《三角形的内角和》公开课教案超好
人教版数学四年级下册三角形的内角和优秀教案(精推3篇)
人教版数学四年级下册三角形的内角和优秀教案(精推3篇)〖人教版数学四年级下册三角形的内角和优秀教案第【1】篇〗《三角形内角和》教学设计教材分析:《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是学生在学习了上册《平行与垂直》中的《角的认识》和本册本单元《三角形的特性》以及《三角形三边关系》、《三角形的分类》等知识之后进行的,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握“三角形的内角和是 180°”这一规律具有重要意义。
首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。
三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是 180 度。
二是把三个内角折叠在一起,发现也能组成一个平角。
每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。
另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于 90 度,钝角三角形里的两个锐角和小于90 度。
本节课的教学重点是让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
而教学难点则放在对不同探究方法的指导和学生对规律的灵活运用。
学情分析:四年级的学生已初步具备了动手操作的意识和能力,并能够在探究问题的过程中,运用已有的知识和经验,通过交流、比较、评价等寻找解决问题的途径和策略。
“三角形的内角和是 180°”这一结论,大多数学生在四年级上册“角的度量”也有接触,但不一定清楚道理,所以本课的重点不在于了解,而在于验证,让学生在课堂上经历研究问题的全过程。
学生在本课学习前已经认识了三角形的基本特征及分类,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略多样化。
小学数学《三角形内角和》教学设计(6篇)
小学数学《三角形内角和》教学设计(6篇)《三角形的内角和》教学反思篇一新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。
这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。
在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。
这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。
让学生“量一量”“剪—拼”贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。
在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;第二,经过操作得到什么结论。
学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。
本节课不足之处:1学生在还没学习三角形的特性和三角形三边的关系及三角形的内角和的基础上进行学习三角形内角和。
就无法复习三角形的有关知识。
2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,指完并让他用黑色水笔画出来。
为验证三角形内是180度做铺垫。
3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。
而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。
4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。
5、练习设计是有分层次,但是学生说的较少,我比较急地去分析,留给学生的时间不足这是我今后要特别注意的一个方面。
本节课我引导学生用测量或剪拼的方法探究三角形的内角和。
三角形的内角和优秀教学设计_三角形的内角和(优秀8篇)
三角形的内角和优秀教学设计_三角形的内角和(优秀8篇)《三角形内角和》数学教案篇一尊敬的各位评委老师:大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。
领悟转化思想在解决问题中的应用。
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。
“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。
请学生画一个三角形,要求:有两个直角。
为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。
板书课题。
(二)、自主探究、合作交流1、探索特殊三角形内角和拿出自己的一副三角板,同桌之间互相说一说各个角的度数。
三角形内角和是多少度呢?指名汇报。
90°+30°+60°=180°90°+45°+45°=180°从刚才两个三角形内角和的计算中,你发现了什么?2、探索一般三角形的内角和一般三角形的内角和是多少度?猜一猜。
《三角形内角和》数学教案【优秀6篇】
《三角形内角和》数学教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形内角和》数学教案【优秀6篇】作为一位不辞辛劳的人·民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
三角形内角和教案优秀5篇
三角形内角和教案优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、汇报材料、自我鉴定、条据文书、合同协议、心得体会、方案大全、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, presentation materials, self-evaluation, documentary evidence, contract agreements, reflections, comprehensive plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample essay formats and writing methods, please stay tuned!三角形内角和教案优秀5篇如果教案无法在实际教学中实施,就无法让学生真正理解和应用所学的知识,教案写好了,能够帮助我们更好地与学生和家长进行沟通和交流,本店铺今天就为您带来了三角形内角和教案优秀5篇,相信一定会对你有所帮助。
《三角形的内角和》优秀一等奖说课稿
《三角形的内角和》优秀一等奖说课稿1、《三角形的内角和》优秀一等奖说课稿一、教学目标课程标准这样描述:通过观察、操作了解三角形内角和是180。
分析教材内容,在上学期的学习中学生已经掌握了角的分类及度量的知识。
在本课之前,学生又研究了三角形的特性、三边间的关系及三角形的分类等知识。
积累了一些有关三角形的知识和经验,形成了一定的空间观念,可以在比较抽象的水平上进一步认识三角形,探索新知。
教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°,学好它有助于学生理解三角形的三个内角之间的关系,也是进一步学习其他图形内角和的基础,同时为初中进一步论证做好准备。
课前我对学情进行了分析:1、学生在学习本课前已经掌握了锐角、直角、钝角、平角和周角的度数,认识了三角形的基本特征及其分类,由于学生的数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题策略的多样化。
2、已经有不少学生知道了三角形内角和是180度的结论,但是很可能都知其然不知其所以然。
通过对课程标准的认识,以及内容分析和学情分析,我制定了这样的学习目标:1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°并会应用这一规律解决实际的问题。
2、通过研究直角三角形进而研究锐角三角形、钝角三角形,初步认识、理解由特殊到一般的逻辑思辨方法。
二、评价设计针对这一目标的完成,我设计了一下评价方式:1、交流式评价:通过师生、生生对话交流,在交流中对学生进行评价。
2、表现性评价:通过小组讨论表现、学生回答问题情况,适当对学生进行点拨。
3、操作反应评价:通过学生在研究三角形内角和过程中的测量、简拼、折等活动对学生进行评价评价题目1、通过3个练习题(1、做一做。
2、说一说3、拼一拼、想一想)检测学习目标1的掌握情况。
2、通过小组、同桌合作、汇报,教师引导学生理解本节课所蕴含的学习方法,检测学习目标2的掌握情况三、教具学具准备教具准备:课件、3个直角三角形,2个锐角三角形、2个钝角三角形、一张表格学具准备:三角板、量角器.四、教学过程这节课的教学我通过一下四个环节完成。
《三角形内角和》数学教案(优秀6篇)
《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。
出示一些三角形,让学生指出内角和。
师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。
)(板书三角形的内角和是180度。
)师:那我们再看看刚刚汇报的结果。
为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。
现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。
早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。
(1)直角三角形的两个锐角的和是90°。
(2)一个等腰三角形的底角可能是钝角。
(3)三角形的内角和都是180°,与三角形的大小无关。
4、剪一剪。
把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。
七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。
是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。
教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。
教材还安排了“试一试”,“练一练”的内容。
已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。
他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。
四年级数学教案《三角形的内角和》(精选10篇)
四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角?我们通常所说的角就是三角形的内角。
为了便于称呼,我们习惯用∠A、∠B、∠c来表示。
什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。
用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。
3、今天这节课啊我们就一起来研究三角形的内角和。
〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。
是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。
一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。
《三角形的内角和》教案(精选10篇)
《三角形的内角和》教案《三角形的内角和》教案(精选10篇)《三角形的内角和》教案篇1教学内容:本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。
教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。
教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。
教学目标:1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。
2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。
3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。
教学重点:理解并掌握三角形的内角和是180°。
教学难点:验证所有三角形的内角之和都是180°。
教具准备:多媒体课件、各种三角形等。
学具准备:三角形、剪刀、量角器等。
教学过程:一、出示课题,复习旧知1、认识三角形的内角。
(1)复习三角形的概念。
(2)介绍三角形的“内角”。
2、理解三角形的内角“和”。
【设计理念】通过复习三角形的概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。
二、动手操作,探究新知1、通过预习,认识结论,提出疑问2、验证三角形的内角和(1)用“量一量、算一算”的方法进行验证①汇报测量结果②产生疑问:为什么结果不统一?③解决疑问:因为存在测量误差。
(2)用“剪一剪、拼一拼”的方法进行验证①指导剪法。
①分别拼:锐角三角形、直角三角形、钝角三角形。
三角形内角和教案3篇
三角形内角和教案3篇三角形内角和教案篇1探究与发觉:三角形内角和课型新授课设计说明本节课是在同学已经掌控了钝角、锐角、直角、平角及三角形分类的基础上,让同学通过直观操作来认识和学习的。
1.重视知识的探究与发觉。
在教学中,概念的形成没有径直给出,而是整节课都是在引导同学的试验操作、活动探究中进行。
在探究活动中,不但重视知识的形成过程,而且留意留给同学充分进行主动探究和沟通的空间,让同学归纳出三角形内角和等于180°。
2.重视同学的合作探究学习。
使同学能够积极主动地参加到数学活动中,能在实践中感知、发表自己的见解,同学感受到通过自己的努力取得胜利所带来的满意感,同时也培育了同学的探究技能和创新技能。
课前预备老师预备:PPT课件量角器直尺三角尺同学预备:量角器三角尺教学过程一、常识导入。
(3分钟)1.介绍帕斯卡:早在300多年前有一个科学家,他在12岁时验证了任意三角形的内角和都是180°,他就是法国科学家、物理学家帕斯卡。
2.导入新课:这节课我们也来验证一下三角形的内角和。
1.倾听老师的介绍,了解帕斯卡。
2.明确本节课的学习内容。
1.填空。
(1)有一个角是钝角的三角形是( )三角形;有一个角是直角的三角形是( )三角形;三个角都是锐角的三角形是( )三角形。
(2)平角=( )°直角=( )°周角=( )°二、合作沟通,探究新知。
(18分钟)(一)量算法。
1.探究非常三角形的内角和。
(1)出示一副三角尺,引导同学说一说各个角的度数。
(2)引导同学算一算它们的内角和各是多少度。
(3)引导同学得出结论。
2.探究一般三角形的内角和。
(1)引导同学猜一猜其他三角形的内角和是多少度。
(2)组织同学验证一般三角形的内角和是180°。
①引导同学量出每个内角的度数,再计算三个内角的和。
②引导同学分工合作,把结果填入记录表中。
③引导同学说说自己的发觉。
(3)引导同学明确由于测量有误差,事实上三角形的内角和是180°。
《三角形的内角和》-教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形内角和相关的实际问题,如已知两个角的度数,求第三个角的度数。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠和测量,学生可以直观地看到三角形内角和确实为180度。
-在解决具体问题时,如已知两个角的度数求第三个角,教师应展示清晰的解题步骤,强调将已知信息应用到三角形内角和的性质上的重要性。
-对于形状不规则的三角形,指导学生如何通过构造辅助线或者利用补角等方法来求解未知角度。
四、教学流程
《三角形的内角和》-教案
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三角形的内角和》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过三角形?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形内角和的奥秘。
二、核心素养目标
《三角形的内角和》-教案
1.培养学生的几何直观能力,通过观察和操作,让学生感受三角形的内角和,发展空间观念。
2.提高学生的逻辑思维能力,引导学生运用归纳和推理的方法探索三角形内角和的性质,增强解决问题的能力。
3.培养学生的数学应用意识,将三角形内角和的性质应用于解决实际问题,提高数学在实际生活中的运用能力。
在新课讲授环节,我采用了理论介绍、案例分析以及重点难点解析的方式。通过实际操作和几何证明,学生能够更直观地理解三角形内角和的性质。但在实际操作过程中,我发现部分学生对于如何运用内角和性质解决问题仍感到困惑。为此,我将在后续教学中加强对学生解题方法的指导,帮助他们熟练掌握这一性质。
《三角形的内角和》教学设计【优秀8篇】
《三角形的内角和》教学设计【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《三角形的内角和》教学设计【优秀8篇】教学设计的目的是为了提高教学效率和教学质量,使学生在单位时间内能够学到更多的知识。
《三角形的内角和》教学设计优秀8篇
《三角形的内角和》教学设计优秀8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《三角形的内角和》教学设计优秀8篇作为一名默默奉献的教育工作者,通常会被要求编写教学设计,借助教学设计可以更好地组织教学活动。
《三角形内角和》数学教案(优秀3篇)
《三角形内角和》数学教案(优秀3篇)作为一名默默奉献的教育工作者,可能需要进行教学设计编写工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么优秀的教学设计是什么样的呢?读书破万卷,下笔如有神,这里是漂亮的编辑帮大伙儿找到的《三角形内角和》数学教案【优秀3篇】,希望大家能够喜欢。
《三角形内角和》教学设计篇一【教学内容】《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》【教学目标】1.使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。
2.让学生经历量一量、折一折、拼一拼等动手操作的过程。
通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180 。
3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。
【教学重点】使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。
【教学难点】通过多种方法验证三角形的内角和是180 。
【教学准备】课件。
四组教学用三角板。
铅笔。
大帆布兜子。
固体胶。
剪刀。
筷子若干。
【教学过程】一、激趣导入,提炼学习方法1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。
激发学生的好奇心。
然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。
我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。
3.选择工具,总结方法。
让选择不同工具的同学用自己的方法验证。
教师随机板书:量一量、拼一拼、折一折。
师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。
《三角形的内角和》教案 【完整版】
三角形的内角和教学内容:教材67页例6。
教学目标⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。
⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。
⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。
教学重点:检验三角形的内角和是180°。
教学难点:引导学生通过实验探究得出三角形的内角和是180度。
教学过程一、复习旧知,导入新课。
1、复习三角形分类的知识。
师出示三角形,生快速说出它的名称。
2、什么是三角形的内角我们通常所说的角就是三角形的内角。
为了便于称呼,我们习惯用∠A、∠B、∠C来表示。
什么是三角形的内角和三角形“三个内角的度数之和”就是三角形的内角和。
用一个含有∠A、∠B、∠C的式子来表示应该如何写∠A+∠B+∠C。
3、今天这节课啊我们就一起来研究三角形的内角和。
(揭题:三角形的内角和)二、动手操作,探究新知1、出示三角板,猜一猜。
师:这个三角形的内角和是多少度熟悉这副三角板吗请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。
是不是所有的三角形的内角和都是180°呢你能肯定吗我们得想个办法验证三角形的内角和是多少可以用什么方法验证呢2.学生测量3.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、巩固知识。
一个三角形中能不能有两个直角能不能有2个钝角三、应用所学,解决问题。
1、基础练习(课本第67页做一做)在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。
2、判断题(1)大三角形的内角和大于180度。
()(2)三角形的内角和可能是180度。
()(3)一个三角形中最多只能有一个直角。
()(4)三角形的三个内角分别可能是30度,60度,70度。
《三角形的内角和》教案
一、教学内容
《三角形的内角和》教案,本节课将依据人教版小学数学四年级下册第七章《角的度量》中的内容进行展开。主要内容包括:
1.三角形的定义及特性;
2.三角形内角和的概念;
3.探索三角形内角和等于180度的原理;
4.运用三角形内角和知识解决实际问题;
5.练习计算不同类型三角形的内角和。
在教学过程中,教师应针对重点和难点内容,采用不同的教学方法和策略,帮助学生扎实掌握三角形内角和的知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三角形的内角和》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算图形角度的情况?”(例如,拼图游戏中的角度计算)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形内角和的奥秘。
2.实践活动:分组讨论和实验操作环节,同学们积极参与,课堂氛围良好。通过实际操作,他们更好地理解了三角形内角和的计算方法。然而,部分引导学生发现问题、解决问题的能力。
3.小组讨论:同学们在讨论三角形内角和在实际生活中的应用时,提出了很多有趣的例子。这表明他们能够将所学知识运用到实际中,学以致用。但在讨论过程中,部分同学表现不够积极,我需要思考如何激发他们的参与热情。
5.培养学生数学思维能力,让学生在探索三角形内角和的过程中,形成严密的数学思维。
三、教学难点与重点
1.教学重点
(1)掌握三角形的定义及特性,能够识别不同类型的三角形;
(2)理解三角形内角和的概念,熟练运用三角形内角和等于180度的规律;
(3)学会运用三角形内角和知识解决实际问题。
举例:
-通过直观的图形展示,让学生了解三角形的定义,强调三角形有三条边和三个角;
教案《三角形的内角和》
教案《三角形的内角和》教学目标:1.了解三角形的概念及其分类;2.掌握计算三角形的内角和的方法;3.能够应用所学知识解决相关问题。
教学重点:1.三角形的分类;2.三角形的内角和计算方法。
教学难点:三角形的内角和计算方法。
教具准备:1.板书工具;2.习题集。
教学过程:Step 1:导入新知1.引入三角形的概念,通过提问学生三角形的定义与特点。
2.引入三角形的分类,板书并解释:等边三角形、等腰三角形、普通三角形。
Step 2:三角形的内角和1.引导学生探索三角形内角和的规律。
a)给出一个任意三角形的示意图,要求学生通过研究图形来发现三个内角和为多少。
b)让学生分享自己的发现,并引导他们总结规律:任何三角形的内角和等于180度。
2.讲解三角形内角和的计算方法。
a)指导学生使用角度之和为180度的性质求解三角形内角和。
b)借助板书,通过实例演示具体的计算步骤。
Step 3:示例讲解1.选取几个不同类型的三角形示例,演示如何计算其内角和,并解释计算过程。
2.让学生逐步参与计算示例问题,检查他们的答案并给予指导。
Step 4:合作探究1.分发习题集,让学生配对或小组合作完成练习。
2.监督和指导学生的合作过程,解答他们在探究中遇到的问题。
Step 5:归纳总结1.引导学生回顾本节课的内容,总结三角形内角和的计算方法,并在板书上进行总结归纳。
2.强调三角形内角和等于180度的重要性,并提醒学生在解题时需要注意。
Step 6:拓展练习1.练习不同难度的题目,让学生巩固所学的知识。
2.引导学生讨论解题过程中的策略和技巧。
鼓励他们互相分享思路和解题方法。
Step 7:课堂小结1.回顾本节课的学习内容,强调三角形内角和的重要性。
2.提醒学生在解题时要多加练习,不断提高解题能力。
Step 8:课后作业1.布置适量的课后作业,包括计算三角形内角和的练习题。
2.鼓励学生在课后自主学习,巩固所学的知识。
教学反思:本节课通过引导学生发现规律,培养了学生的发现和归纳能力。
《三角形的内角和》精品教案
《三角形的内角和》精品教案教学过程一、谈话导入师:同学们,我们知道三角形的内角和是180°,那么,谁知道四边形的内角和是多少?生:不知道。
师:今天我们就利用三角形的内角和来探究四边形的内角和。
教师板书:三角形的内角和(2)二、探究新知1.出示教材第68页例7的“分析与操作”。
(1)探究特殊四边形的内角和。
①教师发给学生正方形或长方形的纸片,分小组合作探究。
②教师指名汇报探究方法,并予以点评及补充。
③教师根据学生的汇报情况进行整理:长方形、正方形的4个角都是直角,它们的内角和为360°。
(2)探究一般四边形的内角和。
①教师分发不规则的四边形,继续让学生分小组探究四边形的内角和,鼓励学生用不同方法得出结论。
②教师巡视,对学生遇到的困难及时点拨。
(探究四边形的内角和可以通过“剪一剪”拼角的方法,还可以提示学生在四边形中构造出三角形,利用“三角形的内角和是180°”这个结论来探究)③教师指名汇报探究方法及成果,并予以点评及补充。
④教师根据学生的汇报整理探究方法:可以把四边形的四个角剪下来,发现可以拼成一个周角,周角是360°;还可以连接四边形的一条对角线,将四边形分成2个三角形,接着由180°+ 180°=360°求出四边形的内角和为360°。
⑤通过上面的探究,我们可以得出什么结论?教师和学生以起总结:四边形的内角和是360。
2.出示教材第68页例7的“回顾与反思”。
(1)教师指名进行汇总,对运用三角形内角和求四边形的内角和的过程进行阐述。
(2)不论是规则还是不规则的四边形,都可以连接对角线变成2个三角形。
(3)结论:所有四边形的内角和都是360°。
3.教材第68页“做一做”。
学生动手试试,分小组交流。
小组派代表说说思路和方法,其他学生可以补充。
三、课堂作业完成教材第69页“练习十六”第4题。
学生独立完成表格,教师指名回答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角形内角和》教学设计
衡阳市高新区华新小学吴咏
教材内容:人教版四年级下册数学第67页例6
教学目标:
1、通过操作活动探索发现和验证“三角形的内角和是180度”的规律。
2、通过量算、撕拼、折拼等活动培养学生观察、操作、探究、归纳、概括、反思等能力和初步的空间想象力。
3、渗透转化迁移思想,培养学生大胆质疑的勇气和严谨科学的精神,及与他人合作交流的意识。
4、激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点:让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程;知道三角形的内角和是180度并且能应用。
教学难点:对不同探究方法的指导。
教学准备:课件、各类三角形、学具袋(量角器、三种三角形,记录单)、直角三角板。
教学过程:
一、故事引入:(提出问题:任意一个三角形的内角和都是180度?)
猴王选太子,猴王跟他的三个儿子说我有一个锐角三角形,一个直角三角形,和一个钝角三角形,它们谁的内角和大呢?谁能告诉我,他就是王位的继承人。
大儿子说:大王,我认为钝角三角形的内角和大。
二儿子说:不对,应该是锐角三角形的内角和大。
三儿子说:你们说的都不对,直角三角形的内角和大。
(黑板上展示三类三角形)
他们能继承王位呢?(都不行)
(学生猜测:任意一个三角形的内角和都相同,都是180度)
师:你肯定提前预习了我们的教材,你真是个会学习的好孩子!三角形的内角和是180度吗?(是或不是)。
这只是我们的猜测,对于猜测,我们还要去验证。
师:研究三角形的内角和,是不是应该包括所有的三角形呢?
生:是。
师:需要把所有的三角形都拿出来一个一个进行验证吗?
生:不需要。
师:那要怎么做呢?我们可以选择有代表性的三角形进行研究,三角形按角分可
生:都在180°左右。
师:为什么会出现这种情况?
师:用度量的方法验证,得到的结果不统一,有没有比度量更精确的验证方法?(让学生多思考),也就是不用度量你能用别的方法验证吗?
师:不着急,看黑板(板书),内角和就是(~~)
生:就是把内角合并在一起。
如果把三个角合在一起考虑呢?你还有什么验证方法?
3、还有什么方法可以得到三角形的内角和?
(1)撕拼
师:如果三角形的内角和是180度,180度的角就是我们以前学过的平角。
把三角形的三个角拼起来是不是一个平角?有什么方法能把三角形的三个内角合并在一起?(撕拼)
师:我在电脑里搜索一个验证方法。
(课件演示)
生:把三角形的三个角撕下来,再拼成一个角。
师:你能说的更明白一些吗?
师:你们觉得他得方法可行吗?这种验证方法是谁第一个发现的,我们用掌声来祝贺他。
师课件演示拼的过程。
(把三个角形的3个内角撕下来,拼成一个大角,再量出这个大角的度数,发现这个大角的两条边在一条直线上,所以拼成的大角是180度,教师用直尺放在两条边上测试在一条直线上。
)
师:用撕拼的方法是比较精确,美中不足就是把三角形给撕了,有没有更好验证方法?
(2)折拼
预设1生:用折的方法
预设2生:不会想到用折的方法。
师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)
学生汇报的时候教师板书。
师:要把三角形的三个角折成一个平角靠我们现在的经验是有点难。
看电脑是怎样折的。
师课件演示。
(把其中一个角向对边折过去,角的顶点放在对边的边上,折痕与对边平行。
另外两个角向这个角的方向折去,使三个角拼在一起没有缝隙。
或者先要找到两条边的中点,用线连接起来,再按这条线折起来。
再把另外的两个角折起来就可以了。
)
4、现在,你知道它们谁能继承王位吗?(都不能继承,可能猴王自己还不想退位呢)
5、比较三种方法。
刚才同学们通过量一量、撕拼法、折拼法得出,无论是什么样的三角形的内角和都是180°。
让我们带着自豪的语气大声地读出“三角形的内角和是180°”。
四、夺宝勇士
我们用三角形的内角和是180度这个结论来夺宝,好吗?(师用教具演示,并请学生说明原因)
1、把一个三角形纸片剪成两个小三角形,每个小三角形的内角和是()。
2、在直角三角形中,一个锐角是36º,另一个锐角是()。
3、在等腰三角形中,顶角是40º,一个底角是()。
4、在等腰三角形中,一个底角是60º,那么顶角是()。
五、能力提升
1、用两块完全一样的三角尺拼成一个三角形,这个三角形的内角和是360度吗?
2、根据所学的知识,你算出下列图形的内角和吗?(时间够就涉及,不够就留作下节课讲)
六、小结
谈谈你的收获
七、板书。