最新曲线积分与曲面积分习题及答案
第11章 曲线积分与曲面积分习题解答(开放课程)
d
L
02
2
1 a2
cos
d
2
cos
d
2 0 2
2
1 2
a
2
2
sin
2
0
2sin 2
2
2a 2
3.计算 x2 y 2 ds ,其中 L 为曲线 x acos t t sin t ,y asin t t cos t, L
解:
xydx
1
y2 y
y2
dy
2
1 y 4dy 21 y 5 1
4.
L
1
1
5 1 5
8. 计算 x3dx 3zy 2dy x 2 ydz ,其中 L 是从点 A3,2,1 到点 B0,0,0的直线 L
段 AB 。
解:直线段 AB 的方程为 x y z ,化成参数方程为 x 3t , y 2t , z t , 321
1x 0
1
x
2dx
2。
2.计算 x 2 y 2 ds ,其中 L 为圆周 x 2 y 2 ax 。 L
解:
L
的参数方程为
x
y
1 2 1 2
a cos a sin
1 2
a
, 0
2
则 x 2 y 2 1 a cos 1 a2 1 a sin 1 | a | 21 cos
0
ex
|0a
e
最新曲线与曲面积分习题参考答案
十 曲线积分与曲面积分习题(一) 对弧长的曲线积分1. 计算ds y x L⎰+)(22,其中L 为圆周t a y t a x sin ,cos == )20(π≤≤t .解32032222202222222cos sin )sin cos ()(a dt a dt t a t a t a t a ds y x Lπππ==++=+⎰⎰⎰.2. 计算ds x L ⎰,其中L 为由直线x y =及抛物线2x y =所围成的区域的整个边界.解 )12655(121412121-+=++=⎰⎰⎰dx x x dx x ds x L . 3.计算⎰Lyds ,其中L 是抛物线x y 42=上从)0,0(O 到)2,1(A 的一段弧.解⎰L y d s =dy y y dy y y ⎰⎰+=+202202421)2(1 )122(34)4(4412202-=++=⎰y d y . 4.计算⎰+Lds y x )(,其中L 为从点)0,0(O 到)1,1(A 的直线段.解⎰+L ds y x )(=23211)(10=++⎰x x . 5.计算⎰L xyzds ,其中L 是曲线2321,232,t z t y t x ===)10(≤≤t 的一段.解 ⎰L x y z d s =⎰⎰+=++13102223)1(232)2(121232dt t t t dt t t t t t=143216. 6.计算22x y Leds +⎰,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限所围成的扇形的整个边界. 解22x y Leds +⎰=⎰1L +⎰2L +⎰3L=dx e dt t a t a edx eax aa x⎰⎰⎰+++++024022222201)sin ()cos (11π=(2)14ae a π+-7.设在xoy 面内有一分布着质量的曲线L ,在点(),x y 处它的线密度为(),x y μ,试用对弧长的曲线积分分别表达(1)这条曲线弧对x 轴,y 轴的转动惯量,x y I I ; (2) 这条曲线弧的质心坐标,x y . 解 (1)⎰=Lx dS y I 2μ ⎰=Ly dS x I 2μ(2)⎰⎰=L LdSy x dS y x x x ),(),(μμ ⎰⎰=LL dSy x dS y x y y ),(),(μμ (二) 对坐标的曲线积分1.计算⎰+Lxdy ydx ,其中L 为圆周t R y t R x sin ,cos ==上对应t 从0到2π的一段弧. 解⎰+Lx d yy d x =0]cos cos )sin (sin [20=+-⎰dt t tR R t R t R π2.计算⎰+Lydx xdy ,其中L 分别为(1)沿抛物线22x y =从)0,0(O 到)2,1(B 的一段; (2)沿从)0,0(O 到)2,1(B 的直线段.; (3)沿封闭曲线OABO ,其中)0,1(A ,)2,1(B .解 (1)⎰=+=1022)24(dx x x x I .(2)2)22(1=+=⎰dx x x I .(3)⎰+Lydx xdy =⎰⎰⎰++BOABOA=210(22)0dy x x dx +++=⎰⎰.3.计算⎰-+++Ldz y x zdy xdx )1(,其中Γ是从点)1,1,1(到点)4,3,2(的一段直线.解 直线方程为312111-=-=-z y x ,其参数方程为13,12,1+=+=+=t z t y t x ,t 从0变到1.13])13(3)12(2)1[(1=+++++=⎰dt t t t I .4.计算2()Lxydx x y dy x dz +-+⎰,其中L 是螺旋线bt z t a y t a x ===,sin ,cos 从0=t 到π=t 上的一段.解 dt t b a t a t a t a t a t a t a I ⎰+-+-∙=π22]cos cos )sin cos ()sin (sin cos [)(222b a a +=π.5.设Γ为曲线23,,x t y t z t ===上相应于t 从0变到1的曲线弧.把对坐标的曲线积分Pdx Qdy Rdz Γ++⎰化成对弧长的曲线积分.解 由于)3,2,1()3,2,1(),,(2y x t t dt dz dt dy dt dx ==,故229411c o s y x ++=α,229412cos yx x ++=β,229413cos yx y ++=γ.(cos cos cos )Pdx Qdy Rdz P Q R dS αβγΓΓ++=++⎰⎰=dS yx yR xQ P ⎰Γ++++2294132.(三) 格林公式及应用1.计算⎰-L ydy x dx xy 22,其中L 为圆周222a y x =+,取逆时针方向.解⎰-L ydy xdx xy 22=0)22(=--⎰⎰Ddxdy xy xy2.计算⎰+--Ldy y x dx y x )sin ()(22,其中L 是在圆周22x x y -=上由点)0,0(到点)1,1( 的一段弧.解 y x P -=2,)sin (2y x Q +-= ()122017sin sin 246I x x x x dx =---=-⎰ 3. 计算(1)()xxL ye dx x e dy +++⎰,其中L 为椭圆22221x y a b+=的上半周由点(,0)A a 到(,0)B a -的弧段.解 xye P +=1,xe x Q +=⎰⎰-=+11L L L I =2aDadxdy dx ab a π--=-⎰⎰⎰4. 计算3222(2cos )(12sin 3)Lxyy x dx y x x y dy -+-+⎰,其中L 为在抛物线22x y π=上由点(0,0)到,12π⎛⎫⎪⎝⎭的一段弧. 解 322cos P xy y x =-,2212sin 3Q y x x y =-+ ⎰⎰⎰--=+211L L L L I =0)4321(00122-+--⎰⎰⎰y y dxdy D π=42π5. 计算⎰+-L y x xdy ydx )(222,其中L 为圆周2)1(22=+-y x ,L 的方向为逆时针方向. 解 )(222y x y P +=,)(222y x x Q +-=,当022≠+y x 时, yPy x y x x Q ∂∂=+-=∂∂)(22222 L 所围区域为D ,由于D ∈)0,0(,故不能直接用格林公式.选适当小的0>r ,作位于D 内的小圆周222:r y x l =+.记L 与l 所围区域为1D ,在1D 上应用格林公式,得⎰+-L y x xdyydx )(222-⎰+-l y x xdy ydx )(222=0其中l 取逆时针方向.所以⎰+-L y x xdyydx )(222=⎰+-l y x xdy ydx )(222=πθθπ=--⎰20222222cos sin r r r . 6. 计算星形线t a y t a x 33sin ,cos ==,)20(π≤≤t 所围成区域的面积.解 ⎰-=L ydx xdy A 21=2024224283)cos sin 3sin cos 3(a dt t t a t t a ππ=+⎰7. 证明曲线积分(2,1)423(1,0)(2)(4)xy y dx x xy dy -+-⎰在整个xoy 面内与路径无关,并计算积分值.解 (1)42y xy P -=,324xy x Q -=xQ y x y P ∂∂=-=∂∂342在整个xoy 面上成立 故曲线积分(2,1)423(1,0)(2)(4)xy y dx x xy dy -+-⎰在整个xoy 面内与路径无关.(2)⎰⎰+=21L L I =8.验证dy x xydx 22+在整个xoy 平面内是某一函数),(y x u 的全微分,并求这样的一个),(y x u .解 (1)验证略;(2)y x dy x y x u yABOA2020),(=+=+=⎰⎰⎰9.试用曲线积分求dy y x dx y x )cos ()sin 2(++的原函数. 解 y x P sin 2+=,y x Q cos =,xQ y y P ∂∂==∂∂cos 在整个xoy 面上成立 所以 ⎰++=),()0,0()cos ()sin 2(),(y x dy y x dx y x y x u=y x x ydy x xdx yxsin cos 22+=+⎰⎰+C.(四) 对面积的曲面积分1.计算⎰⎰∑+dS y x)(22,其中∑是锥面22y x z +=及平面1=z 所围成的区域的整个边界曲面. 解⎰⎰∑+dS y x)(22=⎰⎰⎰⎰∑∑+21=⎰⎰⎰⎰+++++xyxyD D y x dxdy y x dxdy z z y x )(1)(222222 ⎰⎰++=xyD dxdy y x )()12(22=π212+. 2. 计算⎰⎰∑++dS z y x )223(,其中∑为平面1432=++zy x 在第一卦限的部分.解 d x d y y x y x I xyD ⎰⎰-+-+--++=22)34()2(1))321(223(, =⎰⎰⎰⎰-+=+x D dy y dx dxdy y xy 23302)265(361)265(361 =614)42741549(361202=+-⎰dx x x . (x y x D xy 2330,20:-<<<<) 3.计算⎰⎰∑dS z 2,其中∑为球面2222a z y x =++.解⎰⎰∑dS z 2=⎰⎰⎰⎰--=++--xyxyD D y x dxdy y x a a dxdy z z y x a2222222221)(2=42022342a d a d a aπρρρθπ=-⎰⎰4.计算⎰⎰∑++dS z y x )(,∑是球面0,222≥=++z a z y x .有问题 解 ⎰⎰----++=xyD dxdy y x a y x a y x I 222222)(=⎰⎰⎰⎰--+--+xyxyD D dxdy y x a dxdy y x a y x )()(222222 =πρρρθπ2)(002220=-+⎰⎰ad a d 5.求抛物面壳221()(01)2z x y z =+≤≤的质量,此壳的面密度为z μ=. 解 ⎰⎰∑=zdS M =dxdy y x y x xyD 22221)(21+++⎰⎰=2012d d πρ⎰=21)15π.(五) 对坐标的曲面积分1.计算⎰⎰∑zdxdy y x22,其中∑是球面2222R z y x =++的下半部分的下侧.解⎰⎰∑zdxdy y x 22=dxdy y x R y x xyD ⎰⎰--2222=24220cos sin Rd πθρθρ⎰⎰=72105R π2.计算⎰⎰∑++yzdzdx xydydz xzdxdy ,其中∑是平面1,0,0,0=++===z y x z y x 所围成的空间区域的整个边界曲面的外侧. 解 4321∑+∑+∑+∑=∑0321===⎰⎰⎰⎰⎰⎰∑∑∑⎰⎰⎰⎰--=++∑xyD dxdy y x x yzdzdx xydydz xzdxdy )1(34=dy xy x x dx x⎰⎰---10102)(3=85. 3.计算⎰⎰∑++=dxdy z h dxdz y g dydz x f I )()()(,其中h g f ,,为已知连续函数,∑为平行六面体c z b y a x ≤≤≤≤≤≤Ω0,0,0:表面的外侧. 解 654321∑+∑+∑+∑+∑+∑=∑⎰⎰⎰⎰⎰⎰+-==∑yzyzD D dydz a f dydz f dydz x f I )()0()(1=bc f a f )]0()([-⎰⎰⎰⎰⎰⎰+-==∑yzyzD D dxdz b g dxdz g dxdz y g I )()0()(2=ac g b g )]0()([-ab h c h I )]0()([3-=所以321I I I I ++==ab h c h ac g b g bc f a f )]0()([)]0()([)]0()([-+-+-. 4.计算⎰⎰∑++dxdy z dzdx y dydz x 222,其中∑为半球面222y x a z --=的上侧.解⎰⎰⎰⎰⎰⎰∑∑∑+=21222dydz x dydz x dydz x=0)()(222222=-----⎰⎰⎰⎰dydz z y a dydz z y a yzyzD D 同理:02=⎰⎰∑dzdx y 4202222222)()(a d a d dxdy y x a dxdy z aD xyπρρρθπ=-=--=⎰⎰⎰⎰⎰⎰∑故⎰⎰∑++dxdy z dzdx y dydz x 222=42a π.5.计算⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是柱面122=+y x 被0=z 及3=z 所截得的在第一卦限内的部分的前侧. 解⎰⎰∑=0zdxdy⎰⎰⎰⎰⎰⎰-=-=∑1032211dz y dy dydz y xdydz yzDπθθθθππ43)2cos 1(23cos 32022=+==⎰⎰d d同理:π43=⎰⎰∑ydzdx 故⎰⎰∑++zdxdy ydzdx xdydz =π23. 6.设∑为平面x z a +=在柱面222x y a +=内那一部分的上侧,下面两个积分的解法是否正确?如果不对,给出正确解法. (1)3()()x z dS a dS a a ∑∑+==⨯∑=⎰⎰⎰⎰的面积; (2)3()()x z dxdy a dxdy a a ∑∑+==⨯∑=⎰⎰⎰⎰的面积. 解 (1)正确;(2)错误.正确解法是:()x z dxdy a dxdy ∑∑+=⎰⎰⎰⎰=3adxdy a xyD π=⎰⎰.(六) 高斯公式利用高斯公式计算: 1.计算⎰⎰∑++dxdy z dzdx y dydz x 333,其中∑为球面2222a z y x=++的内侧.解 2223()I x y z dv Ω=-++⎰⎰⎰2403sin Rd d r dr ππθϕϕ=-⎰⎰⎰5125R π=- 2.计算⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是曲面22y x z +=在第一卦限中10≤≤z 部分的下侧.解 补充曲面:)0,0,1(,1:221≥≥≤+=∑y x y x z ,取上侧; )1,10(,0:22≤≤≤≤=∑z x x y ,取左侧;)1,10(,0:23≤≤≤≤=∑z y y x ,取后侧.∑,1∑,2∑和3∑构成闭曲面,所围的空间闭区域记为Ω,由高斯公式,得⎰⎰∑++zdxdy ydzdx xdydz =⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑+∑+∑+∑---++321zdxdy ydzdx xdydz=003+++⎰⎰⎰⎰⎰⎰⎰ΩzxxyD D dzdx dxdy dv=ππρρθρπ=+⎰⎰⎰43110202dz d d .3.计算⎰⎰∑+++-dxdy xz y dzdx x dydz z x y )()(22,∑为正方体Ω的表面并取外侧,其中 {(,,)|0,0,0}x y z x a y a z a Ω=≤≤≤≤≤≤.解 ()I y x dv Ω=+⎰⎰⎰=400)(a dz y x dy dx aaa=+⎰⎰⎰ 4.计算⎰⎰∑++dS z y x )cos cos cos (222γβα,其中∑是由222z y x =+及)0(>=h h z 所围成的闭曲面的外侧,γβαcos ,cos ,cos 是此曲面的外法线的方向余弦. 解 2()2()2I x y z d x d y d z x y d x d y d z z d x d y d zΩΩΩ=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰=2220()xyxyh D D dxdy zdz h x y dxdy +=--⎰⎰⎰⎰=412h π.(七) 斯托克斯公式1.计算⎰-+-++Ldz z y dy z x dx z y )()()2(,其中L 为平面1=++z y x 与各坐标面的交线,取逆时针方向为正向. 解 由斯托克斯公式,得⎰-+-++Ldz z y dy z x dx z y )()()2(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =⎰⎰∑-+dxdy dzdx dydz 2=⎰⎰⎰⎰⎰⎰-+=xyzxyzD D D dxdy dzdx dydz 2=1. 2.计算⎰-+-+-Ldz x y dy z x dx y z )()()(,其中L 是从)0,0,(a 经)0,,0(a 和),0,0(a 回到)0,0,(a 的三角形.解 由斯托克斯公式,得⎰-+-+-Ldz x y dy z x dx y z )()()(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =2242222a dxdy dxdy dydz dxdy dydz xyxyyzD D D ==+=+⎰⎰⎰⎰⎰⎰⎰⎰∑. (八) 曲线积分与曲面积分自测题1.计算曲线积分 (1)ds y x L⎰+22,其中L 为圆周ax y x =+22;解 :cos (-)22L r a ππθθ=≤≤)d s d d a θθθ==cos r a θ==ds y x L⎰+22=222cos 2a ad a ππθθ-=⎰.(2)⎰Lzds ,其中Γ为曲线)0(,sin ,cos 0t t t z t t y t t x ≤≤===;解d s t d t=⎰L z d s=03220(2)3t t +-=⎰.(3)⎰+-Lxdy dx y a )2(,其中L 为摆线)cos 1(),sin (t a y t t a x -=-=上对应t 从0到π2的一段弧;解⎰+-Lx d yd x y a )2(=20{[(2(1cos ))](1cos )(sin )sin }a a t a t a t t a t dt π---+-⎰ =222sin 2at tdt a ππ=-⎰. (4)⎰Γ-+-dz x yzdy dx z y 2222)(,其中Γ是曲线32,,t z t y t x ===上由01=t 到12=t 的一段弧;解⎰Γ-+-d z x y z d y d x z y 2222)(=1462322[()1223]t t t t t t t dt -+-⎰=1641(3)35t t dt -=⎰(5)⎰-+-Lx x dyy e dx y y e )2cos ()2sin (,其中L为上半圆周0,)(222≥=+-y a y a x 沿逆时针方向;解 补充积分路径1:0L y =,x 从0到2a. sin 2,cos 2xxP e y y Q e yy =-=-11(s i n 2)(c o s 2)xx LL L L ey y dx e y dy +-+-=-⎰⎰⎰=220()(sin 020)0ax D Q Pdxdy e dx a x y π∂∂---+=∂∂⎰⎰⎰2.计算曲面积分 (1)⎰⎰∑++222z y x dS ,其中∑是介于平面0=z 及H z =之间的圆柱面222R y x =+; 解x =dS ==⎰⎰∑++222z y x dS=12∑∑+⎰⎰⎰⎰=22yzD R y-+222yzD dydz R y-=22221yzD R z R y=+-⎰⎰=2arctanH R π. (2) ⎰⎰∑-+-+-dxdy y x dzdx x z dydz z y )()()(222,其中∑为锥面)0(22h z y x z ≤≤+=的外侧;解 11I ∑+∑∑=-⎰⎰⎰⎰=()P Q R dxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰2()xyD x y dxdy --⎰⎰ =44044h h ππ-=-.(3)⎰⎰∑++zdxdy ydzdx xdydz ,其中∑为半球面22y x R z --=的上侧; 解11I ∑+∑∑=-⎰⎰⎰⎰=()P Q Rdxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰0xyD dxdy -⎰⎰ =3302dv R πΩ-=⎰⎰⎰.(4)⎰⎰∑++++3222)(z y x zdxdyydzdx xdydz ,其中∑为曲面)0(9)1(16)2(5122≥-+-=-z y x z 的上侧;解 0I = (利用高斯公式) (5) ⎰⎰∑xyzdxdy ,其中∑为球面)0,0(1222≥≥=++y x z y x 外侧.解⎰⎰∑xyzdxdy =12xyzdxdy xyzdxdy ∑∑+⎰⎰⎰⎰=122022cos sin 1xyD d r r r rdr πθθθ=-⎰⎰⎰⎰=215. 3.证明:22y x ydyxdx ++在整个xoy 平面除去y 的负半轴及原点的区域G 内是某个二元函数的全微分,并求出一个这样的二元函数.解 在整个xoy 平面除去y 的负半轴及原点的区域G 是单连通域.在G 内,222()Q xy Px x y y ∂-∂==∂+∂, 所以存在(,)u x y ,使22xdx ydydu x y+=+.取积分路径:(1,0)(,0)(,)x x y →→(,)22222(1,0)10(,)x y yx xdx ydy x y u x y dx dy x y x x y +==+++⎰⎰⎰=221ln()2x y +.4.计算⎰Γ-+-++dz x y dy z x dx z y )()()2(,其中Γ为平面1=++z y x 与各坐标面的交线,从z 轴正向看取逆时针方向.解 由斯托克斯公式,得⎰-+-++Ldz z y dy z x dx z y )()()2(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =⎰⎰∑-+dxdy dzdx dydz 2=⎰⎰⎰⎰⎰⎰-+=xyzxyzD D D dxdy dzdx dydz 2=1.5.求均匀曲面222y x a z --=的质心的坐标.解 设面密度为ρ,重心(,,)x y z 由对称性:0x y ==2200xyaD M dS πρρ∑===⎰⎰⎰⎰⎰=22a πρ 2222112xyD z zdS M a a x ρπ∑==--⎰⎰=2a 故重心的坐标为(0,0,)2a .。
(完整版)曲线积分与曲面积分期末复习题高等数学下册(上海电机学院)
第十章 曲线积分与曲面积分答案一、选择题 1.曲线积分()sin ()cos xL f x e ydx f x ydy ⎡⎤--⎣⎦⎰与路径无关,其中()f x 有一阶连续偏导数,且(0)0f =,则()f x = BA.1()2x x e e -- B. 1()2x x e e -- C. 1()2x x e e -+ D.0 2.闭曲线C 为1x y +=的正向,则Cydx xdyx y -+=+⎰Ñ C A.0 B.2 C.4 D.6 3.闭曲线C 为2241x y +=的正向,则224Cydx xdyx y -+=+⎰Ñ D A.2π- B. 2π C.0 D. π 4.∑为YOZ 平面上221y z +≤,则222()xy z ds ∑++=⎰⎰ DA.0B. πC.14π D. 12π 5.设222:C x y a +=,则22()Cx y ds +=⎰Ñ CA.22a πB. 2a πC. 32a πD. 34a π 6. 设∑为球面2221x y z ++=,则曲面积分∑[ B ]A.4πB.2πC.πD.12π7. 设L 是从O(0,0)到B(1,1)的直线段,则曲线积分⎰=Lyds [ C ]A. 21B. 21- C. 22 D. 22-8. 设I=⎰Lds y 其中L 是抛物线2x y =上点(0, 0)与点(1, 1)之间的一段弧,则I=[D ]A.655 B.1255 C.6155- D. 12155- 9. 如果简单闭曲线 l 所围区域的面积为 σ,那么 σ 是( D ) A.⎰-l ydy xdx 21; B. ⎰-l xdx ydy 21;C.⎰-l xdy ydx 21; D. ⎰-lydx xdy 21。
10.设2222:(0)S x y z R z ++=≥,1S 为S 在第一卦限中部分,则有 CA.14SS xds xds =⎰⎰⎰⎰ B.14SS yds yds =⎰⎰⎰⎰C.14SS zds zds =⎰⎰⎰⎰ D.14SS xyzds xyzds =⎰⎰⎰⎰二、填空题1. 设L 是以(0, 0), (1, 0), (1, 1), (0, 1)为顶点的正方形边界正向一周,则曲线积分⎰=+-L y dy x eydx )(2-22.S 为球面2222a z y x =++的外侧,则⎰⎰=-+-+-sdxdy y x dzdx x z dydz z y )()()(03.⎰=++-12222y x yx xdyydx =π2-4.曲线积分22()Cx y ds +⎰Ñ,其中C 是圆心在原点,半径为a 的圆周,则积分值为32a π 5.设∑为上半球面)0z z =≥,则曲面积分()222ds y x z ∑++⎰⎰= 32π6. 设曲线C 为圆周221x y +=,则曲线积分()223d Cxy x s +-⎰Ñ 2π .7. 设C 是以O(0,0),A(1,0),B(0,1)为顶点的三角形边界,则曲线积分⎰=+C ds )yx (8. 设∑为上半球面z=,则曲面积分∑的值为 83π。
高等数学曲线积分与曲面积分试卷及答案解析
一、选择题1. 设有曲线222:r y x C =+,0≥y ,其中0>r 为常数,则对弧长的曲线积分()⎰+Cds y x22的值为( )A. 2r π; B. 3r π; C. 4r π; D. 32r π.2. 简单闭曲线L 所围成的区域的面积为S ,L 取逆时针方向,则S 为 ( ) A.⎰-L ydy xdx 21; B. ⎰-L xdx ydy 21; C. ⎰-L xdy ydx 21; D. ⎰-Lydx xdy 21. 3. 设平面曲线C 是从点)1,1(到点)3,2(的直线段,则对坐标的曲线积分()⎰=-+Cdy x y xdx 2( )A. 4-;B. 4;C. 2;D. 6.4. 设有平面闭区域},|),{(a y x a x a y x D ≤≤≤≤-=,},0|),{(1a y x a x y x D ≤≤≤≤=,则 =+⎰⎰dxdy y x xy D)sin cos (( ) A. ydxdy x D sin cos 21⎰⎰; B. xydxdy D 12⎰⎰; C. ydxdy x D sin cos 41⎰⎰;D. 0.5. 设封闭曲线L 由直线0=x ,0=y ,2=x 4=y 所围成,取逆时针方向,则曲线积分()⎰=-+-Ldy xy y dx xy x 2)2(22 ( )A. 3816+-; B. 31616--; C. 32-; D. 16-. 6. 若L 为由点)0,0(O 到点(,0)B π的曲线弧sin ,y x =则L=ydx xdy +⎰( )A. 4ab π;B. 0;C. 3ab π; D. ab π.二、判断题1. 设开区域是D 是一个单连通域,函数),(y x P 及),(y x Q 在D 内具有一阶连续偏导数,则在D内xQ y P ∂∂=∂∂的充要条件是曲线积分⎰+L Qdy Pdx 在D 内与路径相关. ( )2. 在D 上,1),(=y x f ,S 为D 的面积,则S d y x f D=⎰⎰σ),(. ( )3. 格林公式是斯托克斯公式的推广.( )《 高等数学 》 曲线积分与曲面积分测试题14. 当∑是xOy 面内的一个闭区域时,曲面积分⎰⎰⎰⎰=∑xyD d y x f dS z y x f σ)0,,(),,(.( )5. 第一类曲线积分只与曲线的起点和终点有关.( )6. 曲线积分cydx xdy -⎰与路径无关。
曲线积分与曲面积分习题答案.pdf
解: Dxy {( x, y) | x y 1, x 0, y 0} , z 1 x y , dS 3dxdy
原式 = (2 x y 2(1 x y)) 3dxdy
D xy
13 3(
x
1 x2)dx
53
02
2
6
1
1x
3 dx (2 y) dy
1.利用斯托克斯公式计算下列曲线积分:
(1) x 2 y3dx dy zdz , 为 xOy 面内圆周 x2 y 2 a 2 逆时针方向;
解:取 为平面 z 0的下侧被 围成的部分, D 为 在 xOy 面上的投影
区域。 由 Stokes 公式,得
dydz dzdx dxdy
原式 =
x
y
z
x2 y3 1
x 2 ydx xy2 dy ,其中 L 为 x2 y 2 6x 的上半圆周从点 A(6,0)
L
到点 O (0,0) 及 x 2 y 2 3x 的上半圆周从点 O(0,0) 到点 B(3,0) 连成的弧
AOB;
uuur 解:连直线段 AB,使 L 与 BA 围成的区域为 D,由 Green 公式,得
第十一章 曲线积分与曲面积分
第三节 Green 公式及其应用
1.利用 Green 公式,计算下列曲线积分:
(1) xy 2dy x2 ydx ,其中 L 为正向圆周 x2 y 2 9 ;
L
解:由 Green 公式,得
?xy2dy x2 ydx
L
(x2
y2 )dxdy
2
2d
0
D
3 r 3dr
曲线曲面积分(单元练习题)答案
曲线积分与曲面积分单元练习题一、 填空题:1.设L 为122=+y x 上点)0,1(到)0,1(-的上半弧段,则2d Ls ⎰= π2;2.⎰+Cds y x z 22= 285π ,其中C 是曲线⎪⎩⎪⎨⎧===t z t y tx sin 2cos 2介于0=t 到π=t 一段; 3.L 为逆时针方向的圆周:4)3()2(22=++-y x ,则=-⎰Lxdy ydx π8-;4.设C 是由x轴、y轴与直线x+y=1围成的区域的正向边界,则⎰=-Cxdy ydx1-;5. 第一类曲面积分⎰⎰∑dS =的面积∑;6. 设曲面∑为:2222x y z a ++=,则222()xy z dS ∑++=⎰⎰44a π;7.设∑:2222a z y x =++.则dS z ⎰⎰∑2=434a π; 8.格林(Green)公式指出了下列两类积分:_平面上第二类曲线积分和二重积分之间关系。
高斯(Gauss)公式指出了下列两类积分:空间上的第二类曲面积分与三重积分__之间关系。
二、计算题: 1.计算⎰Lds y ,其中L 是抛物线2x y =上自点(0,0)到(1,1)的一段弧。
解12155|)41(121411023212-=+=+⎰x dx x x 。
2.计算⎰Lxyds ,其中L 为从(0,0)到(2,0)的上半圆弧:)0(222≥=+y x y x。
解2sin )cos 1(0=+=⎰⎰πtdt t xyds L3.已知平面曲线弧段L 是圆 4 22=+y x 上从点 ()0,2到()2,0的有向弧段,试计算⎰=Lxydx I .解 ()t d t t I cos 2sin 2cos 220⎰π=dt t t ⎰π-=202sin cos 838-=4.计算224(2)()LI x xy dx x y dy =+++⎰,其中L 为由点(0,0)O 到点(1,1)A 的曲线sin2y x π=.解法一:由于2242,P x xy Q x y =+=+,2P Q x y x∂∂==∂∂,所以积分与路径无关。
高数期末复习题 第十一章 曲线积分与曲面积分
第十一章 曲线积分与曲面积分试题一.填空题(规范分值3分)11.1.1.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧对x 轴的转动惯量I x =。
ds y x y L),(2μ⎰11.1.2.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧的质心坐标x =;y =。
x =⎰⎰LLds y x ds y x x ),(),(μμ;y =⎰⎰LLdsy x ds y x y ),(),(μμ 11.1.3.1在力),,(z y x F F =的作用下,物体沿曲线L 运动。
用曲线积分表示力对物体所做的功=W 。
d z y x L⋅⎰),,(11.1.4.2 有向曲线L 的方程为⎩⎨⎧≤≤==βαt t y y t x x )()(,其中函数)(),(t y t x 在[]βα,上一阶导数连续,且[][]0)()(22≠'+'t y t x ,又),(),,(y x Q y x P 在曲线L 上连续,则有:[]ds y x Q y x P dy y x Q dx y x P LL⎰⎰+=+βαcos ),(cos ),(),(),(,那么αcos =;βcos =。
αcos =[][]22)()()(t y t x t x '+''βcos =[][]22)()()(t y t x t y '+''11.1.5.1 设L 为xoy 平面内直线a x =上的一段,则曲线积分⎰Ldx y x P ),(=。
011.1.6.2 设L 为xoy 平面内,从点(c,a )到点(c,b )的一线段,则曲线积分⎰+Ldy y x Q dx y x P ),(),(可以化简成定积分:。
dy y Q ba),0(⎰11.1.7.2 第一类曲线积分ds y x L⎰+)(22的积分值为。
第九章_曲线积分与曲面积分习题解答(详细讲解)
曲线积分与曲面积分习题详解习题9-11 计算以下对弧长的曲线积分: 〔1〕d CI y s =⎰,其中C 是抛物线2y x =上点(0,0)O 到(1,1)A 之间的一段弧;解: 由于C 由方程2y x = 〔01x ≤≤〕给出,因此 1122220d 1()d 14d CI y s x x x x x x '==+=+⎰⎰⎰1232011(14)(551)1212x ⎡⎤=+=-⎢⎥⎣⎦. 〔2〕d CI x s =⎰,其中C 是圆221x y +=中(0,1)A 到11(,)22B -之间的一段劣弧;解:C AB =的参数方程为:cos ,sin x y θθ==()42ππθ-≤≤,于是2422cos (sin )cos I d ππθθθθ-=-+⎰241cos 12d ππθθ-==+⎰.〔3〕(1)d Cx y s ++⎰,其中C 是顶点为(0,0),(1,0)O A 及(0,1)B 的三角形的边界;解:L 是分段光滑的闭曲线,如图9-2所示,根据积分的可加性,那么有(1)Cx y ds ++⎰(1)OAx y ds =++⎰(1)ABx y ds +++⎰(1)BOx y ds +++⎰,由于OA :0y =,01x ≤≤,于是2222()()10dx dy ds dx dx dx dx dx=+=+=,故 103(1)(01)2x y ds x dx ++=++=⎰⎰OA, 而:AB 1y x =-,01x ≤≤,于是2222()()1(1)2dx dy ds dx dx dx dx dx=+=+-=. xyo(1,0)A (0,1)B xyoABC故1(1)[(1)ABx y ds x x ++=+-+=⎰⎰同理可知:BO 0x =〔01y ≤≤〕,ds dy ===,那么 103(1)[01]2BOx y ds y dy ++=++=⎰⎰. 综上所述33(1)322Cx y ds -+=+=+⎰. 〔4〕22Cx y ds +⎰,其中C 为圆周22x y x +=;解 直接化为定积分.1C 的参数方程为11cos 22x θ=+,1sin 2y θ=〔02θπ≤≤〕,且12ds d θθ=.于是22201cos222Cx y ds d πθθ+=⋅=⎰⎰.〔5〕2 ds x yz Γ⎰,其中Γ为折线段ABCD ,这里A ,B ,C ,D 的坐标依次为(0,0,0), (0,0,2),(1,0,2),(1,2,3);解 如下图,2222 ABBCCDx yzds x yzds x yzds x yzds Γ=++⎰⎰⎰⎰.线段AB 的参数方程为 0,0,2(01)x y z t t ===≤≤,那么ds =2dt =,故02200 12=⋅⋅⋅=⎰⎰dt t yzds x AB.线段BC 的参数方程为,0,2(01)x t y z t ===≤≤,那么,ds dt ==故122 0020BCx yzds t dt =⋅⋅⋅=⎰⎰,线段CD 的参数方程为1,2,2x y t z t===+)10(≤≤t ,那么ds ==,故1122012(2))CDx yzds t t t t dt =⋅⋅+=+=⎰⎰ 2 (2所以2222 ABBCCDx yzds x yzds x yzds x yzds Γ=++=⎰⎰⎰⎰〔6〕2ds y Γ⎰,其中Γ为空间曲线2222,(0),x y z a a x z a ⎧++=>⎨+=⎩. 解:Γ在,x y 平面的投影为:2222()x y a x a ++-=,即22220x y ax +-=,从而2221222a x y a ⎛⎫-+= ⎪⎝⎭.利用椭圆的参数方程得Γ的参数方程为11cos ,22:, 02.11cos ,22x a a y z a x a a θθθπθ⎧=+⎪⎪⎪Γ=≤≤⎨⎪⎪=-=+⎪⎩由于d s θθθ==. 那么332π2π2222 001ds sin d sin d 222a y a θθθθΓ==⎰⎰2 设一段曲线ln (0)y x a x b =<≤≤上任一点处的线密度的大小等于该点横坐标的平方,求其质量.解依题意曲线的线密度为2x ρ=,故所求质量为2CM x ds =⎰,其中:ln (0)C y x a x b =<≤≤.那么C 的参数方程为ln x xy x =⎧⎨=⎩(0)a x b <≤≤, 故ds ==,所以3221[(1)]3b a aM x ==+⎰3322221[(1)(1)]3b a =+-+.3 求八分之一球面2221(0,0,0)x y z x y z ++=≥≥≥的边界曲线的重心,设曲线的密度1ρ=。
曲线与曲面积分自测题及答案
《曲线积分与曲面积分》测试题一、选择题(共15分,每小题3分)1.设L 为抛物线21y x =-上介于0x =与1x =之间的一段弧,则L xds =⎰( )( A)33112-;(B) 55112- ; (C) 3316- ; (D)5516-2.均匀曲面222z a x y =--的形心坐标为( )( A)1(0,0,)2a ;(B) 1(0,0,)3a ; (C) 1(0,0,)4a ; (D)10,0,5a ⎛⎫ ⎪⎝⎭3.星形线:33cos ,sin (0,02)x a t y a t a t π==>≤≤所围平面图形的面积为( )( A)235a π;(B) 253a π ; (C) 238a π ; (D)283a π 4.设[()]sin ()cos x Lf x e ydx f x ydy --⎰与路径无关,且()f x 有一阶连续导数,(0)0f =,则()f x =( )( A)2x x e e -- ; (B) 2x x e e -- ;(C) 12x x e e -+- ; (D)12x xe e -+- . 5. 设∑为球面222x y z R ++=的内侧,则曲面积分 333x dydz y dzdx z dxdy ∑++=⎰⎰( )( A)54R π-;(B) 54R π ; (C) 5125R π ; (D)5125R π- 二、填空题(共15分,每小题3分)1.设L 为椭圆22143x y +=,其周长为a ,则22(234)L xy x y ds ++=⎰ .2. 设Γ为曲线0cos sin (0)x t t y t t t t z t =⎧⎪=≤≤⎨⎪=⎩,则zds Γ=⎰ .3.设L 为一条不过原点的光滑闭曲线,且原点位于L 内部,其走向为逆时针方向,则曲线积分222L xdy ydx x y -=+⎰__________________. 4.设∑为平面1x y z ++=位于球面2221x y z ++=内的上侧,则曲面积分()()()x y dydz y z dzdx z x dxdy ∑-+-+-=⎰⎰ .5.全微分方程2201xdx ydy xdy ydx x y +++=++的解为 .三、计算积分222dS x y z ∑++⎰⎰,其中∑为界于0z =与(0)z H H =>之间的柱面:222x y R +=。
曲线积分与 曲面积分测试题
曲线积分与曲面积分测试题1. 计算曲线积分 $\int_C e^{x^2} dx + 2xy dy$,其中 $C$ 为从点 $(0,0)$ 到点 $(2,1)$ 的直线段。
答案:$\frac{1}{2}(e^4-1)$2. 计算曲面积分 $\iint_S (x+y+z)\ dS$,其中 $S$ 是球面$x^2+y^2+z^2=9$ 的上半部分。
答案:$\frac{27\pi}{2}$3. 计算曲线积分 $\int_C xy\ dx + x^2y^2\ dy$,其中 $C$ 为以原点为中心,半径为 $3$ 的圆周。
答案:$0$4. 计算曲面积分 $\iint_S x^2\ dS$,其中 $S$ 是球面$x^2+y^2+z^2=4$ 的下半部分。
答案:$\frac{4\pi}{3}$5. 计算曲线积分 $\int_C (y+z)\ dx + (z+x)\ dy + (x+y)\ dz$,其中 $C$ 为从点 $(0,0,0)$ 到点 $(1,2,3)$ 的直线段。
答案:$8$6. 计算曲面积分 $\iint_S yz\ dS$,其中 $S$ 是球面$x^2+y^2+z^2=1$ 的外侧。
答案:$0$7. 计算曲线积分 $\int_C x\ dy - y\ dx$,其中 $C$ 为以原点为中心,半径为 $2$ 的圆周。
答案:$-4\pi$8. 计算曲面积分 $\iint_S z\ dS$,其中 $S$ 是柱面$x^2+y^2=1$ 的侧面,$z$ 在 $[0,2]$ 之间。
答案:$2\pi$9. 计算曲面积分 $\iint_S xy\ dS$,其中 $S$ 是抛物面$z=x^2+y^2$ 在 $z\leq 1$ 的部分。
答案:$\frac{8}{3}$10. 计算曲线积分 $\int_C \frac{x\ dy - y\ dx}{x^2+y^2}$,其中$C$ 为以原点为中心,半径为 $2$ 的逆时针方向圆周。
高等数学第十章《曲线积分与曲面积分》
第十章 曲线积分与曲面积分一.曲线积分的计算 (1)基本计算1.第一类:对弧长线积分的计算(,)Lf x y ds ⎰关键是用曲线L:(),(),x t y t ϕψ=⎧⎨=⎩()t αβ≤≤做变量替换(被积函数,积分变元,积分范围)(,)[(),(,()Lf x y ds f t t βαϕψαβ=<⎰⎰例 L 为圆周221,x y +=则22xy Le ds +=⎰2e π 参数方程,曲线代入解 cos :(02)sin x L y θθπθ=⎧≤≤⎨=⎩ds d θθ==22x y Leds +=⎰202ed e πθπ=⎰例 计算2⎰L x ds ,其中2222:(0)0⎧++=>⎨-=⎩x y z a L a x y . (8分)解 由于 22222222::00⎧⎧++=+=⇒⎨⎨-=-=⎩⎩x y z a x z a L L x y x y 所以L 的参数方程可表示为:(02)sin θθπθ⎧=⎪⎪⎪=≤≤⎨⎪⎪=⎪⎩x L y t z a (3分)θθ==ds ad (2分) 故23222cos 22ππθθ==⎰⎰La a x ds ad(3分) 【例10.22】求⎰,式中L 为圆周22(0)x y ax a +=>解 L 的极坐标方程为:,(),cos 22L ds ad r a θθππθθθθ=⎧-≤≤==⎨=⎩则222cos 2a ad a ππθθ-=⋅=⎰⎰第二类:对坐标的线积分的计算 关键是用曲线L:(),(),x t y t ϕψ=⎧⎨=⎩(:)t αβ→做变量替换(被积函数,积分变元,积分范围)''(,)(,){[(),()]()[(),()]()}LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ+=+⎰⎰例 设L 为抛物线2y x =从点()0,0到()2,4一段弧,则()22Lx y dx -=⎰5615-注意微元,及参数方程的形式【例10.17】 求2L ydx xdy x +⎰,其中L 是曲线ln y x =上从点(1,0)到点(,1)e 的一段弧. 解 由ln y x =得1,ydx dy x e x==,故原式=1121002()|y y ydy e dy y e e +=+=⎰⎰⑵ 基本技巧① 利用对称性简化计算;对弧长的线积分,对称性同二重积分 例 计算3222(),Lx y ds L x y R 其中:++=⎰解:33()LLLx y ds xds y ds =+=0+⎰⎰⎰ 第一个L 关于y 对称,第二个L 关于x 对称【例10.15】 求yL xe ds ⎰,其中L 是由cos (0)sin x a ta y a t =⎧>⎨=⎩所表示的曲线上相应于233t ππ≤≤的一段弧.解 (法一)ds adt ==,故 原式=22sin sin 3333cos |0a ta ta t e adt aeππππ⋅⋅==⎰.(法二)容易看出积分弧段关于y 轴对称,而被积函数是关于变量x 的奇函数,故0y Lxe ds =⎰【例10.18】 求2()Lx y ds +⎰,其中L 为圆周222x y a +=.解 由对称性得0Lxyds =⎰,故22222()(2)()2LLLLx y ds x xy y ds x y ds xyds +=++=++⎰⎰⎰⎰2223022LLa ds a ds a a a ππ=+==⋅=⎰⎰对坐标的线积分,对称性为,当平面曲线L 是分段光滑的,关于x 对称,L 在上半平面与下半平面部分的走向相反时,若P 对y 为偶函数,则,0LPdx =⎰奇函数,则12LL Pdx Pdx =⎰⎰。
第十一章 曲线积分与曲面积分(题库)答案
解: P x, y y e x , Q x, y 3 x e y ,
P Q 1, 3 y x
dxdy 2dxdy 2 ab y e dx 3x e dy = x y
x y C
Q
P
D
D
29.(11-3)计算曲线积分
2 xy 2 y dx x
L
2
4 x dy ,其中 L 取正向的圆周 x 2 y 2 9 .
解:设 P 2 xy 2 y, Q
x2 4x ,
Q P 2x 4 2 x 2, x y
2
B. 6S
C. 12S
D.
24S
L
x 上自点 A 1,1 到点 B 1, 1 之间的一段弧,则 I yds (
C. 1
2 2
D. 1
设 C 为沿 x y R 逆时针方向一周的闭合曲线,则曲线积分
2 2 I x ydx xy dy 应用格林公式计算得( A ) C
2
0 x 2 ,计算
2
L
x 1 x ds .
解:直接代公式化第一类平面曲线积分为定积分得
L
xds
2
0
x 1 y2 dx
0
x 1 4 x 2 dx
1 1 2 2 2 1 4 x d 1 4 x 2 8 0 3 1 2 2 2 1 4 x 8 3 2 0
L
x 2 ds
2 . 3
2.
7. (11-1)设 L 为连接 (1,0) 及 (0,1) 两点的直线段,则 8. (11-1)计算曲线积分
曲线积分与曲面积 答案
曲线积分与曲面积分 例1计算曲线积分⎰ABxydl ,弧AB 为圆周222R y x =+在第二象限的部分。
解:法1取x 为积分变量,积分路径弧AB 是圆周22x R y -=,)0(≤≤-x R ,于是得dx xR R dx y dl 2221-='+=,故232222R xdx R dx xR Rx R x xydl R R AB -==-⋅-=⎰⎰⎰--。
法2 取y 为积分变量,积分路径弧AB 是圆周22y R x --=, )0(R y ≤≤,于是dy yR R dy x dl 2221-='+=,故2)(32222R ydy R dy yR R y R y xydl RRAB-=-=-⋅--=⎰⎰⎰。
法3 将弧AB 化为参数方程 )2(sin cos πθπθθ≤≤ ⎩⎨⎧==R y R x ,θRd dy dx dl =+=22)()(,⎰⎰⎰⎰-===ππππππθθθθθθθθ23232cos cos sin cos sin cos d R d R Rd R R xydl AB2]2cos [3223R R -=-=ππθ。
例2计算⎰Ldl xy ||,L 是圆周222R y x=+的闭路。
解:由对称性,设1L 是第一象限的部分,则32032sin cos 44||1R tdt t R xydl dl xy L L===⎰⎰⎰π例3设L :cos ,=sin ,02=≤≤x a t y a t t π,则第一型曲线积分2L=2⎰ds aπ例4计算⎰++ABCDA y x dydx ||||,ABCDA 是以A(1,0),B(0,1),C(-1,0),D(0,-1)为顶点的正方形。
(1|||:|=+y x ABCDA )解:在弧AB 上,y=1—x,x 从1变到0;在弧BC 上,y=1+x,x 从0变到 —1;在弧CD 上,y=—1—x,x 从—1变到0;在弧DA 上,y=—1+x,x 从0变到1; 于是22)]1([2)]1([)1(2)1(11010011001=+=+--++---+--+++-+-+-=+++=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰---dx dx x x dx x x dx dx x x dxx x dx dx DA CD BC AB ABCDA例5计算⎰+--+Lyx dyy x dx y x 22)()(,其中L 是原点为中心的单位圆,沿逆时针方向。
(完整版)第十章曲线积分与曲面积分练习题
第十章 曲线积分与曲面积分§10.1 对弧长曲线的积分一、判断题1.若f(x)在(-+∞∞,)内连续,则⎰badx x f )(也是对弧长的曲线积分。
( )2.设曲线L 的方程为x=)(y ϕ在[βα,]上连续可导则⎰⎰'+=Ldyy y y f ds y x f βαϕϕ2)]([1)),((),(( )二、填空题1.将⎰+Lds y x)(22,其中L 为曲线x=a(cost+tsint),y=a(sint-tcost)()20π≤≤t 化为定积分的结果是 。
2.⎰+L ds y x )(= ,其中L 为连接(1,0)和(0,1)两点的直线段。
三、选择题1.⎰+Lds y x )(22=( ),其中L 为圆周122=+y x (A )⎰02πθd (B )⎰πθ2d (C )⎰πθ22d r (D )⎰πθ22d2.⎰Lxds =( ),L 为抛物线2x y =上10≤≤x 的弧段。
(A ))155(121- (B ))155(- (C )121 (D ))155(81-四、计算⎰+Cds y x )(,其中C 为连接点(0,0)、(1,0)、(0,1)的闭折线。
五、计算⎰++L ds z y x )2(22,其中L 为⎩⎨⎧=++=++02222z y x R z y x六、计算⎰+Ln ds y x)(22,L 为上半圆周:)(222N n R y x ∈=+七、计算⎰+Ly x ds e22,其中L 为圆周222a y x =+,直线y=x 和y=0在第一象限内围成扇形的边界。
八、求半径为a ,中心角为ϕ2的均匀圆弧(ρ=1)的重心。
§10.2 对坐标的曲线积分一、判断题1.定积分也是对坐标的曲线积分。
( ) 2.022=+-⎰L y x ydx xdy ,其中L 为圆周122=+y x 按逆时针方向转一周。
( )二、填空题1.ydz x dy y dx x 2233++⎰Γ= ,其中Γ是从点A (1,2,3)到点B (0,0,0)的直线段AB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 曲线积分与曲面积分(A)1.计算()⎰+Ldx y x ,其中L 为连接()0,1及()1,0两点的连直线段。
2.计算⎰+Lds y x 22,其中L 为圆周ax y x =+22。
3.计算()⎰+Lds y x 22,其中L 为曲线()t t t a x sin cos +=,()t t t a y cos sin -=,()π20≤≤t 。
4.计算⎰+Ly x ds e22,其中L 为圆周222a y x =+,直线x y =及x 轴在第一角限内所围成的扇形的整个边界。
5.计算⎰⎪⎪⎭⎫ ⎝⎛+L ds y x 3434,其中L 为内摆线t a x 3cos =,t a y 3sin =⎪⎭⎫ ⎝⎛≤≤20πt 在第一象限内的一段弧。
6.计算⎰+Lds yx z 222,其中L 为螺线t a x cos =,t a y sin =,at z =()π20≤≤t 。
7.计算⎰Lxydx ,其中L 为抛物线x y =2上从点()1,1-A 到点()1,1B 的一段弧。
8.计算⎰-+Lydz x dy zy dx x 2233,其中L 是从点()1,2,3A 到点()0,0,0B 的直线段AB 。
9.计算()⎰-+++Ldz y x ydy xdx 1,其中L 是从点()1,1,1到点()4,3,2的一段直线。
10.计算()()⎰---Ldy y a dx y a 2,其中L 为摆线()t t a x sin -=,()t a y cos 1-=的一拱(对应于由t 从0变到π2的一段弧):11.计算()()⎰-++Ldy x y dx y x ,其中L 是:1)抛物线x y =2上从点()1,1到点()2,4的一段弧;2)曲线122++=t t x ,12+=t y 从点()1,1到()2,4的一段弧。
12.把对坐标的曲线积分()()⎰+Ldy y x Q dx y x P ,,化成对弧和的曲经积分,其中L 为:1)在xoy 平面内沿直线从点()0,0到()4,3; 2)沿抛物线2x y =从点()0,0到点()2,4; 3)沿上半圆周x y x 22=+2从点()0,0到点()1,1。
13.计算()()⎰-+-Lx xdy mx y e dx my y ecos sin 其中L 为()t t a x sin -=,()t a y cos 1-=,π≤≤t 0,且t 从大的方向为积分路径的方向。
14.确定λ的值,使曲线积分()()⎰-++-βαλλdy y y x dx xy x4214564与积分路径无关,并求()0,0A ,()2,1B 时的积分值。
15.计算积分()()⎰++-Ldy y x dx x xy 222,其中L 是由抛物线2x y =和xy =2所围成区域的正向边界曲线,并验证格林公式的正确性。
16.利用曲线积分求星形线t a x 3cos =,t a y 3sin =所围成的图形的面积。
17.证明曲线积分()()()()⎰-+-4,32,12232366dx xy y x dx y xy在整个xoy 平面内与路径无关,并计算积分值。
18.利用格林公式计算曲线积分()()⎰-+-+Lx x dy ye x x dx e y x xy x xy2sin sin 2cos 222,其中L 为正向星形线323232ay x =+()0>a 。
19.利用格林公式,计算曲线积分()()⎰-+++-Ldy x y dx y x 63542,其中L 为三顶点分别为()0,0、()0,3和()2,3的三角形正向边界。
20.验证下列()()dy y x Q dx y x P ,,+在整个xoy 平面内是某函数()y x u ,的全微分,并求这样的一个()y x u ,,()()dy ye y x x dx xy y x y 128832322++++。
21.计算曲面积分()⎰⎰∑+dx y x 22,其中∑为抛物面()222y x z +-=在xoy 平面上方的部分。
22.计算面面积分()⎰⎰∑+--ds z x x xy 222,其中∑为平面和三坐标闰面所围立体的整个表面。
24.求抛物面壳()2221y x z +=()10≤≤z 的质量,壳的度为z t =。
25.求平面x z =介于平面1=+y x ,0=y 和0=x 之间部分的重心坐标。
26.当∑为xoy 平面内的一个闭区域时,曲面积分()⎰⎰∑dxdy z y x R ,,与二重积分有什么关系?27.计算曲面积分⎰⎰∑++ydzdx xdydz zdxdy 其中∑为柱面122=+y x 被平面0=z 及3=z 所截的在第一卦限部分的前侧。
28.计算⎰⎰∑++dxdy z dxdz y dydz x 222式中∑为球壳()()22b y a x -+-()22R c z =-+的外表面。
29.反对坐标的曲面积分化成对面积的曲面积()()()⎰⎰∑++dxdy z y x R dzdx z y x Q dydz z y x P ,,,,,,化成对面积的曲面积分,其中∑是平面63223=++z y x 在第一卦限的部分的上侧。
30.利用高斯公式计算曲面积:1)⎰⎰∑++dxdy z dzdx y dydz x 222,其中∑为平面0=x ,0=y ,0=z ,a x =,a y =,a z =所围成的立体的表面和外侧。
2)()()⎰⎰∑-+-xdydz z y dxdy y x ,其中∑为柱面122=+y x 与平面0=z ,3=z 所围立体的外表面。
31.计算向理αρ穿过曲面∑流向指定侧的通量:1)()k xz j y x i z x ρρρρ222-+-=α,∑为立体a x ≤≤0,a y ≤≤0,a z ≤≤0,流向外侧;2)()()()k y x z j x z y i z y x ρρρρ-+-++-++-=α,∑为椭球面1222222=++c z b y a x ,流向外侧。
32.求向理场()()k xz j xy i a xyρρρρ2cos cos ++=α的散度。
33.利用斯托克斯公式计算曲经积分⎰Γ++xdz zdy ydx 其中Γ为圆周,2222a z y x =++,0=++z y x ,若从x 轴正向看去,这圆周取逆时针方向。
34.证明⎰Γ=++02xzdz xydy dx y ,其中Γ为圆柱面y y x 222=+与z y =的交线。
35.求向量场()()()k xy j yz x i y x a ρρρρ233-++-=,其中Γ为圆周222y x z +-=,0=z 。
36.求向量场()()j y x z i y z ρρρcos sin --+=α的旋度。
37.计算()()()⎰Γ-+-+-dz y x dy x z dx z y222222,其中Γ为用平面23=++z y x 切立方体a x ≤≤0,a y ≤≤0,a x ≤≤0的表面所得切痕,若从ox 轴的下向看去与逆时针方向。
(B)1.计算⎰Lyds ,其中L 为抛物线px y 22=由()0,0到()00,y x 的一段。
2.计算⎰Lds y 2,其中L 为摆线()t t a x sin -=,()t r a y cos -=一拱()π20≤≤t 。
3.求半径为a ,中心角为24的均匀圆弧(线心度1=ρ)的重心。
4.计算⎰Lzds ,其中L 为螺线t t x cos =,t t y sin =,t z =()π20≤≤t 。
5.计算⎰++Lds zy x 2221,其中L 为空间曲线t x t cos ρ=,t y tsin ρ=,t z ρ=上相应于t 从0变到2的这段弧。
6.设螺旋线弹簧一圈的方程为t a x cos =,t a y sin =,kt z =()π20≤≤t ,它的线心度为()222,,z y x yz y x ++=ρ,求:1)它关于z 轴的转动惯量z I ; 2)它的垂心。
7.设L 为曲线t x =,2t y =,3t z =上相应于t 从0变到1的曲线弧,把对坐标的曲线积分⎰++LRdz Qdy Pdx 化成对弧长的曲线积分。
8.计算()()⎰+--+Ly x dy y x dx y x 22,其中L 为圆周222a y x =+(按逆时针方向绕行)。
9.计算⎰++Lxdz zdy ydx ,其中L 为曲线t a x cos =,t a y sin =,bt z =,从0=t 到π2=t 的一段。
10.计算()()⎰-++Ldy y x dx y x 2222,其中L 为||1x y -=()20≤≤x 方向为x增大的方向。
11.验证曲线积分()()()()⎰-++-1,20,1222dy y x e x dx y xey y与路径无关并计算积分值。
12.证明当路径不过原点时,曲线积分()()⎰++2,21,122yx ydyxdx 与路径无并,并计算积分值。
13.利用曲线积分求椭圆12222=+by a x 的面积。
14.利用格林公式计算曲线积分()()⎰+--Ldy y x dx y x 22sin ,其中L 是圆周22x x y -=上由点()0,0到点()1,1的一段弧。
15.利用曲线积分,求笛卡尔叶形线axy y x 333=+()0>a 的面积。
16.计算曲线积分()⎰+-L y x xdy ydx 222,其中L 圆周()2122=+-y x ,L 的方向为逆时针方向。
17.计算曲面积分⎰⎰∑zds 3,其中∑为抛物面()222y x z +-=在xoy 平面上的部分。
18.计算()⎰⎰∑++ds zx yz xy ,其中∑是锥面22y x z +=被柱面axy x 222=+所截得的有限部分。
19.求面心度为0ρ的均匀半球壳2222a z y x =++()0≥z 对于z 轴的转动惯量。
20.求均匀的曲面22y x z +=被曲面ax y x =+22所割下部分的重心的坐标。
21.计算曲面积分()⎰⎰=++=2222,,a z y x ds z y x f I ,其中()⎪⎩⎪⎨⎧+<+≥+=222222,0,,,yx z yx z y x z y x f 。
22.计算⎰⎰∑++yzdzdx xydydz xzdxdy ,其中∑是平面0=x ,0=y ,0=z ,1=++z y x 所围成的空间区域的整个边界边界曲面的外例。
23.计算dxdy z dxdz y dydz x 111++⎰⎰∑,其中∑为椭球面1222222=++c z b y a x 。
24.计算()()()⎰⎰∑-+-+-dxdyy x dxdy x z dydz z y ,式中∑为圆锥面2=+z y x 22()h z ≤≤0的外表面。