《三角函数的定义》引入
《三角函数的概念》示范公开课教学设计【高中数学人教版】
《三角函数的概念》教学设计本课是《任意角的三角函数》这一章的概念课,具有核心地位、统领全局的作用. 在此之前,学生已经学习了锐角三角函数,弧度制,对三角函数(正弦,余弦,正切)有一定的了解,了解了锐角三角函数在解三角形中的作用.为本节课的学习提供了知识准备. 本节将学习任意角三角函数的概念、表示及关系.借用单位圆直观的表示三角函数的对应值.1.了解任意角三角函数概念的形成过程,培养学生抽象问题的能力;2.掌握任意角三角函数的代数表示,理解任意角三角函数的正弦,余弦,正切概念,体会用单位圆进行数学研究的一般过程.教学重点:本节的重点是利用单位圆模型理解任意角三角函数概念的形成过程.1.教学问题: (1)学生在理解用终边上任意一点的坐标来表示锐角三角函数是可能会出现障碍,由于学生在此之前学习了直角三角形中的锐角三角函数,并习惯了直观地用有关边长的比来表示锐角三角函数,要克服这一点,关键是帮助学生建立终边上点的坐标的比值与直角三角形有关边长的比值的联系;(2)学生在理解将终边上任意一点去在终边与单位圆的交点这一特殊位置上时,又可能会形成障碍.(3)学生在将用单位圆定义锐角三角函数推广到定义任意角的三角函数时,可能会受初中锐角三角函数定义的影响,仍然局限在直角三角形中思考问题.2.教学支持条件:计算机,几何画板,科大讯飞问答系统.【问题1】在初中,我们学过锐角三角函数,如图1,在直角三角形OMP 中,M ∠是直角,那么根据锐角三角函数的定义,O ∠的正弦,余弦,正切分别是什么? ◆教材分析 ◆教学目标 ◆教学重难点◆◆课前准备◆◆教学过程【设计意图】帮助学生回顾初中学过的锐角三角函数的定义.【预设师生活动】教师提出问题,学生回答.【问题2】在上节课的学习中,我们已经将角的概念推广到了任意角,现在说说的角可以是任意大小的正角,负角和零角.那么任意角的三角函数又该怎么定义呢?【设计意图】引导学生将锐角三角函数推广到任意角三角函数.【预设师生活动】老师引导学生:(1)能不能继续在直角三角形中定义任意角的三角函数?(2)将锐角推广到任意角时,我们是把角放在哪里进行研究的?(3)如图2:在平面直角坐标系中如何定义任意角α的三角函数?(4)终边是OP 的角一定是锐角吗?如果不是,能用直角三角形的边长来定义吗?当α的终边不在第一象限该怎么办?(5)我们知道,借助平面直角坐标系,就可以把几何问题代数化,大家能不能用平面直角坐标系中角的终边上的点的坐标来表示定义式中的一条边长呢?(渗透数形结合的思想) (6)利用平面直角坐标系中角的终边上的点的坐标来定义有什么好处?【问题3】大家有没有办法让所得到的定义式变得更简单一点?【设计意图】为引入单位圆做铺垫.【预设师生活动】教师提出问题后,课组织学生展开讨论,在学生不能回到正确时,可启发他们思考:(1)我们在定义1弧度的角时,利用了一个什么图形?所用的圆与半径大小有关吗?用半径多大的圆定义起来更简单易懂?(2)对于一个三角函数,比如sin y α=.它的函数值是由什么决定的?那么当一个角的终边位置确定后,能不能取终边任意一点来定义三角函数?取哪一点可以使得我们的定义式变得简单易懂些?怎样取?(加强与几何的联系))【问题4】大家现在能不能给出任意角三角函数的定义了?【设计意图】引导学生在用单位圆定义锐角三角函数的基础上,进一步给出任意角三角函数的定义.【预设师生活动】由学生给出任意角三角函数的定义,教师进行整理【问题5】根据任意三角函数的定义,要求角α的三个三角函数值其实就是求什么?【设计意图】让学生从中体会,用单位圆上点的坐标定义三角函数不仅简化了定义式,还更能突出三角函数概念的本质.【预设师生活动】在学生回答问题的基础上,引导学生利用定义求三角函数值例1 已知角α的终边过点P (12,α的正弦、余弦和正切值. 【设计意图】从最简单的问题入手,然后通过变式,让学生学习如何利用定义求不同情况下函数值的问题,进而加深对定义的理解,加强定义应用中与几何的联系,体会数形结合的思想.【预设师生活动】在完成本题的基础上,可通过下列变式引导学生对三角函数的概念作进一步的认识.变式1: 求 35π 的正弦、余弦和正切值. 变式2: 已知角α的终边过点P (-3,-4),求角α的正弦、余弦和正切值.【问题6】你们能否给出正弦、余弦和正切函数在弧度制下的定义域?【设计意图】研究一个函数,就是要研究其三要素,而三要素中最本质的是对应法则和定义域,三角函数的对应法则已经有定义式给出,所以在给出定义之后就要研究其定义域,通过利用定义求定义域,即完善了三角函数概念的内涵,同时又可帮助学生进一步理解三角函数的概念.【预设师生活动】学生求出定义域,教师进行整理【问题7】上述三种函数的值在各象限的符号会怎么样?【设计意图】通过定义的应用,让学生了解三种函数值在各象限的符号的变化规律,并从中进一步理解三角函数的概念,体会数形结合的思想.【预设师生活动】学生回答,教师进行整理.例2. 求证:(1)当不等式组⎩⎨⎧><0tan 0sin θθ成立时,角θ为第三象限角; (2) 当角θ为第三象限角时,不等式组⎩⎨⎧><0tan 0sin θθ成立.【设计意图】通过问题的解决,熟悉和记忆函数值在各象限的符号的变化规律,并进一步理解三角函数的概念.【预设师生活动】在完成本题的基础上,可视情况改变题目的条件或结论,作变式训练;【问题8】三角函数的函数值是由角的终边的位置决定的,那么角的终边每绕原点旋转一周,它的大小将会怎样变化?它所对应的三角函数值又将怎样变化?【设计意图】引出公式一,突出函数周期变化的特点,以及数形结合的思想.【预设师生活动】在教师的引导下,由学生讨论完成.例3 先确定下列三角函数值的符号,然后再求出它们的值;)672cos()4();611tan()3(;3cos )2(;49sin )1(0--πππ. 【设计意图】将确定函数值的符号与求函数值这两个问题结合在一起,通过应用公式一解决问题,让学生熟悉和记忆公式一,并进一步理解三角函数的概念.【预设师生活动】先完成题(1),再通过改变函数名称和角,逐步完成其他各题. 练习(1)填表.(2)设α是三角形的一个内角,在αsin ,αcos ,αtan ,2tan中,有可能取负值的是 .(3)选择“>”,“<”,“=”填空:;0_____)34sin(π-;0_____556tan 0 ;0_____)450cos(0-;0_____)817tan(π- (4)选择0tan )5(;0tan )4(;0cos )3(;0sin )2(;0sin )1(<>><>ααααα中适当的关系式的序号填空:(1)当角α为第一象限角时, ,反之也成立;(2)当角α为第二象限角时, ,反之也成立;(3)当角α为第三象限角时, ,反之也成立;(4)当角α为第四象限角时, ,反之也成立;(5)求67π的正弦,余弦和正切值. (6)已知角θ的终边经过点P (-12,5),求角θ的正弦,余弦和正切值.(7)求下列三角函数值: );431tan();1050sin(;319tan ;1109cos 00ππ-- 例4(备选) 如图1是一个摩天轮,假设它的中心离地面的高度为h0,它的直径为2R ,逆时针方向匀速转动,转动一周需要360秒,若现在你坐在座舱中,从初始位置OA 出发(如图1所示),过了30秒后,你离地面的高度为多少?过了t0 秒呢?【设计意图】通过应用三角函数定义,熟悉和记忆特殊角的三角函数值,三角函数值的符号,公式一,以及求三角函数值,加强对三角函数概念的理解.【预设师生活动】根据教学的实际情况,对练习题的数量和内容做具体调整.5. 小结【问题9】从锐角三角函数的定义推广到任意角的三角函数的定义,你能回顾一下我们是如何借助单位圆给出任意角的三角函数的定义的吗?锐角三角函数与解直角三角形相关,在初中我们是利用直角三角形边的比值来表示锐角的三角函数.通过今天的学习,我们知道任意角的三角函数虽然是锐角三角函数的推广,但它与解三角形已经没有什么关系了,我们是利用单位圆来定义任意角的三角函数.借助平面直角坐标系中的单位圆,我们建立了角的变化与单位圆上点的变化之间的对应关系,进而利用单位圆点的坐标或坐标的比值来表示圆心角的三角函数.【设计意图】回顾和总结本节课的主要内容.【预设师生活动】在学生给出定义后,教师进一步强调用单位圆定义三角函数的优点.【问题10】今天我们不仅学习了任意角三角函数的定义,还接触了定义的一些应用,能不能归纳一下,今天我们利用定义解决了那些问题?【设计意图】回顾和总结三角函数在本节课中的应用.图1【预设师生活动】在学生回顾与总结的基础上,教师有意识地引导学生定义应用过程中所蕴含的数形结合的思想.。
三角函数的定义教案
三角函数的定义教案使学生理解并掌握三角函数线的作法,能利用三角函数线解决一些简单问题. 2.培养学生分析、探索、归纳和类比的能力,以及形象思维能力。
下面是我给大家整理的三角函数的定义教案5篇,希望大家能有所收获!三角函数的定义教案1教学准备教学目标1、知识与技能(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。
2、过程与方法通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。
3、情感态度与价值观通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。
教学重难点重点:感受周期现象的存在,会判断是否为周期现象。
难点:周期函数概念的理解,以及简单的应用。
教学工具投影仪教学过程【创设情境,揭示课题】同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。
众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。
再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。
所以,我们这节课要研究的主要内容就是周期现象与周期函数。
(板书课题)【探究新知】1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。
请你举出生活中存在周期现象的例子。
(单摆运动、四季变化等)(板书:一、我们生活中的周期现象)2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:①如何理解“散点图”?②图1-1中横坐标和纵坐标分别表示什么?③如何理解图1-1中的“H/m”和“t/h”?④对于周期函数的定义,你的理解是怎样?以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x 必须是定义域内的任意值;f(x+T)=f(x)。
三角函数的引入和定义
三角函数第一部分1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限。
3. 终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。
(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ⇔()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称⇔2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称⇔2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称⇔2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈. 4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第二象限角,则2α是第_____象限角,2α是第 象限角。
5.弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈. 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。
(答:22cm )练习:1.下列角中终边与330°相同的角是( ) Α.30° B.-30° C.630° D.-630° 2.下列命题正确的是( )Α.终边相同的角一定相等。
高中数学 三角函数
高中数学:三角函数一、概述三角函数是高中数学的一个重要组成部分,是解决许多数学问题的关键工具。
它涉及的角度、边长、面积等,都是几何和代数的核心元素。
通过学习三角函数,我们可以更好地理解图形的关系,掌握数学的基本概念。
二、三角函数的定义三角函数是以角度为自变量,角度对应的边长为因变量的函数。
常用的三角函数包括正弦函数(sine)、余弦函数(cosine)和正切函数(tangent)。
这些函数的定义如下:1、正弦函数:sine(θ) = y边长 / r (其中,θ是角度,r是从原点到点的距离)2、余弦函数:cosine(θ) = x边长 / r3、正切函数:tangent(θ) = y边长 / x边长三、三角函数的基本性质1、周期性:正弦函数和余弦函数都具有周期性,周期为 2π。
正切函数的周期性稍有不同,为π。
2、振幅:三角函数的振幅随着角度的变化而变化。
例如,当角度增加时,正弦函数的值也会增加。
3、相位:不同的三角函数具有不同的相位。
例如,正弦函数的相位落后余弦函数相位π/2。
4、奇偶性:正弦函数和正切函数是奇函数,余弦函数是偶函数。
5、导数:三角函数的导数与其自身函数有关。
例如,正弦函数的导数是余弦函数,余弦函数的导数是负的正弦函数。
四、三角函数的实际应用三角函数在现实生活中有着广泛的应用,包括但不限于以下几个方面:1、物理:在物理学中,三角函数被广泛应用于描述波动、振动、电磁场等物理现象。
例如,简谐振动可以用正弦或余弦函数来描述。
2、工程:在土木工程和机械工程中,三角函数被用于计算角度、长度等物理量。
例如,在桥梁设计、建筑设计等过程中,需要使用三角函数来计算最佳的角度和长度。
3、计算机科学:在计算机图形学中,三角函数被用于生成二维和三维图形。
例如,使用正弦和余弦函数可以生成平滑的渐变效果。
4、金融:在金融学中,三角函数被用于衍生品定价和风险管理。
例如,Black-Scholes定价模型就使用了正态分布(一种特殊的三角函数)。
高中数学教案《三角函数的概念》
教学计划:《三角函数的概念》一、教学目标1.知识与技能:o学生能够准确理解三角函数(正弦、余弦、正切)的基本定义,并能识别其在直角三角形中的表示。
o学生能够掌握三角函数值与角度之间的对应关系,理解三角函数是周期函数的特点。
o学生能够运用三角函数的基本性质进行简单的计算与推导。
2.过程与方法:o通过观察、比较和归纳,引导学生从实际情境中抽象出三角函数的概念。
o借助图像直观展示三角函数的周期性,培养学生的数形结合能力。
o通过小组讨论和合作学习,促进学生之间的交流与合作,共同探索三角函数的性质。
3.情感态度与价值观:o激发学生对数学学习的兴趣,感受数学与生活的紧密联系。
o培养学生的探究精神和创新思维,鼓励他们勇于提出问题并尝试解决。
o引导学生认识到数学在解决实际问题中的重要性,增强应用数学的意识。
二、教学重点和难点●重点:三角函数(正弦、余弦、正切)的定义、图像及基本性质。
●难点:理解三角函数值与角度之间的对应关系,以及三角函数周期性的概念。
三、教学过程1. 导入新课(5分钟)●生活实例引入:通过展示如钟摆运动、海浪波动等自然界中的周期性现象,引导学生思考这些现象背后的数学规律,从而引出三角函数的概念。
●复习旧知:回顾直角三角形的相关知识,如勾股定理、锐角与钝角的定义,为学习三角函数做好铺垫。
●明确目标:简要介绍本节课的学习目标,即掌握三角函数的基本概念、图像及基本性质。
2. 讲授新知(15分钟)●定义讲解:详细讲解正弦、余弦、正切三种三角函数在直角三角形中的定义,强调它们与边长的比例关系。
●图像展示:利用多媒体设备展示三种三角函数的图像,引导学生观察图像特征,如正弦、余弦函数的周期性,正切函数的间断性等。
●性质归纳:结合图像,引导学生归纳出三角函数的基本性质,如定义域、值域、奇偶性、单调性等。
3. 互动探究(10分钟)●小组讨论:将学生分成若干小组,每组分配一个探究任务,如“探究正弦函数在哪些区间内是增函数?”、“尝试用三角函数表示一个圆上某点的坐标”。
新教材三角函数概念说课
【新教材】5.2.1 三角函数的概念一、教材分析三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用。
三角函数的概念是在初中对锐角三角函数的定义以及刚学过的“角的概念的推广”的基础上讨论和研究的,三角函数的定义是本章最基本的概念,对三角内容的整体学习至关重要,是其他所有知识的出发点。
三角函数的定义在教材中起着承前启后的作用,一方面,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念,另一方面它又为平面向量、解析几何等内容的学习作必要的准备。
三角函数知识还是物理学、高等数学、测量学、天文学的重要基础。
二、学情分析1.学生在初中已经学习了锐角三角函数的定义,掌握了锐角三角函数的求法。
2.通过任意角的学习,同学们对任意角三角函数的学习有着浓厚的兴趣和期待。
三、教学目标1.知识与技能借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,掌握任意角三角函数(正弦、余弦、正切)在各象限的符号,能够运用公式一.2.过程与方法在定义三角函数的过程中,培养学生的思维能力和合作探究的能力,体会数学概念的学习方法。
3.情感态度与价值观在学习过程中,让学生体会数形结合的数学思想,逐步形成科学的价值观;同时,在自主探究和小组学习中,让学生感受探究学习的快乐,培养他们的学习兴趣。
四、教学重难点重点:①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;②掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.难点:理解任意角三角函数(正弦、余弦、正切)的定义.五、教法与学法教法:以学生为主体,采用诱思探究式教学,精讲多练;借助多媒体(几何画板)。
学法:自主探索和小组合作交流相结合的方法。
六、教学过程1.创设情境在初中我们是如何定义锐角三角函数的?sin α=b c ,cos α=a c ,tan α=ba.师:我们计算sin 30°=12,sin 120°=?设计意图:通过复习初中所学锐角三角函数,引入本节新课。
三角函数的图像与性质教案
三角函数的图像与性质教案一、教学目标:1. 理解三角函数的定义和基本概念。
2. 学会绘制和分析三角函数的图像。
3. 掌握三角函数的性质,并能应用于实际问题。
二、教学重点:1. 三角函数的定义和图像。
2. 三角函数的性质。
三、教学难点:1. 三角函数图像的绘制和分析。
2. 理解和应用三角函数的性质。
四、教学准备:1. 教学课件或黑板。
2. 三角函数图像的示例。
3. 练习题和解答。
五、教学过程:1. 引入:通过生活中的实例,如温度、声音等,引入三角函数的概念,激发学生的兴趣。
2. 讲解:讲解三角函数的定义和基本概念,引导学生理解三角函数的周期性和奇偶性。
3. 演示:使用课件或黑板,展示三角函数的图像,让学生观察和分析图像的形状和特点。
4. 练习:让学生绘制一些简单的三角函数图像,并分析其性质。
5. 讲解:讲解三角函数的性质,如单调性、奇偶性、周期性等,引导学生理解和应用。
6. 练习:让学生解决一些实际问题,运用三角函数的性质进行计算和分析。
7. 总结:对本节课的内容进行总结,强调三角函数的图像和性质的重要性。
8. 作业:布置一些练习题,让学生巩固所学内容。
六、教学反思:本节课通过实例引入三角函数的概念,激发学生的兴趣。
通过讲解和演示,让学生理解和掌握三角函数的图像和性质。
通过练习和实际问题解决,让学生应用所学知识。
整个教学过程中,注意引导学生主动参与,培养学生的动手能力和思维能力。
作业的布置有助于巩固所学内容。
总体来说,本节课达到了预期的教学目标。
六、教学目标:1. 能够运用三角函数的性质解决简单的三角方程和不等式问题。
2. 理解正弦、余弦和正切函数的图像是如何由基础函数通过平移、伸缩等变换得到的。
3. 能够分析实际问题,选择合适的三角函数模型进行求解。
七、教学重点:1. 三角函数图像的变换规律。
2. 三角方程和不等式的求解方法。
八、教学难点:1. 理解三角函数图像的变换规律及其对函数性质的影响。
2. 解决实际问题中三角函数的应用。
三角函数的概念说课稿
三角函数的概念说课稿一、教材分析1、教材的地位和作用本节是现行高教版教材第一册第五章第三节,是本章教学内容的基本概念,对概念的理解和掌握对三角内容的整体学习至关重要,是学好本章教学内容的关键。
它是学生在学习了锐角三角函数后,对三角函数有一定的了解的基础上,进行的推广;又是下面学习平面向量、解析几何等内容的必要准备。
可以帮助学生进一步深入理解函数这一基本概念,同时为后续内容的学习作了必要的准备,起到了承上启下的作用。
2、教材的分析和处理本节内容打算安排三个课时。
本节课作为第一课时,重在使学生理解任意角的正弦、余弦、正切的定义,掌握如何判断三角函数值的符号。
根据学生的学习能力和学习水平,将教材中楷体字排印的余切函数、正割函数、余割函数略去不讲。
教学中注重概念的引入,定义的理解。
在这个过程中培养学生分析解决问题的能力和讨论交流的合作意识。
3、教学目标知识与技能目标:任意角三角函数的概念;三角函数的定义域;判断三角函数值的符号过程与方法目标:在引入、剖析、定义三角函数的过程中,培养学生的思维能力,体会数学概念的学习方法;通过运用多媒体的教学手段,引领学生主动探索,体会学习数学规律的方法,体验成功的乐趣。
情感、态度与价值观目标:通过本节课的学习,培养学生合作交流、独立思考等良好的个性品质;以及打破成规、敢于创新的科学精神,同时培养学生严谨治学、一丝不苟的科学研究态度。
4、教学重难点教学重点:本节课的教学重点是任意角的正弦、余弦、正切的概念,包括这三种三角函数的定义域和函数值在各个象限的符号,它们是本章教学内容的基本概念,是整个三角学的基础,如果学生掌握不好,将会给后续学习带来困难,所以它又是学好全章内容的关键。
教学难点:在定义任意角的正弦、余弦、正切时,定义对象从锐角三角函数推广到任意角三角函数,定义媒介从直角三角形改为平面直角坐标系,因此任意角的正弦、余弦、正切的概念就是本节课的难点所在。
二、教法与学法1、 学情分析知识层面:初中学生已经学习了基本的锐角三角函数知识和概念,掌握了锐角三角函数的一些常见的知识和求法。
任意三角函数定义教案中职
任意三角函数定义教案中职
【实用版】
目录
1.教学目标
2.教学内容
3.教学方法
4.教学步骤
5.教学总结
正文
一、教学目标
本节课旨在让学生掌握任意三角函数的定义,理解其在实际问题中的应用,并能熟练运用三角函数解决相关问题。
二、教学内容
1.任意角的概念:在平面直角坐标系中,由原点 O 出发,沿 x 轴正半轴旋转到终点 A 所成的角,记作∠AOC,其中 OA=|OC|=1,OC 与 x 轴正半轴的夹角为θ,称为角θ的终边。
2.任意三角函数的定义:设在一个角的终边上任取一点 P(x, y),那么与 P 相关的三角函数有正弦函数 sinθ=y/r,余弦函数 cosθ=x/r,正切函数 tanθ=y/x。
三、教学方法
1.采用案例分析法,让学生通过实际问题理解任意三角函数的定义及其应用。
2.利用几何图形辅助讲解,帮助学生直观理解三角函数的含义。
3.设置课堂练习,让学生通过实际操作掌握三角函数的计算方法。
四、教学步骤
1.引入:通过一个具体的例子,引导学生思考如何在一个任意角上进行三角函数的计算。
2.讲解:详细讲解任意三角函数的定义,以及如何在终边上任取一点进行三角函数的计算。
3.案例分析:给出具体的案例,让学生通过实际问题理解任意三角函数的应用。
4.课堂练习:布置一些有关任意三角函数的计算题,让学生通过实际操作掌握相关知识。
5.总结:对本节课的内容进行总结,强调任意三角函数在实际问题中的应用。
五、教学总结
通过本节课的学习,学生应掌握任意三角函数的定义及其在实际问题中的应用,能够熟练运用三角函数解决相关问题。
5-2-1三角函数的概念(第二课时)-22-23高一上学期数学人教A版必修第一册
)
B.cosa tana>0
D.sina>0
分析 ,角a的终边过点(-3,-2),则角a是第三
象限角。sina<0,cosa<0, tana>0
选C
四 课堂小结
1 三角函数的定义?
2 怎样利用角的终边上任意一点的坐标求它的三角函
数?
五 作业
p182
4,5
是_____
3 已知点P在半径为2的圆上按顺时方向做匀速运动,
角速度为1rad/s,求2s时点P所在的位置.
分析 :
(1)16+b2 =25
b=±3
3
∵α的终边经过P(-b,4),且cosα=- ,
5
∴ b=3
(2) α的终边经过P(-1,1 ),r= 2
sinα=
2
,cosαα
2
=−
2
,
2
tanα=-1
所以2s时,点P在该坐标系中的位置为
Q(2cos2,-2sin2)
三角函
数值的
符号
问题
y
( +
)
o
( - )
( +
y
)
x
( -
sin
)
( - )
o
( - )
y
( +
)
x
(
cos
+ )
(
-
) ( + )
o
( + )
x
( - )
tan
角α的正弦函数值的符号取决于它的终边上任意一点
的纵坐标的符号;角α的余弦函数值的符号取决于它
|P0 M0| |P M|
三角函数教案
三角函数教案三角函数教案(精选4篇)三角函数教案篇11、锐角三角形中,任意两个内角的和都属于区间,且满意不等式:即:一角的正弦大于另一个角的余弦。
2、若,则,3、的图象的对称中心为( ),对称轴方程为。
4、的图象的对称中心为( ),对称轴方程为。
5、及的图象的对称中心为( )。
6、常用三角公式:有理公式: ;降次公式: , ;万能公式: , , (其中)。
7、帮助角公式: ,其中。
帮助角的位置由坐标打算,即角的终边过点。
8、时, 。
9、。
其中为内切圆半径, 为外接圆半径。
特殊地:直角中,设c为斜边,则内切圆半径,外接圆半径。
10、的图象的图象( 时,向左平移个单位, 时,向右平移个单位)。
11、解题时,条件中若有消失,则可设,则。
12、等腰三角形中,若且,则。
13、若等边三角形的边长为,则其中线长为,面积为。
14、;三角函数教案篇2二、复习要求1、三角函数的概念及象限角、弧度制等概念;2、三角公式,包括诱导公式,同角三角函数关系式和差倍半公式等;3、三角函数的图象及性质。
三、学习指导1、角的概念的推广。
从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。
这样一来,在直角坐标系中,当角的终边确定时,其大小不肯定(通常把角的始边放在x轴正半轴上,角的顶点与原点重合,下同)。
为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成k·3600 α的形式,特例,终边在x 轴上的角集合{α|α=k·1800,k∈z},终边在y轴上的角集合{α|α=k·1800 900,k∈z},终边在坐标轴上的角的集合{α|α=k·900,k∈z}。
在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。
弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特别角的弧度制。
在弧度制下,扇形弧长公式l=|α|r,扇形面积公式,其中α为弧所对圆心角的弧度数。
《三角函数的概念(一)》示范公开课教学课件【高中数学人教】
新α=y,cosα=x,tanα=
y x
;引入过符号logab表示ax=b中的x.
(2)正弦函数的对应关系:α →点P的纵坐标y;
余弦函数的对应关系:α →点P的横坐标x; 正切函数的对应关系:α→ y .
x
(3)正弦函数、余弦函数的定义域是R;
正切函数的定义域是{x∈R|x≠
三角函数的概念
三角函数的概念(一)
创设情境
问题1 如图,单位圆⊙O上的点P以A为起点做逆时针方向 旋转,建立一个函数模型,刻画点P的位置变化情况.根据已 有的研究函数的经验,你认为我们需要研究哪些内容?
答案:明确研究背景—对应关系的特点分析—下定义—研究性质.
新知探究
1.形成概念
问题2 如图,以单位圆的圆心O为原点,以射线OA为 x轴的非负半轴,建立直角坐标系,点A的坐标为(1,0), 点P的坐标为(x,y).射线OA从x轴的非负半轴开始,绕点 O按逆时针方向旋转角α,终止位置为OP.
x y =tanα(x≠0). x
新知探究
1.形成概念
追问3 对于R中的任意一个角α,y是唯一确定的吗?为什么? y 是α的函
x
x
数吗?
答案:当α= π +kπ(k∈Z)时,α的终边在y轴上,这时点P的横坐标等于 2
0,所以 y =tanα无意义.除此之外,对于确定的角α,点P(x,y)的横坐标和纵 x
坐标都是唯一确定的,所以 y 也是唯一确定的.由此可知,y =tanα(x≠0)也
x
x
是以角α为自变量,以单位圆上点的纵坐标与横坐标的比值为函数值的函数,
称为正切函数.
新知探究
1.形成概念
定义 我们将正弦函数、余弦函数和正切函数统称为三角函数.通常将 它们记为:
三角函数的定义及应用教学教案
三角函数的定义及应用教学教案一、教学目标1. 知识与技能:(1)理解三角函数的定义及其在直角坐标系中的表示方法;(2)掌握三角函数的图像和性质;(3)学会运用三角函数解决实际问题。
2. 过程与方法:(1)通过观察和实验,引导学生发现三角函数的规律;(2)利用信息技术工具,探究三角函数的图像和性质;(3)培养学生的合作交流能力和解决问题的能力。
3. 情感态度与价值观:(1)激发学生对三角函数的兴趣,培养其对数学美的感知;(2)培养学生勇于探索、积极思考的科学精神;(3)引导学生感受数学在生活中的应用,提高其数学素养。
二、教学内容1. 三角函数的定义(1)正弦函数、余弦函数、正切函数的定义;(2)角度与弧度的转换。
2. 三角函数的表示方法(1)解析式的表示;(2)图像的表示;(3)表格的表示。
3. 三角函数的图像与性质(1)正弦函数、余弦函数、正切函数的图像;(2)三角函数的周期性;(3)三角函数的奇偶性;(4)三角函数的单调性。
三、教学重点与难点1. 教学重点:(1)三角函数的定义;(2)三角函数的表示方法;(3)三角函数的图像与性质。
2. 教学难点:(1)三角函数图像的绘制;(2)三角函数性质的证明。
四、教学方法与手段1. 教学方法:(1)讲授法:讲解三角函数的定义、表示方法和图像性质;(2)实验法:引导学生观察和绘制三角函数图像;(3)讨论法:分组讨论,分享学习心得和解决问题的方法。
2. 教学手段:(1)多媒体课件:展示三角函数的图像和性质;(2)信息技术工具:辅助绘制三角函数图像;(3)黑板:板书关键公式和推导过程。
五、教学过程1. 导入新课:(1)复习已知函数的性质和图像;(2)提问:什么是三角函数?为什么学习三角函数?2. 讲解三角函数的定义:(1)介绍正弦函数、余弦函数、正切函数的定义;(2)讲解角度与弧度的转换。
3. 学习三角函数的表示方法:(1)解析式的表示;(2)图像的表示;(3)表格的表示。
中职数学三角函数教案
中职数学三角函数教案一、教学目标1、理解正弦、余弦、正切等函数的定义和性质。
2、掌握三角函数的恒等变换和图像绘制。
3、能够利用三角函数解决实际问题,如测量、工程、物理等问题。
4、培养学生的数学思维和解决问题的能力。
二、教学内容1、三角函数的定义和性质2、三角函数的恒等变换3、三角函数的图像绘制和应用实例三、教学难点与重点难点:理解三角函数的恒等变换和应用实例的解决。
重点:掌握三角函数的定义和性质,以及三角函数的图像绘制。
四、教具和多媒体资源1、黑板和粉笔。
2、投影仪和PPT。
3、教学软件:GeoGebra或Desmos图形计算器。
五、教学方法1、激活学生的前知:复习初中所学的锐角三角函数。
2、教学策略:讲解、示范、小组讨论、案例分析。
3、学生活动:小组讨论、绘制函数图像、解决实际问题。
六、教学过程1、导入:故事导入,以实际应用案例引入三角函数的概念。
2、讲授新课:通过讲解、示范和PPT展示,引导学生理解三角函数的定义和性质,掌握恒等变换的运用,并能够绘制三角函数的图像。
3、巩固练习:提供几个实际应用案例,让学生利用所学知识解决,加深对三角函数的理解和应用。
4、归纳小结:回顾本节课的重点和难点,总结三角函数的基本概念、性质和恒等变换的应用。
七、评价与反馈1、设计评价策略:测试、小组讨论、观察学生的表现。
2、为学生提供反馈,针对不同学生给出具体的建议和指导,以便学生更好地掌握所学内容。
八、作业布置1、完成教材上的练习题。
2、自己寻找一个实际应用案例,写出解决方案并绘制出相关的图像。
中职数学三角函数试卷一、选择题1、以下哪个是三角函数?()A.正弦B.余弦C.正切D.以上都是2、三角函数的定义域是什么?()A.实数集B.有理数集C.正实数集D.单位圆上的点3、下列哪个选项的三角函数值为正?()A. sin(0)B. cos(π/2)C. tan(π/4)D.以上都是二、填空题4、写出下列角度的正弦、余弦和正切值(精确到小数点后两位):角度1:30度;角度2:45度;角度3:60度;角度4:90度;角度5:180度。
高中数学说课稿:《三角函数》5篇
高中数学说课稿:《三角函数》高中数学说课稿:《三角函数》精选5篇(一)尊敬的各位老师,大家好!我今天将为大家带来一堂关于高中数学的说课,主题是《三角函数》。
首先,我将介绍本节课的教学目标。
本节课的目标主要分为两个方面。
一方面,通过学习三角函数的定义和性质,学生能够掌握三角函数的概念,能够正确计算各种三角函数的值。
另一方面,通过解决实际问题,培养学生运用三角函数解决实际问题的能力。
接下来,我将介绍教学内容和教学方法。
本节课主要包括以下几个方面的内容:三角函数的定义,正弦、余弦、正切等三角函数的计算、特殊角的三角函数值、利用三角函数解决实际问题等。
在教学过程中,我将采用多种教学方法,如讲解、示例演示和练习等。
通过讲解,我将向学生详细解释三角函数的定义和性质,帮助学生理解概念。
通过示例演示,我将给学生展示一些具体的计算过程,帮助学生掌握计算方法。
通过练习,我将让学生运用所学知识解决一些实际问题,提高他们的实际运用能力。
在教学过程中,我将注重培养学生的思维能力和合作能力。
我将通过一些启发式的问题,引导学生思考,提高他们的问题解决能力和创新能力。
同时,我会鼓励学生之间互相合作,通过小组讨论和合作解决问题,培养他们的团队合作精神。
最后,我将介绍评价方式和教学反思。
在评价方面,我将采用多种方式,如课堂练习、小组合作和个人表现等,综合评价学生的学习情况和能力。
在教学反思方面,我将根据学生的反馈和自己的观察,总结优点和不足,进一步改进教学方法,提高教学效果。
通过本节课的学习,学生能够掌握三角函数的概念和计算方法,能够灵活运用三角函数解决实际问题。
同时,通过课堂互动和合作,学生也能够培养自己的思维能力和合作能力。
谢谢大家!高中数学说课稿:《三角函数》精选5篇(二)敬爱的各位领导、同事们,亲爱的同学们:大家好!我是数学老师张老师,今天我将给大家讲解高中数学中的一个重要概念——函数的单调性。
希望通过本节课的学习,大家能够理解函数的单调性,掌握相关的解题方法和技巧。
说课稿:《三角函数》
说课稿:《三角函数》
引言概述:
三角函数是数学中重要的概念之一,它在几何、代数、物理等多个领域都有广泛的应用。
在教学过程中,如何有效地讲解三角函数成为教师们的重要任务。
本文将从定义、性质、应用、教学方法和案例分析等五个方面来探讨《三角函数》的说课稿。
一、定义
1.1 正弦函数、余弦函数、正切函数的定义及其图象特点
1.2 三角函数的周期性和奇偶性
1.3 三角函数的定义域和值域
二、性质
2.1 三角函数的基本关系式
2.2 三角函数的同角、反函数关系
2.3 三角函数的导数和积分
三、应用
3.1 三角函数在三角恒等式中的应用
3.2 三角函数在三角方程中的应用
3.3 三角函数在几何中的应用
四、教学方法
4.1 利用具体例子引导学生理解三角函数的定义
4.2 结合实际生活中的问题引导学生掌握三角函数的性质
4.3 利用图表和动态演示工具匡助学生理解三角函数的应用
五、案例分析
5.1 以解决实际问题为背景,引导学生运用三角函数求解
5.2 利用三角函数的性质解决几何问题
5.3 通过三角函数的导数和积分来分析函数的变化规律
结语:
通过以上对《三角函数》说课稿的分析,我们可以看到,在教学过程中,教师需要深入理解三角函数的定义、性质和应用,灵便运用各种教学方法,引导学生掌握三角函数的知识。
惟独这样,才干让学生在学习中更好地理解和应用三角函数。
三角函数的图像与性质教案
三角函数的图像与性质优秀教案一、教学目标:1. 知识与技能:使学生掌握三角函数的图像与性质,能够运用三角函数解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生探索三角函数的图像与性质。
3. 情感态度价值观:激发学生对数学的兴趣,培养学生的创新意识和团队协作能力。
二、教学内容:1. 三角函数的定义与图像2. 三角函数的周期性3. 三角函数的奇偶性4. 三角函数的单调性5. 三角函数的极值三、教学重点与难点:1. 教学重点:三角函数的图像与性质的掌握。
2. 教学难点:三角函数的周期性、奇偶性、单调性和极值的判断。
四、教学方法:1. 采用问题驱动法,引导学生主动探究三角函数的图像与性质。
2. 利用多媒体手段,展示三角函数的图像,增强学生的直观感受。
3. 组织小组讨论,培养学生的团队协作能力。
五、教学过程:1. 导入新课:通过复习初中阶段学习的三角函数知识,引导学生进入高中阶段的学习。
2. 探究三角函数的图像与性质:引导学生观察三角函数的图像,分析其特点,归纳出性质。
3. 讲解与示范:教师讲解三角函数的周期性、奇偶性、单调性和极值的判断方法,并进行示范。
4. 练习与反馈:学生进行课堂练习,教师及时给予反馈,巩固所学知识。
5. 总结与拓展:对本节课的内容进行总结,提出拓展问题,激发学生的学习兴趣。
6. 课后作业:布置相关作业,巩固所学知识,提高学生的实际应用能力。
教案编写完毕,仅供参考。
如有需要,请根据实际情况进行调整。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现,评价学生的学习态度和团队协作能力。
2. 作业评价:对学生的课后作业进行批改,评价学生对课堂所学知识的掌握程度。
3. 单元测试评价:在单元结束后进行测试,评价学生对三角函数图像与性质的掌握情况。
七、教学策略:1. 针对不同学生的学习基础,采取分层教学,使所有学生都能跟上教学进度。
高中数学_三角函数的定义教学设计学情分析教材分析课后反思
教学设计:整个教学过程是“以问题为载体,以学生活动为主线”进行的。
(一)创设情境:1、数学建模问题。
2、动画演示: 《用弹簧振子演示简谐运动的图象》【设计意图】直接切入研究的课题。
(二)回顾初中定义初中关于三角函数的定义是什么?【设计意图】回顾初中知识,发现初中定义的局限性(三) 问题引入1.由初中定义的局限性,引入平面直角坐标系,先将初中定义放在平面直角坐标系中研究,得到一定启发,然后按照启发的做法,推广到任意角上去。
2.有了推广的做法后,在验证这种做法的合理性,即三角函数值是否会因为终边上点的不同而变化?【设计意图】通过问题探究1,让学生验证做法的合理性(四)给出定义在验证了做法的合理性之后,给出确切的定义。
并在此基础上,练习定义的应用。
【设计意图】初步利用定义解决题目。
例1和变式1(五)定义深化在定义合理性的基础上,进一步引导学生深化定义,上升到函数的高度来理解这个定 义。
并研究函数的定义域。
【设计意图】通过问题探究2和3,让学生自己理解三角函数的定义并根据定义,探究函数的定义域。
(六)知识巩固通过例2、变式2以及当堂检测1、2进一步巩固所学知识(七)归纳总结师生共同回顾本节所学知识学情分析:本节课在高一第二学段,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。
关于三角函数定义,学生在初中学习的基础上,初步接触过三角函数的定义,知道 sin cos tan ααα===对边邻边对边,,斜边斜边邻边但高中已经学习了任意角,对于任意角的三角函数,初中的定义有了局限性,没法求出。
就需要对这个定义进行推广,实质上是研究工具的推广,需要引导学生将角放到直角坐标系中来进一步研究,进而得出更为广泛的定义。
效果分析1.在学生动手实践、观察、思考问题的过程中,关注学生发现问题、解决问题的能力;并在进一步的学习过程中,观察学生的类比学习能力;2.在各组共同学习、解决问题的过程中,观察学生合作交流、学习的能力;3.对不同方案的对比学习中,了解学生把握事物本质的能力;4.通过课堂活动与交流,了解学生对知识的掌握程度,通过反馈,对易错、易混的知识点,做出启发性的指导;5.通过课堂小结,学生说出自己的收获,与别人分享学习数学的体会,激发学习数学的积极性,建立自信心。
人教A版高中数学必修第一册第五章三角函数的概念教案
《5.2.1 三角函数的概念(第一课时)》教学设计教学目标1.了解三角函数的背景,体会三角函数与现实世界的密切联系;2.经历三角函数概念的抽象过程,借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,发展数学抽象素养.教学重难点教学重点:正弦函数、余弦函数、正切函数的定义.教学难点:理解三角函数的对应关系,包括影响单位圆上点的坐标变化的因素分析,以及三角函数的定义方式的理解;对符号sinα,cosα和tanα的认识.课前准备PPT课件教学过程(一)创设情境引导语:我们知道,现实世界中存在着各种各样的“周而复始”变化现象,圆周运动是这类现象的代表.如图1,⊙O上的点P以A为起点做逆时针方向的旋转.在把角的范围推广到任意角后,我们可以借助角α的大小变化刻画点P的位置变化.又根据弧度制的定义,角α的大小与⊙O的半径无关,因此,不失一般性,我们可以先研究单位圆上点的运动.现在的任务是:如图1,单位圆⊙O上的点P以A为起点做逆时针方向旋转,建立一个函数模型,刻画点P的位置变化情况.图1问题1:根据已有的研究函数的经验,你认为我们可以按怎样的路径研究上述问题? 预设的师生活动:学生在独立思考的基础上进行交流、讨论.预设答案:明确研究背景—对应关系的特点分析—下定义—研究性质.设计意图:明确研究的内容、过程和基本方法,为具体研究指明方向.(二)新知探究引导语:下面我们利用直角坐标系来研究上述问题.如图2,以单位圆的圆心O 为原点,以射线OA 为x 轴的非负半轴,建立直角坐标系,点A 的坐标为(1,0),点P 的坐标为(x ,y ).射线OA 从x 轴的非负半轴开始,绕点O 按逆时针方向旋转角α,终止位置为OP .问题2:当α=6π时,点P 的坐标是什么?当α=2π或3π2时,点P 的坐标又是什么?它们是唯一确定的吗?一般地,任意给定一个角α,它的终边OP 与单位圆交点P 的坐标能唯一确定吗? 预设的师生活动:在学生求出α=6π时点P 的坐标后追问以下问题. 追问:(1)求点P 的坐标要用到什么知识?(2)求点P 的坐标的步骤是什么?点P 的坐标唯一确定吗?(3)如何利用上述经验求α=3π2时点P 的坐标? (4)利用信息技术,任意画一个角α,观察它的终边OP 与单位圆交点P 的坐标,你有什么发现?你能用函数的语言刻画这种对应关系吗?预设答案:(1)直角三角形的性质;(2)画出6π的终边OP ,过点P 作x 轴的垂线交x 轴于M ,在Rt △OMP 中,利用直角图2三角形的性质可得点P 的坐标是⎪⎪⎭⎫ ⎝⎛2123,; (3)可以发现,∠MOP =3π,而点P 在第二象限,可得点P 的坐标是⎪⎪⎭⎫ ⎝⎛-2321,; (4)对于R 中的任意一个角α,它的终边OP 与单位圆交点为P (x ,y ),无论是横坐标x 还是纵坐标y ,都是唯一确定的.这里有两个对应关系:f :实数α(弧度)对应于点P 的纵坐标y ,g :实数α(弧度)对应于点P 的横坐标x .根据上述分析,f :R →[-1,1]和g :R →[-1,1]都是从集合R 到集合[-1,1]的函数. 设计意图:以函数的对应关系为定向,从特殊到一般,使学生确认相应的对应关系满足函数的定义,角的终边与单位圆交点的横、纵坐标都是圆心角α(弧度)的函数,为给出三角函数的定义做好准备.问题3:请同学们先阅读教科书第178~179页,再回答如下问题:(1)正弦函数、余弦函数和正切函数的对应关系各是什么?(2)符号sin α,cos α和tan α分别表示什么?在你以往的学习中有类似的引入特定符号表示一种量的经历吗?(3)为什么说当α≠2π+k π时,tan α的值是唯一确定的? (4)为什么说正弦函数、余弦函数的定义域是R ?而正切函数的定义域是{x ∈R |x ≠2π+k π,k ∈Z }?预设的师生活动:学生独立阅读课文,再举手回答上述问题.预设答案:(1)正弦函数的对应关系:sin α →点P 的纵坐标y ;余弦函数的对应关系:cos α →点P 的横坐标x ;正弦函数的对应关系:tan α →xy (2)分别表示y ,x ,;引入符号log a b 表示a x =b 中的x .(3)当α≠2π+k π时,如果α确定,那么α的终边确定,终边与单位圆的交点P 确定,P 点的横、纵坐标x 、y 就会唯一确定,因此x y 的值也是唯一确定的,所以tan α的值也是唯一确定的.(4)当α=2π+k π时,α的终边在y 轴上,这时点P 的横坐标x 等于0,所以xy =tan α无意义.除此之外,对于任意角α,P 点的横、纵坐标的值x ,y 都是存在且唯一确定的.设计意图:在问题引导下,通过阅读教科书、辨析关键词等,使学生明确三角函数的“三要素”;引导学生类比已有知识(引入符号log a b 表示a x =b 中的x ),理解三角函数符号的意义.问题5:在初中我们学了锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数.设x ∈⎪⎭⎫ ⎝⎛2π0,,把按锐角三角函数定义求得的锐角x 的正弦记为y 1,并把按本节三角函数定义求得的x 的正弦记为z 1.y 1与z 1相等吗?对于余弦、正切也有相同的结论吗?预设的师生活动:教师引导,学生作图并得出结论.预设答案:作出Rt △ABC ,其中∠A =x ,∠C =90°,再将它放入直角坐标系中,使点A 与原点重合,AC 在x 轴的正半轴上,可得出y 1=z 1的结论.对于余弦、正切也有相同的结论.设计意图:建立锐角三角函数与任意角三角函数的联系,使学生体会两个定义的和谐性. 例1 利用三角函数的定义求3π5的正弦、余弦和正切值. 预设的师生活动:先由学生发言,再总结出从定义出发求三角函数值的基本步骤,并得出答案.预设答案:在直角坐标系中,作∠AOB =3π5(图3).易知∠AOB 的终边与单位圆的交点坐标为⎪⎪⎭⎫ ⎝⎛-2321,. 所以,sin 233π5-=,cos 213π5=,tan 33π5-=. 设计意图:通过概念的简单应用,明确用定义求三角函数值的基本步骤,进一步理解定义的内涵.练习:在例1之后进行课堂练习:(1)利用三角函数定义,求π,2π3的三个三角函数值. (2)说出几个使cos α=1的α的值.预设的师生活动:由学生逐题给出答案,并要求学生说出解答步骤,最后可以总结为“画终边,找交点坐标,算比值(对正切函数)”.预设答案:(1)sin π=0,cos π=-1,tan π=0;sin2π3=-1,cos 2π3=0,tan 2π3不存在.(2)α=0,2π,-2π等.设计意图:检验学生对定义的理解情况.例2 如图4,设α是一个任意角,它的终边上任意一点P (不与原点O 重合)的坐标为(x ,y ),点P 与原点的距离为r .求证:sin α=r y ,cos α=r x ,tan α=x y . 师生活动:给出问题后,教师可以引导学生思考如下问题,再让学生给出证明:(1)你能根据三角函数的定义作图表示出sin α,cos α吗?(2)在你所作出的图形中,r y ,r x ,xy 各表示什么,你能找到它们与做任意角α的三角函数的关系吗?图3预设答案:如图5,设角α的终边与单位圆交于点P 0(x 0,y 0).分别过点P ,P 0作x 轴的垂线PM ,P 0M 0,垂足分别为M ,M 0,则|P 0M 0|=|y 0|,|PM |=|y |,|OM 0|=|x 0|,|OM |=|x |,△OMP ∽△OM 0P 0.于是r PM M P ||1||00 ,即|y 0|=ry ||.因为y 0与y 同号,所以y 0=r y , 即sin α=r y .同理可得cos α=r x ;tan α=x y . 设计意图:通过问题引导,使学生找到△OMP ,△OM 0P 0,并利用它们的相似关系,根据三角函数的定义得到证明.追问:例2实际上给出了任意角三角函数的另外一种定义,而且这种定义与已有的定义是等价的.你能用严格的数学语言叙述一下这种定义吗?预设的师生活动:可以由几个学生分别给出定义的表述,在交流的基础上得出准确的定义.预设答案:设α是一个任意角,它的终边上任意一点P (不与原点O 重合)的坐标为(x ,y ),点P 与原点的距离为r ,则r y 、r x 、xy 分别叫做角α的正弦、余弦、正切. 设计意图:加深学生对三角函数定义的理解.练习:在例2之后进行课堂练习:(3)已知点P 在半径为2的圆上按顺时针方向做匀速圆周运动,角速度为1rad/s .求2 s 时点P 所在的位置.图5图4预设的师生活动:由学生独立完成后,让学生代表展示作业.预设答案:以坐标原点为圆心O ,OP 所在直线为x 轴正方向建立平面直角坐标系.2 s 时点P 所在位置记为Q .因为点P 是在半径为2的圆上按顺时针方向作匀速圆周运动,角速度为1rad/s ,所以圆心角∠POQ =-2 rad .所以2 s 时,点P 在该坐标系中的位置为(2cos 2,-2sin 2).设计意图:三角函数是刻画匀速圆周运动的数学模型,通过练习使学生从另一个角度理解三角函数的定义.(三)布置作业(四)目标检测设计(1)利用三角函数定义,求6π7的三个三角函数值. (2)已知角θ的终边过点P (-12,5),求角θ的三角函数值.预设答案:(1)sin6π7=-21,cos 6π7=-23,tan 6π7=33; (2)sin θ=513,cos θ=-1213,tan θ=-512.设计意图:考查学生对三角函数定义的理解情况.1、最困难的事就是认识自己。