法(1)求两个有限集的交集 按照交集的定义进行计算,但要特别注意一定要找出两个集合中的所有公共元素.(2)求两个无限集的交集 借助于数轴进行计算.两个集合的解集等于这两个集合在数轴上对应的图形所覆盖的公共范围.知识点三 全集与补集全集 一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U .补集 对于一个集合A ,由全集U 中不属于A 的所有元素组成的集合称为集合A相对于全集U 的补集,简称集合A 的补集,记作C U A ,即C U A {}A x U x x ∉∈=且,.用Venn 图表示为:对补集的理解(1)补集是相对于全集而言的,求一个集合的补集,结果因全集的不同而不同.所以求补集前,要先明确全集.(2)补集既是集合间的一种关系,同时也是集合之间的一种运算. (3)符号“C U A ”有三层意思: ① C U A {}A x U x x ∉∈=且,;② C U A 是U 的一个子集,及(C U A )U ⊆; ③ C U A 表示一个集合.U1B A 补集的性质①(C U A )U A = ; ②(C U A )∅=A ; ③ C U (C U A )A =; ④ C U U ∅=; ⑤ C U U =∅.知识点四 德·摩根定律知识点五 重要结论如图所示,集合A , B 将全集U 分成了四部分,这四部分用集合表示如下: (1)①表示B A ;(2)②表示A(C U B);B(C U A);(3)③表示(4)④表示(C U A) (C U B).知识点六集合中元素元素的个数若集合A为有限集,则用card(A)表示集合A中元素的个数.如果集合A中含有m个元素,那么有card(A)m=.(1)一般地,对于任意两个有限集合A , B,有card()=A card(A)+card(B)-card()BA .B(2)一般地,对于任意三个有限集合A , B , C,有card()=A -card()CA -card()CB +card(A)+card(B)-card()BCBAcard()C.AB。
高中数学必修一重难点知识“集合”知识点
高中数学必修一重难点知识“集合”知识点
集合是数学中最基本的概念,它已渗透到自然科学的各个领域,其应用十分广泛。
在集合学习过程中,若能够明确和运用常见的数学思想方法,就能够更深刻地理解集合概念,更全面地渗透集合观念,更灵活地解决集合问题。
1.集合中的数形结合思想
集合语言的转化
集合是一种基本的数学语言,其常见形式主要有:文字语言、符号语言及图形语言,这三种形式是紧密联系的。
用集合语言来包装其他知识点,则是近几年高考命题的一种常用手段。
因此能否灵活、准确地进行集合语言转换,透过现象把握集合问题的本质,对同学们来说,显得尤为重要。
本文试着结合一些具体的题目,说明如何灵活进行集合语言的互相转化,突破解题过程的思维瓶颈,以期对同学们的学习和备考有所帮助。
1、集合语言的符号化
2、集合语言的文字化
3、集合语言的图形化
● 注:建立图形语言与符号语言之间的对应关系,将抽象的符号语言转化为图形语言,让图形说话,化难为易,化抽象为具体,是解
决集合问题的一种重要思路。
集合的文字语言、符号语言和图形语言三者是紧密联系的。
灵活、准确地进行语言转换,才能把握集合问题的本质,突破解题过程的思维瓶颈,优化思维过程,取得理想的解题效果。
高一数学人教版第一章集合与函数概念教案
第一章集合与函数概念§1.1.1集合的含义与表示一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感.态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 学法与教学用具1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2. 教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.(二)研探新知1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5)湖南省在2004年9月之前建成的所有立交桥;(6)到一个角的两边距离相等的所有的点;(7)方程2560x x -+=的所有实数根;(8)不等式30x ->的所有解;(9)洞口一中2007年9月入学的高一学生的全体.2.教师组织学生分组讨论:这9个实例的共同特征是什么?3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母,,,a b c d …表示.(三)质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.4.教师提出问题,让学生思考(1)如果用A 表示高—(3)班全体学生组成的集合,用a 表示高一(3)班的一位同学,b 是高一(4)班的一位同学,那么,a b 与集合A 分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈.如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉.(2)如果用A 表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A 的关系分别是什么?请用数学符号分别表示.(3)让学生完成教材第6页练习第1题.5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A 组第1题.6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
人教版高一数学必修一第一章-知识点与习题讲解
必修1第一章集合与函数基础知识点整理第1讲 §1.1.1 集合的含义与表示¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集.描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合;(2)大于2且小于7的整数.解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=;用列举法表示为{0,1,3}-.(2)用描述法表示为:{|27}x Z x ∈<<;用列举法表示为{3,4,5,6}.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17 A ; -5 A ; 17 B .解:由3217k +=,解得5k Z =∈,所以17A ∈;由325k +=-,解得73k Z =∉,所以5A -∉;由6117m -=,解得3m Z =∈,所以17B ∈. 【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4)(1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合;(3)反比例函数2y x=的自变量的值组成的集合. 解:(1)3{(,)|}{(1,4)}26y x x y y x =+⎧=⎨=-+⎩. (2)2{|4}{|4}y y x y y =-=≥-. (3)2{|}{|0}x y x x x ==≠.点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.*【例4】已知集合2{|1}2x a A a x +==-有唯一实数解,试用列举法表示集合A .A B B A A B A B A . B . C . D . 解:化方程212x a x +=-为:2(2)0x x a --+=.应分以下三种情况: ⑴方程有等根且不是2±:由 △=0,得94a =-,此时的解为12x =,合. ⑵方程有一解为2,而另一解不是2-:将2x =代入得2a =-,此时另一解12x =-,合. ⑶方程有一解为2-,而另一解不是2:将2x =-代入得2a =,此时另一解为21x =+,合.综上可知,9{,2,2}4A =--.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.第2讲 §1.1.2 集合间的基本关系¤知识要点:1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3. 如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(proper subset ),记作A ≠⊂B (或B ≠⊃A ).4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A =,则A B ⊆;若A B A =,则B A ⊆.¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x ∈+=; 0 {0}; ∅ {0}; N {0}. 解:(1), ;(2)=, ∈, ,.【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ). 解:简单列举两个集合的一些元素,3113{,1,,0,,1,,}2222A =⋅⋅⋅---⋅⋅⋅,3113{,,,,,}2222B =⋅⋅⋅--⋅⋅⋅, 易知B ≠⊂A ,故答案选A . 另解:由21,}2{|n x n B x +=∈=Z ,易知B ≠⊂A ,故答案选A . 【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值. 解:由26023x x x +-=⇒=-或,因此,{}2,3M =-.(i )若0a =时,得N =∅,此时,N M ⊆;(ii )若0a ≠时,得1{}N a =. 若N M ⊆,满足1123a a==-或,解得1123a a ==-或. 故所求实数a 的值为0或12或13-. 点评:在考察“A B ⊆”这一关系时,不要忘记“∅” ,因为A =∅时存在A B ⊆. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.解:若22a b ax a b ax+=⎧⎨+=⎩⇒a +ax 2-2ax =0, 所以a (x -1)2=0,即a =0或x =1. 当a =0时,集合B 中的元素均为0,故舍去;当x =1时,集合B 中的元素均相同,故舍去.若22a b ax a b ax⎧+=⎨+=⎩⇒2ax 2-ax -a =0. 因为a ≠0,所以2x 2-x -1=0, 即(x -1)(2x +1)=0. 又x ≠1,所以只有12x =-.经检验,此时A =B 成立. 综上所述12x =-.点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第3讲 §1.1.3 集合的基本运算(一)¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再B (读作“B (读作“U A (读作“ ¤例题精讲:】设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<<求解:在数轴上表示出集合A 、B ,如右图所示: {|35}A B x x =<≤,(){|1,9}U C A B x x x =<-≥或,【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A B C ; (2)()A A B C .解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------.(1)又{}3B C =,∴()A B C ={}3;(2)又{}1,2,3,4,5,6B C =,得{}()6,5,4,3,2,1,0A C B C =------. U∴ ()A A C B C {}6,5,4,3,2,1,0=------.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围.解:由A B A =,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示:由图形可知,4m ≥. 点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C A B ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B =,则(){6,7,9}U C A B =.由{5,8}A B =,则(){1,2,3,4,6,7,9}U C A B =由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =,则()(){6,7,9}U U C A C B =,()(){1,2,3,4,6,7,9}U U C A C B =.由计算结果可以知道,()()()U U U C A C B C A B =,()()()U U U C A C B C A B =.另解:作出Venn 图,如右图所示,由图形可以直接观察出来结果.点评:可用Venn 图研究()()()U U U C A C B C A B =与()()()U U U C A C B C A B = ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.第4讲 §1.1.3 集合的基本运算(二) ¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.2. 集合元素个数公式:()()()()n A B n A n B n A B =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维.¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9A B =,求实数a 的值. 解:由于{}{}24,21,,9,5,1A a a B a a =--=--,且{}9A B =,则有:当219 a -=时,解得5a =,此时={4, 9, 25}={9, 0, 4}A B -,-,不合题意,故舍去; 当29a =时,解得33a =或-.3 ={4,5,9} ={9,2,2}a A B =时,-,--,不合题意,故舍去;3={4, 7 9}={9, 8, 4}a A B =-,--,,-,合题意.所以,3a =-.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求A B , A B .(教材P 14 B 组题2)解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}A B =,A B =∅;当1a =时,{1,3}A =,则{1,3,4}A B =,{1}A B =;当4a =时,{3,4}A =,则{1,3,4}A B =,{4}A B =;-2 4 m x B A当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}A B a =,A B =∅.点评:集合A 含有参数a ,需要对参数a 进行分情况讨论. 罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,求实数a 的值.解:先化简集合A ={4,0}-. 由A B =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-.(i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-;(ii )若0∈B ,代入得2a 1-=0⇒a =1或a =1-,当a =1时,B =A ,符合题意;当a =1-时,B ={0}⊆A ,也符合题意.(iii )若-4∈B ,代入得2870a a -+=⇒a =7或a =1,当a =1时,已经讨论,符合题意;当a =7时,B ={-12,-4},不符合题意.综上可得,a =1或a ≤1-.点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A =B 和B =∅的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= . (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}U C A x x x A =∈∉且”而拓展)解:根据题意可知,{1,2,3,4,5,6,7,8}A =,{0,2,5,6}B =由定义{|,}A B x x A x B -=∈∉且,则{1,3,4,7,8}A B -=.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A 中排除B 的元素. 如果再给定全集U ,则A B -也相当于()U A C B .第5讲 §1.2.1 函数的概念¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间;{x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y =.解:(1)由210x +-≠,解得1x ≠-且3x ≠-,所以原函数定义域为(,3)(3,1)(1,)-∞----+∞.(2)由3020x -≥⎧⎪≠,解得3x ≥且9x ≠, 所以原函数定义域为[3,9)(9,)+∞.【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y x x =-++. 解:(1)要使函数有意义,则540x -≠,解得54x ≠. 所以原函数的定义域是5{|}4x x ≠.32112813(45)233233305445445445444x x x y x x x x ++-+==⨯=⨯=-+≠-+=-----,所以值域为3{|}4y y ≠-. (2)22192()24y x x x =-++=--+. 所以原函数的定义域是R ,值域是9(,]4-∞. 【例3】已知函数1()1x f x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1(2)3f =-. (2)设11x t x -=+,解得11t x t -=+,所以1()1t f t t -=+,即1()1x f x x -=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等. 【例4】已知函数22(),1x f x x R x =∈+. (1)求1()()f x f x+的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++. 解:(1)由2222222221111()()1111111x x x x f x f x x x x x x ++=+=+==+++++. (2)原式11117(1)((2)())((3)())((4)())323422f f f f f f f =++++++=+= 点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.第6讲 §1.2.2 函数的表示法¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”. 判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f . ¤例题精讲: 【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.又由20a x >-,解得2a x <.所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x )=333322x x x x-⎧++⎪⎨+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值. 解:∵ 0(,1)∈-∞, ∴ f (0)=32. 又 ∵ 32>1,∴ f (32)=(32)3+(32)-3=2+12=52,即f [f (0)]=52.【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3)(2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|2,2x x y x x x -≥⎧=-=⎨-<⎩. 所以,函数|2|y x =-的图象如右图所示. (2)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,所以,函数|1||24|y x x =-++的图象如右图所示.点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.解:3, 2.522,211,10()0,011,122,233,3x x x f x x x x x --<<-⎧⎪--≤<-⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪=⎩. 函数图象如右:点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.第7讲 §1.3.1 函数的单调性 ¤知识要点: 1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasingfunction ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1x f x x =-在区间(0,1)上的单调性. 解:任取12,x x ∈(0,1),且12x x <. 则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----. 由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.所以,函数2()1x f x x =-在(0,1)上是减函数. 【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性. 解:设任意12,x x R ∈,且12x x <. 则22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++.若0a <,当122b x x a <≤-时,有120x x -<,12b x x a+<-,即12()0a x x b ++>,从而12()()0f x f x -<,即12()()f x f x <,所以()f x 在(,]2b a-∞-上单调递增. 同理可得()f x 在[,)2b a-+∞上单调递减. 【例3】求下列函数的单调区间:(1)|1||24|y x x =-++;(2)22||3y x x =-++.解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,其图象如右.由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.(2)22223,02||323,0x x x y x x x x x ⎧-++≥⎪=-++=⎨--+<⎪⎩,其图象如右. 由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.第8讲 §1.3.1 函数最大(小)值 ¤知识要点: 1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a -=++后,当0a >时,函数取最小值为244ac b a-;当0a <时,函数取最大值244ac b a-. 3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值. 解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.解:设他将售出价定为x 元,则提高了(10)x -元,减少了10(10)x -件,所赚得的利润为(8)[10010(10)]y x x =---.即2210280160010(14)360y x x x =-+-=--+. 当14x =时,max 360y =.所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360元.【例3】求函数21y x x =+-的最小值.解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数,所以当1x =时,min 2112y =+-=,函数的最小值为2.点评:形如y ax b cx d =+±+的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.【另解】令1x t -=,则0t ≥,21x t =+,所以22115222()48y t t t =++=++,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--.解:(1)二次函数232y x x =--的对称轴为2b x a =-,即1x =-.画出函数的图象,由图可知,当1x =-时,max 4y =; 当32x =时,min 94y =-. 所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为94-. (2) 3 (2)|1||2|2 1 (12)3 (1)x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩.作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3. 点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.第9讲 §1.3.2 函数的奇偶性¤知识要点:1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.¤例题精讲:【例1】判别下列函数的奇偶性:(1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-.解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有3311()()()()f x x x f x x x -=--=--=--, 所以为奇函数. (2)原函数定义域为R ,对于定义域的每一个x ,都有()|1||1||1||1|()f x x x x x f x -=--+-+=-++=,所以为偶函数.(3)由于23()()f x x x f x -=+≠±,所以原函数为非奇非偶函数.【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f x g x x -=+,求()f x 、()g x . 解:∵ ()f x 是奇函数,()g x 是偶函数,∴ ()()f x f x -=-,()()g x g x -=.则1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪---=⎪-+⎩,即1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪--=⎪-+⎩. 两式相减,解得2()1x f x x =-;两式相加,解得21()1g x x =-.。
人教版高一数学必修一难点总结5篇
人教版高一数学必修一难点总结5篇高中阶段学习难度、强度、容量加大,学习负担及压力明显加重,不能再依靠学校时期老师“填鸭式”的授课,“看管式”的自习,“命令式”的作业,要逐步培育自己主动猎取学问、巩固学问的力量,制定学习方案,养成自主学习的好习惯。
下面就是我给大家带来的人教版高一数学必修一学问点,盼望能关心到大家!人教版高一数学必修一学问点1直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11平面含义:平面是无限延展的2平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
3三个公理:(1)公理1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为B∈L=LαA∈αB∈α公理1作用:推断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A、B、C三点不共线=有且只有一个平面α,使A∈α、B∈α、C∈α。
公理2作用:确定一个平面的依据。
(3)公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P∈α∩β=α∩β=L,且P∈L公理3作用:判定两个平面是否相交的依据2.1.2空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:共面直线相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。
2公理4:平行于同一条直线的两条直线相互平行。
符号表示为:设a、b、c是三条直线a∈b强调:公理4实质上是说平行具有传递性,在平面、空间这共性质都适用。
公理4作用:推断空间两条直线平行的依据。
3等角定理:空间中假如两个角的两边分别对应平行,那么这两个角相等或互补4留意点:①a与b所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;②两条异面直线所成的角θ∈(0,);③当两条异面直线所成的角是直角时,我们就说这两条异面直线相互垂直,记作a∈b;④两条直线相互垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
人教版高一数学必修一知识点总结5篇
人教版高一数学必修一知识点总结5篇人教版高一数学必修一知识点1一.知识归纳:1.集合的有关概念.1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似.②集合中的元素具有确定性(a?A和a?A,二者必居其一).互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合).③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法.描述法和图文法3)集合的分类:有限集,无限集,空集.4)常用数集:N,Z,Q,R,N_.子集.交集.并集.补集.空集.全集等概念.1)子集:若对_∈A都有_∈B,则AB(或AB);2)真子集:AB且存在_0∈B但_0A;记为AB(或,且)3)交集:A∩B={_|_∈A且_∈B}4)并集:A∪B={_|_∈A或_∈B}5)补集:CUA={_|_A但_∈U}注意:①?A,若A≠?,则?A;②若,,则;③若且,则A=B(等集)3.弄清集合与元素.集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1)与.?的区别;(2)与的区别;(3)与的区别.4.有关子集的几个等价关系①A∩B=AAB;②A∪B=BAB;③ABCuACuB;④A∩CuB=空集CuAB;⑤CuA∪B=IAB.5.交.并集运算的性质①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集.人教版高一数学必修一知识点2一.集合一.集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法.?注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_N+整数集Z有理数集Q实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.{_?R|_-3 2},{_|_-3 2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4.集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{_|_2=-5}二.集合间的基本关系1.〝包含〞关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.〝相等〞关系:A=B(5≥5,且5≤5,则5=5)实例:设A={_|_2-1=0}B={-1,1}〝元素相同则两集合相等〞即:①任何一个集合是它本身的子集.A?A②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)③如果A?B,B?C,正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.方程的根与函数的零点1.函数零点的概念:对于函数,把使成立的实数叫做函数的零点.2.函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根函数的图象与轴有交点函数有零点.3.函数零点的求法:○1(代数法)求方程的实数根;○2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4.二次函数的零点:二次函数.(1)△ 0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△ 0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.三.平面向量向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点.方向.长度.零向量:长度为的向量.单位向量:长度等于个单位的向量.相等向量:长度相等且方向相同的向量向量的运算加法运算AB+BC=AC,这种计算法则叫做向量加法的三角形法则.已知两个从同一点O出发的两个向量OA.OB,以OA.OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA.OB的和,这种计算法则叫做向量加法的平行四边形法则.对于零向量和任意向量a,有:0+a=a+0=a.|a+b|≤|a|+|b|.向量的加法满足所有的加法运算定律.减法运算与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量.(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b).数乘运算实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ 0时,λa的方向和a的方向相同,当λ 0时,λa的方向和a的方向相反,当λ=0时,λa=0.设λ.μ是实数,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a).向量的加法运算.减法运算.数乘运算统称线性运算.向量的数量积已知两个非零向量a.b,那么|a||b|c osθ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影.零向量与任意向量的数量积为0.a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.两个向量的数量积等于它们对应坐标的乘积的和.四.三角函数1.善于用〝1〝巧解题2.三角问题的非三角化解题策略3.三角函数有界性求最值解题方法4.三角函数向量综合题例析5.三角函数中的数学思想方法人教版高一数学必修一知识点3【集合与函数概念】一.集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法.注意:常用数集及其记法:_非负整数集(即自然数集)记作:N正整数集:N_N+整数集:Z有理数集:Q实数集:R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{_?R|_-3 2},{_|_-3 2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4.集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{_|_2=-5}二.集合间的基本关系1.〝包含〞关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.〝相等〞关系:A=B(5≥5,且5≤5,则5=5)实例:设A={_|_2-1=0}B={-1,1}〝元素相同则两集合相等〞即:①任何一个集合是它本身的子集.AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集.4.子集个数:有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集三.集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={_|_A,且_B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={_|_A,或_B}).人教版高一数学必修一知识点4集合有关概念集合的含义集合的中元素的三个特性:元素的确定性如:世界上的山元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}集合的表示方法:列举法与描述法.注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_N+整数集Z有理数集Q实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.{_(R|_-3 2},{_|_-3 2}语言描述法:例:{不是直角三角形的三角形}Venn图:4.集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{_|_2=-5}集合间的基本关系1.〝包含〞关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.〝相等〞关系:A=B(5≥5,且5≤5,则5=5)实例:设A={_|_2-1=0}B={-1,1}〝元素相同则两集合相等〞即:①任何一个集合是它本身的子集.A(A②真子集:如果A(B,且A(B那就说集合A是集合B的真子集,记作AB(或BA)③如果A(B,B(C,那么A(C④如果A(B同时B(A那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集.有n个元素的集合,含有2n个子集,2n-1个真子集人教版高一数学必修一知识点5一.集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性,(2)元素的互异性,(3)元素的无序性,3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法.?注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_N+整数集Z有理数集Q实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.{_?R|_-3 2},{_|_-3 2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4.集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{_|_2=-5}二.集合间的基本关系1.〝包含〞关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.〝相等〞关系:A=B(5≥5,且5≤5,则5=5)实例:设A={_|_2-1=0}B={-1,1}〝元素相同则两集合相等〞即:①任何一个集合是它本身的子集.A?A②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)③如果A?B,B?C,那么A?C④如果A?B同时B?A那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集.?有n个元素的集合,含有2n个子集,2n-1个真子集三.集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={_|_A,且_B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={_|_A,或_B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)例题:1.下列四组对象,能构成集合的是()A某班所有高个子的学生B的艺术家C一切很大的书D倒数等于它自身的实数2.集合{a,b,c}的真子集共有个3.若集合M={y|y=_2-2_+1,_R},N={_|_≥0},则M与N的关系是.4.设集合A=,B=,若AB,则的取值范围是5.50名学生做的物理.化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人.6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M=.7.已知集合A={_|_2+2_-8=0},B={_|_2-5_+6=0},C={_|_2-m_+m2-_=0},若B∩C≠Φ,A∩C=Φ,求m的值二.函数的有关概念1.函数的概念:设A.B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数_,在集合B中都有确定的数f(_)和它对应,那么就称f:A→B 为从集合A到集合B的一个函数.记作:y=f(_),_∈A.其中,_叫做自变量,_的取值范围A叫做函数的定义域;与_的值相对应的y值叫做函数值,函数值的集合{f(_)|_∈A}叫做函数的值域.注意:1.定义域:能使函数式有意义的实数_的集合称为函数的定义域.求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数.对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的_的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备)(见课本_页相关例2)2.值域:先考虑其定义域(1)观察法(2)配方法(3)代换法3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(_),(_∈A)中的_为横坐标,函数值y为纵坐标的点P(_,y)的集合C,叫做函数y=f(_),(_∈A)的图象.C上每一点的坐标(_,y)均满足函数关系y=f(_),反过来,以满足y=f(_)的每一组有序实数对_.y为坐标的点(_,y),均在C上.(2)画法A.描点法:B.图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间.闭区间.半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A.B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素_,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射.记作f:A→B6.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数.(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(_)(_∈A),则y=f[g(_)]=F(_)(_∈A)称为f.g的复合函数.二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(_)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量_1,_2,当_1如果对于区间D上的任意两个自变量的值_1,_2,当_1f(_2),那么就说f(_)在这个区间上是减函数.区间D称为y=f(_)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(_)在某个区间是增函数或减函数,那么说函数y=f(_)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A)定义法:○1任取_1,_2∈D,且_1○2作差f(_1)-f(_2);○3变形(通常是因式分解和配方);○4定号(即判断差f(_1)-f(_2)的正负);○5下结论(指出函数f(_)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(_)]的单调性与构成它的函数u=g(_),y=f(u)的单调性密切相关,其规律:〝同增异减〞注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(_)的定义域内的任意一个_,都有f(-_)=f(_),那么f(_)就叫做偶函数.(2).奇函数一般地,对于函数f(_)的定义域内的任意一个_,都有f(-_)=—f(_),那么f(_)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-_)与f(_)的关系;○3作出相应结论:若f(-_)=f(_)或f(-_)-f(_)=0,则f(_)是偶函数;若f(-_)=-f(_)或f(-_)+f(_)=0,则f(_)是奇函数.(2)由f(-_)±f(_)=0或f(_)/f(-_)=±1来判定;(3)利用定理,或借助函数的图象判定.9.函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1)凑配法2)待定系数法3)换元法4)消参法10.函数(小)值(定义见课本p36页)○1利用二次函数的性质(配方法)求函数的(小)值○2利用图象求函数的(小)值○3利用函数单调性的判断函数的(小)值:如果函数y=f(_)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(_)在_=b处有值f(b);如果函数y=f(_)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(_)在_=b处有最小值f(b);例题:1.求下列函数的定义域:⑴⑵2.设函数的定义域为,则函数的定义域为__3.若函数的定义域为,则函数的定义域是4.函数,若,则=6.已知函数,求函数,的解析式7.已知函数满足,则=.8.设是R上的奇函数,且当时,,则当时=在R上的解析式为9.求下列函数的单调区间:⑴(2)10.判断函数的单调性并证明你的结论._.设函数判断它的奇偶性并且求证人教版高一数学必修一知识点总结5篇。
人教A版数学必修第一册期末复习:集合重难点剖析课件
若全集为U,则集合A的补集为∁UA
图形表示
意义
{x|x∈U,且x∉A}
核心考点
A⊆B,B⊆C⇒A⊆C;AB,BC⇒AC.
含有n个元素的集合有2n个子集,有2n-1个真子集,有2n-2个非空真子集
常用
结论
A∩B=A∪B⇔A=B
A⊆B⇔A∩B=A⇔A∪B=B⇔(∁UA)⊇(∁UB)⇔A∩(∁UB)=∅
∁RA={x|-1≤x≤2}
常考题型
例6 如图所示的Venn图中,A,B是两个非空集合,定义集合A⊗B为阴
题
型
四
集
合
的
新
定
义
问
题
影部分表示的集合.若x,y∈R,A={x|y= − },B={y|y=3x,
x>0},则A⊗B为( D )
A.{x|0<x<2}
B.{x|1<x≤2}
C.{x|0≤x≤1或x≥2}
B.{-1}
C.[-1,0]
D.[- 2,0]
M=(-∞,0]
N=[- 2 , 2]
M∩N=[- 2 ,0]
过关检测
2.若集合A={x|-1<x<1,x∈R},B={x|y= − ,x∈R},则A∪B= ( C )
A.[0,1)
B.(-1,+∞)
C.(-1,1)∪[2,+∞)
D.∅
B={x|y= − 2
期 末
复 习
集合重难点剖析
目
录
核心
考点
>>
常考
题型
>>
跟踪
检测
核心考点
此性质常用于题目中
确定性
元素的三个特性
对参数的取舍
无序性
人教版高一数学知识点总结
人教版高一数学知识点总结人教版高一数学知识点总结1集合间的基本关系1.〝包含〞关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.〝相等〞关系:A=B(5≥5,且5≤5,则5=5)实例:设A={_|_2-1=0}B={-1,1}〝元素相同则两集合相等〞即:①任何一个集合是它本身的子集.A?A②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)③如果A?B,B?C,那么A?C④如果A?B同时B?A那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集.?有n个元素的集合,含有2n个子集,2n-1个真子集集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={_|_A,且_B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={_|_A,或_B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)人教版高一数学知识点总结2元素与集合的关系有〝属于〞与〝不属于〞两种.集合与集合之间的关系某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ.空集是任何集合的子集,是任何非空集的真子集.任何集合是它本身的子集.子集,真子集都具有传递性.『说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B.若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B.中学教材课本里将?符号下加了一个≠符号,不要混淆,考试时还是要以课本为准.所有男人的集合是所有人的集合的真子集.』人教版高一数学知识点总结3幂函数的性质:对于a的取值为非零有理数,有必要分成几种情任意实数;排除了为0这种可能,即对于_ 0_= 0的所有实数,q不能是偶数;排除了为负数这种可能,即对于_为大于且等于0的所有实数,a就不能是负数.总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则_肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则_不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数.在_大于0时,函数的值域总是大于0的实数.在_小于0时,则只有同时q为奇数,函数的值域为非零的实数.而只有a为正数,0才进入函数的值域.由于_大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.可以看到:(1)所有的图形都通过(1,1)这点.(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数.(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸.(4)当a小于0时,a越小,图形倾斜程度越大.(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点.(6)显然幂函数无界.解题方法:换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化.复杂问题简单化,变得容易处理.换元法又称辅助元素法.变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟悉的形式,把复杂的计算和推证简化.它可以化高次为低次.化分式为整式.化无理式为有理式.化超越式为代数式,在研究方程.不等式.函数.数列.三角等问题中有广泛的应用.人教版高一数学知识点总结4【立体几何初步】1.柱.锥.台.球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体.分类:以底面多边形的边数作为分类的标准分为三棱柱.四棱柱.五棱柱等.表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱.几何特征:两底面是对应边平行的全等多边形;侧面.对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体.分类:以底面多边形的边数作为分类的标准分为三棱锥.四棱锥.五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面.对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分.分类:以底面多边形的边数作为分类的标准分为三棱态.四棱台.五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体.几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体.几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.2.空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右).俯视图(从上向下)注:正视图反映了物体上下.左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右.前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下.前后的位置关系,即反映了物体的高度和宽度.3.空间几何体的直观图——斜二测画法斜二测画法特点:①原来与_轴平行的线段仍然与_平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.人教版高一数学知识点总结5函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(_),(_∈A)中的_为横坐标,函数值y为纵坐标的点P(_,y)的集合C,叫做函数y=f(_),(_∈A)的图象.C上每一点的坐标(_,y)均满足函数关系y=f(_),反过来,以满足y=f(_)的每一组有序实数对_.y为坐标的点(_,y),均在C上.即记为C={P(_,y)|y=f(_),_∈A}图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.(2)画法A.描点法:根据函数解析式和定义域,求出_,y的一些对应值并列表,以(_,y)为坐标在坐标系内描出相应的点P(_,y),最后用平滑的曲线将这些点连接起来.B.图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换.伸缩变换和对称变换(3)作用:1.直观的看出函数的性质;2.利用数形结合的方法分析解题的思路.提高解题的速度.人教版高一数学知识点总结精选。
人教版高中数学必修一集合与函数基础知识讲解
一、集合的表示方法 ⒈列举法 : 把集合中的元素一一列举出来 , 并用花括号“
”括起来表示集合的方法叫列举法。
如: {1 , 2, 3, 4, 5} ,{x 2, 3x+2, 5y3-x ,x2 +y2} ,…; 说明: ⑴书写时,元素与元素之间用逗号分开;
集合与函数概念
(一)集合的有关概念 ⒈定义: 一般地,我们把研究对象统称为
§1.1 集合
元素 ,一些元素组成的总体叫 集合, 也简称 集 。
2. 表示方法 :集合 通常用大括号 { } 或大写的拉丁字母 A,B,C …表示,
而元素 用小写的拉丁字母 a,b,c …表示。
3. 集合相等: 构成两个集合的元素完全一样。
⑴大于 3 小于 11 的偶数; ⑶非负奇数;
⑵我国的小河流; ⑷方程 x2+1=0 的解;
⑸某校 2011 级新生;
⑹血压很高的人;
⑺著名的数学家;
⑻平面直角坐标系内所有第三象限的点
7. 元素与集合的关系: ( 元素与集合的关系有“属于
”及“不属于
⑴若 a 是集合 A 中的元素,则称 a 属于集合 A ,记作 a A ;
4.下列说法正确的是 ( )
A. {0}是空集
B. { x∈ Q∣ 6 ∈ Z}是有限集 x
C.{ x∈ Q∣x 2+x+2=0 }是空集
D.{ 2,1}与{ 1,2}是不同的集合
二填空题:
5、以实数为元素构成的集合的元素最多有
个;
6、以实数 a2, 2-a.,4 为元素组成一个集合 A ,A 中含有2个元素,则的 a 值为
.
7、集合 M= { y∈ Z∣ y= 8 ,x ∈ Z } ,用列举法表示是 M =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学 集合
【重点难点解析】
集合论是由德国数学家康托(Cantor ,1845—1918)创立的,它的创立使数学的面貌产生了巨大的变化.现在我们学习的是集合的初步知识.
本节重点是集合的基本要领及其表示方法,难点是运用集合的表示方法正确表示一些简单的集合.学习中请注意以下几点:
(1)集合与集合的元素是两个不同的概念,与几何中的点、线、面的概念类似.但是,应把握集合元素的确定性、互异性、无序性,要明确元素的属性,这是解决集合问题的关键.
(2)集合具有两方面的含义:一方面,凡符合条件的对象都是它的元素,另一方面,凡它的元素都符合条件.
(3)新的国家标准定义自然数集N 含元素“0”,这与初中所学不同,要注意.
【考点】
本节是打基础的预备知识,考试时一般是与后面章节结合起来考查,因此,本节学习需达到的要求是: ①理解集合概念;
②掌握集合的常用表示方法;
③会正确使用符号∈与∉.
【典型热点考题】
例1 考察下列每组对象能否构成一个集合?
(1)比较小的数;
(2)所有无理数;
(3)比2大的几个数;
(4)直角坐标平面内横坐标与纵坐标相等的点;
(5)高一(2)班所有的男生.
思路分析
判断一组对象能否构成一个集合,关键在于是否有一个明确的标准来判断这些对象具有某种性质. 解:(1)“比较小”无明确的标准,对于某个数是否“比较小”无法客观地判断,因此“比较小”的数不能构成集合;类似地,(3)也不能构成集合.
(2)任给一个实数,可以明确地判断它是不是无理数,故“所有无理数”可以构成集合.类似地,(4)、
(5)也能构成集合.
例2 设集合}Z k 412k x |x {M ∈+==,,}Z k 2
14k x |x {N ∈+==,,则( ) A .M =N B .N M ≠⊂ C .N M ≠⊃ D .M ∩N =∅ 思路分析1 采用描述法向列举法转化:
k 取0,±1,±2,±3,…,可得:
}4
54341414345{ ,,,,,,,---=M
}4
514321410412143145{ ,,,,,,,,,,,,-----=N ∴N M ≠⊂
点评 集合的表示法,包括列举法与描述法.将两种表示法相互转化,属基本能力要求.
思路分析2
设x ∈M . 则4
12k x += 2
141k 2+-= ∵k ∈Z
∴2k -1∈Z 从而,得:N 2
141k 2x ∈+-= 由x 的任意性,可得N M ⊆
又∵0∈N
但是M 0∉
假设0∈M ,则2
1k 412k 0-=⇒+= 与k ∈Z 矛盾
∴M 0∉ ∴N M ≠⊂.
点评 设集合M={x|F(x)},则x M x ⇔∈满足条件F(x);利用子集、真子集的定义证明两个集合之间的“包含于”与“真包含于”的关系.
⇔⊆N M 对任意x ∈M ,恒有x ∈N ;
N M N M ⊆⇔≠⊂且存在N y 0∈,但M y 0∉.
例3 设}Z b Z a 1
|b 2a | |2b a {M 22∈∈=-+=,,,已知x ∈M ,y ∈M .求证:(1)xy ∈M ;(2)M x 1∈. 思路分析
根据集合两方面的含义,已知x 、y ∈M ,则x 、y 都可写成2b a +的形式且1|b 2a |22=-,a 、b ∈Z .而要证明xy ∈M ,M x
1∈,则需证明它们符合M 的属性. 证明:(1)∵x ∈M ,y ∈M ∴可设22d c y b a x +=+=,
且1|b 2a |22=-,1|d 2c |22=-,a 、b 、c 、d ∈Z
∴)ad bc (2)bd 2ac ()2d c )(2b a (xy +++=++=
其中,ac +2bd ∈Z ,bc +ad ∈Z
且1|)d 2c ()b 2a (||)ad bc (2)bd 2ac (|222222=-⋅-=+-+
∴xy ∈M . (2)⎪⎩⎪⎨⎧-=-+-=--=--=+=1)
2b a ( 21)2b a ( 222211222222当当b a b a b a b a b a x 显然有M 2b a ∈-,M 2b a ∈+- ∴M x
1∈.
【同步达纲练习】
一、选择题
1.设A ={a},则下列各式中正确的是( )
A .0∈A
B .A a ∉
C .a ∈A
D .a =A
2.用列举法将集合{(x ,y)|x ∈{1,2},y ∈{1,2}}表示为( )
A .{1,2}∈A
B .{1,2}
C .2={(2,2)}
D .{(1,2),(1,1),(2,1),(2,2)}
3.在①难解的题目;②方程03x 2=-在实数集内的解;③直角坐标平面内第四象限的一些点;④很多多项式中,能够组成集合的是( )
A .②
B .①、③
C .②、④
D .①、②、④
4.已知集合}31x |R x {A <-∈=,则有( )
A .3∈A 但A 3∉-
B .3∈A 且-3∈A
C .A 3∉且A 3∉-
D .A 3∉但-3∈A
5.下面有4个命题:①N a ∉-,则a ∈N ;②{0}表示仅有一个元素零的集合;③x 44x 2=+的解集可表示为{2,2};④{y||y|<1}是有限集;其中正确命题的个数是( )
A .0个
B .1个
C .2个
D .3个
二、填空题
1.用符号∈或∉填空
}11x |x _________32<{,}32x |x _________52+≤+{,
3____________}1|{2N n n x x ∈+=,,(-1,1)__________}x y |y {2=
2.集合}5n N n 2
n 1n x |x {≤∈+-=,,用列举法表示为____________. 3.集合} 5 2 3 2 1{ ,,,,,
用描述法表示为____________. 4.}Q x R x |x {A ∉∈=且,下列实数:︒----60cos 2 3 1010100 22 31321
,,,.,,, π中,属于
集合A 的元素是____________.
5.平面直角坐标系中,x 轴、y 轴上的点集可表示为____________.
三、问答题
1.已知集合A ={小于6的自然数},B ={小于10的质数},C ={24和36的全体约数},用列举法表示:
(1){y|y ∈A 且y ∈C};(2){y|y ∈B 但C y ∉}.
2.设}025ax x |x {212=-
-∈,求集合}0a x 2
19x |x {2=--中所有元素.
3.已知M ={2,a ,b},N ={2a ,2,2b },且M =N ,求a 、b 的值.
4.已知集合}R a 02x 3ax |R x {A 2∈=+-∈=,,若A 中元素至多只有一个,求a 的取值范围.
参考答案
【同步达纲练习】
一、1.C 2.D 3.A 4.D 5.B
二、1.∉,∈,∉,∉提示:因为111232>= 32)32(12271027)52(5222+=+=+<+=+=+
令31n 2=+,则N 2n ∉±=
2.}7
4 21 52 41 0 21
{,,,,,- 3.}N n 1
n x |x {∈+=, 4.321
2 3 22-,,,-π提示:-0.101010…是循环小数,属于有理数 5.{(x ,y)|xy=0}
三、
1.∵A ={0,1,2,3,4,5},B ={2,3,5,7},C ={1,2,3,4,6,8,9,12,18,24,36} ∴(1){y|y ∈A 且y ∈C}={1,2,3,4}
(2){y|y ∈B 但C y ∉}={5,7}
2.∵}025ax x |x {212=-
-∈, ∴02521a )21(2=-⋅
- ∴2
9a -=, ∴}9 2
1{}029x 219x |x {}0a x 219x |x {22,==+-==-- 3.根据集合元素的特征解题
∵M =N
⎩⎨⎧==2b b a 2a 或⎩
⎨⎧==a 2b b a 2
∴⎪⎪⎩
⎪⎪⎨⎧==⎩⎨⎧==⎩⎨⎧==21
b 41a 1b 0a 0b 0a 或或 而⎩
⎨⎧==0b 0a 不符合集合元素的互异性 ∴⎪⎪⎩
⎪⎪⎨⎧==⎩⎨⎧==21
b 41a 1b 0a 或 4.讨论方程02x 3ax 2=+-实数根的情况,从中确定a 的取值范围.依题意方程有一个实数根或有两个相等的实数根或无实数根.
解:(1)a =0时,方程-3x +2=0,3
2x =,符合题意 (2)a≠0时,方程02x 3ax 2=+-为一元二次方程
由题意⊿=9-8a ≤0,∴89a ≥
此时方程有两个相等实数根或无实根,符合题意 综合(1)、(2),a =0或8
9a ≥
.。