伺服电机功率选型

合集下载

伺服电机功率计算选型

伺服电机功率计算选型

连续工作速度 < 电机额定转速
7
举例计算1
已知:圆盘质量M=50kg,圆盘直径 D=500mm,圆盘最高转速60rpm, 请选择伺服电机及减速机。
8
举例计算1
计算圆盘转动惯量 JL = MD2/ 8 = 50 * 2500 / 8 = 15625 kg.cm2 假设减速机减速比1:R,则折算到伺服电机轴上 负载惯量为15625 / R2。
高速度时间200ms,忽略各传送带轮重量,驱动这
样的负载最少需要多大功率电机?
11
举例计算2
1. 计算折算到电机轴上的负载惯量 JL = M * D2 / 4 / R12 = 50 * 144 / 4 / 100 = 18 kg.cm2 按照负载惯量 < 3倍电机转子惯量JM的原则 JM > 6 kg.cm2
= 0.0125 * (1500 * 6.28 / 60 / 0.2) / 0.9 = 10.903 N.m 加速所需总转矩TA = TA1 + TA2 = 12.672 N.m
16
举例计算3
3. 计算电机驱动负载所需要的扭矩 另一种计算所需加速扭矩的方法: TA= 2π* N * (JW + JB) / (60 * t1) / η
14
举例计算3
1. 计算折算到电机轴上的负载惯量 重物折算到电机轴上的转动惯量JW = M * ( PB / 2π)2
= 200 * (2 / 6.28)2 = 20.29 kg.cm2 螺杆转动惯量JB = MB * DB2 / 8 = 40 * 25 / 8 = 125 kg.cm2 总负载惯量JL = JW + JB = 145.29 kg.cm2 2. 计算电机转速 电机所需转速 N = V / PB = 30 / 0.02 = 1500 rpm

伺服电机选型

伺服电机选型

1)牙科贝思直线电机选型软件
考试题
已知:丝杠传动类型,负载重量W=10Kg, 负载垂直升降距离30mm,加(减)速时 间0.1s,匀速0.1s。设计最优结构,根据 所选丝杠,计算满足负载需求的最小功率 的伺服电机(三菱电机)。
已知:同步带传动类型,负载重量
W=3Kg,负载垂直升降距离300mm,加
负载重量:5kg 带轮选型:5M-18齿 电机选型:200W(三菱伺服电机)
核算:
3)伺服电机选型计算 (齿轮齿条传动类型)
齿轮齿条传动类型的伺服电机选型计算与同步带类似。 计算时需注意: 上述公式中同步带直径为带轮节径,具体数值可查标准《圆弧齿带
轮直径JB/T 7512.2》、《周节制带轮直径GB/T 11361》。 渐开线圆柱齿轮直径为齿轮的分度圆直径,直齿轮分度圆直径D=m
负载的惯量:JW=
M(D)2 / 2
R
2
JB
③负载转矩的计算
水平运动时负载转矩:TW=μMg
D 2
/
R
垂直运动时负载转矩:TW=μMg
D 2
/
R
Mg
D 2
/
R
加减速转矩的计算:TA= (JM J机)2tπ1 • N
最大转矩:T=TA+TW
3)伺服电机选型计算 (同步带传动类型)
示例:S4000(样机)-68部
2)三菱伺服电机HG-KN系列参数表
2)三菱伺服电机HG-KN系列参数表
3)伺服电机选型计算 (丝杆传动类型)
①根据总方案结构、节拍图、电池片工位图确定
负载质量M
丝杠的导程P
丝杠直径D
丝杆质量MB
导轨、丝杆运行摩擦系数μ(一般取值0.15)

伺服电机的选型步骤详解

伺服电机的选型步骤详解

每种型号伺服电机的规格项内均有额定转矩、最大转矩及伺服电机惯量等参数各参数与负载转矩及负载惯量间必定有相关联系存在,选用伺服电机的输出转矩应符合负载机构的运动条件要求,如加速度的快慢、机构的重量;机构的运动方式(水平、垂直旋转)等;运动条件与伺服电机输出功率无直接关系,但是一般伺服电机输出功率越高,相对输出转矩也会越高。

因此不但机构重量会影响伺服电机的选用,运动条件也会改变伺服电机的选用。

惯量越大时,需要越大的加速及减速转矩,加速及减速时间越短时,也需要越大的伺服电机输出转矩。

选用伺服电机规格时,依下列步骤进行。

(1)明确负载机构的运动条件要求,即加/减速的快慢、运动速度、机构的重量、机构的运动方式等。

(2)依据运行条件要求选用合适的负载惯量计算公式计算出机构的负载惯量。

(3)依据负载惯量与伺服电机惯量选出适当的假选定伺服电机规格。

(4)结合初选的伺服电机惯量与负载惯量,计算出加速转矩及减速转矩。

(5)依据负载重量、配置方式、摩擦系数、运行效效率计算出负载转矩。

(6)初选伺服电机的最大输出转矩必须大于加速转矩+负载转矩;如不符合条件,必须选用其他型号计算验证直至符符合要求。

(7)依据负载转矩、加速转矩、减速转矩及保持转矩计算出连续瞬时转矩。

(8)初选伺服电机的额定转矩必须大于连续瞬时转矩,如,如果不符合条件,必须选用其他型号计算验证直至符合要求。

(9)完成选定。

伺服电机选型计算公式

伺服电机选型计算公式

伺服电机选型计算公式伺服电机选型计算公式是指通过一系列的计算公式来确定伺服电机的合适参数,以满足特定需求。

伺服电机选型的主要目标是确定伺服电机的额定转矩、额定电流、额定功率等参数,以及选择合适的伺服驱动器。

下面将介绍一些常用的伺服电机选型计算公式。

1.负载的转矩计算公式:负载的转矩是伺服电机选型的基础,通过计算负载的转矩,可以确定伺服电机的额定转矩。

负载的转矩可以通过以下公式计算:负载转矩=(负载力*负载半径)/(传动效率*减速比)2.伺服电机的额定转矩计算公式:伺服电机的额定转矩是指在额定转速下,电机能够提供的最大转矩。

额定转矩可以通过以下公式计算:额定转矩=(负载转矩+加速扭矩)/传动效率3.伺服电机的额定电流计算公式:伺服电机的额定电流是指在额定转矩下,电机所需的额定电流。

额定电流可以通过以下公式计算:额定电流=额定转矩*电流系数/额定转速4.伺服电机的额定功率计算公式:伺服电机的额定功率是指在额定转矩和额定转速下,电机所提供的对外功率。

额定功率可以通过以下公式计算:额定功率=额定转矩*额定转速/9.555.伺服驱动器的额定功率计算公式:伺服驱动器的额定功率是指驱动器所能提供的最大功率。

额定功率可以通过以下公式计算:额定功率=伺服电机的额定功率/驱动器的效率除了上述几个常用的伺服电机选型计算公式外,还需要考虑一些其他因素,例如:负载的加速时间、负载的惯性矩、伺服系统的控制精度等,这些因素都会对伺服电机的选型产生影响,需要综合考虑。

同时,还需要根据具体的应用环境和需求,选择合适的伺服电机和驱动器型号,以确保系统的性能和可靠性。

需要注意的是,伺服电机选型计算公式只是一个参考,实际选型过程中还需要考虑一系列的工程参数和实际情况,同时也需要借助一些专业的伺服电机选型软件,以更准确地确定伺服电机的参数。

伺服电机选型指南

伺服电机选型指南

伺服电机选型指南伺服电机是一种能够精准控制位置、速度和加速度的电动机,广泛应用于机器人、自动化设备、数控机床、医疗设备等领域。

选型合适的伺服电机对于机械设备的性能和稳定性有着重要的影响。

本文将从电机的参数、性能、适用环境等方面介绍伺服电机的选型指南。

一、电机参数1.功率:功率是电机输出能力的重要指标,根据设备的工作负载和所需功率大小选择合适的电机功率。

一般来说,电机的额定功率应大于设备最大负载功率的1.2倍左右。

2.转矩:电机转矩是指电机输出的扭矩大小,与设备的负载特性密切相关。

根据设备所需的最大转矩选择合适的电机转矩。

一般来说,电机的额定转矩应大于设备最大负载转矩的1.2倍左右。

3.转速:电机转速是指电机输出的转速大小,与设备运动速度有关。

根据设备所需的最大转速选择合适的电机转速。

一般来说,电机的额定转速应大于设备最大运动速度的1.2倍左右。

4.控制精度:伺服电机能够实现更高的控制精度和位置重复性,根据设备所需的控制精度选择合适的伺服电机。

一般来说,控制精度为±0.01°的伺服电机可以满足大多数应用的需求。

二、电机性能1.动态响应:动态响应是指伺服电机在响应控制指令时的速度和加速度特性。

对于需要快速响应和高加速度的应用,选择具有较好动态响应性能的伺服电机。

2.脉冲宽度调制(PWM)频率:PWM频率决定了电机控制的精度和稳定性,一般来说,选择具有较高PWM频率的伺服电机可以实现更精准的控制效果。

3.调速范围:伺服电机的调速范围指的是从最低转速到最高转速的比值,较大的调速范围能够满足更广泛的应用需求。

4.效率:电机的效率是指电机输出功率与输入功率之比,高效率的电机能够降低能源消耗和热量排放。

三、适用环境1.温度:伺服电机的工作温度范围应与设备所处环境温度相匹配,一般来说,工作温度范围为-20°C到40°C的伺服电机可以适应大多数应用环境。

2.湿度:对于湿度较高的工作环境,选择具有较高防潮性能的伺服电机。

伺服电机分类与选型流程

伺服电机分类与选型流程

伺服电机分类与选型流程伺服电机是一种能够根据控制信号来驱动机械系统运动的电机。

它具有高精度、高控制性能和高可靠性的特点,广泛应用于工业自动化控制、仪器仪表和机器人等领域。

根据应用场景的不同,伺服电机可以分为直流伺服电机和交流伺服电机两大类,每一类又有其各自的特点和选型要点。

一、直流伺服电机的分类与选型流程:1.分类:直流伺服电机根据电源电压的不同可以分为低压直流伺服电机(12V、24V)和高压直流伺服电机(48V、60V、72V等)。

2.选型流程:(1)确定应用场景:根据具体应用的需要,确定伺服电机的功率、扭矩和转速等参数。

(2)验证电源电压:根据选定的电机功率和转速要求,验证电源电压是否能够满足电机的工作要求。

如果电源电压不足,则需要使用电源升压器或者选择合适的电压级别的伺服电机。

(3)确定电机型号:根据电机的工作要求,包括负载特性、控制要求和环境要求等,确定合适的电机型号。

(4)选取驱动器:根据电机的功率和控制要求,选取合适的驱动器。

驱动器的选择要考虑到驱动器的保护功能、通信接口和控制算法等因素。

(5)试运行与调试:在选定的电机和驱动器之间进行试运行和调试,验证系统的性能和稳定性。

二、交流伺服电机的分类与选型流程:1.分类:交流伺服电机根据电机的控制方式可以分为位置控制型和矢量控制型。

位置控制型伺服电机根据电机转子结构的不同可以分为无刷交流伺服电机(BLAC)和有刷交流伺服电机(BLDC);矢量控制型伺服电机则可以分为感应交流伺服电机(IM)和永磁同步交流伺服电机(PMSM)。

2.选型流程:(1)确定应用场景:根据具体应用的需要,确定伺服电机的功率、扭矩和转速等参数。

(2)验证电源电压:根据选定的电机功率和转速要求,验证电源电压是否能够满足电机的工作要求。

如果电源电压不足,则需要使用电源升压器或者选择合适的电压级别的伺服电机。

(3)确定电机型号:根据电机的工作要求,包括负载特性、控制要求和环境要求等,确定合适的电机型号。

伺服电机功率计算选型课件

伺服电机功率计算选型课件

案例三:搬运机械臂的伺服电机应用
总结词
大负载、高精度定位
详细描述
搬运机械臂需要承受较大负载并实现高精度定位,伺服电机能够提供足够的扭 矩和精确的控制能力,确保机械臂的稳定运行和精确操作。
伺服电机维护与保
05

伺服电机的日常维护
01
02
03
每日检查
检查伺服电机是否有异常 声音、振动或发热,检查 电缆和连接是否松动或破 损。
清洁
定期清除电机上的灰尘和 杂物,保持电机清洁,以 防止灰尘和杂物对电机运 行造成影响。
油脂涂抹
根据需要,在电机的轴承 和齿轮上涂抹适量的润滑 油脂,以减少磨损和摩擦 。
伺服电机的定期保养
定期更换润滑油
根据电机制造商的推荐, 定期更换电机的润滑油, 以保证电机正常运行。
检查绝缘电阻
定期检查电机的绝缘电阻 ,以确保电机电气性能正 常。
伺服电机的工作原理
伺服电机通过将输入的电压或电流信 号转换成转矩或转速,驱动负载进行 转动。
伺服电机内部通常包含一个旋转的转 子,以及一个固定的定子,通过电磁 感应原理实现能量的转换和传递。
伺服电机的分类与特点
根据使用的电源类型,伺服电 机可以分为直流伺服电机和交
流伺服电机两大类。
直流伺服电机具有精度高、 调速范围广、低速稳定性好 等优点,但需要定期更换电
案例一:数控机床的伺服电机应用
总结词
高精度、高效率
详细描述
数控机床需要高精度和高效率的加工能力,伺服电机能够提供稳定的扭矩和转速,确保加工过程的精确性和高效 性。
案例二:包装机械的伺服电机应用
总结词
快速响应、高可靠性
详细描述
包装机械需要快速响应和高可靠性的运行能力,伺服电机能够迅速启动和停止,适应各种包装工艺需 求,确保生产线的稳定性和效率。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项
伺服电机是一种可以精密控制位置和速度的电机。

在使用伺服电机时,需要根据具体的应用场景选型。

下面介绍一下伺服电机选型的原则和注意事项。

一、选型原则
1. 电机输出功率选择:根据所需的输出扭矩和转速来选择选择电机输出功率。

2. 电机扭矩选择:根据应用中的负载特点选择适合的扭矩范围的电机。

4. 电机控制方式选择:根据应用场景选取适合的通信方式,是否支持多轴联动以及其它基本控制功能。

5. 电机的精度选择:选择符合精度要求的电机。

二、选型注意事项
1. 环境温度:环境温度是选型的一个非常重要的因素,因为电机在运行时会产生热量,如果工作环境温度过高,就会影响电机的使用寿命。

2. 额定电压:电机的额定电压需要符合工作环境的电源条件,不能超出电机的电压范围。

3. 性能要求:应根据具体的应用场景,如加速、减速、负载变化等进行选型。

4. 扭矩曲线:扭矩曲线可以显示电机的性能,如低速扭矩和最大扭矩,以及电机性能曲线的平滑程度等,因此,在选型时需要注重扭矩曲线的性能。

5. 成本选择:除了技术性能之外,成本也是考虑选型的重要因素之一,需要根据可承受的经济压力选择价格适宜的伺服电机。

在选型之前,应该要考虑设备所使用的情况,具体的应用场景,这样才能选对更适合的伺服电机,这样才能使整个系统更加稳定可靠。

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项

伺服电机选型的原则和注意事项
为了满足机械设备对高精度、快速响应的要求,伺服电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压,还应具有较长时间的过载能力,以满足低速大转矩的要求,能够承受频繁启动、制动和正、反转,如果盲目地选择大规格的电机,不仅增加成本,也会使得设计设备的体积增大,结构不紧凑,因此选择电机时应充分考虑各方面的要求,以便充分发挥伺服电机的工作性能;下面介绍伺服电机的选型原则和注意事项。

选用伺服电机型号的步骤1、明确负载机构的运动条件要求,即加/减速的快慢、运动速度、机构的重量、机构的运动方式等。

2、依据运行条件要求选用合适的负载惯最计算公式,计算出机构的负载惯量。

3、依据负载惯量与电机惯量选出适当的假选定电机规格。

4、结合初选的电机惯量与负载惯量,计算出加速转矩及减速转矩。

5、依据负载重量、配置方式、摩擦系数、运行效率计算出负载转矩。

6、初选电机的最大输出转矩必须大于加速转矩加负载转矩;如果不符合条件,必须选用其他型号计算验证直至符合要求。

7、依据负载转矩、加速转矩、减速转矩及保持转矩,计算出连续瞬时转矩。

8、初选电机的额定转矩必须大于连续瞬时转矩,如果不符合条件,必须选用其他型号计算验证直至符合要求。

9、完成选定。

伺服电机的选型计算方法 1、转速和编码器分辨率的确认。

2、电机轴上负载力矩的折算和加减速力矩的计算。

3、计算负载惯量,惯量的匹配,安川伺服电机为例,部分产品惯量匹配可达50倍,但实际越小越好,这样对精度和响应速度好。

伺服电机选型案例

伺服电机选型案例

伺服电机选型案例伺服电机功率计算选型例子伺服电机功率计算选型例子(新手必看,经典案例分析)伺服电机选型也有相应的规律和公式可循的。

最常见的机械传动结构有同步带,齿轮齿条,丝杆等。

以同步带为例,需要计算的参数有电机转速,电机力矩,转动惯量。

第一,电机额定转速N=(v/2πr)*i,启动瞬间需要的拉力F=(M+m1-m2)a+δ(M+m1-m2)g(水平),F=(M+m1-m2)a+δ(M+m1-m2)g+(M+m1-m2)g(垂直),T扭矩=F*R。

T电机=T扭矩/机械减速比n,电机功率=N*T 电机/10,启动惯量J=1/2mR2,电机惯量J电机=J/减速比的平方n2/惯量比i。

第二,同步带轮直径D=100mm、提升机载货台总重M=30kg、货物总重m1=10kg,配重m2=25kg,提升滚动摩擦系数取δ=0.03、加速度a=2m/S2、提升速度v=3m/s。

减速机减速比i=5,电机额定转速n=(v/2πr)*i=3/(2*3.14*0.05)*5*60=2866r/min,启动瞬间需要的拉力F=(M+m1-m2)a+&delta,(M+m1-m2)g+(M+m1-m2)g=(30+10-25)*2+0.03(30+10-25)*10+(30+10-25)*10=184.5N。

T扭矩=F*R=184.5*0.05=9.225Nm,折算电机需要扭矩T1=9.225Nm/5=1.85Nm,折算电机功率P1=2866*1.85/10=0.5KW。

启动惯量J=1/2mR2=0.5*(10+30+25)*0.0025=0.08125kgm2,折算电机需要惯量J1=0.08125/25=0.00325kgm2,根据经验值取惯量比=10,则实际J电=J1/10=0.000325kgm2。

经计算电机至少满足以下条件下面看下1.2千瓦3000RPM,4牛米的电机的惯量是2.98*10-4kgm2。

所以可以选择80ST-M04030的电机。

伺服电机如何进行选型

伺服电机如何进行选型

伺服电机选型技术指南1、机电领域中伺服电机的选择原则现代机电行业中经常会碰到一些复杂的运动,这对电机的动力荷载有很大影响。

伺服驱 动装置是许多机电系统的核心,因此,伺服电机的选择就变得尤为重要。

首先要选出满足给 定负载要求的电动机,然后再从中按价格、重量、体积等技术经济指标选择最适合的电机。

述度自廿比 ioa% 各种电机的T-3曲线 (1)传统的选择方法这里只考虑电机的动力问题,对于直线运动用速度v(t),加速度a(t)和所需外力F(t)表 示,对于旋转运动用角速度3 (t),角加速度a (t)和所需扭矩T(t)表示,它们均可以表示为时 间的函数,与其他因素无关。

很显然。

电机的最大功被电机最大应大于工作负载所需的峰值 功率P 峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的 传动机构中它们是受限制的。

用3峰值,T 峰值表示最大值或者峰值。

电机的最大速度决定了 减速器减速比的上限,n 上限二3峰值最大/3峰值,同样,电机的最大扭矩决定了减速比的下限, n 下P 「T 峰值/T 电机,最大,如果n 下限大于n 上限,选择的电机是不合适的。

反之,则可以通过对每 种电机的广泛类比来确定上下限之间可行的传动比范围。

只用峰值功率作为选择电机的原则 是不充分的,而且传动比的准确计算非常繁琐。

(2)新的选择方法一种新的选择原则是将电机特性与负载特性分离开,并用图解的形式表示,这种表示方 法使得驱动装置的可行性检查和不同系统间的比较更方便,另外,还提供了传动比的一个可 能范围。

这种方法的优点:适用于各种负载情况;将负载和电机的特性分离开;有关动力的 各个参数均可用图解的形式表示并且适用于各种电机。

因此,不再需要用大量的类比来检查 电机是否能够驱动某个特定的负载。

在电机和负载之间的传动比会改变电机提供的动力荷载参数。

比如,一个大的传动比会 减小外部扭矩对电机运转的影响,而且,为输出同样的运动,电机就得以较高的速度旋转, 产生较大的加速度,因此电机需要较大的惯量扭矩。

伺服电机功率计算选型

伺服电机功率计算选型
案例二
某机床制造商需要为其数控机床选型伺服电机系统,通过选型软件对比了多个方案后,选择了一款高性能且价格 适中的伺服电机产品。在实际应用中,该伺服电机系统表现稳定可靠,满足了机床的高精度加工需求。
06
总结回顾与展望未来发展趋势
本次课程重点内容回顾
伺服电机基本概念和工作原理
详细解释了伺服电机的定义、分类、结构以及工作原理,使学员对伺服电机有了全面的 认识。
操作步骤演示和使用技巧分享
在选择产品时,注意核对产品的性能 参数是否符合实际需求。
在对比方案时,建议关注性价比、交 货期等综合因素。
实际案例操作演示
案例一
某自动化设备制造商需要为其生产线上的机器人选型伺服电机,通过选型软件输入相关参数后,软件自动计算出 所需电机的功率和转速范围。制造商根据计算结果从数据库中选择了一款合适的伺服电机产品,并成功应用于机 器人中,提高了生产线的运行效率。
机械制造行业应用案例
01
数控机床
在数控机床中,伺服电机用于驱动主轴和进给轴,实现高精度、高效率
的加工。根据机床的加工需求和负载特性,可以选择不同功率和扭矩的
伺服电机。
02
工业机器人
工业机器人需要实现多关节、多维度的运动控制,对伺服电机的动态响
应和精度要求较高。根据机器人的负载、速度和加速度等参数,可以选
的控制算法。
避免误区和常见问题解答
不要只看功率大小而忽视其他性能参数,要综合考虑电 机的各项性能指标。
在选型时要考虑预留一定的余量,以应对负载波动和未 知因素。
注意电机的热设计和散热条件,避免过热影响性能和寿 命。
了解电机的维护和保养要求,确保电机的长期稳定运行 。
04
实例分析:针对不同行业应用进 行选型案例分析

伺服电机选型及负载转矩计算

伺服电机选型及负载转矩计算

伺服电机选型及负载转矩计算伺服电机是一种能够根据输入信号控制输出轴运动的电机。

它具有灵敏度高、响应速度快、精确度高等优点,广泛应用于工业生产线、机械设备、机器人等领域。

伺服电机的选型主要包括以下几个方面:1.转矩要求:伺服电机的转矩要求主要由负载的转矩决定。

在选型时需要确定负载的最大转矩和平均转矩,以确定伺服电机的额定转矩和峰值转矩。

2.转速要求:伺服电机的转速要求主要由负载的旋转速度决定。

在选型时需要确定负载的最大转速和平均转速,以确定伺服电机的额定转速和峰值转速。

3.加速度要求:伺服电机的加速度要求主要由负载的加速度决定。

在选型时需要确定负载的最大加速度和平均加速度,以确定伺服电机的额定加速度和峰值加速度。

4.精度要求:对于需要高精度运动的负载,伺服电机的精度要求较高。

在选型时需要考虑伺服电机的控制精度和重复定位精度等参数。

在实际选型时,可以根据负载和运动要求确定伺服电机的型号,并通过数据手册来验证选型是否符合要求。

一般来说,伺服电机的型号包括转矩、功率、转速和结构等参数。

负载转矩的计算是伺服电机选型的重要步骤之一、下面介绍一种常用的负载转矩计算方法。

1.静态负载转矩的计算:静态负载转矩是指在静止状态下所受到的负载力矩。

一般可以通过以下公式计算:M=F*R其中,M表示静态负载转矩,F表示负载力,R表示力臂的长度。

如果负载力可以被等效为多个力的叠加,则可以分别计算每个力的负载转矩,并将其叠加得到总的静态负载转矩。

2.动态负载转矩的计算:动态负载转矩是指在运动状态下所受到的惯性力矩和摩擦力矩的叠加。

动态负载转矩的计算可以通过以下公式进行:M=J*α+Ff*R其中,M表示动态负载转矩,J表示负载的转动惯量,α表示负载的角加速度,Ff表示负载所受到的摩擦力,R表示力臂的长度。

在实际计算中,需要考虑负载的惯性矩、摩擦力以及运动过程中可能产生的冲击力矩等因素,并将其叠加计算得到总的动态负载转矩。

负载转矩的计算是伺服电机选型的重要环节,它能够明确负载的要求,并为选型提供基础数据。

伺服电机功率计算选型

伺服电机功率计算选型

伺服电机功率计算选型在进行伺服电机功率的选型时,需要考虑多个因素,包括负载特性、加速度要求、最高速度、位置精度要求、环境条件等。

下面将针对这些因素,详细介绍伺服电机功率计算的选型过程。

首先,我们需要了解负载特性。

负载特性包括负载惯性、负载摩擦、负载阻力等,这些特性将影响伺服电机的输出动态特性和静态特性。

通过对负载特性的分析,可以确定所需的转矩曲线,进而计算出所需的平均功率。

其次,加速度要求也是伺服电机功率计算的重要考虑因素。

加速度要求决定了电机在一定时间内能够加速的速度,从而决定了所需的平均功率。

根据加速度和质量的关系,可以得到所需的最大转矩,通过平均功率和最大转矩的乘积,可以计算得到所需的最大功率。

最高速度也是伺服电机功率计算的重要参考指标。

最高速度决定了电机所需的输出功率,通过考虑输出功率和效率的关系,可以计算得到所需的电机额定功率。

此外,位置精度要求也是伺服电机功率计算的重要考虑因素之一、位置精度要求决定了伺服电机所需的转矩精度,通过考虑转矩和角度的关系,可以计算得到所需的转矩功率。

最后,环境条件也需要考虑到选型过程中。

环境条件包括温度、湿度、海拔高度等,这些条件将影响电机的工作效率和性能。

通过考虑环境条件对电机性能的影响,可以确定所需的电机额定功率。

总结起来,伺服电机功率计算的选型过程需要考虑负载特性、加速度要求、最高速度、位置精度要求、环境条件等多个因素。

通过分析这些因素之间的关系,计算出所需的转矩曲线、最大转矩、平均功率、最大功率、转矩精度等参数,从而确定最适合的伺服电机功率。

伺服电机如何进行选型

伺服电机如何进行选型

伺服电机选型技术指南1、机电领域中伺服电机的选择原则现代机电行业中经常会碰到一些复杂的运动,这对电机的动力荷载有很大影响。

伺服驱动装置是许多机电系统的核心,因此,伺服电机的选择就变得尤为重要。

首先要选出满足给定负载要求的电动机,然后再从中按价格、重量、体积等技术经济指标选择最适合的电机。

各种电机的T-ω曲线(1)传统的选择方法这里只考虑电机的动力问题,对于直线运动用速度v(t),加速度a(t)和所需外力F(t)表示,对于旋转运动用角速度ω(t),角加速度α(t)和所需扭矩T(t)表示,它们均可以表示为时间的函数,与其他因素无关。

很显然。

电机的最大功率P电机,最大应大于工作负载所需的峰值功率P峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的传动机构中它们是受限制的。

用ω峰值,T峰值表示最大值或者峰值。

电机的最大速度决定了减速器减速比的上限,n上限=ω峰值,最大/ω峰值,同样,电机的最大扭矩决定了减速比的下限,n下限=T峰值/T电机,最大,如果n下限大于n上限,选择的电机是不合适的。

反之,则可以通过对每种电机的广泛类比来确定上下限之间可行的传动比范围。

只用峰值功率作为选择电机的原则是不充分的,而且传动比的准确计算非常繁琐。

(2)新的选择方法一种新的选择原则是将电机特性与负载特性分离开,并用图解的形式表示,这种表示方法使得驱动装置的可行性检查和不同系统间的比较更方便,另外,还提供了传动比的一个可能范围。

这种方法的优点:适用于各种负载情况;将负载和电机的特性分离开;有关动力的各个参数均可用图解的形式表示并且适用于各种电机。

因此,不再需要用大量的类比来检查电机是否能够驱动某个特定的负载。

在电机和负载之间的传动比会改变电机提供的动力荷载参数。

比如,一个大的传动比会减小外部扭矩对电机运转的影响,而且,为输出同样的运动,电机就得以较高的速度旋转,产生较大的加速度,因此电机需要较大的惯量扭矩。

伺服电机功率计算选型例子

伺服电机功率计算选型例子
= 50 * 9.8 * 0.6 * 0.06 / 2 / 10 = 0.882 N.m 加速时所需转矩Ta = M * a * (D / 2) / R2 / R1 = 50 * (30 / 60 / 0.2) * 0.06 / 2 / 10 = 0.375 N.m 伺服电机额定转矩 > Tf ,最大扭矩 > Tf + Ta
微信公众号:ACE萦梦工作室
举例计算3
3. 计算电机驱动负载所需要的扭矩 克服摩擦力所需转矩Tf = M * g * µ * PB / 2π / η
= 200 * 9.8 * 0.2 * 0.02 / 2π / 0.9 = 1.387 N.m 重物加速时所需转矩TA1 = M * a * PB / 2π / η
JL=1/2*M1*r12 + 1/2*M2*r12 + M3*r12
M3 M1 r1
r2 M2
微信公众号:ACE萦梦工作室
伺服选型原则
连续工作扭矩 < 伺服电机额定扭矩
瞬时最大扭矩 < 伺服电机最大扭矩 (加速时)
负载惯量
< 3倍电机转子惯量
连续工作速度 < 电机额定转速
微信公众号:ACE萦梦工作室
按照负载惯量 < 3倍电机转子惯量JM的原则
如果选择400W电机,JM = 0.277kg.cm2,则 15625 / R2 < 3*0.277,R2 > 18803,R > 137 输出转速=3000/137=22 rpm,不能满足要求。
如果选择500W电机,JM = 8.17kg.cm2,则 15625 / R2 < 3*8.17,R2 > 637,R > 25 输出转速=2000/25=80 rpm,满足要求。 这微种信公传众号动:AC方E萦式梦工阻作室力很小,忽略扭矩计算。

伺服电机选型计算公式

伺服电机选型计算公式

首先要选出满足给定负载要求的电动机,然后再从中按价格、重量、体积等技术经济指标选择最适合的电机。

伺服电机的选型计算方法:
一、转速和编码器分辨率的确认。

二、电机轴上负载力矩的折算和加减速力矩的计算。

三、计算负载惯量,惯量的匹配,安川伺服电机为例,部分产品惯量匹配可达50倍,但实际越小越好,这样对精度和响应速度好。

四、再生电阻的计算和选择,对于伺服,一般2kw以上,要外配置。

五、电缆选择,编码器电缆双绞屏蔽的,对于安川伺服等日系产品绝对值编码器是6芯,增量式是4芯。

总结:
以上的选择方法只考虑到电机的动力问题,对于直线运动用速度,加速度和所需外力表示,对于旋转运动用角速度,角加速度和所需扭矩表示,它们均可以表示为时间的函数,与其他因素无关。

很显然。

电机的最大功率P电机,最大应大于工作负载所需的峰值功率P 峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的传动机构中它们是受限制的。

用峰值,T峰值表示最大值或者峰值。

电机的最大速度决定了减速器减速比的上限,n上限= 峰值,最大/ 峰值,同样,电机的最大扭矩决定了减速比的下限,n下限=T峰值/T电机,最大,如果n下限大于n上限,选择的电机是不合适的。

反之,则可以通过对每种电机的广泛类比来确定上
下限之间可行的传动比范围。

只用峰值功率作为选择电机的原则是不充分的,而且传动比的准确计算非常繁琐。

简述伺服电动机的选型步骤

简述伺服电动机的选型步骤

伺服电动机的选型步骤一般包括以下几个步骤:
1.确定电机的类型和规格:根据应用场景和负载特性,选择合适
的伺服电机类型和规格,包括电机的功率、转速、力矩、绝缘等级、尺寸等参数。

2.确定电机的控制方式:根据控制系统的要求,选择电机的控制
方式,包括开环控制、闭环控制、位置控制、速度控制等。

3.确定电机的响应速度和精度:根据应用需求,确定电机所需的
响应速度和精度,以便选择合适的电机和控制方案。

4.考虑电机的附件和配件:根据应用需求,选择合适的电机附件
和配件,例如编码器、减速器、联轴器等。

5.考虑电机的可靠性和耐用性:根据应用场景和工作条件,选择
具有较高可靠性和耐用性的电机品牌和型号。

6.考虑电机的经济性和维护性:在满足应用需求的前提下,选择
具有较高性价比和易于维护的电机品牌和型号。

在选择伺服电动机时,需要根据具体的应用场景和要求进行综合考虑,选择合适的电机类型和规格,以及相应的控制方式和附件配件。

同时,还需要注意电机的性能指标、技术参数和可靠性等因素,以确保电机的稳定运行和使用效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初步
选择

R88M
-
U200
30(J
m=
根据
R88M
-
7.8E-03
U200 30的
额定
转矩
Tm=
1.23E-05
0.637
(N.m )
×
[适
1.23E-05
用的 惯量

=30]
0.5096 N.M
1.528 N.M
3000
r/mi n
条件满足 条件满足
条件满足 条件满足
条件满足
T1=TA+TL T2=TL T3=TL-TA
0.1726 N.m 0.0078 N.m -0.1570 N.m
0.095 N.m
⑨讨论 负载惯量JL 有效转矩Trms
1.63E-04 kg.m2 0.095 N.m
≦[电机 的转子惯 量JM
﹤[电机 的额定转 矩
瞬时最大转矩T1 必要的最大转数N
5 10 20
3 0.1
1
速度 (mm/s)
300 360 1.4 0.2 0.01
③换算到 电机轴负 载惯量的 计算
滚珠丝杠的惯量JB=
1.50E-04 kg.m2
负载的惯量JW=
1.63E-04 kg.m2
换算到电机轴负载惯量JL=JW
பைடு நூலகம்JL=G2x(JW+J2)+J1
1.63E-04 kg.m2
5.42E-06 kg.m2
选定电机的额定转矩×0.8 比换算到电机轴负载转矩 大的电机N.m
TMx0.8>TL
* 此值因各系列而异,请加以注 意。
⑦加减速 转矩的计 算
加减速转矩TA
0.5096 > 0.165 N.m
⑧瞬时最 大转矩、 有效转矩 的计算
必要的瞬时最大转矩为T1
有效转矩Trms为
编码器分辨率R=P.G/AP.S
0.1726 N.m 1800 r/min
1000 (脉冲/转)
﹤[电机 的瞬时最 大转矩 ≦[电机 的额定转 数 U系列的 编码器规 格为2048 (脉冲/ 转),经 编码器分 频比设定 至1000 (脉冲/ 转)的情 况下使用 。
300
0
0.2
1
0.2 0.2
时间 (s)
①机械系 统的决定
负载质量M(kg) ·滚珠丝杠节距P(mm) ·滚珠丝杠直径D(mm) ·滚珠丝杠质量MB(kg) ·滚珠丝杠摩擦系数μ ·因无减速器,所以G=1、η=1
②动作模 式的决定
单一变化 ·负载移动速度V(mm/s) ·行程L(mm) ·行程时间tS(s) ·加减速时间tA(s) ·定位精度AP(mm)
④负载转 矩的计算
对摩擦力的转矩Tw
7.80E-03 N.m
换算到电机轴负载转矩TL=Tw
⑤旋转数 的计算
转数N
⑥电机的 初步选定 [选自 OMNUC U 系列的初 步选定举 例]
N=60V/P.G
选定电机的转子·惯量为负载的 1/30*以上的电机
JM≥JL/30
7.80E-03 N.m 1800 r/min
相关文档
最新文档