2018年高考数学一轮复习感知高考第116—120题(含答案解析)

合集下载

2018全国卷理科数学含答案(K12教育文档)

2018全国卷理科数学含答案(K12教育文档)

2018全国卷理科数学含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018全国卷理科数学含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018全国卷理科数学含答案(word版可编辑修改)的全部内容。

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z =A .0B .12C .1 D2.已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC -B .1344AB AC -C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A.172B.52C.3 D.28.设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为23的直线与C交于M,N两点,则FM FN⋅=A.5 B.6 C.7 D.89.已知函数e0()ln0x xf xx x⎧≤=⎨>⎩,,,,()()g x f x x a=++.若g(x)存在2个零点,则a的取值范围是A.[–1,0)B.[0,+∞) C.[–1,+∞)D.[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.14.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)16.已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.三、解答题:共70分。

2018年高考全国Ⅰ卷理数试题(含详细解析)

2018年高考全国Ⅰ卷理数试题(含详细解析)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。

2. 选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3. 请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4•作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5•保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题11 —iz = --------- :+ 2$设1 + £”则二=( )1B. .C.lD. ■2已知集合■,「■"二,则=( )A. {進| _1 吒疋 v:-}B. 'I L _ _ -C{r\r < -1} U {:f;|;r > 2}D.HI H< 1}U {X |X > 2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

为更好地了解该地区农村的经济收入变化情况,统计了该地区系农村建设前后农村的经济收入构成比例。

得到如下饼图:A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C. 新农村建设后,养殖收入增加一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4记.为等差数列•;的前口项和,若几「一 W—,则=()A.-12B.-10C.10D.12 5设函数门工一「亠鳥一门广一出,若代茁'为奇函数,则曲线紇=/亡〕在点 〔%贬:处的切线方程为()6在一.丨「’中,…」为 边上的中线,二为的中点,则丄A. -B.-C. -D.-7某圆柱的高为2,底面周长为16,其三视图如下图。

2018年高考全国卷一理科数学(含答案)

2018年高考全国卷一理科数学(含答案)

号位封座密号场不考订装号证考准只卷名姓此文档绝密★启用前2018年一般高等学校招生全国一致考试( 新课标Ⅰ卷 )理科数学注意事项:1.答题前,先将自己的姓名、准考据号填写在试题卷和答题卡上,并将准考据号条形码粘贴在答题卡上的指定地点。

2.选择题的作答:每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、底稿纸和答题卡上的非答题地区均无效。

3.非选择题的作答:用署名笔挺接答在答题卡上对应的答题地区内。

写在试题卷、底稿纸和答题卡上的非答题地区均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(此题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.)1.设,则()A.0B.C.D.2.已知会合,则()A.B.C.D.3.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比例.获得以下饼图:级班文档则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为则在此圆柱侧面上,从,圆柱表面上的点在左视图上的对应点为到的路径中,最短路径的长度为(),文档A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5B.6C.7D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3C.D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所文档得截面面积的最大值为()A.B.C.D.二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.若知足拘束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从 2 位女生, 4 位男生中选 3 人参加科技竞赛,且起码有共有 ________种.(用数字填写答案)1 位女生当选,则不一样的选法16.已知函数,则的最小值是________.三、解答题(共 70 分。

2018高考全国一卷理科数学答案解析与解析

2018高考全国一卷理科数学答案解析与解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z|=A 、0B 、C 、1D 、 【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1 【考点定位】复数2、已知集合A={x |x 2—x-2〉0},则A =A 、{x|—1<x<2}B 、{x|—1x 2}C 、{x|x<-1}∪{x|x 〉2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2—x —2≤0},所以{x|—1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。

B 、新农村建设后,其他收入增加了一倍以上。

C 、新农村建设后,养殖收入增加了一倍.D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%〉60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、—12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d)(a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0;d=—3 ∴a5=2+(5—1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=—2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(—x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、——B、—-C、—+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。

2018全国高考理科数学[全国一卷]试题和答案解析

2018全国高考理科数学[全国一卷]试题和答案解析

2018年全国普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。

) 1、设z=,则∣z ∣=( )A 。

0B 。

C.1 D.2、已知集合A={x |x 2-x —2〉0},则A =( )A 、{x |—1<x<2}B 、{x|-1≤x ≤2}C 、{x|x 〈—1}∪{x|x>2}D 、{x|x ≤—1}∪{x |x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( )A.新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3 = S 2+ S 4,a 1 =2,则a 5 =( ) A 、-12 B 、—10 C 、10 D 、125、设函数f (x )=x ³+(a —1)x ²+ax .若f (x )为奇函数,则曲线y= f (x)在点(0,0)处的切线方程为( )A.y= —2xB 。

y= -xC 。

y=2xD 。

y=x6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=( )建设前经济收入构成比例建设后经济收入构成比例A。

— B. - C. + D。

+7、某圆柱的高为2,底面周长为16,其三视图如右图。

圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )A. 2B. 2C。

3D。

28。

设抛物线C:y²=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则·=( ) A。

(完整版)2018年高考全国一卷理科数学答案及解析

(完整版)2018年高考全国一卷理科数学答案及解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。

1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。

B 、新农村建设后,其他收入增加了一倍以上。

C 、新农村建设后,养殖收入增加了一倍。

D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。

2018高考浙江数学带答案(最新整理)

2018高考浙江数学带答案(最新整理)

为 θ3,则
A.θ1≤θ2≤θ3
B.θ3≤θ2≤θ1
C.θ1≤θ3≤θ2
D.θ2≤θ3≤θ1
π 9.已知 a,b,e 是平面向量,e 是单位向量.若非零向量 a 与 e 的夹角为 ,向量 b 满足
3
b2−4e·b+3=0,则|a−b|的最小值是
A. 3 −1
B. 3 +1
C.2
D.2− 3
10.已知 a1, a2 , a3 , a4 成等比数列,且 a1 a2 a3 a4 ln(a1 a2 a3 ) .若 a1 1 ,则
2018 年普通高等学校招生全国统一考试(浙江卷) 数 学·参考答案
一、选择题:本题考查基本知识和基本运算。每小题 4 分,满分 40 分。 1.C 2.B 3.C 4.B 5.D 6.A 7.D 8.D 9.A 10.B 二、填空题:本题考查基本知识和基本运算。多空题每题 6 分,单空题每题 4 分,满分 36 分。
值钱三;鸡雏三,值钱一。凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,
鸡雏个数分别为
x

y

z
,则
x y
5x
3y
z 100, 1 z 100,
3

z
81
时,
x
___________,
y
___________.
x y 0, 12. 若 x, y 满 足 约 束 条 件 2x y 6, 则 z x 3y 的 最 小 值 是 ___________, 最 大 值 是
由题意知各点坐标如下:
A(0, 3, 0), B(1, 0, 0), A1(0, 3, 4), B1(1, 0, 2),C1(0, 3,1),

2018年高考数学一轮复习感知高考刺金四百题:第121—125题(含答案解析)

2018年高考数学一轮复习感知高考刺金四百题:第121—125题(含答案解析)

感知高考刺金1211.在ABC ∆中,若()4AB AC CB -⊥u u u r u u u r u u u r,则sin A 的最大值为 。

解:()()()2204445AB AC CB AB AC CA AB AB AC AB AC =-=-+=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rg g g()2245cos 45cos 45cos AB AC AB AC A AB AC AB AC A AB AC A =+-≥-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rg g g g即4cos 5A ≥,则3sin 5A ≤ 2.现有4人去旅游,旅游地点有A 、B 两个地方可以选择。

但4人都不知道去哪里玩,于是决定通过掷一枚质地均匀的骰子决定自己去哪里玩,掷出能被3整除的数时去A 地,掷出其他的则去B 地;(1)求这4个人中恰好有1个人去B 地的概率;(2)求这4个人中去A 地的人数大于去B 地的人数的概率。

解:依题意,这4个人中,每个人去A 地旅游的概率为13,去B 地的人数的概率为23设“这4个人中恰有k 人去A 地旅游”为事件()0,1,2,3,4i A i =∴()441233i ii i P A C -⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(1)这4个人中恰有1人去A 地游戏的概率为()1311412323381P A C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭(2)设“这4个人中去A 地的人数大于去B 地的人数”为事件B ,则34B A A =U ,314034441212133339P C C ⎛⎫⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭感知高考刺金1221.已知{}1234,,,A x x x x =,()212sin 14x B x R x π+⎧⎫=∈-=⎨⎬⎩⎭,且1234x x x x +++的最小值为 。

2018版高考数学(人教A版理科)一轮复习课时跟踪检测1含答案

2018版高考数学(人教A版理科)一轮复习课时跟踪检测1含答案

课时跟踪检测(一)1.已知集合A={1,2,3},集合B={2,3,4,5},则()A.A⊆B B.B⊆AC.A∩B={2,3}D.A∪B={1,4,5}答案:C解析:由题意可知,1是集合A中的元素,但不是集合B中的元素,故A,B错;由集合的运算可知C正确,而A∪B={1,2,3,4,5}.2.集合U={0,1,2,3,4},A={1,2},B={x∈Z|x2-5x+4〈0},则∁U(A∪B)=()A.{0,1,3,4} B.{1,2,3}C.{0,4} D.{0}答案:C解析:因为集合B={x∈Z|x2-5x+4〈0}={2,3},所以A∪B={1,2,3},又全集U={0,1,2,3,4},所以∁U(A∪B)={0,4}.故选C。

3.设集合A=错误!,B={(x,y)|y=3x},则A∩B的子集的个数是()A.4 B.3C.2 D.1答案:A解析:∵A∩B有2个元素,故A∩B的子集的个数为22=4。

4.已知集合A={x|-1≤x≤1},B={x|x2-2x≤0},则A∩B =()A.B.C.D.(-∞,1]∪,∴A∩B=,故选C. 5.已知集合P={x|x≥0},Q=错误!,则P∩(∁R Q)=( ) A.(-∞,2) B.(-∞,-1]C.(-1,0) D.答案:D解析:由题意可知,Q={x|x≤-1或x>2},则∁R Q={x|-1〈x≤2},所以P∩(∁R Q)={x|0≤x≤2}.故选D.6.已知全集U=Z,A={x|x2-x-2〈0,x∈Z},B={-1,0,1,2},则图中阴影部分所表示的集合等于()A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}答案:A解析:因为A={x|-1〈x〈2}={0,1},B={-1,0,1,2},则(∁U A)∩B={-1,2},故选A.7.若集合A={x|1≤3x≤81},B={x|log2(x2-x)>1},则A∩B =()A.(2,4]B.C.(-∞,0)∪(0,4]D.(-∞,-1)∪答案:A解析:因为A={x|1≤3x≤81}={x|30≤3x≤34}={x|0≤x≤4},B={x|log2(x2-x)>1}={x|x2-x〉2}={x|x〈-1或x>2},所以A∩B={x|0≤x≤4}∩{x|x〈-1或x〉2}={x|2〈x≤4}=(2,4].8.已知集合A={x|y=log2x,y〈0},B=错误!,则A∪B=( )A.(0,1)B.错误!C.错误!D.(-∞,1)答案:A解析:由log2x<0得0<x<1,即A=(0,1);当0<x〈1时,y=错误!x∈错误!,即B=错误!,A∪B=(0,1),故选A。

2018年高考数学一轮复习感知高考刺金四百题:第131—135题含解析

2018年高考数学一轮复习感知高考刺金四百题:第131—135题含解析

感知高考刺金1311.函数()()401x f x x x =>+,()()()1,2g x x a x b a b =---<,若对10x∀>,21x x ∃≤,()()21g x f x =,则2a b +的最大值为 。

解:()()()1,2,21,2b a x b a b g x x a x ba b x a ⎧->⎪⎪+⎪=-≤≤⎨⎪⎪-<⎪⎩,()()444011x f x x x x ==->++ 若使对10x∀>,21xx ∃≤,()()21g x f x =成立首先需使()142b a -≥且()102a b -<且线段,2a b y x a x b +=-≤≤与曲线()()401xf x x x =>+无交点由241a b y x xy x +⎧=-⎪⎪⎨⎪=⎪+⎩得23022a b a b x x ++⎛⎫-+-= ⎪⎝⎭无正根(i )若3202a b ++≥,即6a b +≥-时,要求()23202a b a b +⎛⎫∆=+++≤ ⎪⎝⎭,解得182a b -≤+≤-,即62a b -≤+≤-(ii )若6a b +<-时,满足02a b +->,恒成立综上,2a b +≤- 故要使对10x∀>,21x x ∃≤,()()21g x f x =成立只需82b a a ba b -≥⎧⎪<⎨⎪+≤-⎩,画出可行域可得27a b +≤-2.(1)若复数z 与其共轭复数z满足z =2z z +=,则5z z+= 。

(2)若函数()ln x a f x x-=的图象总在()F x 求实数a 的取值集合。

解:(1)2(2)ln x a x-0x >且1x ≠恒成立,故()min,1a x xx <>或()min,01a x xx ><<令()g x x x=,……,得1a =感知高考刺金1321.已知()22245f x xa a =+-+,若()f x 的最大值是()g a ,则关于a 的不等式()12log 30g a +<的解集是 。

2018年高考数学一轮复习感知高考刺金四百题:第361—365题(含答案解析)

2018年高考数学一轮复习感知高考刺金四百题:第361—365题(含答案解析)

感知高考刺金361题设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,22t ⎡⎤=⎣⎦,…,n t n⎡⎤=⎣⎦同时成立....,则正整数n 的最大值是 . 解:由[]1t =得12t ≤<由22t ⎡⎤=⎣⎦得223t ≤< 由44t ⎡⎤=⎣⎦得445t ≤<,所以22t ≤<由33t ⎡⎤=⎣⎦得334t ≤<,所以56t ≤<由55t ⎡⎤=⎣⎦得556t ≤<与56t ≤<n 的最大值是4感知高考刺金362题过点()1,1M -的直线l 交圆()22:11C x y -+=于点,A B ,O 为坐标原点,若在线段AB 上的Q 满足112MA MB MQ+=,则min OQ = . 解:设()11,A x y ,()22,B x y ,(),Q m n ,直线():11l y k x =++则11MA +,21MB =+,1MQ + 由112MA MB MQ +=得12112111x x m +=+++ 由()()221111x y y k x ⎧-+=⎪⎨=++⎪⎩得()()()2222122210k x k k x k +++-++= 所以21222221k k x x k +-+=-+,()212211k x x k +=-+ 所以421k m =-+ 所以()42111n m m ⎛⎫=-++ ⎪+⎝⎭整理得点(),Q m n 满足的轨迹方程为210m n --=所以min OQ ==感知高考刺金363题如图,已知点D 为ABC ∆的边BC 上一点,3BD DC =u u u r u u u r ,()*n E n ∈N 为AC 边上一列点,满足()11324n n n n n E A a E B a E D +=-+u u u u r u u u u r u u u u r ,其中数列{}n a 满足0n a >,11a =,则{}n a 的通项公式为 .解:由3BD DC =u u u r u u u r 可得1344n n n E D E B E C =+u u u u r u u u u r u u u u r 又()11324n n n n n E A a E B a E D +=-+u u u u r u u u u r u u u u r ,且n n E C E A λ=u u u u r u u u u r 故()113132444n n n n n n E D E B a E B a E D λ+⎡⎤=+-+⎢⎥⎣⎦u u u u r u u u u r u u u u r u u u u r 即()13131324164n n n n a E B a E D λλ+⎛⎫⎡⎤+=++ ⎪⎢⎥⎣⎦⎝⎭u u u u r u u u u r 因为,n n E B E D u u u u r u u u u r 不共线,故()1310416313204n n a a λλ+⎧+=⎪⎪⎨⎪++=⎪⎩,两式相除消去λ得132n n a a +=+,又11a =,所以1231n n a -=⋅-感知高考刺金364题若点A 在圆C :22(1)(2)4x y -++=上运动,点B 在y 轴上运动,则对定点(3,2)P 而言,||PA PB +u u u r u u u r的最小值为 . 解法1:设11(,)A x y ,2(0,)B y ,则112(6,4)PA PB x y y +=-+-u u u r u u u r .若设||r PA PB =+u u u r u u u r ,则由题意可得222112(6)(4)x y y r -++-=.即,点A 在以2(6,4)D y -为圆心,以r 为半径的圆D :2222(6)(4)x y y r -++-=上.由圆C 与圆D 有公共点A 可得2222||(61)(6)5r CD y +≥=-+-≥,从而3r ≥.解法2:设11(,)A x y ,2(0,)B y ,则112(6,4)PA PB x y y +=-+-u u u r u u u r .从而,22211211||(6)(4)(6)63PA PB x y y x x +=-++-≥-=-≥u u u r u u u r .解法3:由点A 在圆C 上可设(12cos ,22sin )A θθ+-+,(0,)B t ,则(2cos 5,2sin 6)PA PB t θθ+=-+-u u u r u u u r .故222||(2cos 5)(2sin 6)(2cos 5)52cos 3PA PB t θθθθ+=-++-≥-=-≥u u u r u u u r .解法4:设Q 为AB 的中点,则2PA PB PQ +=u u u r u u u r u u u r ,过,,P Q A 作y 轴的垂线,垂足分别为',','P Q A .由于13|'||||'||||'|||22PP PQ QQ PQ AA PQ ≤+=+≤+, 因此33|||'|22PQ PP ≥-=,即||2||3PA PB PQ +=≥u u u r u u u r u u u r . 解法5:设'B 为点B 关于点P 的对称点,则|||'||'|PA PB PA PB B A +=-=u u u r u u u r u u u r u u u r u u u u r . 由于点'B 在直线6x =上,点A 在圆C :22(1)(2)4x y -++=上可得|'|523B A ≥-=u u u u r .解法6:同解法5,设'A 为点A 关于点P 的对称点,则|||'||'|PA PB PB PA A B +=-=u u u r u u u r u u u r u u u r u u u u r .由于点'A 在圆'C :22(5)(6)4x y -+-=上,点B 在y 轴上可得|'|523A B ≥-=u u u u ryxB'P C OAB感知高考刺金365题设实数,x y满足2025020x yx yy--≤⎧⎪+-≥⎨⎪-≤⎩,则112ux y=+的取值范围为.解:可行域如图所示,()1,2A,()4,2B,()3,1C,所以14,12x y≤≤≤≤设点(),P x y是可行域内一动点,目标函数112ux y=+既是关于x的减函数,又是关于y的减函数所以当点P与点C重合时,此时x取得最大值4,同时y取得最大值2,此时u取得最小值为1114222+=⋅对于每一个固定的y的值,要使u取得最大值,应使x取得最小值,即点P应位于线段AB上,此时()5212x y y=-≤≤()()111152522252u yx y y y y y=+=+=--()12y≤≤所以()max54u y=,此时()1,2P与点A重合综上所述,1524u≤≤。

2018高考理科数学全国I卷试题和答案解析

2018高考理科数学全国I卷试题和答案解析

专业知识分享绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z = A .0 B .12C .1 D2.已知集合2{|20}A x x x =-->,则A =R ðA .{|12}x x -<<B .{|12}x x -≤≤C .{|1}{|2}x x x x <->UD .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半专业知识分享4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a =,则5a = A .12- B .10- C .10 D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uu rA .3144AB AC -uu u r uu u r B .1344AB AC -uuu r uu u rC .3144AB AC +uu u r uu u rD .1344AB AC +uuu r uu u r7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A. B. C .3D .28.设抛物线24C y x =:的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN?uuu r uuu r A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+专业知识分享11.已知双曲线2213x C y :-=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN = A .32B .3C.D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 ABCD二、填空题:本题共4小题,每小题5分,共20分。

2018年高考数学一轮复习感知高考刺金四百题:第136—140题(含答案解析)

2018年高考数学一轮复习感知高考刺金四百题:第136—140题(含答案解析)

感知高考刺金136设函数()()2,f x x ax b a b =++∈R ,记(),M a b 为()y f x =在[]1,1-上的最大值(1)设2a ≥,求证:(),2M a b ≥(2)若(),2M a b ≤,请求出a b +的最值。

证明:(1)因为对称轴012a x =-≤-或012ax =-≥ ()()(){}{}maxmax 1,1max 1,1f x f f a b a b =-=++-+证法一:规划视角()()()()()22221112112110a b a b b a b a b a b a a b ++≤-+⇔++++≤+-++⇔+≤故(){}()()max1,410max 1,11,410b a a b f x a b a b b a a b ⎧+++>⎪=++-+=⎨+-+≤⎪⎩,又结合2a ≥, 可以从规划视角来解题,以a 为横坐标,b 为横坐标建系,画出可行域()4102a b a +>⎧⎪⎨≥⎪⎩如图1所示,目标函数1122b ab a ++++=视为可行域内的点(),a b 到直线10x y ++=的距离的2倍,显然当(),a b 取点()2,1--时min 1222b a ++=⋅=同理,可行域()4102a b a +≤⎧⎪⎨≥⎪⎩如图2所示,目标函数1a b -+=视为可行域内的点(),a b 到直线10x y -++=的距离(),a b 取点()2,1-时min 12b a +-= 综上,(),2M a b ≥ 证法二:绝对值不等式()()(){}{}()()max max 1,1max 1,11111222f x f f a b a b a b a b a b a ba =-=++-+++--++++-+≥≥=≥解法三:(){},max 1,1M a b a b a b =++-+ 令1b t +=,则()(){},max ,M a b g t t a t a ==+-在同一个坐标系中画出1y t a =+和2y t a =-的图象,两者取其大,则显然当0t =时,()min 2g t a =≥故(),2M a b ≥ (2)解法一:规划视角()()()222211221231,211221231848122424424f a b a b a b a M a b f a b a b a b a a b a a a b f a b ⎧⎧⎪=++≤⎪⎧-≤++≤--≤≤-+⎪⎪⎪⎪≤⇔-=-++≤⇔-≤-++≤⇔-≤≤+⎨⎨⎨⎪⎪⎪-≤-≤⎩⎛⎫⎪⎪-≤≤+-=-≤ ⎪⎩⎪⎝⎭⎩显然又是一个规划问题了。

2018年高考数学一轮复习感知高考刺金四百题:第136—140题(含答案解析)

2018年高考数学一轮复习感知高考刺金四百题:第136—140题(含答案解析)

感知高考刺金136设函数()()2,f x x ax b a b =++∈R ,记(),M a b 为()y f x =在[]1,1-上的最大值(1)设2a ≥,求证:(),2M a b ≥(2)若(),2M a b ≤,请求出a b +的最值。

证明:(1)因为对称轴012a x =-≤-或012ax =-≥ ()()(){}{}max max 1,1max 1,1f x f f a b a b =-=++-+证法一:规划视角()()()()()22221112112110a b a b b a b a b a b a a b ++≤-+⇔++++≤+-++⇔+≤故(){}()()max1,410max 1,11,410b a a b f x a b a b b a a b ⎧+++>⎪=++-+=⎨+-+≤⎪⎩,又结合2a ≥, 可以从规划视角来解题,以a 为横坐标,b 为横坐标建系,画出可行域()4102a b a +>⎧⎪⎨≥⎪⎩如图1所示,目标函数1122b ab a ++++=视为可行域内的点(),a b 到直线10x y ++=的距离的2倍,显然当(),a b 取点()2,1--时min 1222b a ++=⋅=同理,可行域()4102a b a +≤⎧⎪⎨≥⎪⎩如图2所示,目标函数1a b -+=视为可行域内的点(),a b 到直线10x y -++=的距离(),a b 取点()2,1-时min 12b a +-=综上,(),2M a b ≥ 证法二:绝对值不等式()()(){}{}()()max max 1,1max 1,11111222f x f f a b a b a b a b a b a b a =-=++-+++--++++-+≥≥=≥解法三:(){},max 1,1M a b a b a b =++-+令1b t +=,则()(){},max ,M a b g t t a t a ==+-在同一个坐标系中画出1y t a =+和2y t a =-的图象,两者取其大,则显然当0t =时,()min 2g t a =≥故(),2M a b ≥ (2)解法一:规划视角()()()222211221231,211221231848122424424f a b a b a b a M a b f a b a b a b a a b a a a b f a b ⎧⎧⎪=++≤⎪⎧-≤++≤--≤≤-+⎪⎪⎪⎪≤⇔-=-++≤⇔-≤-++≤⇔-≤≤+⎨⎨⎨⎪⎪⎪-≤-≤⎩⎛⎫⎪⎪-≤≤+-=-≤ ⎪⎩⎪⎝⎭⎩显然又是一个规划问题了。

2018年高考数学复习题:第116—120题(含答案解析)

2018年高考数学复习题:第116—120题(含答案解析)

感知高考刺金1161.已知ABC ∆中,角,,A B C 的对边,,a b c 满足()cos c a A C =+,则tan C 的最大值是 .解:()222cos cos 2a c b c a A C a B a ac+-=+=-=-⋅ 即()22213c b a =-,且B 为钝角,C 为锐角 由余弦定理得()2222222221423cos 226a b b a a b c a b C ab ab ab +--+-+===≥= 锐角C 在区间0,2π⎛⎫ ⎪⎝⎭上递减,故当()min cos C =时,则()max tan C =2.各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有______种不同的填报专业志愿的方法(用数字作答).解:32735180A A -⋅= 感知高考刺金1171.已知,αβ为锐角,且()sin cos sin ααββ+=,则tan α的最大值是 .解法一:()()()()sin sin cos sin cos cos sin sin sin αββαββααβαββββ⎡+-⎤+⎣⎦+===-+ 即()tan 2tan αββ+=()()()2tan tan tan tan tan 1tan tan 12tan 4αβββααββαβββ+-=⎡+-⎤===⎣⎦+++当且仅当tan β=解法二:由()sin cos sin ααββ+=得sin cos cos sin sin sin ααβαββ-= 即1cos cos sin sin sin αβαββ⎛⎫=+ ⎪⎝⎭即222sin cos sin cos tan 1sin 2sin cos ββββαβββ==≤++cos ββ=,即tan β=2.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 。

2018版高考数学(人教A版理科)一轮复习课时跟踪检测12含答案

2018版高考数学(人教A版理科)一轮复习课时跟踪检测12含答案

课时跟踪检测(十二)1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()A BC D答案:C解析:出发时距学校最远,先排除A,中途堵塞停留,距离没变,再排除D,堵塞停留后比原来骑得快,因此排除B。

2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是()A.118元B.105元C.106元D.108元答案:D解析:设进货价为a元,由题意知132×(1-10%)-a=10%·a,解得a=108.3.某汽车运输公司购买了一批豪华大客车投入客运,据市场分析,每辆客车营运的总利润y(万元)与营运年数x的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为( )A.3 B.4C.5 D.6答案:C解析:由题图,易求得y与x的关系式为y=-(x-6)2+11,则错误!=12-错误!≤12-10=2,∴错误!有最大值2,此时x=5。

4.一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为s=错误!t2米,那么,此人( )A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但期间最近距离为14米D.不能追上汽车,但期间最近距离为7米答案:D解析:已知s=错误!t2,车与人的间距d=(s+25)-6t=错误!t2-6t+25=错误!(t-6)2+7。

当t=6时,d取得最小值7.5.拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)=1。

06(0。

5+1)给出,其中m>0,是不超过m的最大整数(如=3,=3,=3),则甲、乙两地通话6.5分钟的电话费为________元.答案:4。

24解析:∵m=6.5,∴=6,则f(m)=1.06×(0。

2018年高考数学一轮复习感知高考刺金四百题:第241—245题(含答案解析)

2018年高考数学一轮复习感知高考刺金四百题:第241—245题(含答案解析)

感知高考刺金241题已知,a b +∈R ,223a b ab +-=,则2a b +的最大值是 . 解法一:判别式法令2t a b =+,2b t a =-代入223a b ab +-=得227530a at t -+-=关于a 的一元二次方程有解得()22252830t t ∆=--≥,即228t ≤所以2t a b =+≤()55214142a a t a b b a b ⎧=⎧⎪==+⎪⎪⇒⎨⎨⎪⎪=+=⎩⎪⎩时取得等号。

解法二:化齐次式()()22222222222324444532333111a b a ab b t t t a b a b ab a b ab t t t t ++++++⎛⎫+====+ ⎪+-+--+-+⎝⎭令353,5u t u t -+== 故2252531312849114911u y u u u u ⎛⎫ ⎪⎛⎫=+=+≤ ⎪ ⎪-+⎝⎭ ⎪-+ ⎪⎝⎭ 当且仅当47,5u t ==时取得等号。

解法三:222232b a b ab a ⎫⎛⎫+-=-+=⎪ ⎪⎪⎝⎭⎝⎭令,2b m a n =-=,即223m n +=设,m n θθ==,则sin ,2sin a b θθθ==故()24sin a b θθθϕ+=+=+解法四:利用余弦定理构造三角形设ABC ∆的三边分别为,,a b c =,由223a b ab +-=得60C = 由正弦定理2sin sin sin a b c A B C===,故2sin ,2sin a A b B == 故()()()222sin 2sin 4sin 4sin 1205sin a b A B A A A A A ϕ+=+=+-==+其中tan ϕ=<0,6πϕ⎛⎫∈ ⎪⎝⎭,23A πϕϕϕ<+<+故2a b +∈⎝评注:本题是很常见的最值问题,解法一、解法二是常规的两种方法,解法三利用三角换元,解法四构造三角形的方法不仅求出了最大值,还取到了最小值。

2018年高考数学(理) 押题卷及详解答案

2018年高考数学(理) 押题卷及详解答案

2018年高考数学 预测卷及详解答案理科数学本试题卷共19页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

第Ⅰ卷一、选择题:本题共12小题,每小题5分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}(,)|1,01A x y y x x ==+≤≤,集合{}(,)|2,010B x y y x x ==≤≤,则集合AB =( )A .{}1,2B .{}|01x x ≤≤C .(){}1,2D .∅【答案】C【解析】根据题意可得,12y x y x =+⎧⎨=⎩,解得12x y =⎧⎨=⎩,满足题意01x ≤≤,所以集合A B =(){}1,2.故选C .2.已知复数z 满足11i 12z z -=+,则复数z 在复平面内对应点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D【解析】设复数i z a b=+,(),a b ∈R ,则i z a b =-,因为11i 12z z -=+,所以()()211i z z -=-,所以2(1)2i a b --()1i a b =+-,所以可得2221a bb a -=-⎧⎨-=+⎩,解得5343a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以54i 33z =-,所以复数z 在复平面内对应点54,33⎛⎫- ⎪⎝⎭在第四象限上.故选D .3.《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求其直径d ,公式为d =如果球的半径为13,根据“开立圆术”的方法求球的体积为( ) A .481π B .6π C .481D .61【答案】D【解析】根据公式d =23=,解得16V =.故选D .4.已知函数()()π17πsin cos 0326f x x x ωωω⎛⎫⎛⎫=+--> ⎪ ⎪⎝⎭⎝⎭,满足π364f ⎛⎫-= ⎪⎝⎭,则满足题意的ω的最小值为( ) A .13B .12C .1D .2【答案】C 【解析】根据题意可得,()π17ππ1πsin cos sin sin 326323f x x x x x ωωωω⎛⎫⎛⎫⎛⎫⎛⎫=+--=+++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭3πsin 23x ω⎛⎫+ ⎪⎝⎭,因为π364f ⎛⎫-= ⎪⎝⎭,所以3ππ3sin 2634ω⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,2636k ωπππ⎛⎫-+=+π ⎪⎝⎭或52,6k k π+π∈Z ,解得121k ω=-+或123k -+,又0ω>,显然min 1ω=.故选C .5.某几何体的三视图如图所示,设正方形的边长为a ,则该三棱锥的表面积为( )A .2aB 2C .26a D .2【答案】D【解析】如图所示,该几何体是正方体的内接正三棱锥,所以三棱锥的棱长为,因此此几何体的表面积)2214sin 602S =⨯⨯︒=.故选D .6.某工厂生产了一批颜色和外观都一样的跳舞机器人,从这批跳舞机器人中随机抽取了8个,其中有2个是次品,现从8个跳舞机器人中随机抽取2个分配给测验员,则测验员拿到次品的概率是( ) A .328B .128C .37D .1328【答案】D【解析】根据题意可得1126222288C C C 13C C 28P =+=.故选D . 7.如图所示,在梯形ABCD 中,∠B =π2,AB =,BC =2,点E 为AB 的中点,若向量CD 在向量BC 上的投影为12-,则CE BD ⋅=( )A .-2B .12-C .0D 【答案】A【解析】以B 为原点,BC 为x 轴,AB 为y 轴建系如图,∵AB =,BC =2,∴(A ,()0,0B ,()2,0C ,D∵点E 为AB 的中点,∴E ⎛ ⎝⎭,若向量CD 在向量BC 上的投影为12-,设向量CD 与向量BC 的夹角为θ,所以1cos 2CD θ=-,过D 作DF ⊥BC ,垂足为F ,在Rt △DFC中,()cos πFC CD-θ=,所以12CF =,所以32D ⎛ ⎝,所以CE ⎛=- ⎝⎭,32BD ⎛= ⎝,所以312CE BD ⋅=-+=-.8.已知等差数列{}n a 的前n 项和为S n ,且S 2=4,S 4=16,数列{}n b 满足1n n n b a a +=+,则数列{}n b 的前9和9T 为( ) A .80 B .20C .180D .166【答案】C .【解析】设等差数列{}n a 的公差为d ,因为1n n n b a a +=+,所以112n n n b a a +++=+,两式相减1n n b b +-=1212n n n n a a a a d ++++--=为常数,所以数列{}n b 也为等差数列.因为{}n a 为等差数列,且S 2=4,S 4=16,所以11224b a a S =+==,3344212b a a S S =+=-=,所以等差数列{}n b 的公差31242b b d -==,所以前n 项和公式为()1442n n n T n -=+⨯222n n =+,所以9180T =.故选C .9.2015年12月16日“第三届世界互联网大会”在中国乌镇举办.为了保护与会者的安全,将5个安保小组全部安排到指定三个区域内工作,且这三个区域每个区域至少有一个安保小组,则这样的安排的方法共有( ) A .96种 B .100种 C .124种 D .150种【答案】D【解析】∵三个区域至少有一个安保小组,所以可以把5个安保小组分成三组,一种是按照1、1、3,另一种是1、2、2;当按照1、1、3来分时共有11335431322C C C A 60A N ==,当按照1、2、2来分时共有22135312322C C C A 90A N ==,根据分类计数原理知共有,故12150N N N =+=,选D .10.已知函数cos y x x =+,有以下命题: ①()f x 的定义域是()2π,2π2πk k +; ②()f x 的值域是R ; ③()f x 是奇函数;④()f x 的图象与直线y x =的交点中有一个点的横坐标为π2, 其中推断正确的个数是( ) A .0 B .1C .2D .3【答案】C【解析】根据题意可以得到函数的定义域为R ,值域为R ,所以①不正确,②正确;由于()cos f x x x =+,所以()cos f x x x -=-+,所以()()f x f x -≠,且()()f x f x -≠-,故此函数是非奇非偶函数,所以③不正确;当π2x =时,cos x x x +=,即()f x 的图象与直线y x =的交点中有一个点的横坐标为π2;所以④正确.故选C . 11.已知椭圆的标准方程为22154x y +=,12,F F 为椭圆的左右焦点,O 为原点,P 是椭圆在第一象限的点,则12PF PF PO-的取值范围( )A.0,5⎛ ⎝⎭B.0,5⎛ ⎝⎭ C.0,5⎛ ⎝⎭ D.0,5⎛ ⎝⎭【答案】B【解析】设P ()00,x y ,则00x <<,e ==,10PF x =,2PF=0x,PO ==,则12x PF PF PO -==,因为00x <<所以20445x >,1>,所以05<<,所以1205PF PF PO -<<B . 12.已知正方体1111ABCD A BCD -的棱长为1,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为面MBN 过三点B 、E 、F 的截面与正方体1111ABCD A BC D -在棱上的交点,则下列说法错误的是( )A .HF //BE B.BM =C .∠MBND .五边形FBEGH【答案】C【解析】因为面11//AD BC 面,且面1AD 与面MBN 的交线为FH ,1BC 面与面MBN 的交线为BE ,所以HF //BE ,A 正确;因为11//A F BB ,且1:1:2A F FA=,所以111:1:2MA A B =,所以112MA =,所以132B M =,在Rt △1BB M 中,BM ==所以B 正确;在Rt △1BB N 中,E 为棱1CC 的中点,所以1C为棱1NB 上的中点,所以11C N =,在Rt △1C EN 中, EN ==BN =;因为52MN ==,在△BMN中,22co s 2B M BN N M B NBM B +-∠==⋅5C 错误;因为cos MBN ∠=,所以sin MBN ∠=,所以BMN S =△12BM ⨯sin BN MBN ⨯⨯∠=得,14GE NB M N S S =△△,19MFH BMN S S =△△,所以BE S =面261144BMNGEN MFH S S S --=△△△.故选C .第Ⅱ卷本卷包括必考题和选考题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考一轮复习116
1.已知ABC ∆中,角,,A B C 的对边,,a b c 满足()c o s c a A C =+,则tan C 的最大值是 .
解:()222
cos cos 2a c b c a A C a B a ac
+-=+=-=-⋅ 即()
22213c b a =-,且B 为钝角,C 为锐角 由余弦定理得(
)2222222221423cos 226a b b a a b c a b C ab ab ab +--+-+===≥ 锐角C 在区间0,2π⎛⎫ ⎪⎝⎭
上递减,故当(
)min cos C =,则(
)max tan C =2.各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有______种不同的填报专业志愿的方法(用数字作答).
解:327
35180A A -⋅=
高考一轮复习117
1.已知,αβ为锐角,且()sin cos sin ααββ+=
,则tan α的最大值是 . 解法一:()()()()sin sin cos sin cos cos sin sin sin αββαββααβαββββ
⎡+-⎤+⎣⎦+===-+ 即()tan 2tan αββ+=
()()(
)2tan tan tan tan tan 1tan tan 12tan αβββααββαβββ+-=⎡+-⎤=
==⎣⎦+++
当且仅当tan β= 解法二:由()sin cos sin ααββ+=得sin cos cos sin sin sin ααβαββ
-= 即1cos cos sin sin sin αβαββ⎛⎫=+ ⎪⎝⎭

222
sin cos sin cos
tan
1sin2sin cos
ββββ
α
βββ
==≤
++
cos
ββ
=,
即tanβ=
2.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是。

解:
211
332
3
2
33
C C C
=
高考一轮复习118
1.已知函数()a
f x x
x
=-对任意()
0,1
x∈都有()()
11
f x f x
-≥,则实数a的取值范围是。

解:这里如果直接代入去解很繁琐,所以进行一次换元有效简化计算。


1
2
x m
=-,
1
1
2
x m
-=+,
11
,
22
m
⎛⎫
∈-

⎝⎭
则问题转化为
11
1
22
f m f m
⎛⎫⎛⎫
-+≥
⎪ ⎪
⎝⎭⎝⎭

11
,
22
m
⎛⎫
∀∈- ⎪
⎝⎭
恒成立
代入后化简得2222
131
20
244
a m a m m
⎛⎫⎛⎫⎛⎫
-+++-≥
⎪ ⎪⎪
⎝⎭⎝⎭⎝⎭
所以2
1
4
a m
≤-对
11
,
22
m
⎛⎫
∀∈- ⎪
⎝⎭
恒成立或2
3
4
a m
≥+对
11
,
22
m
⎛⎫
∀∈- ⎪
⎝⎭
恒成立

1
4
a≤-或1
a≥
2.在“学雷锋,我是志愿者”活动中,有6名志愿者要分配到3个不同的社区参加服务,每个社区分配2名志愿者,则甲、乙两人分到同一社区的概率为。

解:
22
3
42
3
2
222
3
642
3
3
3
1
5
C C
A
A
C C C
A
A
=
高考一轮复习119
1.在三棱锥S ABC -中,90SAB SAC ACB ∠=∠=∠=,2AC =,BC ,SB ,则直线SC 与AB 所成角的余弦值是 。

解:将三棱锥放入到长方体内, 长方体的高
SA =AB ,4SC =,BC 5CD ==,
故在DSC ∆中,cos
DSC ∠= 2.如果某年年份的各位数字之和为7,我们称该年为“七巧年”。

例如,年份2014的各位数字之和为7,恰为“七巧年”。

那么从2000年到2999年中“七巧年”共有 年。

解:21
高考一轮复习120
1.已知1311
x y x y ≤+≤⎧⎨-≤-≤⎩,则223x y -的最大值为 。

解:设22
22333x k x y k y -=⇒=-,由此可知,k 越大,抛物线顶点越低,由于()()13,,11x y x y x y x y ⎧⎫≤+≤⎧⎪⎪∈⎨⎨⎬-≤-≤⎩⎪⎪⎩
⎭,如图所示,当抛物线过点()2,1A 时,max 5k = 2.两个三口(父母及一个小孩)之家共同游览黄山,需乘坐两辆不同的缆车,每辆缆车最多只能乘坐4人,但两个小孩不能单独乘坐同一辆缆车,则不同
的乘坐方法共有 种。

解:4223324226
2263242248C C A C C A C C A +-=。

相关文档
最新文档