勾股定理常见题型
勾股定理中的经典题型
CB A D E F P M BC A 勾股定理中的经典题型1. 如图,圆柱的高为10 cm ,底面半径为2 cm.,在下底面的A 点处有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处,需要爬行的最短路程是多少?2. 如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC •为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•3. 如图,已知:︒=∠90C ,CM AM =,AB MP ⊥于P .求证: 222BC AP BP +=.4. 已知:如图,△ABC 中,∠C =90°,D 为AB 的中点,E 、F 分别在AC 、BC 上,且DE ⊥DF .求证:AE 2+BF 2=EF 2.5. 已知△ABC 中,a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由.BCA6. 已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.7. 已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD 的面积。
8. 如图,在△A BC 中,AB=13,BC=14,A C=15,则BC 边上的高A D= 。
AB CD9.如图,在等腰△ABC 中,∠ACB=90°,D 、E 为斜边AB 上的点,且∠DCE=45°。
求证:DE 2=AD 2+BE 2。
E CA BD10. 如图,在△ABC 中,AB=AC ,P 为BC 上任意一点,请说明:AB 2-AP 2=PB ×PC 。
P A B C 第10题图。
勾股定理经典题型讲解
我国古代数学著作《九章算术》中的一个问题,原文是:今有 方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,水 深、葭长各几何?请用学过的数学知识回答这个问题.
译:有一个水池,水面是一个边 长为10尺的正方形,在水池正中 央有一根芦苇,它高出水面一尺. 如果把这根芦苇拉向水池一边的 中点,它的顶端恰好到达池边的 水面.这个水池的深度与这根芦 苇的长度分别是多少?
是( C ) 3 4 π2
A.3 1π B.3 2 C. 2
D.3 1 π2
解析:把圆柱侧面展开,展开图如图所示,点A、C的最短距离
为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD
为底面半圆弧长,AD=1.5π,所以AC= 32 (3π )2 3 4 π2 ,
2
2
故选:C.
在Rt△ABC中, ∠C=90°. (1)若a:b=1:2 ,c=5,求a;(2)若b=15,∠A=30°,求a,c.
解:(1)设a=x,b=2x,根据勾股定理建立方程得
x2+(2x)2=52, 解得
x (5 舍去)
(2)
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
(结果取整数).
解: AB BC2 AC2
602 202 40 2
≈57(m).
四.勾股定理解决线段移动问题
如图,一架2.6米长的梯子AB 斜靠在一竖直的墙 AO上,这时AO 为2.4米. (1)求梯子的底端B距墙角O多少米? (2)如果梯子的顶端A沿墙下滑0.5 米,那么梯子底端B也外移0.5米吗?
勾股定理经典题型讲解
一.利用勾股定理求直角三角形的边长
如图,在Rt△ABC中, ∠C=90°.
勾股定理题型(很全面)
典型例题:一、利用勾股定理解决实际问题例题:水中芦苇梯子滑动1、有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?2、如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?3、如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我反走私A艇发现正东方向有一走私艇C以每小时6.4海里的速度偷偷向我领海开来,便立即通知正在MN在线巡逻的我国反走私艇B密切注意,反走私A艇通知反走私艇B时,A和C两艇的距离是20海里,A、B两艇的距离是12海里,反走私艇B测得距离C是16海里,若走私艇C的速度不变,最早会在什么时间进入我国领海?二、与勾股定理有关的图形问题1.已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是.2.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是____ _____.3.在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______ ___.4.如图,△ABC中,∠C=90°,(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S1+S2与S3的关系;(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S1+S2与S3的关系;(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S1+S2与S3的关系.图①图②图③5.如图,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…,记正方形ABCD的边长a1=1,依上述方法所作的正方形的边长依次为a1,a2,a3,…,an,根据上述规律,则第n个正方形的边长an=___ _____记正方形AB-CD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,……,S n(n为正整数),那么S n=____ ____.6、如图,Rt△ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为.ABCDEFG1FE DAB CA B C D EG F F 三、关于翻折问题1、如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG.2、如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F. (1)求证:△FAC 是等腰三角形;(2)若AB=4,BC=6,求△FAC 的周长和面积.3、如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知cm CE 6=,cm AB 16=,求BF 的长.4、如图,一张矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝。
勾股定理知识点+类型+题型有答案版
勾股定理知识点知识点一:勾股定理如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(3)勾股定理的一些变式:c2=a2+b2, a2=c2-b2, b2=c2-a2, c2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。
知识点四:勾股数满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。
熟悉下列勾股数,对解题有很大帮助:①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.②如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。
勾股定理考查类型类型一:勾股定理的直接用法在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
完整版)勾股定理知识点与常见题型总结
完整版)勾股定理知识点与常见题型总结勾股定理复勾股定理是指直角三角形两直角边的平方和等于斜边的平方,表示为a^2 + b^2 = c^2,其中a、b为直角三角形的两直角边,c为斜边。
勾股定理的证明常用拼图的方法。
通过割补拼接图形后,根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
常见的证明方法有以下三种:1.通过正方形的面积证明,即4ab + (b-a)^2 = c^2,化简可证。
2.四个直角三角形的面积与小正方形面积的和等于大正方形的面积,即4ab + c^2 = 2ab + c^2,化简得证。
3.通过梯形的面积证明,即(a+b)×(a+b)/2 = 2ab + c^2,化简得证。
勾股定理适用于直角三角形,因此在应用勾股定理时,必须明确所考察的对象是直角三角形。
勾股定理可用于解决直角三角形中的边长计算或直角三角形中线段之间的关系的证明问题。
在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算。
同时,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解。
勾股定理的逆定理是:如果三角形三边长a、b、c满足a^2 + b^2 = c^2,那么这个三角形是直角三角形,其中c为斜边。
a^2+b^2=c^2$是勾股定理的基本公式。
如果三角形ABC 不是直角三角形,我们可以类比勾股定理,猜想$a+b$与$c$的关系,并对其进行证明。
勾股定理的实际应用有很多。
例如,在图中,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B 到地面的距离为7m。
现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m。
同时梯子的顶端B下降至B′。
那么BB′的长度是小于1m的(选项A)。
又如,在图中,一根24cm的筷子置于底面直径为15cm,高8cm的圆柱形水杯中。
设筷子露在杯子外面的长度为h cm,则h的取值范围是7cm ≤ h ≤ 16cm(选项D)。
勾股定理典型题型
新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴2210AB AC BC =+= ⑵228BC AB AC =-=题型二:利用勾股定理测量长度例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米解析:这是一道大家熟知的典型的“知二求一”的题。
把实物模型转化为数学模型后,.已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理!根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2=144,所以AC=12.例题2 如图(8),水池中离岸边D 点米的C 处,直立长着一根芦苇,出水部分BC 的长是米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度A C.解析:同例题1一样,先将实物模型转化为数学模型,如图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=,这是典型的利用勾股定理“知二求一”的类型。
标准解题步骤如下(仅供参考):解:如图2,根据勾股定理,AC 2+CD 2=AD 2设水深AC= x 米,那么AD=AB=AC+CB=x +x 2+=( x +)2 解之得x =2. 故水深为2米.题型三:勾股定理和逆定理并用——例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41=那么△DEF 是直角三角形吗为什么 CB D A解析:这道题把很多条件都隐藏了,乍一看有点摸不着头脑。
仔细读题会意可以发现规律,没有任何条件,我们也可以开创条件,由AB FB 41 可以设AB=4a ,那么BE=CE=2 a ,AF=3 a ,BF= a ,那么在Rt △AFD 、Rt △BEF 和 Rt △CDE 中,分别利用勾股定理求出DF,EF 和DE 的长,反过来再利用勾股定理逆定理去判断△DEF 是否是直角三角形。
勾股定理常见题型总结
典型题型题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴10AB =⑵8BC =题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为 ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴4AC , 2.4AC BC CD AB⋅== DB A C⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm 例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21E DCBA分析:此题将勾股定理与全等三角形的知识结合起来解:作DE AB ⊥于E,12∠=∠,90C ∠=︒∴ 1.5DE CD ==在BDE ∆中90,2BED BE ∠=︒=Rt ACD Rt AED ∆≅∆AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mAB C D E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c =解:①22221.52 6.25a b +=+=,222.5 6.25c ==∴ABC ∆是直角三角形且90C ∠=︒ ②22139b c +=,22516a =,222b c a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c = 222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用 例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CB AAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=, 90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=。
勾股定理题型大全
1.已知等腰三角形的周长为24,腰长为x ,则x 的取值范围是 ································ ( ). A )x >12 (B )x <6 (C )6<x <12 (D )0<x <122.如图,等边三角形ABC 中,AD 是BC 上的高,取AC 的中点E , 连结DE ,则图中与DE 相等的线段有 ····························· ( ). (A )1条 (B )2条 (C )3条 (D )4条3.如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( )。
A 、90° B 、 75° C 、70° D 、60°4..如图所示,要在河边修建一个水泵站,分别向张村、李庄送水,那么水泵站应修在河边什么地方,可使所用水管最短?画图并说明理由。
5、(10分)①如图:A 、B 是两个蓄水池,都在河流a 的 同侧,为了方便灌溉作物,要在河边建一个抽水站, 将河水送到A 、B 两地,问该站建在河边什么地方,•②如图:某地有两所大学和两条相交叉的公路,(点M ,N 表示大学,AO ,BO 表示公路).现计划修建 一座物资仓库,希望仓库到两所大学的距离相等,到 两条公路的距离也相等。
勾股定理解题的十种常见类型习题
05 利用勾股定理求折叠中线段长
利用勾股定理求折叠中线段长·木子老师
06 利用勾股定理求动点中线段长
利用勾股定理求动点中线段长·木子老师
07 利用勾股定理求实际中的距离
利用勾股定理求实际中的距离·木子老师
08 利用勾股定理解传统数学文化
问题
利用勾股定理解传统数学文化问题·木子老师
09 利用勾股定理求最短距离
利用勾股定理求最短距离·木子老师
10 利用勾股定理求解分类中的最
短距离
利用勾股定理求解分类中的最短距离 ·木子老师
谢谢欣赏Leabharlann 勾股定理解题的十种常见题型
授课老师:木子老师
01 利用勾股定理求线段长
利用勾股定理求线段长·木子老师
02 利用勾股定理说明线段相等
利用勾股定理说明线段相等·木子老师
03 利用勾股定理说明线段之间的
平方关系
利用勾股定理说明线段之间的平方关系·木子老师
04 利用勾股定理求四边形中线段
长
利用勾股定理求四边形中线段长·木子老师
勾股定理常见练习题精修订
勾股定理常见练习题标准化管理部编码-[99968T-6889628-J68568-1689N]勾股定理应用题题型一:已知两边求第三边1、直角三角形中,以直角边为边长的两个正方形的面积为72cm,82cm,则以斜边为边长的正方形的面积为_________2cm.2、已知直角三角形的两边长为5、12,则另一条边长是________________.3、作出长度为10的线段。
4、一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?针对练习1、以下列各组数为边长,能组成直角三角形的是()A.2,3,4 B.10,8,4 C.7,25,24 D.7,15,122、已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或253、以面积为9 cm2的正方形对角线为边作正方形,其面积为()A.9 cm2 B.13 cm2 C.18 cm2 D.24 cm2题型二:利用勾股定理测量长度例1:如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?例2:如图(8),水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.AB例3:如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处. 大树在折断之前高多少?题型三:转化思想例:如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短距离为________ cm。
(π取3)题型四:利用勾股定理解决实际问题例:如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为多少米?巩固练习1、如图1,直角△ABC的周长为24,且AB:AC=5:3,则BC=()A.6 B.8 C.10 D.12图1 图22、如图2,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了()A.4米 B.6米 C.8米 D.10米3、将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是()A.5≤h≤12 B.5≤h≤24 C.11≤h≤12 D.12≤h≤24 4、已知,如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2 B.8cm2 C.10cm2 D.12cm24题 5题6题5、已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,则四边形ABCD的面积为()A、36,B、22C、18D、126、如图中阴影部分是一个正方形,如果正方形的面积为64厘米2,则X的长为厘米。
勾股定理的应用(3种题型)
第03讲勾股定理的应用(3种题型)【知识梳理】一.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.二.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.【考点剖析】题型一.勾股定理的实际应用例1.如图,一棵树从3m处折断了,树顶端离树底端距离4m,那么这棵树原来的高度是() A.8m B.5m C.9m D.7m【变式】如图在实践活动课上,小华打算测量学校旗杆的高度,她发现旗杆顶端的绳子垂到地面后还多出1m,当她把绳子斜拉直,且使绳子的底端刚好接触地面时,测得绳子底端距离旗杆底部5m,由此可计算出学校旗杆的高度是()A.8m B.10m C.12m D.15m例2.如图,一个直径为20cm的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.【变式】小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.题型二.平面展开-最短路径问题例3.如图,长方体的底面边长是1cm和3cm,高是6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么用细线最短需要()A.12cm B.10cm C.13cm D.11cm例4.一个上底和下底都是等边三角形的盒子,等边三角形的高为70cm,盒子的高为240cm,M为AB的中点,在M处有一只飞蛾要飞到E处,它的最短行程多少?【变式】如图①,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点的食物,需要爬行的最短路程是多少?(π取3)题型三:勾股定理中的折叠问题例5.如图,矩形纸片ABCD中,4AB=,3AD=,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1B.43C.32D.2【变式】如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知3CE cm=,8AB cm=,求图中阴影部分的面积.【过关检测】一.选择题1.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺2.如图,已知圆柱底面的周长为12cm,圆柱高为8cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.10cm B.20cm C.cm D.100cm3.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为()A.0.8米B.2米C.2.2米D.2.7米4.如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()A.10B.50C.120D.1305.如图,圆柱的高为8cm,底面半径为2cm,在圆柱下底面的A点处有一只蚂蚁,它想吃到上底面B处的食物,已知四边形ADBC的边AD、BC恰好是上、下底面的直径,问:蚂蚁吃到食物爬行的最短距离是cm.(π取3)6.《九章算术》中的“引葭赴岸”问题:今有池方一丈,葭(一种芦苇类植物)生其中央,出水一尺.引葭赴岸,适与岸齐,水深几何?其大意是:有一个边长为10尺的正方形池塘,一棵芦苇生长在它的正中央,高出水面1尺.如果把该芦苇拉向岸边,那么芦苇的顶部恰好碰到岸边(如图所示),则水深________尺.7.《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,未折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺,问折断处离地面的距离为.8.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB =10,BC=4,求AC的长.9.如图,一架25米长的梯子AB斜靠在一竖直的墙AO上,梯子底端B离墙AO有7米.(1)求梯子靠墙的顶端A距地面有多少米?(2)小燕说“如果梯子的顶端A沿墙下滑了4米,那么梯子的底端B在水平方向就滑动了4米.”她的说法正确吗?若不正确,请说明理由.10.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?11.我国古代的数学名著《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:尺)原处还有多高的竹子?(1丈1012.如图,一个梯子AB,顶端A靠在墙AC上,这是梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米,底端将水平滑动了8米,求滑动前梯子底端与墙的距离CB是多少?13.(2022春•蜀山区期中)在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.14.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC =7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.15.如图,A,B两村在河L的同侧,A,B到河L的距离分别为1.5km和2km,AB=1.3km,现要在河边建一供水厂,同时向A,B 1.8万元,问水厂与A村的水平距离为多远时,能使铺设费用最省,并求出总费用约多少万元.。
勾股定理知识点与题型总结大全
CA BD 勾股定理全章类题总结类型一:等面积法求高【例题】如图,△ABC 中,∠ACB=900,AC=7,BC=24,C D ⊥AB 于D. (1)求AB 的长; (2)求CD 的长.类型二:面积问题【例题】如下左图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
【练习1】如上右图,每个小方格都是边长为1的正方形, (1)求图中格点四边形ABCD 的面积和周长。
(2)求∠ADC 的度数。
【练习2】如图,四边形ABCD 是正方形,AE ⊥BE ,且AE =3,BE =4,阴影部分的面积是______。
【练习3】如图字母B 所代表的正方形的面积是( )A. 12 B 。
13 C 。
144 D 。
194类型三:距离最短问题【例题】 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?ABCD7cmBD EB16925A BCDL【练习1】如图,一圆柱体的底面周长为20cm ,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,试求出爬行的最短路程.【练习2】如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家。
他要完成这件事情所走的最短路程是多少?类型四:判断三角形的形状【例题】如果ΔABC 的三边分别为a 、b 、c ,且满足a 2+b 2+c 2+50=6a+8b+10c ,判断ΔABC 的形状.【练习1】已知△ABC 的三边分别为m 2-n 2,2mn ,m 2+n 2(m,n 为正整数,且m >n),判断△ABC 是否为直角三角形。
勾股定理及常见题型分类
勾股定理及常见题型分类一、知识要点:1.勾股定理是指直角三角形斜边的平方等于两直角边平方和。
2.勾股定理的证明方法包括几何证明和代数证明,其中几何证明使用勾股树。
3.勾股定理的逆定理是指若一个三角形的三边满足勾股定理,则该三角形是直角三角形。
4.勾股定理常见题型包括勾股定理的应用、勾股定理的证明和勾股定理的逆定理。
二、典型题题型一:“勾股树”及其拓展类型求面积1.如图所示,正方形A、B、C、D构成了一棵勾股树,求最大正方形E的面积。
2.如图所示,直线l上有三个正方形a、b、c,已知a、c 的边长分别为6和8,求b的面积。
3.如图所示,以Rt△ABC的三边为直径分别向外作三个半圆,探索三个半圆的面积之间的关系。
4.如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是S1+S2=S3.5.如图所示,依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是4、5、6、7.题型二:勾股定理与图形问题1.如图所示,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,依此类推,第n个等腰直角三角形的斜边长是n+1.2.如图所示,求该四边形的面积。
3.如图所示,已知在△ABC中,∠A=45°,AC=2,AB=3+1,则边BC的长为3.4.如图所示,某公司的大门为长方形ABCD,上部为以AD为直径的半圆,已知AB=2.3m,BC=2m,卡车高2.5m,宽1.6m,判断卡车是否能通过公司的大门,并说明理由。
5.如图所示,已知AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求这块地的面积。
题型三:已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm、2cm,则斜边长为√5cm。
2.已知直角三角形的两边长为3cm、2cm,则另一条边长的平方是5cm²。
勾股定理复习专题3.利用勾股定理解题的6种常见题型
专训3.利用勾股定理解题的6种常见题型利用勾股定理求线段长1.如图所示,在等腰直角三角形ABC 中,∠ABC =90°,点D 为AC 边的中点,过D 点作DE ⊥DF ,交AB 于E ,交BC 于F ,若AE =4,FC =3,求EF 的长.(第1题)利用勾股定理作长为n 的线段2.已知线段a ,作长为13a 的线段时,只要分别以长为和的线段为直角边作直角三角形,则这个直角三角形的斜边长就为13a.利用勾股定理证明线段相等3.如图,在四边形ABFC 中,∠ABC =90°,CD ⊥AD ,AD 2=2AB 2-CD 2.求证:AB =BC.(第3题)利用勾股定理解非直角三角形问题4.如图,在△ABC 中,∠C =60°,AB =14,AC =10.求BC 的长.(第4题)利用勾股定理解实际生活中的应用5.在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60 km /h ⎝ ⎛⎭⎪⎫即503 m /s ,并在离该公路100 m 处设置了一个监测点A.在如图的平面直角坐标系中,点A 位于y 轴上,测速路段BC 在x 轴上,点B 在点A 的北偏西60°方向上,点C 在点A 的北偏东45°方向上.另外一条公路在y轴上,AO为其中的一段.(1)求点B和点C的坐标;(2)一辆汽车从点B匀速行驶到点C所用的时间是15 s,通过计算,判断该汽车在这段限速路上是否超速.(参考数据:3≈1.7)(第5题)利用勾股定理探究动点问题6.如图,在Rt△ABC中,∠ACB=90°,AB=5 cm,AC=3 cm,动点P 从点B出发沿射线BC以1 cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,借助图①求t的值;(3)当△ABP为等腰三角形时,借助图②求t的值.(第6题)解析(第1题)1.解:如图,连接BD.∵等腰直角三角形ABC中,点D为AC边的中点,∴BD⊥AC,BD平分∠ABC(等腰三角形三线合一),∴∠ABD=∠CBD=45°,又易知∠C=45°,∴∠ABD=∠CBD=∠C.∴BD=CD.∵DE⊥DF,BD⊥AC,∴∠FDC +∠BDF =∠EDB +∠BDF.∴∠FDC =∠EDB. 在△EDB 与△FDC 中,⎩⎨⎧∠EBD =∠C ,BD =CD ,∠EDB =∠FDC ,∴△EDB ≌△FDC(ASA ), ∴BE =FC =3.∴AB =7,则BC =7.∴BF =4.在Rt △EBF 中,EF 2=BE 2+BF 2=32+42=25,∴EF =5. 2.2a ;3a3.证明:∵CD ⊥AD ,∴∠ADC =90°,即△ADC 是直角三角形. 由勾股定理,得AD 2+CD 2=AC 2.又∵AD 2=2AB 2-CD 2,∴AD 2+CD 2=2AB 2.∴AC 2=2AB 2. ∵∠ABC =90°,∴△ABC 是直角三角形.由勾股定理,得AB 2+BC 2=AC 2,∴AB 2+BC 2=2AB 2, 故BC 2=AB 2,即AB =BC.方法总结:当已知条件中有线段的平方关系时,应选择用勾股定理证明,应用勾股定理证明两条线段相等的一般步骤:①找出图中证明结论所要用到的直角三角形;②根据勾股定理写出三边长的平方关系;③联系已知,等量代换,求之即可.4.解:如图,过点A 作AD ⊥BC 于点D. ∴∠ADC =90°.又∵∠C =60°, ∴∠CAD =90°-∠C =30°,(第4题)∴CD =12AC =5.∴在Rt △ACD 中,AD =AC 2-CD 2=102-52=5 3. ∴在Rt △ABD 中,BD =AB 2-AD 2=11. ∴BC =BD +CD =11+5=16.方法总结:利用勾股定理求非直角三角形中线段的长的方法:作三角形一边上的高,将其转化为两个直角三角形,然后利用勾股定理并结合条件,采用推理或列方程的方法解决问题.5.解:(1)在Rt △AOB 中,∵∠BAO=60°,∴∠ABO=30°,∴OA=12AB.∵OA=100 m,∴AB=200 m.由勾股定理,得OB=AB2-OA2=2002-1002=100 3(m).在Rt△AOC中,∵∠CAO=45°,∴∠OCA=∠OAC=45°.∴OC=OA=100 m.∴B(-100 3,0),C(100,0).(2)∵BC=BO+CO=(100 3+100)m,100 3+10015≈18>503,∴这辆汽车超速了.6.解:(1)在Rt△ABC中,BC2=AB2-AC2=52-32=16,∴BC=4 cm.(2)由题意知BP=t cm,①如图①,当∠APB为直角时,点P与点C重合,BP=BC=4 cm,即t=4;[第6题(2)]②如图②,当∠BAP为直角时,BP=t cm,CP=(t-4)cm,AC=3 cm,在Rt△ACP中,AP2=32+(t-4)2,在Rt△BAP中,AB2+AP2=BP2,即52+[32+(t-4)2]=t2,解得t=25 4.故当△ABP为直角三角形时,t=4或t=25 4.(3)①如图①,当BP=AB时,t=5;②如图②,当AB=AP时,BP=2BC=8 cm,t=8;[第6题(3)]③如图③,当BP=AP时,AP=BP=t cm,CP=|t-4|cm,AC=3 cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(t-4)2,解得t=25 8.综上所述:当△ABP为等腰三角形时,t=5或t=8或t=25 8.。
有关勾股定理常见题型
有关勾股定理常见题型(一) 边的计算1、在Rt △ABC 中,∠C =90°,若a =6,b =8,则c = .解:因为222a b c +=,所以c=10。
评论:直接由勾股定理所以得2、在Rt △ABC 中,∠C =90°,AC =3,BC =4,则斜边上的高CD 的长为( )A .125BC .52D .解:由勾股定理知:AB=5,又因为S △ABC =21A C ×BC=21A B ×CD 即:21×3×4=21×5×CD,所以CD=125评论:通过勾股定理求出斜边,再利用面桥关系求出斜边上的高。
3、若一直角三角形两边的长为12和5,则第三边的长为( )A .13B .13C .13或15D .15解:当12当12对应的边是直角边时,则第三边为斜边,由222a b c +=得第三边的长为13评论:勾股定理结合分类讨论思想,学生要注意这类试题的多解性。
4.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( )A 、121B 、120C 、132D 、不能确定解:设该Rt △的三边分别为a 、b 、c ,a 、b 为直角边,c 为斜边由勾股定理知:222a b c +=,即:112+b 2 = c 2所以(b+c )(c -b )=121因为b 、c 都为自然数,所以b+c ,c -b ,都为正自然数。
又因为121只有1、11、121这三个正整数因式,所以b+c=121,c -b=1。
所以b=60,c=61评论,本题以直角三角形为载体,同过勾股定理将初中几何知识和代数知识很好地串联起来考察学生的能力。
(二) 直角三角形的判定5、 在△ABC 中中,a 、b 、c 为∠A 、∠B 、∠C 的对边,给出如下的命题:①若∠A :∠B :∠C =1:2:3,则△ABC 为直角三角形;②若∠A =∠C 一∠B ,则△ABC为直角三角形;③若45c a =,35b a =,则△ABC 为直角三角形;④若a :b :c =5:3:4,则△ABC 为直角三角形;⑤若(a +c )(a -c )=b 2,则△ABC 为直角三角形;⑥若(a+c)2=2ac +b 2,则△ABC 为直角三角形;⑦若AB=12,AC=9,B C=15, 则△ABC 为直D ˊ B D A ˊ B ˊ C ˊ角三角形。
初二勾股定理经典题型
初二勾股定理经典题型一、直角三角形中,一直角边长为3,斜边长为5,则另一直角边的长为?A. 2B. 4C. 6D. 8(答案:B)二、若三角形ABC的三边长分别为a, b, c,且满足a²+ b²= c²,则三角形ABC为?A. 等腰三角形B. 等边三角形C. 直角三角形D. 锐角三角形(答案:C)三、在直角三角形中,若斜边长为13,一直角边长为5,则另一直角边的平方为?A. 144B. 169C. 100D. 64(答案:A)四、已知直角三角形两直角边的长分别为6和8,则斜边的长为?A. 10B. 12C. 14D. 16(答案:A)五、若直角三角形中,斜边长为c,两直角边分别为a和b,且a=3:4,c=10,则a+b的值为?A. 12B. 14C. 7D. 21(答案:C,注:实际应为a+b的某种近似值,但按选项给定为简化处理)六、在直角三角形中,若一直角边长为√3,斜边长为2,则另一直角边的长为?A. 1B. √2C. 3D. 2√3(答案:A)七、已知直角三角形两直角边a和b满足(a+b)²=25,且斜边c=5,则2ab的值为?A. 12B. 24C. 10D. 15(答案:B,注:利用(a+b)²-c²=2ab求解)八、直角三角形中,若斜边长为25,且两直角边之差为7,则两直角边之和为?A. 32B. 24C. 42D. 18(答案:C,注:设两直角边为x, y,则x+y与x-y的关系结合勾股定理求解)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 .如图(16),大正方形的面积可以表示为 ,又可以表示为 ,由此可得等量关系 ABCD 正方形EFGH .ACB=90 , AB=4,分别以AC , BC 为直径作半圆,面积分别记为
专题一:勾股定理与面积 知识点精讲: 类型一 “勾股树”及其拓展类型求面积 典型例题:
3 .“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角
边的长分别是3和6,则大正方形与小正方形的面积差是
( )
4 .如图所示的大正方形是由八个全等的直角三角形和一个小正方形拼接而成,记图中正方形
正方形MNKT 勺面积分别为 S 、S 2、S.若正方形EFGH 勺边长为2,贝U S + S 2+ S 3 = _____________________________________ .
5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知 Si = 4, S 2= 9, S 3 = 8, S= 10,则S =( )
A. 25 B . 31 C . 32 D . 40
7•如图,已知直角厶ABC 的两直角边分别为 6, 8,分别以其三边为直径作半圆, 则图中阴影部分的面积是 ____________
8.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,
然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为 64,则正方形⑤的面积
_________________________ ,整理后可得: _______________
C 6 .如图,已知在Rt A ABC 中, C 6 8 ①
为()
B. 4
C. 8
D. 16
A. 2
13、已知正方形ABCD勺边长为3,正方形且S E FGH^5 贝U b-a = 。
规律与小结:EFGH内接于ABCD AE= a, AF= b, (a<b)
规律与小结: 做“勾股树”及其拓展类型的题,把握住以两条直角边为边长或直径延展出来的正方形或圆的面积和,等于以斜边为边长或直径延展出来的正方形或圆的面积。
类型二构造直角三角形求面积或长度
9.如图,在△ ABC中, AB= AC= 13, BC= 10,点D为BC的中点,
DEL AB垂足为点E,则DE的长为()
10 15 60 75
A _
B ________
C _________
D _________
13 13 13 13
10 •等腰三角形的腰长为10,底边长为12,则这个等腰三角形的面积为
规律与小结:
1. 学会借助现有的直角,构造直角三角形;
2. 等腰三角形“三线合一”,一定要牢牢把握。
3. 求斜边上的高,要学会先求出直角三角形的面积,再求斜边上的高。
类型三结合乘法公式巧求面积或长度
11. 已知Rt△ ABC中,/ C= 90°,若a+ b= 7cm, c= 5cm 贝U Rt△ ABC的面积是()
2 2 2 2
A. 6cm B . 9cm C. 12cm D . 15cm
12、如图,在直角三角形中,/ ACB=90 ,BC=15,AC=20,CD是斜边AB上的高,贝U AD—BD=
60
D . 80 D
牢记常见的勾股数一一“ 3,4,5 ”、“5,12,13 ”、“8,15,17 ”、“7,24,25 ”,当三条边同时扩大相同的倍数时,仍然满 足勾股定理。
类型四巧妙割补求面积
14 .如图,点E 在正方形ABCD 内,满足/ AEB= 90 ° , AE = 6, BE = 8,则阴影部分的面积是()
B .
A C . 76
17 .如图,在 Rt △ ABC 中,
18、矩形ABCD 中, AD=4cm , AB=10cm ,按如图方式折叠,使点
B 与点D 重合,折痕为EF,
则DE = 19 •如图,长方形纸片 ABCD&对角线AC 折叠,设点D 落在D'
部分的面积= ___________ . 20 .如图所示,正方形 ABCD 的边长为6,A ABE 是等边三角形, 点E 在
正方形ABCD 内,在对角线 AC 上有一点P,
使PD+PE 的和最小,则这个最小值为多少?
处,BC 交AD 于点E , AB= 6cm, BC = 8cm,则阴影
21.如图,/ A0= 90°, OA= 9cm , OB= 3cm 一机器人在点 B 处看见一个小球从点 A 出发沿着 AO 方向匀速滚向点
0,机器人立即从点 B 出发,沿BC 方向匀速前进拦截小球,恰好在点 C 处截住了小球•如果小球滚动的速度与 机器人行走的速度相等,那么机器人行走的路程 BC 是多少?
15 .如图,若/ BAD=Z DBC= 90°, AB= 3, AD= 4, BC = 12,贝U CD=()
A . 5
B . 13
C . 17
D . 18
16 .如图所示是一块地, 已知AD= 8米,CD= 6米,/ D= 90 ° , AB= 26米,BC = 24米,则这块地的面积是 ________________ 规律与小结:
将不规则图形利用转化思想转化成规则图形来求面积,
此过程中通常需要构造直角三角形, 也就是利用勾股定理的 逆定理,判断三边能否满足 a 2,b 2 =c 2,从而确定是否为直角三角形。
专题二:知识点 2勾股定理与折叠,轴对称,动点
典型例题:
/ B = 90°, AB= 3, BC = 4,将厶ABC 折叠,使点B 恰好落在边 AC 上与点B'重合,AE
规律与小结:
1. 折叠与对称题型一定要注意折叠之后的边是对应相等的。
2. 该种题型通常需要设未知数 x ,将含有未知数x 的量放在一个直角三角形中,应用勾股定理。
为折痕,则EB= B
C
G。