1.1.1等腰三角形-全等三角形和等腰三角形的性质

合集下载

1.1.1 三角形全等和等腰三角形的性质

1.1.1 三角形全等和等腰三角形的性质

∠DAC,∴5∠B=180°,即∠B=36°,则∠BAC
=180°-36°×2=108°
精品课件
【综合运用】 17.(12分)如图,在△ABC中,AB=AC,点D在BA的延长线上,点E在AC 上,且AD=AE.求证:DE⊥BC.(提示:过点A作AF⊥BC于点F)
证明:过点 A 作 AF⊥BC 于点 F,∵AB = AC , ∴AF 平 分 ∠BAC , ∴∠BAC = 2∠BAF , ∵AD = AE , ∴∠D = ∠AED , ∴∠BAC=∠D+∠AED=2∠D,∴∠BAF =∠D,∴DE∥AF,∴DE⊥BC
证明:∵BF=CE,∴BF+FC=CE+FC,即 BC =EF.∵AB∥DE,∴∠B=∠E.又∵AC∥DF, ∴∠ACB=∠DFE,在△ABC 与△DEF 中,
∠B=∠E, BC=EF, ∠ACB=∠DFE,
∴△ABC≌△DEF(ASA).∴AC=DF
精品课件
等腰三角形的性质定理及推论
5.(4分)(2015·宿迁)若等腰三角形有两边长分别为2和5,则这
8.(8分)(2015·北京)如图,在△ABC中,AB=AC,AD是BC边上 的中线,BE⊥AC于点E.
求证:∠CBE=∠BAD. 证明:∵AB=AC,AD是B边上的中线,BE⊥AC ,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD =∠BAD,∴∠CBE=∠BAD
精品课件
一、选择题(每小题4分,共12分) 9.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条
精品课件
3.(4分)如图,BC=EC,∠1=∠2,要使△ABC≌△DEC,则应添加的 条件是______A_C_=__D_C_,__∠__A_=__∠__D_或__∠__B_=__∠__E_.(写出一个即可)

北师大版八年级下册数学同步课时练习题(全册分章节课时,含答案)

北师大版八年级下册数学同步课时练习题(全册分章节课时,含答案)

北师⼤版⼋年级下册数学同步课时练习题(全册分章节课时,含答案)北师⼤版⼋年级下册数学同步课时练习题第⼀章三⾓形的证明第⼆章1.1等腰三⾓形第1课时全等三⾓形和等腰三⾓形的性质01基础题知识点1全等三⾓形的性质与判定1.如图,△ABC≌△BAD.若AB=6,AC=4,BC=5,则AD的长为(B)A.4 B.5C.6 D.以上都不对2.如图,若能⽤AAS来判定△ACD≌△ABE,则需要添加的条件是(B)A.∠ADC=∠AEB,∠C=∠BB.∠ADC=∠AEB,CD=BEC.AC=AB,AD=AED.AC=AB,∠C=∠B3.(2016·成都)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=120°.4.(2017·怀化)如图,AC=DC,BC=EC,请你添加⼀个适当的条件:AB=DE(答案不唯⼀),使得△ABC≌△DEC.5.如图,点B,E,C,F在同⼀条直线上,AB∥DE,AB=DE,BE=CF,AC=6,则DF=6.6.(2016·宜宾)如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.证明:∵∠CAB=∠DBA,∠DAC=∠CBD,∴∠DAB=∠CBA.在△ADB和△BCA中,∠DBA =∠CAB ,AB =BA ,∠DAB =∠CBA ,∴△ADB ≌△BCA(ASA).∴AD =BC.7.(2017·黄冈)已知:如图,∠BAC =∠DAM ,AB =AN ,AD =AM ,求证:∠B =∠ANM.证明:∵∠BAC =∠DAM ,∠BAC =∠BAD +∠DAC ,∠DAM =∠DAC +∠NAM ,∴∠BAD =∠NAM.在△BAD 和△NAM 中,AB =AN ,∠BAD =∠NAM ,AD =AM ,∴△BAD ≌△NAM(SAS).∴∠B =∠ANM.知识点2 等腰三⾓形的性质8.若等腰三⾓形的顶⾓为50°,则它的底⾓度数为(D)A .40°B .50°C .60°D .65° 9.(2017·平顶⼭市宝丰县期末)等腰三⾓形的⼀边长为4,另⼀边长为5,则此三⾓形的周长为(D)A .13B .14C .15D .13或14 10.(2017·江西)如图1是⼀把园林剪⼑,把它抽象为图2,其中OA =OB.若剪⼑张开的⾓为30°,则∠A =75度.11.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D.若AB =6,CD =4,则△ABC 的周长是20.02 中档题12.如图,在△ABC 中,AD ⊥BC ,垂⾜为D ,AD =BD =CD ,则下列结论错误的是(C)A .AB =AC B .AD 平分∠BAC C .AB =BC D .∠BAC =90°13.(2017·朝阳市建平县期末)若等腰三⾓形的⼀个内⾓等于15°,则这个三⾓形为(D)A .钝⾓等腰三⾓形B .直⾓等腰三⾓形C .锐⾓等腰三⾓形D .钝⾓等腰三⾓形或锐⾓等腰三⾓形 14.(2016·泰安)如图,在△PAB 中,PA =PB ,M ,N ,K 分别是PA ,PB ,AB 上的点,且AM =BK ,BN =AK.若∠MKN =44°,则∠P 的度数为(D)A .44°B .66°C .88°D .92°15.如图,已知点A ,F ,E ,C 在同⼀直线上,AB ∥CD ,∠ABE =∠CDF ,AF =CE. (1)从图中任找两组全等三⾓形; (2)从(1)中任选⼀组进⾏证明.解:(1)答案不唯⼀,如:△ABE ≌△CDF ,△ABC ≌△CDA. (2)答案不唯⼀,如选择证明△ABE ≌△CDF ,证明如下:∵AF =CE ,∴AE =CF. ∵AB ∥CD ,∴∠BAE =∠DCF. ⼜∵∠ABE =∠CDF ,∴△ABE ≌△CDF(AAS).16.如图,△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE.求证:(1)△AEF ≌△CEB ; (2)AF =2CD.证明:(1)∵AD ⊥BC ,CE ⊥AB ,∴∠AEF =∠CEB =∠ADC =90°.∴∠AFE +∠EAF =∠CFD +∠ECB =90°. ⼜∵∠AFE =∠CFD ,∴∠EAF =∠ECB.在△AEF 和△CEB 中,∠AEF =∠CEB ,AE =CE ,∠EAF =∠ECB ,∴△AEF ≌△CEB(ASA). (2)∵△AEF ≌△CEB ,∴AF =BC.在△ABC 中,AB =AC ,AD ⊥BC ,∴CD =BD ,BC =2CD.∴AF =2CD.03 综合题17.(1)如图1,在Rt △ABC 中,∠ACB =90°,点D ,E 在边AB 上,且AD =AC ,BE =BC ,求∠DCE 的度数; (2)如图2,在△ABC 中,∠ACB =40°,点D ,E 在直线AB 上,且AD =AC ,BE =BC ,则∠DCE =110°; (3)在△ABC 中,∠ACB =n °(0<n <180),点D ,E 在直线AB 上,且AD =AC ,BE =BC ,求∠DCE 的度数(直接写出答案,⽤含n 的式⼦表⽰).解:(1)∵AD =AC ,BC =BE ,∴∠ACD =∠ADC ,∠BCE =∠BEC. ∴∠ACD =(180°-∠A)÷2,∠BCE =(180°-∠B)÷2. ∵∠A +∠B =90°,∴∠ACD +∠BCE =180°-(∠A +∠B)÷2=180°-45°=135°. ∴∠DCE =∠ACD +∠BCE -∠ACB =135°-90°=45°. (3)①如图1,∠DCE =90°-12n °;②如图2,∠DCE =90°+12n °;③如图3,∠DCE =12n °;④如图4,∠DCE =12n °.第2课时等边三⾓形的性质01 基础题知识点1 等腰三⾓形相关线段的性质1.在△ABC 中,AB =AC ,BD ,CE 分别为边AC ,AB 上的中线.若BD =5,则CE =5. 2.证明:等腰三⾓形两腰上的⾼相等.解:已知:如图,在△ABC 中,AB =AC ,CE ⊥AB 于点E ,BD ⊥AC 于点D.求证:BD =CE.证明:∵CE ⊥AB 于点E ,BD ⊥AC 于点D ,∴∠AEC =∠ADB =90°. ⼜∵AC =AB ,∠A =∠A ,∴△ACE ≌△ABD(AAS).∴CE =BD.知识点2等边三⾓形的性质3.如图,△ABC是等边三⾓形,则∠1+∠2=(C)A.60°B.90°C.120°D.180°4.(2017·南充)如图,等边△OAB的边长为2,则点B的坐标为(D)A.(1,1) B.(3,1)C.(3,3) D.(1,3)5.如图,△ABC为等边三⾓形,AC∥BD,则∠CBD=120°.6.如图,等边△ABC中,AD为⾼,若AB=6,则CD的长度为3.7.等边△ABC的边长如图所⽰,则y=3.8.如图,l∥m,等边△ABC的顶点B在直线m上,延长AC,交直线m于点D.若∠1=20°,求∠2的度数.解:∵△ABC是等边三⾓形,∴∠ACB=60°.∴在△BCD中,∠CDB=∠ACB-∠1=60°-20°=40°.∵l∥m,∴∠2=∠CDB=40°.9.如图,△ABC和△ADE是等边三⾓形,AD是BC边上的中线.求证:BE=BD.证明:∵△ABC 和△ADE 是等边三⾓形,AD 为BC 边上的中线,∴AE =AD ,AD 为∠BAC 的平分线.∴∠CAD =∠BAD =30°. ∴∠BAE =∠BAD =30°. 在△ABE 和△ABD 中,AE =AD ,∠BAE =∠BAD ,AB =AB ,∴△ABE ≌△ABD(SAS).∴BE =BD.02 中档题10.下列说法:①等边三⾓形的每⼀个内⾓都等于60°;②等边三⾓形三条边上的⾼都相等;③等腰三⾓形两底⾓的平分线相等;④等边三⾓形任意⼀边上的⾼与这条边上的中线互相重合;⑤等腰三⾓形⼀腰上的⾼与这条腰上的中线互相重合.其中正确的有(D)A .1个B .2个C .3个D .4个11.如图,△ABC 是等边三⾓形,AD ⊥BC ,垂⾜为D ,点E 是AC 上⼀点,且AD =AE ,则∠CDE 等于(C)A .30°B .20°C .15°D .10°12.如图,已知△ABC 是等边三⾓形,点B ,C ,D ,E 在同⼀直线上,且CG =CD ,DF =DE ,则∠E =15度.13.如图,在等边△ABC 中,点D ,E 分别是边AB ,AC 的中点,CD ,BE 交于点O ,则∠BOC 的度数是120°.14.如图,已知等边△ABC 纸⽚,点E 在AC 边上,点F 在AB 边上,沿EF 折叠,使点A 落在BC 边上的点D 的位置,且ED ⊥BC ,则∠EFD =45°.解:∵△ABC 是等边三⾓形,BF 是△ABC 的⾼,∴∠ABO =12∠ABC =30°,AB =AC.∵AE =AC ,∴AB =AE. ∵AO 为∠BAE 的平分线,∴∠BAO =∠EAO.在△ABO 和△AEO 中,AB =AE ,∠BAO =∠EAO ,AO =AO ,∴△ABO ≌△AEO(SAS).∴∠E =∠ABO =30°.16.如图,△ABC 为等边三⾓形,点M 是线段BC 上任意⼀点,点N 是线段CA 上任意⼀点,且BM =CN ,BN 与AM 相交于点Q. (1)求证:AM =BN ; (2)求∠BQM 的度数.解:(1)证明:∵△ABC 为等边三⾓形,∴∠ABC =∠C =∠BAC =60°,AB =BC. 在△AMB 和△BNC 中,AB =BC ,∠ABM =∠C ,BM =CN ,∴△AMB ≌△BNC(SAS).∴AM =BN. (2)∵△AMB ≌△BNC ,∴∠MAB =∠NBC.∴∠BQM =∠MAB +∠ABQ =∠NBC +∠ABQ =∠ABC =60°.03 综合题17.已知,如图所⽰,P 为等边△ABC 内的⼀点,它到三边AB ,AC ,BC 的距离分别为h 1,h 2,h 3,△ABC 的⾼AM =h ,则h 与h 1,h 2,h 3有何数量关系?写出你的猜想并加以证明.解:猜想:h 1+h 2+h 3=h. 证明如下:连接PA ,PB ,PC. ∵S △PAB =12AB·h 1,S △PAC =12AC·h 2,S △PBC =12BC·h 3,S △ABC =12BC·h ,S △PAB +S △PAC +S △PBC =S △ABC ,∴12AB·h 1+12AC·h 2+12BC·h 3=12BC·h. ∵△ABC 是等边三⾓形,∴AB =AC =BC. ∴h 1+h 2+h 3=h.第3课时等腰三⾓形的判定与反证法01 基础题知识点1 等腰三⾓形的判定1.在△ABC 中,已知∠B =∠C ,则(B)A .AB =BC B .AB =AC C .BC =ACD .∠A =60°2.如图,在△ABC 中,AD 平分外⾓∠EAC ,且AD ∥BC ,则△ABC ⼀定是(C)A .任意三⾓形B .等边三⾓形C .等腰三⾓形D .直⾓三⾓形3.如图,AC ,BD 相交于点O ,∠A =∠D ,如果请你再补充⼀个条件,使得△BOC 是等腰三⾓形,那么你补充的条件不能是(C)A .OA =ODB .AB =CDC .∠ABO =∠DCOD .∠ABC =∠DCB4.(易错题)下列能判定△ABC为等腰三⾓形的是(B)A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C.AB=AC=2,BC=4D.AB=3,BC=7,周长为105.如图,已知OC平分∠AOB,CD∥OB.若OD=3 cm,则CD=3cm.6.如图,在△ABC中,AD⊥BC于D,若添加下列条件中的⼀个:①BD=CD;②AD平分∠BAC;③AD=BD.其中能使△ABC成为等腰三⾓形的有①②.7.已知:如图,AB=BC,DE∥AC,求证:△DBE是等腰三⾓形.证明:∵AB=BC,∴∠A=∠C.∵DE∥AC,∴∠BDE=∠A,∠BED=∠C.∴∠BDE=∠BED.∴BD=BE.∴△DBE是等腰三⾓形.知识点2反证法8.(2017·西安期中)⽤反证法证明命题“⼀个三⾓形中不能有两个⾓是直⾓”第⼀步应假设⼀个三⾓形中有两个⾓是直⾓.9.⽤反证法证明:等腰三⾓形的底⾓必定是锐⾓.已知:等腰△ABC,AB=AC.求证:∠B,∠C必定是锐⾓.证明:①假设等腰三⾓形的底⾓∠B,∠C都是直⾓,即∠B+∠C=180°,则∠A+∠B+∠C=180°+∠A>180°,这与三⾓形内⾓和等于180°⽭盾;②假设等腰三⾓形的底⾓∠B,∠C都是钝⾓,即∠B+∠C>180°,则∠A+∠B+∠C>180°,这与三⾓形内⾓和等于180°⽭盾.综上所述,假设①,②错误,所以∠B,∠C只能为锐⾓.故等腰三⾓形的底⾓必定为锐⾓.10.⽤反证法证明:已知直线a∥c,b∥c,求证:a∥b.证明:假设a与b相交于点M,则过M点有两条直线平⾏于直线c,这与“过直线外⼀点平⾏于已知直线的直线有且只有⼀条”相⽭盾,所以假设不成⽴,即a∥b.02中档题11.(2017·郑州⽉考)已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB,AC于点D,E.若BD+CE=5,则线段DE的长为(A)A.5 B.6 C.7 D.812.已知△ABC中,AB=AC,求证:∠B<90°.若⽤反证法证这个结论,应⾸先假设∠B≥90°.13.如图,在⼀张长⽅形纸条上任意画⼀条截线AB,将纸条沿截线AB折叠,所得到△ABC的形状⼀定是等腰三⾓形.14.某轮船由西向东航⾏,在A处测得⼩岛P的⽅位是北偏东70°,⼜继续航⾏7海⾥后,在B处测得⼩岛P的⽅位是北偏东50°,则此时轮船与⼩岛P的距离BP=7海⾥.15.(2017·内江)如图,AD平分∠BAC,AD⊥BD,垂⾜为点D,DE∥AC.求证:△BDE是等腰三⾓形.证明:∵DE∥AC,∴∠DAC=∠EDA.∵AD平分∠BAC,∴∠DAC=∠EAD.∴∠EAD=∠EDA.∵AD⊥BD,∴∠EAD+∠B=90°,∠EDA+∠BDE=90°.∴∠B=∠BDE.∴△BDE是等腰三⾓形.16.如图,在等边△ABC 中,BD 平分∠ABC ,延长BC 到E ,使CE =CD ,连接DE. (1)成逸同学说:BD =DE ,她说得对吗?请你说明理由;(2)⼩敏同学说:把“BD 平分∠ABC ”改成其他条件,也能得到同样的结论,你认为应该如何改呢?解:(1)BD =DE 是正确的.理由:∵△ABC 为等边三⾓形,BD 平分∠ABC ,∴∠DBC =12∠ABC =30°,∠ACB =60°.∴∠DCE =180°-∠ACB =120°. ⼜∵CE =CD ,∴∠E =30°. ∴∠DBC =∠E. ∴BD =DE.(2)可改为:BD ⊥AC(或点D 为AC 中点).理由:∵BD ⊥AC ,∴∠BDC =90°. ∴∠DBC =30°.由(1)可知∠E =30°,∴∠DBC =∠E. ∴BD =DE.03 综合题17.如图,在△ABC 中,AB =AC =2,∠B =∠C =40°,点D 在线段BC 上运动(D 不与B ,C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于点E. (1)当∠BDA =115°时,∠EDC =25°,∠DEC =115°;点D 从B 向C 运动时,∠BDA 逐渐变⼩(填“⼤”或“⼩”); (2)当DC 等于多少时,△ABD ≌△DCE ,请说明理由;(3)在点D 的运动过程中,△ADE 可以是等腰三⾓形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.解:(2)当DC =2时,△ABD ≌△DCE. 理由:∵∠C =40°,∴∠DEC +∠EDC =140°. ⼜∵∠ADE =40°,∴∠ADB +∠EDC =140°. ∴∠ADB =∠DEC. ⼜∵AB =DC =2,∴△ABD ≌△DCE(AAS).(3)可以,∠BDA 的度数为110°或80°. 理由:当∠BDA =110°时,∠ADC =70°. ∵∠C =40°,∴∠DAC =180°-∠ADC -∠C =180°-70°-40°=70°. ∴∠AED =180°-∠DAC -∠ADE =180°-70°-40°=70°. ∴∠AED =∠DAE.∴AD=ED.∴△ADE是等腰三⾓形.当∠BDA=80°时,∠ADC=100°.∴∠DAC=180°-∠ADC-∠C=180°-100°-40°=40°.∴∠DAE=∠ADE.∴AE=DE.∴△ADE是等腰三⾓形.第4课时等边三⾓形的判定01基础题知识点1等边三⾓形的判定1.△ABC中,AB=AC,∠A=∠C,则△ABC是(B)A.等腰三⾓形B.等边三⾓形C.不等边三⾓形D.不能确定2.下列说法不正确的是(D)A.有两个⾓分别为60°的三⾓形是等边三⾓形B.顶⾓为60°的等腰三⾓形是等边三⾓形C.底⾓为60°的等腰三⾓形是等边三⾓形D.有⼀个⾓为60°的三⾓形是等边三⾓形3.如图,在△ABC中,AB=BC=6,∠B=60°,则AC等于(B)A.4 B.6 C.8 D.104.如图,将两个完全相同的含有30°⾓的三⾓板拼接在⼀起,则拼接后的△ABD的形状是等边三⾓形.5.如图,已知OA=a,P是射线ON上⼀动点,∠AON=60°,当OP=a时,△AOP为等边三⾓形.6.如图,点D,E在线段BC上,BD=CE,∠B=∠C,∠ADB=120°,求证:△ADE为等边三⾓形.证明:∵∠B=∠C,∴AB=AC.⼜∵BD=CE,∴△ABD≌△ACE(SAS).∴AD=AE.⼜∵∠ADB=120°,∴∠ADE=60°.∴△ADE为等边三⾓形.知识点2 含30°⾓的直⾓三⾓形的性质 7.(2017·平顶⼭市宝丰县期中)在Rt △ABC 中,∠C =90°,∠A =30°,BC =9,则AB =18. 8.(2017·郑州⽉考)如图,∠C =90°,∠ABC =75°,∠CDB =30°.若BC =3 cm ,则AD =6cm.9.如图,这是某超市⾃动扶梯的⽰意图,⼤厅两层之间的距离h =6.5⽶,⾃动扶梯的倾⾓为30°,若⾃动扶梯运⾏速度为v =0.5⽶/秒,则顾客乘⾃动扶梯上⼀层楼的时间为26秒.10.如图,铁路AC 与铁路AD 相交于车站A ,B 区在∠CAD 的平分线上,且距车站A 为20千⽶,∠DAC =60°,则B 区距铁路AC 的距离为10千⽶.11.如图,在△ABC 中,∠ACB =90°,∠A =30°,CD ⊥AB 于点D ,BC =8 cm ,求AD 的长.解:∵∠ACB =90°,∠A =30°,BC =8 cm ,∴∠B =60°,AB =2BC =16 cm. ⼜∵CD ⊥AB 于D ,∴∠BDC =90°. ∴∠DCB =30°. ∴DB =12BC =4 cm.∴AD =AB -DB =12 cm.02 中档题12.在下列三⾓形中:①三边都相等的三⾓形;②有⼀个⾓是60°且是轴对称图形的三⾓形;③三个外⾓(每个顶点处各取1个外⾓)都相等的三⾓形;④⼀腰上的中线也是这条腰上的⾼的等腰三⾓形.其中是等边三⾓形的有(D)A .①②③B .①②④C .①③D .①②③④13.如图,折叠直⾓三⾓形纸⽚的直⾓,使点C 落在斜边AB 上的点E 处,已知CD =1,∠B =30°,则BD 的长是(B)A .1B .2 C. 3 D .2 314.已知∠AOB =30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点所构成的三⾓形是(D)A .直⾓三⾓形B .钝⾓三⾓形C .等腰三⾓形D .等边三⾓形15.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN.若MN =2,则OM =(C)A .3B .4C .5D .616.如图,△ABC 是等边三⾓形,D ,E ,F 分别是AB ,BC ,CA 边上⼀点,且AD =BE =CF ,则△DEF 的形状是等边三⾓形.17.如图,在△ABC 中,AB =AC ,∠BAC =120°,AD 是BC 边的中线,点E ,F 分别是AB ,AC 的中点,连接DE ,DF.(1)求证:△AED 是等边三⾓形;(2)若AB =2,则四边形AEDF 的周长是4.证明:∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°. ∵AD 是BC 边的中线,∴AD ⊥BC.∴∠BAD =60°. ∴AD =12AB.∵点E 为AB 的中点,∴AE =12AB.∴AE =AD.∴△ADE 是等边三⾓形.03 综合题18.在四边形ABCD 中,AB =BC =CD =DA ,∠B =∠D =60°,连接AC.(1)如图1,点E ,F 分别在边BC ,CD 上,且BE =CF.求证:①△ABE ≌△ACF ;②△AEF 是等边三⾓形;(2)若点E 在BC 的延长线上,则在直线CD 上是否存在点F ,使△AEF 是等边三⾓形?请证明你的结论(图2备⽤).解:(1)证明:①∵AB =BC ,∠B =60°,∴△ABC 是等边三⾓形.∴AB =AC. 同理,△ADC 也是等边三⾓形,∴∠B =∠ACF =60°.⼜∵BE =CF ,∴△ABE ≌△ACF(SAS).②∵△ABE ≌△ACF ,∴AE =AF ,∠BAE =∠CAF. ∵∠BAE +∠CAE =60°,∴∠CAF +∠CAE =60°,即∠EAF =60°.∴△AEF 是等边三⾓形. (2)存在.证明:在CD 延长线上取点F ,在BC 延长线上取点E ,使CF =BE ,连接AE ,EF ,AF. 与(1)①同理,可证△ABE ≌△ACF ,∴AE =AF ,∠BAE =∠CAF.∴∠BAE -∠CAE =∠CAF -∠CAE. ∴∠BAC =∠EAF =60°. ∴△AEF 是等边三⾓形.(注:若在CD 延长线上取点F ,使CE =DF 也可)⼩专题(⼀) 等腰三⾓形中常见的数学思想类型1 ⽅程思想1.如图,在△ABC 中,AB =AC ,BC =BD =ED =EA ,求∠A 的度数.解:设∠A =x °,∵BC =BD =ED =EA ,∴∠ADE =∠A =x °. ∴∠DEA =∠DBE =2x °. ∴∠BDC =∠C =3x °. ∵AB =AC ,∴∠C =∠ABC =3x °.在△ABC 中,∠A +∠C +∠ABC =180°,即x +3x +3x =180. ∴x =1807.∴∠A 为180°7.类型2 分类讨论思想2.如图,在Rt △ABC 中,∠ACB =90°,AB =2BC ,在直线BC 或AC 上取⼀点P ,使得△PAB 为等腰三⾓形,则符合条件在点P 共有(B)A .7个B .6个C .5个D .4个。

初二常靠的数学热点:三角形的性质

初二常靠的数学热点:三角形的性质

初二常靠的数学热点:三角形的性质初二常靠的数学热点:三角形的性质春蚕到死丝方尽,人至期颐亦不休。

一息尚存须努力,留作青年好范畴。

下面是小编为大家整理,数学知识点,希望对大家有所帮助,欢迎阅读,仅供参考!等腰三角形1.等腰三角形的性质①.等腰三角形的两个底角相等。

(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

(三线合一)理解:已知等腰三角形的一线就可以推知另两线。

2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(等角对等边)等边三角形1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 。

2、等边三角形的判定:①三个角都相等的三角形是等边三角形。

②有一个角是600的等腰三角形是等边三角形。

3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

全等三角形定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变通过上面对全等三角形知识点的讲解学习,相信同学们对全等三角形的知识已经能很好的掌握了吧,后面我们进行更多知识点的巩固学习。

拓展:初中数学三角形全等的性质定理公式句全等三角形指的就是两个全等的三角形,全等三角形是几何中全等的一种。

三角形全等的性质1.全等三角形的对应角相等。

2.全等三角形的对应边相等。

3.全等三角形的对应边上的高对应相等。

4.全等三角形的对应角的角平分线相等。

5.全等三角形的对应边上的中线相等。

6.全等三角形面积相等。

7.全等三角形周长相等。

8.全等三角形的对应角的三角函数值相等。

正常来说,验证两个全等三角形时都以三个相等部分来验证,最后便能得出结果。

正方形定理公式正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。

1.1等腰三角形的性质和判定

1.1等腰三角形的性质和判定

第一章图形与证明(二)1.1 等腰三角形的性质和判定Ⅰ.核心知识点扫描1.等腰三角形和等边三角形的性质和判定性质判定等腰三角形⑴等腰三角形两个底角相等(简称“等边对等角”) .⑵等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).⑴如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).⑵定义:如果一个三角形中有两条边相等,那么这个三角形是等腰三角形.图示(1)在△ABC中,∵AB=AC ∴∠B=∠C;(2)在△ABC中,AB=AC.若∠BAD=∠CAD,那么AD⊥BC,BD=CD;若BD=CD,那么∠BAD=∠CAD,AD⊥BC;若AD⊥BC,那么∠BAD=∠CAD,BD=CD.在△ABC中,∵∠B=∠C ∴AB=AC.等边三角形⑴等边三角形是特殊的等腰三角形,因此等边三角形具有等腰三角形的所有性质,并且,在每条边上都有“三线合一”;⑵等边三角形的每个内角都等于60°.⑴定义:三条边都相等的三角形是等边三角形.⑵有一个角是60°等腰三角形是等边三角形.⑶三个角都相等的三角形是等边三角形.图示∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°.(1)∵AB=BC=AC,∴△ABC是等边三角形;(2) ∵AB=BC,∠A=60°,∴△ABC是等边三角形;(3)∵∠A=∠B=∠C,∴∴△ABC是等边三角形.Ⅱ.知识点全面突破知识点1:等腰三角形性质(重点)⒈等腰三角形的性质定理1:等腰三角形的两个底角相等(简称“等边对等角”);可用符号语言表述如下:如图1-1-1,在△ABC中,∵AB=AC ∴∠B=∠C.已知:如图1-1-1,在△ABC中, AB=AC.求证:∠B=∠C.图1-1-3定理的证明分析:利用分析法思考证明的过程:如下所示:作顶角的平分线AD.()AB AC B C ABD ACD SAS BAD CAD AD AD =⎧⎪∠=∠⇐≅⇐∠=⎨⎪=⎩,具体证明过程略.此外,我们还可以用AAS 、ASA 、SSS 证明这一性质.如取BC 的中点D ,连接AD,在△ABD 和△ACD中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD (SSS ),∴B C ∠=∠.2.等腰三角形的性质定理2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).可用符号语言表述如下:如图1-1-2,在△ABC 中,AB=AC.若∠BAD=∠CAD ,那么AD ⊥BC ,BD=CD ; 若BD=CD ,那么∠BAD=∠CAD ,AD ⊥BC ;若AD ⊥BC ,那么∠BAD=∠CAD ,BD=CD.详解:①等腰三角形是特殊的三角形,它拥有一般三角形所具有的所有的性质.同时它还具有一般三角形所没有的特点和性质;②定理1常用来证明同一个三角形中的两个角相等;定理2实际上是等腰三角形中的两个结论,已知其中任意一个可以得到另两个结论,常用来证明角相等、线段相等或垂直;③将这两条性质用在特殊的等腰三角形即等边三角形中,可得等边三角的性质:等边三角形的各角都相等,并且都等于60°;等边三角形每一条边上的中线高都与所对的角平分线互相重合.例1.如图1-1-3,房屋的顶角∠BAC=100O ,过屋顶A 的立柱,屋椽AB=AC 求∠B ,∠C ,∠BAD ,∠CAD 的度数.解:在△ABC 中, AB=AC(已知).∴∠B=∠C(等边对等角) .∴∠B=∠C=21(180O -∠BAC) 图1-1-1图1-1-2=21(180O -100O )=40O (三角形内角和定理) .又∵AD ⊥BC ,∴∠BAD=∠CAD(等腰三角形顶角的平分线与底边上的高互相重合),∴∠BAD=∠CAD=50O .点拨:已知等腰三角形的顶角,根据等边对等角及三角形的内角和定理可求出∠B 与∠C 的度数,再根据等腰三角形的三线合一,可得AD 是顶角的平分线,则∠BAD 与∠CAD 的度数即可求.例2:(2010,山东济南)(一题多解)如图1-1-4,已知AB AC AD AE ==,.求证BD CE =.证明:方法1 如图1-1-5过点A 作AH ⊥BC ,交BC 于点H . ∵AB=AC ,AD=AE ,AH ⊥BC , ∴BH=CH , DH=EH∴BH 一DH=CH 一EH 即BD=CE 方法2 ∵AB=AC ∴∠B=∠C ∵AD=AE ∴∠ADE=∠AED∴180O-∠ADE=180O-∠AED 即∠ADB=∠AEC ∵AB=AC ,∠B=∠C ,∠ADB=∠AEC ∴△ABD ≌△ACE ∴BD=CE .点拨:在等腰三角形中,虽然顶角平分线、底边上的中线、底边上的高互相重合,但如何添加,要根据具体情况来定.本题中适合高AH AH ,利用等腰三角形的“三线合一”来解决这个问题。

专题08 等腰三角形(考点串讲)(解析版)

专题08 等腰三角形(考点串讲)(解析版)

专题08 等腰三角形【考点剖析】1.等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角) (2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一) 图形:如下所示;21DCBA符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则2.等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2) 等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)3.等边三角形的性质(1)等边三角形性质1:等边三角形的三条边都相等; (2) 等边三角形性质2:等边三角形的每个内角等于60︒; (3)等边三角形性质3:等边三角形是轴对称图形,有三条对称轴.4.等边三角形的判定(1)等边三角形的判定方法1:(定义法:从边看)有三条边相等的三角形是等边三角形; (2)等边三角形的判定方法2:(从角看)三个内角都相等的三角形是等边三角形;(3)等边三角形的判定方法3:(从边、角看)有一个内角等于60︒的等腰三角形是等边三角形. 【典例分析】例1 (杨浦2019期末14)在ABC ∆中,AB=AC ,把ABC ∆折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N. 如果CAN ∆是等腰三角形,则B ∠的度数为 . 【答案】4536︒︒或;【解析】因为把ABC ∆折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N.所以MN 是AB 的中垂线,∴NB=BA ,B BAN ∴∠=∠,AB AC B C =∴∠=∠Q ,设B x ∠=,则C BAN x ∠=∠=. (1)当AN=NC 时,CAN C x ∠=∠=,在ABC ∆中,根据三角形内角和定理得4180x =︒,得45x =︒,故45B ∠=︒;(2)当AN=AC 时,ANC C x ∠=∠=,而ANC B BAN ∠=∠+∠,故此时不成立;(3)当CA=CN 时,1802x NAC ANC ︒-∠=∠=,于是得1801802xx x x ︒-+++=︒,解得36x =︒. 综上所述:4536B ∠=︒︒或.NM CBA例2 (浦东2018期末18)如图,在ABC ∆中,A=120,=40B ∠︒∠︒,如果过点A 的一条直线把ABC ∆分割成两个等腰三角形,直线l 与BC 交于点D ,那么ADC ∠的度数是 .CBA【答案】14080︒︒或;【解析】如图所示,把BAC ∠分为1000︒︒和2或者4080︒︒和,可得ADC=14080∠︒︒或.ABCDC BA20°80°80°40°40°20°20°40°40°100°例3 (闵行2018期末17)有下列三个等式①AB =DC ;②BE =CE ;②∠B =∠C .如果从这三个等式中选出两个作为条件,能推出Rt △AED 是等腰三角形,你认为这两个条件可以是 (写出一种即可)EDCBA【答案】①②或①③或②③.(答案不唯一)【解析】解:当AB =DC ,BE =CE ,∠AEB =∠DEC 时,Rt △ABE ≌Rt △DCE (HL ),故AE =DE ,即Rt △AED 是等腰三角形;当AB =DC ,∠B =∠C ,∠AEB =∠DEC 时,△ABE ≌△DCE (AAS ),故AE =DE ,即Rt △AED 是等腰三角形;当BE =CE ,∠B =∠C ,∠AEB =∠DEC 时,△ABE ≌△DCE (ASA ),故AE =DE ,即Rt △AED 是等腰三角形.故答案为:①②或①③或②③.(答案不唯一)例4 (黄浦2018期末27)如图,在ABC ∆中,AD BC ⊥,垂足为点D ,AD 平分BAC ∠,点O 是线段AD 上一点,线段的延长线交边AC 于点F ,线段CO 的延长线交边AB 于点E . (1)说明ABC ∆是等腰三角形的理由; (2)说明BF=CE 的理由.O FE DC BA【答案与解析】(1)AD BC ADB=ADC ⊥∴∠∠Q ,Q AD 平分BAC ∠,BAD=CAD ∴∠∠.ADB=DAC+ACD ADC=BAD+ABD ∠∠∠∠∠∠Q ,,ABD=ACD ∴∠∠,AB=AC ∴即ABC ∆是等腰三角形;(2)ABC ∆Q 是等腰三角形,AD BC ⊥,BD=CD ∴.在BDO CDO ∆∆与中,DO DO ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩,BDO CDO ∴∆∆≌OBD OCD ∴∠=∠.在BEC CFB ∆∆与中ECB FBCBC CBABC ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩BEC CFB ∴∆∆≌,BF CE ∴=. 【真题训练】 一、选择题1.(宝山2018期末18)如图7,在ABC ∆中,AB=AC ,30A ∠=︒,以B 为圆心,BC 的长为半径作弧,交AC 于点D ,联结BD ,则ABD ∠等于( )A. 45︒;B. 50︒;C. 60︒;D. 75︒.DABC【答案】A ;【解析】因为在ABC ∆中,AB=AC ,30A ∠=︒,所以18030752ABC ACB ︒-︒∠=∠==︒,又因为以B为圆心,BC 的长为半径作弧,交AC 于点D ,所以,75BD BC BCA BDC =∴∠=∠=︒,30CBD ∴∠=︒,故753045ABD ABC CBD ∠=∠-∠=︒-︒=︒. 故答案选A.2.(长宁2019期末20)在平面直角坐标系,O 为坐标原点,点A的坐标为,M 为坐标轴上一点,且使得MOA ∆为等腰三角形,那么满足条件的点M 的个数为( ) A. 4; B.5; C.6; D.8 【答案】C ;【解析】分三种情况:(1)当OA=OM 时,可得M 点坐标可以为:(0,2)、(0,-2)、(2,0)、(-2,0);当AO=AM 时,M 点坐标可以为(2,0)、(0,;当MO=MA 时,(2,0)、(0,3;故一共有6个不同的点. 故选C. 二、填空题3.(浦东2018期末13)已知一个等腰三角形两边长分别为2和4,那么这个等腰三角形的周长是 . 【答案】10;【解析】依题,(1)若腰长为2、底为4,不可能构成等腰三角形,舍去;(2)若腰长为4、底为2,符合题意,周长为4+4+2=10;由上可知,这个等腰三角形的周长为10. 4.(宝山2018期末7)已知实数x 、y满足|3|0x -=,那么以x 、y 的值为两边长的等腰三角形的周长是 . 【答案】15;【解析】因为实数x 、y满足|3|0x -=,所以x=3,y=6,故符合题意的等腰三角形三边长分别为6、6、3,故此等腰三角形的周长为6+6+3=15.5.(闵行2018期末15)如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2= .l 3l 2l 1【答案】35°.【解析】解:∵直线l 1∥l 2∥l 3,∠1=25°,∴∠1=∠3=25°.∵△ABC 是等边三角形, ∴∠ABC =60°,∴∠4=60°﹣25°=35°,∴∠2=∠4=35°.故答案为:35°.1l 2l 36.(普陀2018期末17)如图,已知△ABC 中,∠ABC 的角平分线BE 交AC 于点E ,DE ∥BC ,如果点D 是边AB 的中点,AB=8,那么DE 的长是 .E D CBA【答案】4;【解析】解:连接BE ,∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∵DE ∥BC ,∴∠DEB=∠ABE , ∴∠ABE=∠DEB ,∴BD=DE ,∵D 是AB 的中点,∴AB=BD ,∴DE=12AB=4,故答案为:4 AD BCE7.(宝山2018期末13)如图,已知Rt ABC ∆中,90ACB ∠=︒,AC=AE ,BC=BD ,则ACD BCE ∠+∠= ______-︒.ECBA【答案】45;【解析】过点C 作CH AB ⊥于点H ,因为AC =AE ,所以ACE AEC ∠=∠,因为CH AB ⊥,所以90AEC HCE ∠+∠=︒, 又90ACE BCE ∠+∠=︒,所以=BCE HCE ∠∠;同理可得:ACD HCD ∠=∠; 故+=+BCE ACD HCE HCD ∠∠∠∠即+=45BCE ACD ∠∠︒.HED CBA8.(黄浦2018期末19)已知等腰三角形的一个内角为50度,则这个等腰三角形的顶角为 ︒. 【答案】50︒或80︒;【解析】(1)当顶角为50︒时,这个等腰三角形的顶角为50︒;(2)当底角为50︒时,则顶角为180-250=80︒⨯︒︒;综上述,这个等腰三角形的顶角为50︒或80︒.9.(长宁2018期末14)等腰三角形一腰上的高与另一腰的夹角为40︒,那么这个等腰三角形的顶角为____度.【答案】50130︒︒或.【解析】(1)如下图1,4050ABD A ∠=︒∴∠=︒,(2)如图2,40130ABD BAC ∠=︒∴∠=︒,故这个等腰三角形的顶角为50130︒︒或(图2)(图1)10.(黄浦2018期末14)等腰三角形底边上的中线垂直于底边且平分顶角,用符号来表示为:如图,如果在ABC ∆中,AB=AC ,且 ,那么AD BC ⊥且 .DCBA【答案】BD=CD ;BAD CAD ∠=∠;【解析】等腰三角形底边上的中线垂直于底边且平分顶角,用符号来表示为:如图,如果在ABC ∆中,AB=AC ,且BD=CD ,那么AD BC ⊥且BAD CAD ∠=∠.故答案为:BD=CD ;BAD CAD ∠=∠. 11.(杨浦2019期末13)如图,已知在ABC ∆中,AB=AC ,点D 在边BC 上,要使BD=CD ,还需添加一个条件,这个条件是 .(只需填上一个正确的条件)D B A【答案】BAD CAD ∠=∠或者AD BC ⊥(只填一个)【解析】解:在ABC ∆中,AB=AC ,BAD CAD ∠=∠,BD CD ∴=;或者 在ABC ∆中,AB=AC ,AD BC ⊥,BD CD ∴=;故答案为:BAD CAD ∠=∠或者AD BC ⊥. 考查等腰三角形的三线合一。

1.1.1全等三角形和等腰三角形教案

1.1.1全等三角形和等腰三角形教案
五、教学反思
在本次全等三角形和等腰三角形的课堂教学中,我注意到以下几点值得反思和改进的地方:
1.学生对全等三角形判定方法的掌握程度:在授课过程中,我发现部分学生对全等三角形的判定方法理解不够深刻,尤其是ASA和AAS判定方法容易混淆。针对这一问题,我计划在下一节课中增加一些具体实例,通过对比分析,帮助学生更好地理解和区分这些判定方法。
2.实践活动中学生的参与度:Байду номын сангаас分组讨论和实验操作环节,部分学生参与度不高,可能是由于他们对题目理解不够透彻。为了提高学生的参与度,我将在下一次实践活动中,提前为学生提供更详细的指导,确保他们能更好地投入其中。
3.课堂提问和引导:在课堂提问环节,我发现部分学生的回答不够准确,可能是由于问题设置不够明确。为了提高课堂提问的效果,我将在以后的教学中注意问题的设置,尽量让问题更具针对性和引导性,帮助学生更好地思考。
-例如,在一个等腰三角形中,若已知底边长和顶角,求腰长或底角。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《全等三角形和等腰三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否完全相同的情况?”(如拼图游戏中的三角形板块)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索全等三角形和等腰三角形的奥秘。
- AAS(角角边):两角及其中一角的对边对应相等的两个三角形全等。
(2)等腰三角形的性质及其判定方法:教师需引导学生探究等腰三角形的性质,如两腰相等、底角相等,并学会运用这些性质解决相关问题。
2.教学难点
(1)全等三角形判定方法的灵活运用:学生在理解判定方法的基础上,需要学会根据不同图形的特点选择合适的判定方法,这是本节课的一大难点。

等腰三角形和全等三角形

等腰三角形和全等三角形

等腰三角形和全等三角形在几何学中,三角形是最基本的图形之一。

它由三条边和三个内角组成。

在三角形的各种类型中,等腰三角形和全等三角形是比较常见的。

一、等腰三角形等腰三角形是指具有两条边相等的三角形。

它的定义可以表示为:若三角形的两条边相等,那么这个三角形就是等腰三角形。

在等腰三角形中,还有一些特殊的性质和定理。

1. 等腰三角形的底角相等定理:在一个等腰三角形中,两个底角一定相等。

这是等腰三角形的基本性质之一。

2. 等腰三角形的高线定理:等腰三角形的高线也就是通过顶角所在定点,垂直于底边的直线。

根据等腰三角形的性质,高线还被平分为两段相等的线段。

3. 等腰三角形的内切圆和外切圆:等腰三角形的底边上的高线和底边的中点连线,会相交于等腰三角形的内切圆的圆心。

同时,等腰三角形的底边上的中线也是内切圆的切线。

此外,内切圆的半径等于等腰三角形的高线和底边中点连线的长度。

二、全等三角形全等三角形是指具有完全相等的三个角和三个边的三角形。

两个三角形完全相等时,它们的对应边、对应角都相等。

全等三角形有以下的特点和定理:1. 角对应定理:两个三角形中,如果三个角两两相等,那么这两个三角形就是全等的。

2. 边对应定理:两个三角形中,如果其中两条边和夹角完全相等,那么这两个三角形就是全等的。

3. 全等三角形的性质:(1) 两个全等三角形的各边对应相等。

(2) 两个全等三角形的面积相等。

(3) 两个全等三角形的高线、中线相等。

结论:等腰三角形是指有两条边相等的三角形,全等三角形是指具有完全相等的三个角和三个边的三角形。

等腰三角形和全等三角形具有各自的特点和性质,通过理解和应用这些性质,我们可以更好地解题和推导其他几何图形的性质。

在实际应用中,等腰三角形和全等三角形常常在建筑、工程测量、设计和解决实际问题时发挥作用。

对于学习者而言,了解这些基本概念和原理能够帮助加深对几何学的理解和应用。

总之,等腰三角形和全等三角形是几何学中重要的概念和形状,它们的特点和性质在数学学科中具有广泛的应用。

等腰三角形的性质定理和判定定理

等腰三角形的性质定理和判定定理

教学内容(一)知识梳理知识点1:等腰三角形的性质定理1:等腰三角形的两个底角相等(简称“等边对等角”)证明:取BC的中点D,连接AD在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)知识点2:等腰三角形性质定理2:等腰三角形的顶角平分线,底边上的中线,底边上的高,互相重合(简称“三线合一”)∵AB=AC ∵AB=AC ∵AB=AC∠1=∠2 AD⊥BC BD=DC∴AD⊥BC,BD=DC ∴∠1=∠2 ∴∠1=∠2,BD=DC AD⊥BC知识3:等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)证明:过A作AD⊥BC于D,则∠ADB=∠ADC=90°。

在△ABD和△ACD中∴△ABD≌△ACD (AAS)∴AB=AC【典型例题分析】例1. 如图,已知P、Q是△ABC边BC上两点,且BP=PQ=AP=AQ=QC,求∠BAC的度数。

解:∵AP=PQ=AQ(已知)∴△APQ是等边三角形(等边三角形的定义)∴∠APQ=∠AQP=∠PAQ=60°(等边三角形的性质)∵AP=BP(已知)∴∠PBA=∠PAB(等边对等角)又∠APQ=∠PAB+∠PBA=60°∴∠PBA=∠PAB=30°同理∠QAC=30°∴∠BAC=∠PAB+∠PAQ+∠QAC=30°+60°+30°=120°例2. 已知:如图,在△ABC中,∠B=∠C,D、E、F分别为AB,BC,AC上的点,且BD=CE,∠DEF=∠B。

求证:△DEF是等腰三角形。

证明:∵∠B+∠BDE+∠BED=180°(三角形内角和定理)∠BED+∠DEF+∠FEC=180°(平角性质)∠B=∠DEF(已知)∴∠BDE=∠FEC(等角的补角相等)在△BED和△CFE中,∠BDE=∠FEC中(已证),BD=CE (已知),∠B=∠C (已知)∴△BED≌△CFE (ASA),∴DE=EF (全等三角形对应边相等)∴△DEF是等腰三角形(等腰三角形定义)例3. 已知:如图,AC和BD相交于点O,AB∥CD,OA=OB,求证:OC=OD证明:∵AB∥CD (已知)∴∠A=∠C,∠B=∠D (两直线平行,内错角相等)∵OA=OB (已知)∴∠A=∠B (等边对等角)∴∠C=∠D (等量代换)∴OC=OD (等角对等边)例4. 如图,在四边形ABDC中,AB=2AC,∠1=∠2,DA=DB,试判断DC与AC的位置关系,并证明你的结论。

初中数学难点之八:等腰三角形、等边三角形、直角三角形

初中数学难点之八:等腰三角形、等边三角形、直角三角形

初中数学难点之八:等腰三角形、等边三角形、直角三角形等腰三角形、等边三角形、直角三角形是初中数学重点考察内容,也是学习的难点。

一、等腰三角形的概念1. 定义有两条边相等的三角形叫做等腰三角形。

两条相等的边叫做腰,所夹的角叫做顶角,另一边叫做底边,底边与腰形成的两个角叫做底角。

2. 性质(1)等腰三角形是轴对称图形,底边中线是对称轴(底边的高、顶角的角的角平分线都是对称轴)(2)等腰三角形两个底角相等,简称等边对等角。

(3)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。

3. 判定(1)两内角相等的三角形叫做等腰三角形(2)两个边相等的三角形叫做等腰三角形二、等边三角形1. 定义三条边都相等的三角形叫做等边三角形。

2. 性质(1)等边三角形有三条对称轴,中线是对称轴(2)等边三角形三个角相等,每个角都为60º(3)等边三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。

3. 判定(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形叫做等边三角形(3)有一个内角是60º的等腰三角形是等边三角形。

三、直角三角形1. 定义有一个角是直角的三角形叫做直角三角形2. 性质(1)直角三角形两个锐角互余(2)直角三角形斜边上的中线等于斜边的一半(3)直角三角形中,30º角所对的直角边等于斜边的一半(4)勾股定理:a2+b2=c2(a、b为直角边,c为斜边)3. 判定(1)有一个角是直角的三角形,或者两个锐角和为90º的三角形为直角三角形。

(2)一边的中线等于这条边的一半,这个三角形是直角三角形。

(3)勾股定理逆定理:如果有a2+b2=c2(a、b、c为三角形的三个边),则三角行为直角三角形四、基础题型1. 例题1如图,边长为4的等边ΔABC中,D、E分别为AB、BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为?解:连接DE,因为:EF⊥AC,∠C=60º所以∠FEC=30º,因为:ΔABC为等边三角形,DE为中位线所以有:2. 考察知识点(1)等边三角形及内角为60º(2)三角形中位线(3)直角三角形30度内角所对直角边等于斜边的一半(4)直角三角形勾股定理3. 解题思路和技巧DG是非常孤立的,既不是中位线,也不平行某一边,即不是三角形的某一边,也不是规则四边形的边,很难下手,因此必须画辅助线把DG融入某个三角形内,因为D、E分别是所在边的中点,连接起来是三角形的中位线,因此连接DE,尝试解题。

1.1等腰三角形第1课时课件八年级数学下册(北师大版)

1.1等腰三角形第1课时课件八年级数学下册(北师大版)

已知: △ ABC中,AB=AC.
A
求证: ∠B= ∠C.
证明: 方法三:作底边的高线AD.
B
AB=AC ( 已知 ), 在△BAD和△CAD中,
AD=AD (公共边) ,
D
C
∴ Rt △BAD ≌ Rt △CAD (HL). ∴ ∠B= ∠C (全等三角形的对应角相等).
性质2 等腰三角形的“三线合一”
已知: △ ABC中,AB=AC.
A
求证: ∠B= ∠C.
证明: 方法二:作底边的中线AD.
AB=AC ( 已知 ),
B
D
C
在△BAD和△CAD中, BD=CD ( 辅助线作法 ),
AD=AD (公共边) ,
∴ △BAD ≌ △CAD (SSS).
∴ ∠B= ∠C (全等三角形的对应角相等).

证明 性质1 等腰三角形的两个底角相等
A
D
B
C
E
F
已知:如图在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF. 求证:△ABC≌ △ DEF.
证明:在△ABC和△DEF中,
∵∠A+∠B+∠C=180°∠D+∠E+∠F=180° ,
∴∠C=180°-(∠A+∠B),
∠F=180°-(∠D+∠E). ∵∠A=∠D,∠B=∠E,
A
D
∴∠C=∠F. 又∵BC=EF,∠B=∠E,
∴△ABC≌△DEF(ASA)
B
CE
F
把该等腰三角形沿顶角平分线折叠,你有什么发现? A
B
C
A
A
A
B
CD
(1) 等腰三角形是轴对称图形; (2) ∠B=∠C;

北师版八年级数学下册等腰三角形的性质课件

北师版八年级数学下册等腰三角形的性质课件
形顶角的平分线、底边上的中线及底边上的高线 互相重合. 2.思想方法:转化思想的应用,等腰三角形的性质是 证明角相等、边相等的重要方法.
易错点拨
已知等腰三角形的一个外角等于110°,这个等腰三
角形的一个底角的度数为( D )
A.40°
B.55°
C.70°
D.55°或70°
易错点:求等腰三角形的角时易出现漏解的错误
易错点拨
本题应用分类讨论思想,分顶角为70°和 底角为70°两种情况,解题时易丢掉一种情况 而漏解.
课堂小结
1.知识方面: (1)等腰三角形的性质:等边对等角. (2)等腰三角形性质的推论:三线合一,即等腰三角
EF⊥AB,垂足为F.
(1)若∠BAD=25°,求∠C的度数;
(2)求证:EF=ED.
(1)解:∵AB=AC,AD是BC边上的中线,
∴∠BAD=∠CAD.∴∠BAC=2∠BAD=50°.
∵AB=AC,
∴ ∠C=∠ABC = 1 (180°-∠BAC)

1
2
(180°-50°)=65°.
2
例题精析
(2)求证:EF=ED. 证明:∵AB=AC,AD是BC边上的中线, ∴ED⊥BC. 又∵BG平分∠ABC,EF⊥AB, ∴EF=ED.
导引:利用全等三角形的判定方法,当∠D=∠B时, 两个三角形符合“边角边等腰三角形的相关概念回顾:




底角 底角 底边
探究新知
2.议一议 (1)还记得我们探索过的等腰三角形的性质吗? (2)请你选择等腰三角形的一条性质进行证明,并与
同伴交流. 定理 等腰三角形的两底角相等. 这一定理可以简述为:等边对等角.
课堂精练

1.1 等腰三角形2 第1课时 全等三角形和等腰三角形的性质

1.1 等腰三角形2 第1课时 全等三角形和等腰三角形的性质

A
已知:如图,在ΔABC中,∠B=∠C。 求证:AB=AC
证明: 作∠BAC的平分线AD 则∠1=∠2
在△BAD和△CAD中 ∠1=∠2 ∠B=∠C AD=AD (公共边)
12
B
DC
你还有其 他证法吗?
∴ △BAD ≌ △CAD (AAS)
∴ AB= AC (全等三角形的对应边相等)
等腰三角形的判定定理:
1、等腰三角形是怎样定义的?
A
有两条边相等的三角形,叫做等腰三角形。
2、等腰三角形有哪些性质?
①等腰三角形是轴对称图形。
B DC
②等腰三角形的两个底角相等(简写
成“等边对等角”) 。
③等腰三角形顶角的平分线、底边上的中线、底边 上的高重合(也称为“三线合一”).
探究新知
1.我们把等腰三角形的性质定理的条件和结论反 过来还成立吗?如果一个三角形有两个角相等,那 么这两个角所对的边也相等吗?
3、等边三角形中,高、中线、角平分线共有( A ) A.3条 B.6条 C.9条 D.7条
课堂小结
等边三角形的性质:
名 称
图形
性质

A
三条边都相等

三个角都相等,且都为60°

角B
C 三线合一

轴对称图形,有三条对称轴
第3课时 等腰三角形的判定及反证法
北师大版 八年级下册
复习旧知
既是性质又
是判定
注意:在同 一个三角形 中应用哟!
如果一个三角形有两个角相等,那么这两个角所 对的边也相等(简写成“等角对等边”)。
A
几何语言:
∵∠B =∠C (已知)
∴ AB=AC(等角对等边)

八下 1.1等腰三角形

八下 1.1等腰三角形

第一章 三角形的证明第一节 等腰三角形基本知识:一、全等三角形(1)定义: 能够完全重合的三角形是全等三角形。

(2)性质:全等三角形的对应边、对应角相等。

(3)判定:“SSS ”、“SAS ”、“AAS ”、“ASA ”、“HL ”(HL 只适用于直角三角形)典型例题例1.如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( )A .42°B .48°C .52°D .58°例2.如图,点P 是 AB 上任意一点,,还应补充一个条件,才能推出.从下列条件中补充一个条件,不一定能....推出的是( )A .B .C .D .ABC ABD ∠=∠APC APD △≌△APC APD △≌△BC BD =AC AD =ACB ADB ∠=∠CAB DAB ∠=∠例3.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去变式题1、尺规作图作的平分线方法如下:以为圆心,任意长为半径画弧交、于、,再分别以点、为圆心,以大于长为半径画弧,两弧交于点,作射线由作法得的根据是()A.SAS B.ASA C.AAS D.SSS2、如图,给出下列四组条件:①AB DE BC EF AC DF===,,;②AB DE B E BC EF=∠=∠=,,;③B E BC EF C F∠=∠=∠=∠,,;④AB DE AC DF B E==∠=∠,,.其中,能使ABC DEF△≌△的条件共有()A.1组B.2组C.3组D.4组AOB∠O OA OBC D C D12CD P OP,OCP ODP△≌△O DPCAB3、如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . (1)求证:△ABC ≌△DCB ;(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证明你的结论.4、 在△ABC 中,,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN于E 。

等腰三角形与等边三角形的性质和判定学生版

等腰三角形与等边三角形的性质和判定学生版

2014年秋季同步课初二年级学生姓名:上课时间:等腰三角形与等边三角形的性质和判定内容基本要求略高要求较高要求 等腰三角形了解等腰三角形、等边三角形的概念,会识别这两种图形;理解等腰三角形、等边三角形的性质和判定能用等腰三角形、等边三角形的性质和判定解决简单问题会运用等腰三角形、等边三角形的知识解决有关问题知识框架图⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧判定性质定义等边三角形判定性质定义等腰三角形等腰三角形 知识点讲解一、等腰三角形定义:有两条边相等的三角形叫做等腰三角形。

二、等腰三角形的性质 1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。

等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。

三、等腰三角形的判定 1. 有关的定理及其推论中考考纲知识体系定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

2. 定理及其推论的作用。

等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。

全等三角形与等腰三角形-解题技巧

全等三角形与等腰三角形-解题技巧

第一讲:全等三角形与等腰三角形-解题技巧知识点总结全等三角形:能够完全重合的两个三角形,叫做全等三角形.1. 全等三角形有如下性质:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;(3)全等三角形的对应中线、对应角平分线、对应高相等;(4)全等三角形的面积相等,周长相等.2. 判定两个三角形全等的依据:(1)边角边公理(SAS):两边及其夹角对应相等的两个三角形全等;(2)角边角公理(ASA):两角及其夹边对应相等的两个三角形全等;(3)角边角公理的推论(AAS):两角和其中一角的对边对应相等的两个三角形全等(4)边边边公理(SSS):三条边对应相等的两个三角形全等.(5)斜边、直角边公理(HL):斜边和一直角边对应相等的两个三角形全等.. 等腰三角形1.两边相等的三角形叫等腰三角形.2.等腰三角形性质:(除一般三角形的边角关系之外的)(1)等边对等角;(2)底边上的高、底边上的中线、顶角平分线互相重合;(3)是轴对称图形,对称轴是顶角平分线;(4)底边小于腰长的两倍并且大于零,腰长大于底边的一半;(5)顶角等于180°减去底角的两倍;(6)顶角可以是锐角、直角、钝角,而底角只能是锐角.3.等腰三角形可分为腰和底边不等的等腰三角形及等边三角形.等边三角形的三边相等,三个角都是60°,它具备等腰三角形的一切性质。

4. 等腰三角形的判定:①利用定义;②等角对等边;③有一个角是60°的等腰三角形是等边三角形.解题技巧1利用角平分线构造全等三角形解题. 2 利用中线构造全等三角形解题在等腰三角形的题目中常添加的辅助线是顶角的平分线,由此可以得到线段相等和垂直关系.另外,在未指明边(角)的名称时,应分类讨论.在解题时常会遇到与中线有关的问题,由中线可以提供的常见思路有:①线段相等构造全等;②在直角三角形中斜边上的中线等于斜边的一半;③中线倍长:即延长中线,使延长的部分等于中线构造全等.用“截长补短”的方法解题截长补短"的方法."截长",在较长线段上截取一段等于较小线段;"补短",延长较短线段,使延长后线段等于较长线段."截长补短"是一种解题方法,在后继学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵AB=AC, BD=CD, AD=AD B
D
C
证明:如图,取BC的中点D,连接AD(中线)
∴△ABD≌△ACD(SSS).
∴∠B=∠C(全等三角形的对应角相等)
1.1.1 等腰三角形
二、思考探究,获取新知 还有其他的证明方法吗? A
12
已知:△ ABC中,AB=AC. 求证: ∠B= ∠C.
B
D
第一章 三角形的证明
等腰 三角形
直角 三角形
线段的 垂直平分线
角平分线
1.1.1 等腰三角形
一、回顾旧知,导出公理 在“平行线的证明”一章中,我们给出了8条基本事实, 你还记得吗?
1. 两点确定
条直线。 两点之间
最短。
2. 同一平面内,过一点 直线垂直C
1.1.1 等腰三角形
二、思考探究,获取新知 还有其他的证明方法吗? A
12
已知:△ ABC中,AB=AC. 求证: ∠B= ∠C.
证明:如图,作顶角的平分线AD. ∵AB=AC, ∠BAD=∠CAD, AD=AD B
D
C
∴△ABD≌△ACD(SAS).
∴∠B=∠C(全等三角形的对应角相等)
1.1.1 等腰三角形
平行。
1.1.1 等腰三角形
一、回顾旧知,导出公理 在“平行线的证明”一章中,我们给出了8条基本事实, 你还记得吗?
4. 两直线被第三条直线所截,如果同位角相等,
那么这两条直线 。(简称: ) 。
5. 两平行线被第三条直线所截,同位角 (简称: )
1.1.1 等腰三角形
一、回顾旧知,导出公理 在“平行线的证明”一章中,我们给出了8条基本事实, 你还记得吗?
①三边对应相等的两个三角形全等(SSS) ②两边及其夹角对应相等的两个三角形全等(SAS) ③两角及其夹边对应相等的两个三角形全等(ASA) ④两角相等且其中一组等角的对边相等的两个三角形全等(AAS) (2)全等三角形的性质:全等三角形的对应边相等、对应角相等。 2.等腰三角形的性质定理 (1)等腰三角形的两底角相等,简称等边对等角。 (2)等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重 合(也称“三线合一”)
证明:∵∠A=∠D,∠B=∠E(已知),∠A+∠B+∠C=180°, ∠D+∠E+∠F=180°(三角形内角和等于180°),
∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E),
∴∠C=∠F(等量代换).又BC=EF(已知), ∴△ABC≌△DEF(ASA).
1.1.1 等腰三角形
二、思考探究,获取新知 你能用以上知识证明吗?
分析:我们利用折叠的方法说明 了等腰三角形两底角相等, 由此得到启发可以作一条 辅助线,把原三角形分成 两个全等的三角形,从而 证明这两个底角相等。 A
12
B
D
C
1.1.1 等腰三角形
二、思考探究,获取新知 依据折纸用全等三角形知识来证明这一定理 A
12
已知:△ ABC中,AB=AC. 求证: ∠B= ∠C.
A
D
F B C E 已知:△ABC与△DEF,∠A=∠D,∠B=∠E,BC=EF. 求证:△ABC≌△DEF.
【归纳结论】 1. 两角相等且其中一组等角的对边相等的两个三角形全等
(AAS);
2. 根据全等三角形的定义,我们可以得到:全等三角形的 对应边相等,对应角相等。
1.1.1 等腰三角形
二、思考探究,获取新知 折纸:这是什么图形?它是轴 它的两腰 ,两底角 图形, 。
已知:△ABC与△DEF,∠A=∠D,∠B=∠E,BC=EF. 求证:△ABC≌△DEF.
根据条件作出相应图形
A B C E
D F
1.1.1 等腰三角形
二、思考探究,获取新知 你能用以上知识证明吗?
A
D
F B C E 已知:△ABC与△DEF,∠A=∠D,∠B=∠E,BC=EF. 求证:△ABC≌△DEF.
二、思考探究,获取新知 线段AD还具有怎样的性质?为什么?由此你能得到什么 A 结论?
12
已知:△ ABC中,AB=AC. 求证: ∠B= ∠C.
B
D
C
1.1.1 等腰三角形
二、思考探究,获取新知 线段AD还具有怎样的性质?为什么?由此你能得到什么 A 结论?
12
已知:△ ABC中,AB=AC. 求证: ∠B= ∠C.
6. 三边对应相等的两个三角形 简写为 简写为 )
(可简写为 )
(可 (可
7. 两边及其夹角对应相等的两个三角形 8. 两角及其夹边对应相等的两个三角形

1.1.1 等腰三角形
二、思考探究,获取新知 你能用以上知识证明吗?
已知:△ABC与△DEF,∠A=∠D,∠B=∠E,BC=EF. 求证:△ABC≌△DEF.
1.1.1 等腰三角形
二、思考探究,获取新知 你能用以上知识证明吗?
已知:△ABC与△DEF,∠A=∠D,∠B=∠E,BC=EF. 求证:△ABC≌△DEF.
分析:基本事实哪几条是证明两个三角形全等的理论? SSS SAS ASA
1.1.1 等腰三角形
二、思考探究,获取新知 你能用以上知识证明吗?
由此得到定理:
等腰三角形的两底角相等
(简称为:等边对等角)
1.1.1 等腰三角形
二、思考探究,获取新知 依据折纸用全等三角形知识来证明这一定理
已知:△ ABC中,AB=AC. 求证: ∠B= ∠C.
1.1.1 等腰三角形
二、思考探究,获取新知 依据折纸用全等三角形知识来证明这一定理
已知:△ ABC中,AB=AC. 求证: ∠B= ∠C.
【归纳结论】
B
D
C
1. 等腰三角形的两底角相等(等边对等角)
2. 等腰三角形顶角的平分线,底边上的中线及底边上的高 线互相重合(三线合一)
1.1.1 等腰三角形
三、随堂练习,巩固新知
课本:P3 题1,题2
1.1.1 等腰三角形
四、课后小结,作业布置
1.三角形全等的判断定理
(1)三角形全等的判断定理
相关文档
最新文档