五年级奥数算式谜答案
高斯小学奥数五年级上册含答案_数字谜综合一

第二十讲数字谜综合一在三四年级,我们学过加减法填空格,破译字母、汉字的竖式谜、横式谜,添算符等数字谜问题,其中既有加减法,也有乘除法.它们各有一些特定的解题方法和思路,像加减法的进位、借位、错位,乘除法里面的末位分析、首位及位数的估算等,这些方法我们当然还要进一步的学习和训练.但在这一讲中,我们将主要运用前一阵刚学过的数论知识来解决相应的数字谜问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.已知“BAD BAD GOOD+=”是一个正确的加法算式,其中相同的字母表示相同的数字,不同的字母表示不同的数字.已知GOOD不是8的倍数,那么四位数ABGD是多少?「分析」解决数字谜的题目,最关键在于找突破口.本题的突破口在哪里?练习1.在算式“+=路亨路亨刘吉吉”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.已知刘吉吉是8的倍数,那么四位数亨吉刘路是多少?例题2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.⨯=⨯=952「分析」从算式来看,是要找出两个两位数的乘积为952.但是把952写成两个两位数的乘积,方法非常多,要从中选出两种满足题目条件还是挺麻烦的.我们不妨先把952分解质因数,通过分析它的构成来选出满足题目条件的填法.练习2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.1026⨯=⨯=- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940.另外三个数可能是多少?「分析」其中四位数是2940,那么组成另外三个数的6个数字就确定了.这四个数两两互质,那么另外三个数都与2940互质,我们就从2940的质因数构成入手.练习3.用1、2、3、4、5、6、7这7个数字恰好组成一个一位数和两个三位数,每个数字只用一次,使得这三个数两两互质.已知其中一个三位数已填好,它是714,那么其他两个数是多少?在前面的例题中,我们通过分解质因数,分析其质因数的构成,从而解决了问题.那如果没有给出具体的数,而是由数字或字母构成的特殊形式又该如何?是否也能分解质因数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.数数科学学数学.⨯=在上面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.请问:“数学”所代表的两位数是多少?「分析」对于乘法数字谜问题,我们一般先考虑个位数字.“数”ד学”的个位数字是“学”,但符合这一条件的情况有好几种,讨论的过程会很长.我们不妨再来仔细观察算式,能发现题中的“数数”有什么特点吗?练习4.⨯数好学好=棒棒棒.在上面的乘法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.那么“好棒”所代表的两位数是多少?例题5.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.“花相似人不同”代表的六位数是多少?⨯=年年岁岁花相似÷=÷岁岁年年人不同「分析」“年年”、“岁岁”都是11的倍数,那么“花相似”所代表的三位数又是多少的倍数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在暑期中,我们学习了分数与循环小数的互化与四则运算,其实在数字谜里面也有分数与循环小数形式的问题.要解决这一类问题,需要我们灵活运用学过的循环小数的相关知识. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题6.已知a 是一个自然数,A 、B 是1至9中的数字,最简分数0.33222a A B =&&.请问:a 是多少? 「分析」等式两边一个是分数,一个是循环小数,可以都化成分数来比较.美妙的竖式荣获斯大林奖金的前苏联数学家、教育家柯尔⋅詹姆斯基曾以开发心灵美为题,列举了一些令人叹服的巧妙算法,其中之一如下:⨯=.例:88883333296237048 8 8 8⨯ 3 3 3 32 42 4 2 42 4 2 4 2 42 4 2 4 2 4 2 42 4 2 4 2 42 4 2 42 42 9 6 23 7 0 4这道题如果只是要算出结果,办法有很多,甚至拿计算器一按答案就出来了.但结果并非是重点,趣味性才是它的精髓所在.作业1. 在算式12233221⨯=⨯的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.作业2. 用0至9这十个数码各1次,组成四位数、三位数、两位数和一位数各1个,并使这四个数两两互质.已知组成的四位数是1860,那么其他的三个数是多少?作业3. 将1~9这九个数字各一个填到下面的横式中,使等式成立(其中1,5,6已经填好).156⨯=⨯=作业4. 在算式“⨯⨯⨯=钓钓钓鱼岛钓鱼岛钓鱼岛钓鱼岛”中,“钓”、“鱼”、“岛”各代表一个不同的数字,要使算式成立,那么钓鱼岛表示的三位数是多少?作业5. 已知a 是一个自然数,b 是一个1至9中的数字,如果0.43555a b =&&,那么a 是多少?第二十讲 数字谜综合一例题1. 答案:3810详解:列竖式,易知D 是0,G 是1,且O 是偶数.那么GOOD 可能是1220、1440、1660和1880,其中1220和1660不是8的倍数,对应的加法算式分别是6106101220+=和8308301660+=,只有第二个满足.那么ABGD 是3810.例题2. 答案:56172834952⨯=⨯=详解:39522717=⨯⨯.考虑最大的质因数17,可知等号两边的两位数中都有17的倍数,可能是17、34、68.那么952可以拆成5617⨯、2834⨯和1468⨯.考虑到8个数字不重复,只能是56172834952⨯=⨯=.例题3. 答案:1、67、583或1、67、853详解:2229402357=⨯⨯⨯,则另外三个数不能有质因数2、3、5、7.其中一位数只能是1.还剩3、5、6、7、8这五个数字.两位数要分情况讨论:(1)个位数字为3,有53、73、83三组符合要求.对应的,三位数的三个数字分别为6、7、8;5、6、8;5、6、7.经检验,均不符合要求.(2)个位数字为7,有37、67两组符合要求.对应的,三位数的三个数字分别为5、6、8;3、5、8.经检验,有583、 853符合要求.综上所述,一共有:1、67、583;1、67、853两组答案.例题4. 答案:16详解:数数是11的倍数,所以学数学也是11的倍数.三位数中满足学数学这种形式,又是11的倍数的数有:121、242、363、484、616、737、858、979.依次验证几种情况,发现:当学数学为616,那么“学”为6,“数”为1,“⨯=数数科学学数学”变为“116616⨯=科”,可知“科”为5,符合题意.其它情况逐一检验,没有符合题目要求的答案.所以“数学”代表的两位数为16.例题5. 答案:968510详解:第一个算式可以变为“121⨯⨯=年岁花相似”,所以“花相似”是121的倍数.121的倍数中,三位数有121、242、363、484、605、726、847、968,共8个.“花相似”中没有重复数字,所以只可能是605、726、847、968之一.依次验证几种情况,发现:当“花相似”是968,那么“⨯年岁”为8,只能分别是1、8或2、4.其中1、8这种情况与“似”等于8矛盾,2、4这种情况满足要求.由第二个算式可以看出,“岁”小于“年”,因此岁2=,年4=.第二个算式为2244÷=÷人不同,已经用过的数字为2、4、6、8、9,所以“人”、“不”、“同”只能在0、1、3、5、7中取,只能分别是5和10.综上所述,“花相似人不同”所代表的六位数是968510.例题6. 答案:83详解:按照混循环小数化分数的方法,3330.339990A B A B-=&&,因此等式变为3332229990a A B -=,即4533399909990a A B -=,可知45333a A B ⨯=-.那么333A B -一定是45的倍数,即为5和9的倍数,因此333A B -计算结果的个位一定是0后者5,那么33A B 的个位一定是3或者8,即3B =或8B =.当3B =时,3333333330A B A A -=-=一定是9的倍数,可知3A =,原数为0.3333L 不符合题意.当8B =时,3333383335A B A A -=-=是9的倍数,可知7A =,原数为0.3738&&,符合题意,可知453735a ⨯=,a 为83.练习1. 答案:2417简答:易知刘是1,且吉是偶数.那么刘吉吉可能是100、122、144、166、188,其中只有144是8的倍数.那么算式应该是7272144+=,要求的四位数是2417.练习2. 答案:1026简答:310262319=⨯⨯.考虑最大的质因数19.等号两边都有19的倍数,可以是19、38、57.1026可以拆成1954⨯、3827⨯或5718⨯.考虑到8个数字互不相同,只能是195438271026⨯=⨯=.练习3. 答案:5和263简答:还有2、3、5和6可以用.71423717=⨯⨯⨯,一位数只能是5.剩下的三位数只能以3结尾,而623是7的倍数,不满足条件,只能是263.练习4. 答案:79简答:棒棒棒是37的倍数,说明等号左边一定有37的倍数,可能是37或74.经验证算式只能是2737=999⨯.作业1. 答案:1223113221⨯=⨯简答:21中有质因数7,所以23应该是7的倍数,只能填1或8,经检验,应填1.作业2. 答案:7,43,529简答:2186023531=⨯⨯⨯,一位数只能是7,另外两个数的末尾只能是3和9.剩下的数字之和除以3余2,只能拆成两个除以3余1的组合,所以4和2、5是分成两组,49是7的倍数,所以两位数只能是43,259是7的倍数,所以三位数只能是529.⨯=⨯=作业3.答案:439278156⨯=⨯=.简答:21562313=⨯⨯,所以是439278156作业4.答案:137=⨯⨯,所以简答:两个重复的三位数组成的六位数一定是1001的倍数,而100171113“钓”、“鱼”、“岛”分别为1、3、7.作业5.答案:235b,b=2,a=235.简答:由分数化循环小数的方法可得,5943a b÷⨯=.所以943。
高斯小学奥数五年级上册含答案_数字谜综合一

第二十讲数字谜综合一在三四年级,我们学过加减法填空格,破译字母、汉字的竖式谜、横式谜,添算符等数字谜问题,其中既有加减法,也有乘除法.它们各有一些特定的解题方法和思路,像加减法的进位、借位、错位,乘除法里面的末位分析、首位及位数的估算等,这些方法我们当然还要进一步的学习和训练.但在这一讲中,我们将主要运用前一阵刚学过的数论知识来解决相应的数字谜问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.已知“BAD BAD GOOD+=”是一个正确的加法算式,其中相同的字母表示相同的数字,不同的字母表示不同的数字.已知GOOD不是8的倍数,那么四位数ABGD是多少?「分析」解决数字谜的题目,最关键在于找突破口.本题的突破口在哪里?练习1.在算式“+=路亨路亨刘吉吉”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.已知刘吉吉是8的倍数,那么四位数亨吉刘路是多少?例题2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.⨯=⨯=952「分析」从算式来看,是要找出两个两位数的乘积为952.但是把952写成两个两位数的乘积,方法非常多,要从中选出两种满足题目条件还是挺麻烦的.我们不妨先把952分解质因数,通过分析它的构成来选出满足题目条件的填法.练习2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.1026⨯=⨯=- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940.另外三个数可能是多少?「分析」其中四位数是2940,那么组成另外三个数的6个数字就确定了.这四个数两两互质,那么另外三个数都与2940互质,我们就从2940的质因数构成入手.练习3.用1、2、3、4、5、6、7这7个数字恰好组成一个一位数和两个三位数,每个数字只用一次,使得这三个数两两互质.已知其中一个三位数已填好,它是714,那么其他两个数是多少?在前面的例题中,我们通过分解质因数,分析其质因数的构成,从而解决了问题.那如果没有给出具体的数,而是由数字或字母构成的特殊形式又该如何?是否也能分解质因数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.数数科学学数学.⨯=在上面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.请问:“数学”所代表的两位数是多少?「分析」对于乘法数字谜问题,我们一般先考虑个位数字.“数”ד学”的个位数字是“学”,但符合这一条件的情况有好几种,讨论的过程会很长.我们不妨再来仔细观察算式,能发现题中的“数数”有什么特点吗?练习4.⨯数好学好=棒棒棒.在上面的乘法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.那么“好棒”所代表的两位数是多少?例题5.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.“花相似人不同”代表的六位数是多少?⨯=年年岁岁花相似÷=÷岁岁年年人不同「分析」“年年”、“岁岁”都是11的倍数,那么“花相似”所代表的三位数又是多少的倍数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在暑期中,我们学习了分数与循环小数的互化与四则运算,其实在数字谜里面也有分数与循环小数形式的问题.要解决这一类问题,需要我们灵活运用学过的循环小数的相关知识. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题6.已知a 是一个自然数,A 、B 是1至9中的数字,最简分数0.33222a A B =&&.请问:a 是多少? 「分析」等式两边一个是分数,一个是循环小数,可以都化成分数来比较.美妙的竖式荣获斯大林奖金的前苏联数学家、教育家柯尔⋅詹姆斯基曾以开发心灵美为题,列举了一些令人叹服的巧妙算法,其中之一如下:⨯=.例:88883333296237048 8 8 8⨯ 3 3 3 32 42 4 2 42 4 2 4 2 42 4 2 4 2 4 2 42 4 2 4 2 42 4 2 42 42 9 6 23 7 0 4这道题如果只是要算出结果,办法有很多,甚至拿计算器一按答案就出来了.但结果并非是重点,趣味性才是它的精髓所在.作业1. 在算式12233221⨯=⨯的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.作业2. 用0至9这十个数码各1次,组成四位数、三位数、两位数和一位数各1个,并使这四个数两两互质.已知组成的四位数是1860,那么其他的三个数是多少?作业3. 将1~9这九个数字各一个填到下面的横式中,使等式成立(其中1,5,6已经填好).156⨯=⨯=作业4. 在算式“⨯⨯⨯=钓钓钓鱼岛钓鱼岛钓鱼岛钓鱼岛”中,“钓”、“鱼”、“岛”各代表一个不同的数字,要使算式成立,那么钓鱼岛表示的三位数是多少?作业5. 已知a 是一个自然数,b 是一个1至9中的数字,如果0.43555a b =&&,那么a 是多少?第二十讲 数字谜综合一例题1. 答案:3810详解:列竖式,易知D 是0,G 是1,且O 是偶数.那么GOOD 可能是1220、1440、1660和1880,其中1220和1660不是8的倍数,对应的加法算式分别是6106101220+=和8308301660+=,只有第二个满足.那么ABGD 是3810.例题2. 答案:56172834952⨯=⨯=详解:39522717=⨯⨯.考虑最大的质因数17,可知等号两边的两位数中都有17的倍数,可能是17、34、68.那么952可以拆成5617⨯、2834⨯和1468⨯.考虑到8个数字不重复,只能是56172834952⨯=⨯=.例题3. 答案:1、67、583或1、67、853详解:2229402357=⨯⨯⨯,则另外三个数不能有质因数2、3、5、7.其中一位数只能是1.还剩3、5、6、7、8这五个数字.两位数要分情况讨论:(1)个位数字为3,有53、73、83三组符合要求.对应的,三位数的三个数字分别为6、7、8;5、6、8;5、6、7.经检验,均不符合要求.(2)个位数字为7,有37、67两组符合要求.对应的,三位数的三个数字分别为5、6、8;3、5、8.经检验,有583、 853符合要求.综上所述,一共有:1、67、583;1、67、853两组答案.例题4. 答案:16详解:数数是11的倍数,所以学数学也是11的倍数.三位数中满足学数学这种形式,又是11的倍数的数有:121、242、363、484、616、737、858、979.依次验证几种情况,发现:当学数学为616,那么“学”为6,“数”为1,“⨯=数数科学学数学”变为“116616⨯=科”,可知“科”为5,符合题意.其它情况逐一检验,没有符合题目要求的答案.所以“数学”代表的两位数为16.例题5. 答案:968510详解:第一个算式可以变为“121⨯⨯=年岁花相似”,所以“花相似”是121的倍数.121的倍数中,三位数有121、242、363、484、605、726、847、968,共8个.“花相似”中没有重复数字,所以只可能是605、726、847、968之一.依次验证几种情况,发现:当“花相似”是968,那么“⨯年岁”为8,只能分别是1、8或2、4.其中1、8这种情况与“似”等于8矛盾,2、4这种情况满足要求.由第二个算式可以看出,“岁”小于“年”,因此岁2=,年4=.第二个算式为2244÷=÷人不同,已经用过的数字为2、4、6、8、9,所以“人”、“不”、“同”只能在0、1、3、5、7中取,只能分别是5和10.综上所述,“花相似人不同”所代表的六位数是968510.例题6. 答案:83详解:按照混循环小数化分数的方法,3330.339990A B A B-=&&,因此等式变为3332229990a A B -=,即4533399909990a A B -=,可知45333a A B ⨯=-.那么333A B -一定是45的倍数,即为5和9的倍数,因此333A B -计算结果的个位一定是0后者5,那么33A B 的个位一定是3或者8,即3B =或8B =.当3B =时,3333333330A B A A -=-=一定是9的倍数,可知3A =,原数为0.3333L 不符合题意.当8B =时,3333383335A B A A -=-=是9的倍数,可知7A =,原数为0.3738&&,符合题意,可知453735a ⨯=,a 为83.练习1. 答案:2417简答:易知刘是1,且吉是偶数.那么刘吉吉可能是100、122、144、166、188,其中只有144是8的倍数.那么算式应该是7272144+=,要求的四位数是2417.练习2. 答案:1026简答:310262319=⨯⨯.考虑最大的质因数19.等号两边都有19的倍数,可以是19、38、57.1026可以拆成1954⨯、3827⨯或5718⨯.考虑到8个数字互不相同,只能是195438271026⨯=⨯=.练习3. 答案:5和263简答:还有2、3、5和6可以用.71423717=⨯⨯⨯,一位数只能是5.剩下的三位数只能以3结尾,而623是7的倍数,不满足条件,只能是263.练习4. 答案:79简答:棒棒棒是37的倍数,说明等号左边一定有37的倍数,可能是37或74.经验证算式只能是2737=999⨯.作业1. 答案:1223113221⨯=⨯简答:21中有质因数7,所以23应该是7的倍数,只能填1或8,经检验,应填1.作业2. 答案:7,43,529简答:2186023531=⨯⨯⨯,一位数只能是7,另外两个数的末尾只能是3和9.剩下的数字之和除以3余2,只能拆成两个除以3余1的组合,所以4和2、5是分成两组,49是7的倍数,所以两位数只能是43,259是7的倍数,所以三位数只能是529.⨯=⨯=作业3.答案:439278156⨯=⨯=.简答:21562313=⨯⨯,所以是439278156作业4.答案:137=⨯⨯,所以简答:两个重复的三位数组成的六位数一定是1001的倍数,而100171113“钓”、“鱼”、“岛”分别为1、3、7.作业5.答案:235b,b=2,a=235.简答:由分数化循环小数的方法可得,5943a b÷⨯=.所以943。
小学奥数教程:加减法数字谜_全国通用(含答案)

数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。
横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。
主要涉及小数、分数、循环小数的数字谜问题,因此,会需要利用数论的知识解决数字谜问题一、数字迷加减法1.个位数字分析法2.加减法中的进位与退位3.奇偶性分析法二、数字谜问题解题技巧1.解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位以及位数的差异;2.要根据不同的情况逐步缩小范围,并进行适当的估算;3.题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;4.注意结合进位及退位来考虑;模块一、加法数字谜【例 1】 “华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?0191杯华24+【考点】加法数字谜 【难度】1星 【题型】填空 【关键词】华杯赛,初赛,第1题 【解析】 由0+“杯”=4,知“杯”代表4(不进位加法);再由191+“华”=200,知“华”代表9.因此,“华杯”代表的两位数是94.【答案】94【例 2】 下面的算式里,四个小纸片各盖住了一个数字。
被盖住的四个数字的总和是多少?例题精讲知识点拨教学目标5-1-2-1.加减法数字谜1+49【考点】加法数字谜 【难度】2星 【题型】填空 【关键词】华杯赛,初赛,第5题 【解析】 149的个位数是9,说明两个个位数相加没有进位,因此,9是两个个位数的和,14是两个十位数的和。
于是,四个数字的总和是14+9=23。
【答案】23【例 3】 在下边的算式中,被加数的数字和是和数的数字和的三倍。
问:被加数至少是多少?【考点】加法数字谜 【难度】3星 【题型】填空 【关键词】第四届,华杯赛,初赛,第2题 【解析】 从“被加数的数字和是和的数字和的三倍”这句话,可以推断出两点:①被加数可以被3整除。
五年级奥数专题 数字谜(学生版)

学科培优数学数字谜学生姓名授课日期教师姓名授课时长知识定位什么是数字谜?数字谜,一般是指那些含有未知数字或未知运算符号的算式。
这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则、数的性质(和差积商的位数,数的整除性、奇偶性、尾数规律等)来进行正确的推理、判断。
重难点:1.横式迷问题2.竖式迷题中的除法式迷3.试验法在解决数字谜问题的应用考点: 1.复杂的横式迷题2.复杂的竖式谜题3.枚举和筛选相结合的方法(试验法)解决数字谜题知识梳理如何解决数字谜题?解数字谜,一般是从某个数的首位或末位数字上寻找突破口。
推理时应注意:(1)数字谜中的文字、字母或其它符号,只取0~9中的某个数字;(2)要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;(3)必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字;(4)数字谜解出之后,最好验算一遍。
横式的补填空格和破译字母问题中,解题的基本方法有尾数分析,分情况试算,数值估算,以及因数分解等。
同学们在解题时要灵活应用。
例题精讲【试题来源】【题目】在下面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150。
那么所填的3个数字之和是多少?□,□8,□97【试题来源】【题目】在下列各等式的方框中填入恰当的数字,使等式成立,并且算式中的数字关于等号左右对称:(1)12×23□=□32×21, (2)12×46□=□64×21,(3)□8×891=198×8□, (4)24×2□1=1□2×42, (5)□3×6528=8256×3□。
【试题来源】【题目】在下列算式的□中填上适当的数字,使得等式成立:(1)6□□4÷56=□0□, (2)7□□8÷37=□1□,(3)3□□3÷2□=□17, (4)8□□□÷58=□□6。
2022-2023学年小学五年级奥数(全国通用)测评卷05《算式谜》(解析版)

【五年级奥数举一反三—全国通用】测评卷05《算式谜》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共7小题,满分21分,每小题3分)1.(2016•创新杯)加法算式中,七个方格中的数字和等于()A.51 B.56 C.49 D.48【分析】根据两数相加最大进位是1可知.个位数字相加结果是14,十位和百位数字相加和为18,千位有1个进位1.即可求解.【解答】解:依题意可知:根据两数相加最大进位是1可知.个位数字相加结果是14,十位和百位数字相加和为18,千位有1个进位1.14+18+18+1=51.故选:A.2.(2016•华罗庚金杯)在如图的算式中,每个汉字代表0至9中的一个数字,不同汉字代表不同的数字.当算式成立时,“好”字代表的数字是()A.1 B.2 C.4 D.6【分析】“”一定是111的倍数,表示为:111n=37×3×n,不同汉字代表不同的数字,所以n ≠1,然后根据n=2、3、4、5、6逐个筛选即可.【解答】解:根据分析可得,“”,表示为:111n=37×3×n,不同汉字代表不同的数字,所以n≠1,n=2,则“”=37×6(符合要求)或74×3(不符合要求),n=3,则“”=37×9(不符合要求),n=4,则“”=74×6(不符合要求),n=5,则“”=37×15(不符合要求),n=6,则“”=74×9(不符合要求),所以,“”=37×6=222,即“好”字代表的数字是2.故选:B.3.(2012•华罗庚金杯)在右面的加法算式中,每个汉字代表一个非零数字,不同的汉字代表不同的数字.当算式成立吋,贺+新+春=()A.24 B.22 C.20 D.18【分析】根据题干“放鞭炮”+“迎龙年”=“贺新春”,又因为1~9这9个数字的和是45,据此根据加法的计算法则,分别从十位与个位加法都进位,只有个位进位,只有十位进位和都不进位四个方面进行讨论分即可解答问题.【解答】解:(1)假设个位与十位相加都进位,则可得:炮+年=10+春,鞭+龙=10+新﹣1=9+新,放+迎=贺﹣1,则炮+年+鞭+龙+放+迎=10+春+9+新+贺﹣1=贺+新+春+18,所以放=鞭+炮+迎+龙+年+贺+新+春=2(贺+新+春)+18=45,即贺+新+春=,不符合题意;(2)假设只有个位数字相加进位,则炮+年=10+春,鞭+龙=新﹣1,放+迎=贺,则炮+年+鞭+龙+放+迎=10+春+新﹣1+贺=贺+新+春+9,所以放=鞭+炮+迎+龙+年+贺+新+春=2(贺+新+春)+9=45,即贺+新+春=18,符合题意;(3)假设只有十位数字相加进位,则炮+年=春,鞭+龙=10+新,放+迎=贺﹣1,则炮+年+鞭+龙+放+迎=春+10+新+贺﹣1=贺+新+春+9,所以放=鞭+炮+迎+龙+年+贺+新+春=2(贺+新+春)+9=45,即贺+新+春=18,符合题意;(4)假设都不进位,则炮+年=春,鞭+龙=新,放+迎=贺,则炮+年+鞭+龙+放+迎=春+新+贺,所以放=鞭+炮+迎+龙+年+贺+新+春=2(贺+新+春)=45,即贺+新+春=,不符合题意.综上所述,贺+新+春=18.故选:D.4.(2017•华罗庚金杯)请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986 B.2858 C.2672 D.2754【分析】根据特殊情况入手,结果中的数字2如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾,那么就是没有进位.根据已知数字进行分析没有矛盾的就是符合题意的.【解答】解:首先根据结果中的首位数字是2,如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾那么乘数中的三位数的首位只能是1或者2,因为乘数中有7而且结果是三位数,那么乘数中三位数首位只能是1.那么已知数字7前面只能是2,根据已知数字0再推出乘数三位数中的十位数字是0.再根据乘数中的数字7与三位数相乘有1的进位,尾数只能是2.所以是102×27=2754.故选:D.5.(2016•华罗庚金杯)如图,在5×5的空格内填入数字,使每行、每列及每个粗线框中的数字为1,2,3,4,5,且不重复.那么五角星所在的空格内的数字是()A.1 B.2 C.3 D.4【分析】首先根据排除法在第一宫格中必须有4,那么第二行的第二列的数字只能为4.继续使用排除法即可推理成功.【解答】解:依题意可知:首先根据在第一宫格中必须有4,那么第二行的第二列的数字只能为4.同理在第二行第四列的数字只能是1.继续推理可得:所以再五角星的空格位置填写1.故选:A.6.(2014•迎春杯)下面的除法算式给出了部分数字,请将其补充完整.当商最大时,被除数是()A.21944 B.21996 C.24054 D.24111【分析】首先根据结果的数字4,利用末位分析法,尾数是4的符合题意的只有2×2或者2×7满足,如果是7不能满足第一个结果中的数字0,那么只能是2,再分析第一次的结果为200多,那么符合题意的有数字除数的十位数字是5.逐个分析即可求解.【解答】解:明显商的百位乘以除数是二百零几,如果是100多那么余数是三位数.2 乘以除数是三位数,所以商最大时,结果中个位数字是4.所有除数的个位是2 或7,要满足0 的话就只能为2,这时除数为52.商最大为42,因为最后一行只能为一百多,最大是52的3倍,所以商最大为423.这时被除数为21996÷52=423,符合条件故选:B.7.在如图所示的竖式里,四张小纸片各盖住了一个数字.被盖住的4个数字的总和是()A.14 B.24 C.23 D.25【分析】根据题意,由加法的计算方法进行推算:个位不能进位,可以有0+9=1+8=2+7=3+6=4+5,十位进位有5+9=6+8=7+7,由此选择进行解答即可.【解答】解:个位上,两个数字的和是9;十位上,两个数字和是14,那么,被盖住的4个数字的总和就是:9+14=23.故选:C.二.填空题(共12小题,满分32分)8.(2分)(2017•走美杯)24点游戏,用适当的运算符号(包括括号)把3,3,9,9这四个数组成一个算式,是结果等于24.3×9﹣9÷3=24.【分析】结合4个数字和24之间的关系进行试运算,可以联想24相关的加减乘除运算,据此解答.【解答】解:3+3+9+9=24,3×9﹣9÷3=24.故答案为:3+3+9+9=24,3×9﹣9÷3=24等.9.(2分)(2017•华罗庚金杯模拟)已知除法竖式如图:则除数是15,商是29.【分析】根据题意,由除法竖式的计算方法进行推算即可.【解答】解:根据竖式可知,除数与商的个位数相乘的积的末尾是5,可得,除数的个位数与商的个位数必有一个是5,另一个是奇数;假设,商的个位数是5,即商是25,由135÷5=27,27×2=54,大于被除数的前两位,不符合题意,那么除数的个位数字是5;由□5×2是两位数,并且小于4□,可知除数的十位数字小于或等于2,假设是2即25×2=50>4□,不符合题意,那么除数只能是15;又因为15×9=135,所以,商是29,被除数是29×15=435.竖式是:故答案为:15,29.10.(2分)(2016•陈省身杯)在算式“2□3□7□5”的三个方框中分别填入“+”、“﹣”、“×”这三个运算符号各一次,使得填入符号之后的运算结果最大,这个最大的结果是34.【分析】根据加法、减法、乘法的意义可知,要使值最大,则就要使积尽量大,加数尽量大,减数尽量小,据此根据四则混合运算的运算顺序分析填空即可.【解答】解:要使值最大,就要把最大的两个数相乘,且最小的两个数相减,所以,这个最大的结果是:2﹣3+7×5=﹣1+35=34故答案为:34.11.(2分)(2018•迎春杯)在下列横式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,且没有汉字代表7,“迎”、“春”、“杯”均不等于1,那么“迎”、“春”、“杯”所代表三个数字的和是15..【分析】确定不含5,为7的倍数,且不为49,考虑3,6,9的分配,即可得出结论.【解答】解:若含5,则必为“加”,此时=56,3和9各剩一个,无法满足,所以不含5,为7的倍数,且不为49,考虑3,6,9的分配.第一种情况,吧=9,则3,6在左侧,且不是3的倍数,则=14或28,无解;第二种情况,9在左侧,则3,6在右侧,可得1×2×4×9×7=63×8,所以“迎”、“春”、“杯”所代表三个数字的和是15.故答案为15.12.(2017•华罗庚金杯模拟)“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是94.【分析】本题考察凑数谜.【解答】解:根据“加数=和﹣另一个加数”,“华杯”=2004﹣1910=94.13.(2017•小机灵杯)在×=这个等式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么,=1207、1458、1729.【分析】根据式子的特点,我们可从“个位分析”入手,B×A的个位是B,可能分为:第一种,A=1,B为2﹣﹣9;第二种,A是奇数3、7、9,B=5;第三种,A为2、4、8,B没可取的值;第四种,A=6,B为2、4、8.然后用“枚举法”对第一、二、四种存在的情况一一检验,即可得出答案.【解答】解:因为B×A的个位是B,所以可能有下列4种情况:第一种,A=1,B为2﹣﹣9时,有12×21=252,13×31=403,14×41=574,15×51=765,16×61=976均不符合舍去而17×71=1207,18×81=1458,19×91=1729这三个都符合;第二种,A是奇数3、7、9,B=5时,有35×53=1855,75×57=4275,95×59=5605均不符合,舍去;第三种,A为2、4、8,B直接没有可取得值,所以舍去;第四种,A=6,B为2、4、8时,62×26=1612,64×46=2944,68×86=5848均不符合舍去.综上可得符合的有:17×71=1207,18×81=1458,19×91=1729故:ACDB=1207、1458、1729.14.(2018•陈省身杯)在下面的算式中,“陈”、“省”、“身”、“杯”、“好”分别代表一个不同偶数数字,则三位数“”=246.×杯+=2018【分析】“陈”、“省”、“身”、“杯”、“好”分别代表一个不同偶数数字,则只能是0、2、4、6、8,所以最大等于58,最小等于50,即×杯的值应在1960~1968范围内;由于每个汉字代表一个不同偶数数字,所以“陈=2”,“省=4”“杯=8”;因为最后的得数是2018,据此然后确定“身”和“好”即可.【解答】解:“陈”、“省”、“身”、“杯”、“好”分别代表一个不同偶数数字,则只能是0、2、4、6、8,所以最大等于58,最小等于50,那么,2018﹣58=1960,2018﹣50=1968即×杯的值应在1960~1968范围内;由于每个汉字代表一个不同偶数数字,所以“陈=2”,“省=4”“杯=8”;相应的可以确定,“身=6”和“好=0”,所以,246×8+50=2018,所以=246;故答案为:246.15.(2018•陈省身杯)在如图的方框中各填入一个数字,使得乘法竖式成立,则两个乘数之和为130.【分析】第一次乘得的积是三位数,且积的十位数字是1(125×8=1000),所以第一个因数只能是102;又由于最后的积是2千多,第一个因数的最高位是1,所以第二个因数的最高位只能是2,即第二个因数是28;那么乘法算式是102×28=2856;据此填数即可.【解答】解:根据分析可得,乘法算式是102×28=2856;则两个乘数之和为:102+28=130故答案为:130.16.(2018•迎春杯)如图,在每个方框中填入一个数字,使得算式成立,则乘积为26961.【分析】本题考察凑数谜.先从万位上的空格填1还是填2进行讨论,得出只能填2后,即可推出第一个因数的百位是2,十位是0,第二个因数的首位是1,接着依据两个因数的个位相乘,结果是一个比80大的数,得到9×9=81,最后根据209×口=口1口推出第二个因数的十位上为2,至此得出答案209×129=26961.【解答】解:如果万位上的空格填1,则第一个因数为10口,第二个因数为1口口,显然10口×口不可能得到四位数口口8口,所以万位上的空格填2,则第一个因数为20口,第二个因数为1口口,此时,结合20口×口=口口8口,可推出209×9=1818,则209×口=口1口,可推出209×2=418,至此,209×129=26961.故答案为:2696117.(2015•中环杯)如图算式中,最后的乘积为100855.【分析】首先找题中的特殊情况,发现黄金三角,只能是9+1=10.根据首位结果为9的三位数,进行讨论首位的值继续枚举即可.【解答】解:依题意可知:首先题中的特殊情况结果的进位为黄金三角只能是9+1=10.首位数字a×d结果是8加上进位正好是9.组合可是2×4或者1×8.根据竖式计算2+p有进位,那么p的值可以是7,8,9.根据上边两个数字都是0,那么e可以等于f.b可能是0.根据920多是数字必须有进位才行,所以b ≠0.那么就需要有进位才能构成的上面的数字0.当a=2,d=4时,f是小于4不为1的数字只有2和3.不能同时满足已知数字0,0,2的情况.当a=4,d=2时,f只能选择2,不满足进位相加为0.当a=8,d=1时,f只能是1,不满足数字0的情况.当a=1,d=8时,f为奇数,不是1和9,只能是3,5,7,经尝试只有115×877=100855满足条件.故答案为:100855.18.(2015•创新杯)如图所示,在□中填上适当的数,使除法竖式算式成立,那么被除数等于72.【分析】根据竖式的特点,正好能除尽,所以最后两行的积是:4×8=32,说明被除数的个位数字是2;因为被除数是两位数,所以十位数字比3多4,是3+4=7,所以被除数是72.【解答】解:根据分析可得:答:被除数等于72.故答案为:72.19.(2015•创新杯)在图中,分别将1﹣9这九个数字填入九个圆圈内,使两条直线上的五个数字和相等,那么中心处的圆圈内可以填入的数字是1、5、9.【分析】假设中间的数是a,每条叉线上的三个圆圈内的和相等是m,则有4m=1+2+3+4+5+6+7+8+9+3a,4m=45+3a,当a=1时,m=(45+3)÷4=12,1+2+9=1+3+8=1+4+7=1+5+6=12;当a=2、3、4时,m不是整数,无解;当a=5时,m=(45+15)÷4=15,5+1+9=5+2+8=5+3+7=5+4+6=15;当a=6、7、8时,m不是整数,无解;当a=9时,m=(45+27)÷4=18,9+1+8=9+2+7=9+3+6=9+4+5=18;即可得解.一共有3种不同的填法.【解答】解:把1~9填入图中,使每条线上5个数的和相等,有三种填法,如下图所示:所以,中心处的圆圈内可以填入的数字是1、5、9.故答案为:1、5、9.三.解答题(共10小题,满分47分)20.(4分)(2016•春蕾杯)请把0﹣9分别填入下面六个等式中,使等式成立.20×(9﹣8)=206÷2+17=203×8﹣4=20(4+8)÷12=14×5+0=2020×(7﹣2)=100.【分析】首先分析第一个数字是9,第二个数字是6,再分析除以12的结果只能是1.继续推理即可.【解答】解:依题意可知:20×(9﹣8)=206÷2+17=203×8﹣4=20(4+8)÷12=14×5+0=2020×(7﹣2)=10021.(4分)(2014•迎春杯)在下面4个8中间添上适当的运算符号和括号,使等式成立.8 8 8 8=1 8 8 8 8=2.【分析】本题可结合式中的数据根据四则混合运算的运算顺序进行尝试分析,添上适当的运算符号及括号使等式成立.【解答】解:(1)8÷8×8÷8=1(2)8÷8+8÷8=222.(4分)(2012•其他杯赛)在下面竖式中,已知道“数”字代表1,“学”字代表2,“生”字代表0,“赛”字代表5.你知道其他的汉字代表什么数字吗?【分析】多位数乘一位数的竖式计算,十位数乘一位数的结果是十一位数,且积的最高位是1,所以小只能是2或者是3,如果是2,竞就是1,那么在积的千位上无乱如何都得不到1,所以小只能是3,竞是6,报的右边一位是1,乘5不进位,所以报是偶数,但是报的左一位是2,和5相乘后个位是2,说明报与5乘积后加上进位的2才得到个位上是2,由此可知,报是4.此题的关键是有些数字在因数中出现了,在乘积中又以不同的顺序再次出现,这是关键中的关键.【解答】解:由题意知:如图:十位数乘一位数的结果是十一位数,且积的最高位是1,所以小只能是2或者是3,如果是2,竞就是1,那么在积的千位上无乱如何都得不到1,所以小只能是3,竞是6,报的右边一位是1,乘5不进位,所以报是偶数,但是报的左一位是2,和5相乘后个位是2,说明报与5乘积后加上进位的2才得到个位上是2,由此可知,报是4.如图:故答案为:竞=(6)报=(4)小=(3).23.(5分)(2017•华罗庚金杯模拟)把1,2,7,8,9,10,12,13,14,15填入图中的小圆内,使每个大圆圈上的六个数的和是60.【分析】数字之和为91,距120差29,则重复数字为14,15,把14和15填在中间重复计算的两个位置即可.剩下数字之和为62,则左右数字之和各为31.两组分配为:2、7、10、12;1、8、9、13.位置只分左右,顺序无所谓.分组还有几种,例如:1、8,10,12;2、7、9、13等等.【解答】解:填图如下:24.(5分)(2017•华罗庚金杯模拟)在下面16个6之间添上+、﹣、×、÷、(),使下面的算式成立:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6=1997.【分析】本题考查填符号组算式.【解答】解:6×(6×6×6+6×6+6×6+6×6+6)+6+6+6﹣6÷6=6×(216+36+36+36+6)+18﹣1=6×330+17=1980+17=1997.25.(5分)(2017•希望杯模拟)在下面的算式里加上一对括号,使算式成立.1×2×3+4×5+6+7+8+9=100.【分析】将3+4括起来,即可得出结论.【解答】解:1×2×(3+4)×5+6+7+8+9=100.26.(5分)(2017•其他模拟)下面竖式中的两个乘数之和为多少.【分析】先根据竖式结构中的abc×4与abc×d积的位数推出d的取值是1、2、3;然后把d分3种情况进行推理(过程见解答),从而得出了两个乘数的具体值,最后把这两个乘数相加即可.【解答】解:为便于书写,用△代□.abc×4=,abc×d=⇒d<4,所以d的取值是1、2、3;若d=2时,和是2倍关系⇒40+2n和的十位数是1⇔2n的进位是7,n取1﹣﹣9的任何值,进位都不能是7,所以这不成立,舍去;若d=3时,和相差一个,即+=⇒b=8或9⇒×3或×3积十位上的数是2,c取1﹣﹣9任何值都无法成立,舍去;若d=1时,可得b是2,c×4进位是3⇒c是8或9⇒28×e或29×e积的十位数是0⇒c=9,e=7;×7积的个位数是3⇒1+f没有进位,m+0+n和个位数是8,n=c=9⇒m=9,即×4=⇒a =7.综上得:=729、=174729+174=903故:竖式中的两个乘数之和是903.27.(5分)(2014•迎春杯)趣味算式谜.【分析】第一题,根据余数是8,即可推出除数是9,再用“除数×商=被除数”便可解出问题;第二题,根据积的个位数是2,即可推出一位数的因数是8,用“积÷一个因数=另一个因数”便可解答;第三题,根据四位数×9积为四位数,没有进位,便可推出:我=1,然后再根据我=1,推出学=9,然后再根据我=1,学=9,则推出爱与数是0、8,即得出了本题的答案.【解答】解:(1)除法的余数是8,说明除数一定大于8;除数又是一位数,所以除数是9.被除数=36×9+8=332.整个解题过程如上图.(2)9乘一位数因数,积的个位是2.这可确定这个一位数的因数是8.因1832÷8=229,可知三位数的因数应是229,整个算式见上图.(3)①由“我爱数学”(四位数)×9(一位数)=学数爱我(四位数),说明式子中的“我”一定是1,如果是大于1的,积就变成五位数了,不符合要求了.②“学”与9的积个位是1,说明“学”一定是9.同时也说明“爱”与9的积不能进位,故“爱”一定小于2,即是1或0两种情况.又因“我”=1,所以“学”=0.③“数”×9+8(进位的)的个位是0,则“数”只能是8了.故综上得:我=1;爱=0;数=8;学=9.28.(5分)(2015•春蕾杯)在下⾯的式⾯中加上适当的括号,使等式成⾯.3×8+48÷8﹣5=163×8+48÷8﹣5=403×8+48÷8﹣5=72【分析】解答此题应根据数的特点,四则混合运算的运算顺序,进行尝试凑数即可解决问题.【解答】解:3×(8+48)÷8﹣5=163×8+48÷(8﹣5)=403×[8+48÷(8﹣5)]=7229.(5分)(2016•学而思杯)24点游戏:请用下面的4个数(每个数恰好用一次,可以调换顺序),以及“+、﹣、×、÷和小括号”凑出24.(1)7、12、9、12(2)3、9、5、9.【分析】此题可结合已给的数据,根据四则混合运算的运算顺序进行分析和试算,添上适当的运算符号及括号使等式成立即可.【解答】解:(1)9×12﹣7×12=24(2)(9﹣3)×(9﹣5)。
五年级奥数专题算式谜

五年级奥数专题算式谜【一】下面算式中“我”、“爱”、“数”、“学”四个汉字各代表一个数字,请问:“我”=?“爱”=?“数”=?“学”=?练习在下面算式的括号里填上合适的数。
1、()6 ()()2、()0 ()()+ 2 ()1 5 - 3 ()1 68 0 9 1 4 8 5 7【二】下面算式中的“数”、“学”、“俱”、“乐”、“部”这五个汉字各代表什么数字?练习下面题中的字母都表一个数字,不同的字母代表不同的数字,相同的字母代表相同的数字,这些字母各表示那些数字?1、2、【三】有一个六位数,它的个位数字是6,如果将6移至第一位前面,所得的新六位数是原数的4倍。
求原来的六位数。
练习1、已知六位数1ABCDE,这个六位数的3倍正好是ABCDE1。
求这个六位数。
2、下面竖式中每个汉字表示一个数字,不同的汉字表示不同的数字,请说出各个汉字分别表示什么数字?【四】下面竖式中每个小方格都代表一个数字,请把这个算式写完整。
练习1、把下面算式写完整。
2、在算式的“□”里填上合适的数。
【五】右图的五个方格中已经填写入84和72两个两位数,请你在其余三格中也分别填入一个两位数,使得横行的三个数与竖行的三个数的和相等,并且这五个两位数正好由0~9十个数字组成。
练习1、把0~9这十个数字填到圆圈内,每个数字只能用一次,使三个算式成立。
○+○=○○-○=○○×○=○○2、把0、1、2、3、4、7、9填到下面方格里,使等式成立。
□□□×□+□+□=□【六】把0、1、2、3、4、5、6、7、8、9这十个数字填入下面的小方格中,使三个等式都成立。
□+□=□□-□=□□×□=□□练习1、把1、2、3、4、5、6、7、8、这九个不同的数字分别填在○中,使下面的三个等式都成立。
○+○=○○-○=○○×○=○2、将0、1、2、3、4、5、6填到下列只有一、两位数的算式中,使等式成列。
○×○=○=○÷○【七】把2、3、4、5、7、9这六个数字分别填在六个“□”里,使乘积最大,应该怎样填?□□□×□□□练习1、用9、8、2、1四个数字组成两个两位数,并且使它们的积最大。
五年级奥数算式谜题

五年级奥数算式谜题一、加法算式谜题。
1. 在下面的加法算式中,每个字母代表一个数字,相同的字母代表相同的数字,不同的字母代表不同的数字。
求A、B、C的值。
ABC + CBA = 1232.解析:根据加法的竖式计算规则,个位上C + A = 2或者C + A = 12。
十位上B + B的结果个位是3,这是不可能的,因为B + B是偶数,所以个位上C+A = 12,向十位进1。
十位上B + B+1 = 13,则2B = 12,B = 6。
因为C + A = 12,假设A = 5,C = 7(答案不唯一)。
2. 求下面算式中□里的数字。
begin{array}{r}2□3 +□5□ hline 891end{array}解析:个位上3 + □=1,这是不可能的,所以个位上是3+□ = 11,□ = 8,向十位进1。
十位上□+5 + 1=9,□+6 = 9,□ = 3。
百位上2+□ = 8,□ = 6。
二、减法算式谜题。
3. 在下面的减法算式中,相同的字母代表相同的数字,不同的字母代表不同的数字。
求A、B、C的值。
ABC CBA = 198.解析:根据减法的竖式计算规则,个位上C A = 8或者C A=-2(因为不够减借位)。
假设C> A,C A = 8,那么C = 9,A = 1。
百位上A C不够减,向十位借1,10 + A C = 1,把A = 1,C = 9代入验证成立。
十位上B B = 0(因为被借位后相减为0)。
4. 求下面算式中□里的数字。
begin{array}{r}□2□ -□□1 hline 318end{array}解析:个位上□-1 = 8,□ = 9。
百位上□-□ = 3,因为十位上相减没有借位给百位,所以只能是4 1 = 3或者5 2=·s等情况,假设被减数的百位是4,减数的百位是1。
十位上2 □ = 1,□ = 1(因为个位相减没有向十位借位)。
三、乘法算式谜题。
五年级数学奥数题及答案

五年级数学奥数题及答案题目一:数字谜题问题:有一个五位数,它的每一位数字都不相同,且这个数能被4整除。
如果将这个数的每一位数字都颠倒过来,得到的新数比原数大45,求这个五位数是多少?解答:首先,我们知道一个数能被4整除的规则是:这个数的最后两位数能被4整除。
设这个五位数为abcde,其中a、b、c、d、e分别代表不同的数字。
根据题意,我们有abcde + 45 = edcba。
由于e不能为0,所以e至少为1。
同时,因为abcde是五位数,所以a至少为1。
接下来,我们考虑最后两位数。
设cde能被4整除,且cde + 5 = bca。
由于cde + 5的个位数为a,而a至少为1,所以cde的个位数e必须为3或7。
但是,e为7时,cde + 5的十位数不可能是b,因为b至少为1,所以e只能是3。
现在我们知道e = 3,且cde能被4整除,所以cde = 34。
由于d + 1 = b,且d和b都是不同的数字,我们可以推断出d = 2,b = 3。
最后,我们考虑a。
由于abcde + 45 = 34a + 3,且a至少为1,我们可以推断出a = 7。
综上所述,这个五位数是72343。
题目二:几何问题问题:在一个长方形的草地上,有一条宽为1米的人行道。
如果人行道的总面积是10平方米,求长方形草地的长和宽。
解答:设长方形草地的长为L米,宽为W米。
人行道的面积是10平方米,且人行道的宽度为1米。
我们可以假设人行道沿着草地的一边铺设,那么人行道的面积可以表示为L * 1 = 10平方米,即L = 10米。
现在我们知道了草地的一边长度是10米,人行道的总面积是10平方米,这意味着人行道沿着草地的另一边铺设时,其面积也是10平方米。
因此,W * 1 = 10平方米,即W = 10米。
所以,长方形草地的长和宽都是10米。
题目三:逻辑推理问题:有五位同学参加了数学竞赛,他们的成绩各不相同。
已知第一名不是A,A的成绩高于B,B的成绩高于C,C的成绩高于D,D的成绩是第三名。
五年级奥数专题-算式谜

五年级奥数专题-算式谜【专题导引】算式谜一般是指一些含有未知数字或缺少运算符号的算式。
解决这类问题,可以根据四则运算的规定、四则运算算式中的数量关系以及数的组成,逐步确定算式中的未知数字和运算符号。
解答算式谜的关键是找准突破口,推理时应注意:1、认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件,选择有特征的部分做出局部判断。
2、采用列举和筛选结合的方法,逐步排除不合题意的数字。
3、算式谜解出后,务必要验算一遍。
【典型例题】【例1】有一个六位数,它的个位数字是6,如果将6移至第一位前面,所得的新六位数是原数的4倍。
求原六位数。
【试一试】1、已知六位数ABCDE 1,这个六位数的3倍正好是1ABCDE 。
求这个六位数。
2、下面竖式中每个汉字表示一个数字,不同的汉字表示不同的数字,请说出各个汉字分别表示什么数字?【例2】下面竖式中每个小方格都代表一个数字,请把这个算式写完整。
2华罗庚金杯 × 3 华罗庚金杯2 285× □□1□2□□□□□9□□84 72□□□ × 89 □□□□ □□□ □□□□ □2□□ × □6 □□04 □□70 □□□□□ 【试一试】1、把下面的算式写完整。
2、在算式的“□”里填上合适的数字。
【例3】右图的五个方格中已经填写入84和72两个两位数,请你在其余的三格中也分别填入一个两位数,使得横行的三个数与竖行的三个数之和相等,并且这五个两位数正好由0~9十个数字组成。
【试一试】1、把0~9这十个数字填到圆圈内,每个数字只能用一次,使三个算式成立。
○+○=○ ○-○=○ ○×○=○○2、将1~9九个数字填入下列九个○中,使等式成立。
○○○×○○=○○×○○=5568【例4】把0、1、2、3、4、5、6、7、8、9这十个数字填入下面的小方格中,使三个等式都成立。
□+□=□□-□=□□×□=□□【试一试】1、将1、2、3、4、5、6、7、8、9九个不同的数字分别填在○中,使下面的三个算式成立。
【精品奥数】五年级上册数学思维训练讲义-第16讲 算式谜 人教版(含答案)

第十六讲 算式谜第一部分:趣味数学灯谜中的算式之谜今天的故事,得从元宵节猜灯谜开始: 小明:元宵节爸爸妈妈带我去看花灯猜灯谜了!小强:哇,那你猜对了几个灯谜呀?有没有特别好玩的呢? 小明:嘻嘻!我猜对了好多呢!给你猜一个吧,来接招! ▲×9+18-▲=122,▲代表数字几?小强:咦?这不就是我们数学中的“算式谜”嘛! 小明:算式谜?我怎么不知道?给我讲讲。
听完这个故事,发现数学其实还挺有趣有用的吧?第二部分:奥数小练【例题1】 有一个六位数,它的个位数字是6,如果将6移至第一位前面,所得的新六位数是原数的4倍。
求原六位数。
【思路导航】 设原六位数是ABCDE6,则新六位数是6ABCDE ,根据题意列成竖式再进行分析:ABCDE6 × 4 6ABCDE(1)由个位6×4=24可知,E=4;(2)由十位4×4+2=8可知,D=8;(3)由百位8×4+1=33可知,C=3;(4)由千位3×4+3=15可知,B=5;(5)由万位5×4+1=21可知,A=1。
所以,原六位数是153846。
练习一:1.已知六位数1ABCDE ,这个六位数的3倍正好是ABCDE1,求这个六位数。
2.下面式子中每个汉字代表一个数字,不同的汉字代表不同的数字,请说出各个汉字分别代表什么数字。
2华罗庚金杯×3=华罗庚金杯23.不同的汉字代表不同的数字,请便分析出“我们热爱科学”分别代表什么数字。
我们热爱科学×学=好好好好好好【例题2】下面竖式中每个小方格都代表一个数字,请把这个算式写完整。
2 8 5×□□1 □2 □□□□□□ 9 □□【思路导航】设乘数为ab,(1)根据285×b=1□2□可知,b可以取4、5、6、7四个数字中的一个。
因为b取4、6和7时,积的个位都不是2,所以b只能是5。
(2)根据258×a=□□□可知,a可以取1、2、3三个数字中的一个。
人教版五年级数学奥数精讲精练(三)数字谜(竖式字谜)

人教版五年级奥数精讲精练(三)数字谜(竖式字谜)
姓名:________ 班级:________ 成绩:________
小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!
一、计算题
1 . 图是一个加法竖式,其中E,F,I,N,O,R,S,T,X,Y分别表示从0到9的不同数字,且F,S不等于
零.那么这个算式的结果是多少?
2 . 在图所示的减法算式中,每一个字母代表一个数字,不同的字母代表不同的数字.那么D+G等于多
少?
二、解答题
3 . JF,EC,GJ,CA,BH,JD,AE,GI,DG
已知每个字母代表一个数字,不同的字母代表不同的数字,其中A代表5,并且上面的9个数恰好是7的l倍至9倍,这里把一位数7记作07.求JDFI所代表的四位数.
4 . 如有一串分数,,,,,,…第100个数是________ ,第2006个数是________ .
5 . 已知“赛”=6,那么“南通市数学”所表示的五位数是什么?
6 . 在图所示的算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.请把这个竖式翻译成数字
算式。
7 . 在图所示的加法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.请把这个竖式翻译成
受字算式.
8 . 下列各题中的每一个汉字都代表一个数字,不同的汉字代表不同的数字,当它们各表示什么数字时,以下各算式都成立?
(1)(2)
参考答案一、计算题
1、
2、
二、解答题
1、
2、
3、
4、
5、
6、。
五年级奥数:第2讲 数字谜(二)

五年级奥数:第2讲数字谜(二)这一讲主要讲数字谜的代数解法及小数的除法竖式问题。
例1 在下面的算式中,不同的字母代表不同的数字,相同的字母代表相分析与解:这道题可以从个位开始,比较等式两边的数,逐个确定各个(100000+x)×3=10x+1,300000+3x=10x+1,7x=299999,x=42857。
这种代数方法干净利落,比用传统方法解简洁。
我们再看几个例子。
例2 在□内填入适当的数字,使左下方的乘法竖式成立。
求竖式。
例3 左下方的除法竖式中只有一个8,请在□内填入适当的数字,使除法竖式成立。
解:竖式中除数与8的积是三位数,而与商的百位和个位的积都是四位数,所以x=112,被除数为989×112=110768。
右上式为所求竖式。
代数解法虽然简洁,但只适用于一些特殊情况,大多数情况还要用传统的方法。
例4 在□内填入适当数字,使下页左上方的小数除法竖式成立。
分析与解:先将小数除法竖式化为我们较熟悉的整数除法竖式(见下页右上方竖式)。
可以看出,除数与商的后三位数的乘积是1000=23×53的倍数,即除数和商的后三位数一个是23=8的倍数,另一个是53=125的奇数倍,因为除数是两位数,所以除数是8的倍数。
又由竖式特点知a=9,从而除数应是96的两位数的约数,可能的取值有96,48,32,24和16。
因为,c=5,5与除数的乘积仍是两位数,所以除数只能是16,进而推知b=6。
因为商的后三位数是125的奇数倍,只能是125,375,625和875之一,经试验只能取375。
至此,已求出除数为16,商为6.375,故被除数为6.375×16=102。
右式即为所求竖式。
求解此类小数除法竖式题,应先将其化为整数除法竖式,如果被除数的末尾出现n个0,则在除数和商中,一个含有因子2n(不含因子5),另一个含有因子5n(不含因子2),以此为突破口即可求解。
例5 一个五位数被一个一位数除得到下页的竖式(1),这个五位数被另一个一位数除得到下页的竖式(2),求这个五位数。
五年级奥数加减法数字谜学生版

五年级奥数加减法数字谜学生版一、数字迷加减法1.个位数字分析法2.加减法中的进位与退位3.奇偶性分析法二、数字谜问题解题技巧1.解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位以及位数的差异;2.要根据不同的情况逐步缩小范围,并进行适当的估算;3.题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;4.注意结合进位及退位来考虑;模块一、加法数字谜【例 1】 “华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?0191杯华24+例题精讲知识点拨教学目标5-1-2-1.加减法数字谜【例 2】 下面的算式里,四个小纸片各盖住了一个数字。
被盖住的四个数字的总和是多少?1+49【例 3】 在下边的算式中,被加数的数字和是和数的数字和的三倍。
问:被加数至少是多少?【例 4】 两个自然数,它们的和加上它们的积恰为34,这两个数中较大数为( ).【例 5】 下面的算式里,每个方框代表一个数字.问:这6个方框中的数字的总和是多少?1991+【例 6】 在下边的竖式中,相同字母代表相同数字,不同字母代表不同数字,则四位数tavs ______s t v av t s tt t v t t+【巩固】下面的字母各代表什么数字,算式才能成立?【巩固】右面算式中每一个汉字代表一个数字,不同的汉字表示不同的数字.当它们各代表什么数字时算式成立?【巩固】下面算式中,相同汉字代表相同数字,不同汉字代表不同数字,求“数学真好玩”代表的数是几?+爱好真知数学更好数学真好玩【例 7】下图是一个正确的加法算式,其中相同的字母代表相同的数字,不同的字母代表不同的数字.已知BAD不是3的倍数,GOOD不是8的倍数,那么ABGD代表的四位数是多少?B A DB A DG O O D+【例 8】 在下面的算式中,汉字“第、十、一、届、华、杯、赛’,代表1,2,3,4,5,6,7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛’’所代表的7个数字的和等于 .+届赛6一杯0十华02第【例 9】 在下边的算式中,相同的符号代表相同的数字,不同的符号代表不同的数字,根据这个算式,可以推算出:+++☆=_______.+☆☆【例 10】 下面两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么A +B +C +D +E +F +G = 。
小学五年纪奥数数字谜

数字谜综合(ii)概述涉及质数与合数等概念,以及需要利用数的整除特征、分解质因数等数论手段解的数字谜问题.典型问题1. 试将1,2,3,4,5,6,7 分别填入下面的方框中,每个数字只用一次:口口口(这是一个三位数).口口口(这是一个三位数),口(这是一个一位数),使得这三个数中任意两个都互质•已知其中一个三位数已填好,它是714,求其他两个数.【分析与解】714=2X 3X 7X 17.由此可以看出,要使最下面方框中的数与714互质,在剩下未填的数字2,3,5 , 6中只能选5,也就是说,第三个数只能是5.现在来讨论第二个数的三个方框中应该怎样填2,3,6这3个数字.因为任意两个偶数都有公约数2,而714是偶数,所以第二个的三位数不能是偶数,因此个位数字只能是3.这样一来,第二个三位数只能是263或623.但是623能被7整除,所以623与714不互质.最后来看263这个数.通过检验可知:714的质因数2,3,7和17都不是263的因数,所以714与263 这两个数互质.显然,263与5也互质.因此,其他两个数为263和5.2. 如图19-1,4个小三角形的顶点处有6个圆圈.如果在这些圆圈中分别填上6个质数,它们的和是20, 而且每个小三角形3个顶点上的数之和相等.问这6个质数的积是多少?【分析与解】设每个小三角形三个顶点上的数的和都是S.4个小三角形的和S相加时,中间三角形每个顶点上的数被算了3次,所以4S=2S+20,即S=10.这样,每个小三角形顶点上出现的三个质数只能是2,3,5,从而六个质数是2,2,3,3,5,5, 它们的积是:2X 2X 3X 3X 5X 5=9003. 在图19-2.所示算式的每个方框内填人一个数字,要求所填的数字都是质数,并使竖式成立.【分析与解】记两个乘数为a7b和cd其中a、b、c、d的值只能取自2、3、5或7.由已知条件,b与c相乘的个位数字仍为质数,这只可能是b与c中有一个是5另一个是3、5或7, 如果b不是5,那么c必然是5,但73X 5 =365、77X5 =385的十位数字都不是质数.因此b是5,c是3、5、7中的一个,同样道理,d也是3、5、7中的一个.再由已知条件,更的乘积的各位数字全是质数,所以乘积肯定大于2000,满足积大于2000且a、c 取质数,只有以下六种情况:775 X 3=2325, 575X 5=2875, 775X 5=3875,375X 7=2625 ,575 X 7=4025, 775X 7=5425.其中只有第一组的结果各位数字是质数,因此a=7,c=3,同理,d也是3.最终算式即为775X 33=255754. 把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来的数加起来恰好是某个自然数的平方.那么这个和数是多少?【分析与解】设原来的两位数为xy,则交换十位数字与个位数字后的两位数为,两个数的和为yx,两个数和为xy + yx = 10x y x 10y 11 x y是II的倍数,因为它是完全平方数,所以也是11 X 11=121的倍数.但是这个和小于100+100=200 <121X2 ,所以这个和数只能是121.5. 迎杯X春杯=好好好在上面的乘法算式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字.那么“迎+春+杯+好”之和等于多少?【分析与解】好好好=好乂11仁好X 3 X 37.那么37必定是“迎杯”或“春杯”的约数,不妨设为“迎杯”的约数,那么“迎杯”为37或74. 当“迎杯”为37时,“春杯”为“好” X 3,且“杯”为7,此时“春杯”为27, “好”为9, “迎+春+杯+好”之和为3+2+7+9=21;当“迎杯”为74时,“春杯”为“好” X 3 + 2 ,且“杯”为4,此时“春杯”为24, “好”为16,显然不满足.所以“迎+春+杯+ 好”之和为3+2+7+9=21.6. 数数X科学=学数学在上面的算式中,每一汉字代表一个数字,不同的汉字代表不同的数字•那么“数学”所代表的两位数是多少?【分析与解】“学数学”是“数数”的倍数,因而是“数”与11的倍数.学数学=学乂101+数X10是“数”的倍数,而101是质数,所以“学”一定是“数”的倍数.又“学数学”是11的倍数,因而:“学+学-数”为11的倍数.因为“学”是“数”的倍数,从上式推出“数”是11的约数,所以“数” =1 , “学” =(11+1) + 2=6.“数学”所代表的两位数是16.7. 将1,2,3,4,5,6,7,8,9 这9个数字分别填人下式的各个方框中,可使此等式成立:口口X口口=口口X 口口口=3634.填好后得到三个两位数和一个三位数,这三个两位数中最大的一个是多少?【分析与解】3634=2X 23X 79 ,表达为两个两位数的乘积只能是(2 X 23) X 79,即46X 79;表达为一个两位数与一个三位数的乘积,只能是23X (2 X 79) =23X 158.满足题意,所以这三个两位数中最大的一个是79.38. 六年级的学生总人数是三位数,其中男生占3,男生人数也是三位数,而组成以上两个三位数的6个数5字,恰好是1,2,3,4,5,6. 那么六年级共有学生多少人?【分析与解】设六年级总人数为xyz,其中男生有abc人.3有xyz X =abc,即5 abc =3 xyz,其中xyz为5的倍数,所以z为5.而abc为3的倍数,所以其数5字和a+b+c应为3的倍数,则在剩下的5个数中,a、b、c(不计顺序)只能为1,2,6或l,2,3 或4,2,6或4,2,3 .而c不能是偶数(不然z应为0),所以只能是l,2,6 或1,2,3或4,2,3可能满足;又因为xyz最大为645,对应abc为387,即c不超过3.于是abc有可能为261,123,321,213,231,243 这6种可能,验证只有当abc =261时,对应xyz为261 + 3X 5=435.所以六年级共有学毕435人.9. 图19-3是三位数与一位数相乘的算式,在每个方格填入一个数字,使算式成立•那么共有多少种不同的填法?【分析与解】设1992= abc X d(a,b,c,d 可以相同),有1992=2X 2X 2X 3X 83 ,其中d可以取2,3 ,4, 6,8这5种,对应的算式填法有5种.10. 在图19-4残缺的算式中,只写出3个数字I,其余的数字都不是1.那么这个算式的乘积是多少?【分析与解】如下图所示,为了方便说明,将某些数用字母标出.第4行口口1对应为ABX C,其个位为1,那么B X C的个位数字也是1,而BC又均不能为1,所以只有3X 7,9X9对应为1,那么B为9、7或3.第 3 行10 口对应为ABX D,可能为100、102、103、104、105、106、107、108、109.103、107、109均为质数,没有两位数的约数,不满足;100 、105没有个位数字为3、7、9的约数,不满足;102=17X 6、104=13X 8、106=53X 2、108=27X4 ,但102、104 对应的AB中4 均为1,不满足. 所以AB 为53或27.当AB为27时,第4行为27XC ,且个位数字为1,所以只能为27X 3=81 ,但不是三位数,不满足.当AB为53时,第4行为53X C,且个位数字为1,所以只能为53X 7=371 ,因此被乘数必须为53,乘数为72,积为3816.11. 图19-5是一个残缺的乘法竖式,在每个方框中填入一个不是2的数字,可使其成为正确的算式•那么所得的乘积是多少?【分析与解】方法一:由已知条件,最后结果的首位数字不能是2,因此只能是3.这说明千位上作加法时有进位.百位数上相加时最多向千位进2,所以要使千位数有进位,其中的未知数字至少是10-2-2=6,即三个三位数加数中的第二个至少是600.因为它是第一个乘数与一个一位数字的乘积,因此该乘数肯定大于60.第二个乘数的百位数字与第一个乘数的乘积在220〜229之间,所以它只能是3(否则4X 60>229).而220〜229之间个位数字不是2且是3的倍数的只有225=3X 75和228=3X 76.如果第一乘数是75,又第二个乘数的百位数字是3,那么它们的乘积小于75X 400 =30000,它的首位数字也就不可能是3,不满足.乘数是76,另一个乘数就要大于30000- 76>394 ,那么只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76 X396=30096满足题目的要求.算式中所得的乘积为30096.方法二:为了方便说明,将某些位置标上字母,如下图所示,因为干位最多进1,而最终的乘积万位又不能是2,所以只能是3:而第5行对应为22 口=ABX C ,其中C不可能为1,又不能为2,那么最小为3.当C为3时,22 口=ABX3 ,那么A只能为7,B只能为4,5或6,(1) 当B为4时,74X 3=222,第5行个位为2,不满足题意;(2) 当B为5时,ABX CDE对应为75X 3DE,小于30000,不满足;(3) 当B为6时,ABX CDE对应为76X 3DE.D只能为9,此时第4行对应为ABX D 即76X 9=684.因为30000- 76>394 ,所以39E 只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324. 由于各个数字都不能是2,所以只有76X 396=30096满足题目的要求.验证C取其他值时没有满足题意的解.所以算式中所得的乘积为30096.12.请补全图19-6这个残缺的除法竖式•问这个除法算式的商数是多少第二行9 口对应为CD X A,(1) 9 口不可能为90,不然第一行前三位10 口与第二行90的差不可能为一位数,不满足第三行特征;(2) 9 口对应为91时,第三行的首位对应为10 口-91,最小为9,所以只能为9,那么有9仁CD<A , 928=CD<B ,不可能;(3) 9 口对应为92时,第三行的首位对应为10 口-92,最小为8,所以可能为& 9,①如果为9,那么对应有92=CD XA , 928=CD<B ,不可能;Ex E E回—□ □ EE®2 2 g]□③□口□口【分析与解】易知除号下第二行的首位为9.除号下第一行开头两位为1、0,商的十位为0.TEE1 罔0 ) □ 0 3 27~ 回②⑧②国S S E验证没有其他的情况满足,所以这个除法算式的商数为109.②如果为8,那么对应有92=CDX A , 828=CD<B ,不难得知A=l,B=9,CD=92时满足,那么被除数为92 X 109=10028.13. 若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式学习好勤动脑X 5=勤动脑学习好X8 中,“学习好勤动脑”所表示的六位数最小是多少?【分析与解】设“学习好”为x, “勤动脑”为Y,则“学习好勤动脑”为1000X+Y, “勤动脑学习好”为1000y+x,有(lOOOx+Y) X 5=(1000y +x) X8 ,化简有4992x=7995y, 4992=128X 3X 13,7995=3X41 X 5X 13,即x 205 x 410 x 615 x 820128x=205y,有,,,y 128 y 256 y 384 y 512所以,“学习好勤动脑”所表示的六位数可能为205128,410256,615384,820512,但是不能有重复数字,所以只有410256,615384满足,其中最小的是41025614. 互为反序的两个自然数的积是92565,求这两个互为反序的自然数.(例如102和201,35和53,11和11,…,称为互为反序的数,但120和21不是互为反序的数.)【分析与解】首先可以确定这两个自然数均为三位数,不然得到的乘积不可能为五位数.设ABC X CBA=92565,那么C、A中必定有一个为5, 一个为奇数•不妨设C为5.AB5 X 5BA =92565,那么A只能为1, 1B5 5B1 =92565.又注意到92565=3X 3X 5X 11X 11 X 17.验证只有1B5为165时满足,所以这两个自然数为165、561 .15. 开放的中国盼奥运X 口=盼盼盼盼盼盼盼盼盼上面的横式中不同的汉字代表不同的数字,口代表某个一位数.那么,“盼”字所代表的数字是多少?【分析与解】我们从“口”中所应填入的一位自然数开始分析,设A= “开放的中国盼奥运”,B= “盼盼盼盼盼盼盼盼盼”.于是B=A X 口.显然口内不会是 1 .由于口是B的约数,因此口不会是“盼”所代表的数字”这说明口内不会是5,,说明口内也不会是7.如果口内填3,则“盼”只能是1或2,当“盼”是1时,B+3=,不符合要求;当“盼”时2时,B, 也不符合要求;说明口内不能填入3.口内也不会是偶数数字2、4、6和8.因为口内是偶数数字时,“盼”也是偶数数字,口内显然不会是2,如果口内是4,根据被4整除的特征,“盼”只能是8,这时A就成了一个九位数,说明口内不能是4; 类似的,可以说明口内不能是6和8.综上所需,口的数字只能是9,这时利用1113.1,可以得到盼盼盼.4 4盼=9个1 9个盼X盼.于是“盼”代表的数字必须同时满足下面两个条件:经验证知^。
五年级奥数 第2讲 数字谜

第2讲数字谜(二)这一讲主要讲数字谜的代数解法及小数的除法竖式问题。
例1 在下面的算式中,不同的字母代表不同的数字,相同的字母代表相分析与解:这道题可以从个位开始,比较等式两边的数,逐个确定各个(100000+x)×3=10x+1,300000+3x=10x+1,7x=299999,x=42857。
这种代数方法干净利落,比用传统方法解简洁。
我们再看几个例子。
例2 在□内填入适当的数字,使左下方的乘法竖式成立。
求竖式。
例3 左下方的除法竖式中只有一个8,请在□内填入适当的数字,使除法竖式成立。
解:竖式中除数与8的积是三位数,而与商的百位和个位的积都是四位数,所以x=112,被除数为989×112=110768。
右上式为所求竖式。
代数解法虽然简洁,但只适用于一些特殊情况,大多数情况还要用传统的方法。
例4 在□内填入适当数字,使下页左上方的小数除法竖式成立。
分析与解:先将小数除法竖式化为我们较熟悉的整数除法竖式(见下页右上方竖式)。
可以看出,除数与商的后三位数的乘积是1000=23×53的倍数,即除数和商的后三位数一个是23=8的倍数,另一个是53=125的奇数倍,因为除数是两位数,所以除数是8的倍数。
又由竖式特点知a=9,从而除数应是96的两位数的约数,可能的取值有96,48,32,24和16。
因为,c=5,5与除数的乘积仍是两位数,所以除数只能是16,进而推知b=6。
因为商的后三位数是125的奇数倍,只能是125,375,625和875之一,经试验只能取375。
至此,已求出除数为16,商为6.375,故被除数为6.375×16=102。
右式即为所求竖式。
求解此类小数除法竖式题,应先将其化为整数除法竖式,如果被除数的末尾出现n个0,则在除数和商中,一个含有因子2n(不含因子5),另一个含有因子5n(不含因子2),以此为突破口即可求解。
例5 一个五位数被一个一位数除得到下页的竖式(1),这个五位数被另一个一位数除得到下页的竖式(2),求这个五位数。
小学奥数:算式谜(二).专项练习及答案解析

5-1-1-2.算式谜(二)教学目标数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。
横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。
主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题知识点拨一、基本概念填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
算符:指 +、-、×、÷、()、[]、{}。
二、解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
三、奇数和偶数的简单性质(一)定义:整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数.(2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.(二)性质:①奇数≠偶数.②整数的加法有以下性质:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.③整数的减法有以下性质:奇数-奇数=偶数;奇数-偶数=奇数;偶数-奇数=奇数;偶数-偶数=偶数.④整数的乘法有以下性质:奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数.例题精讲模块一、填横式数字谜【例 1】 将数字1~9填入下面方框,每个数字恰用一次,使得下列等式成立;()200724=+÷+-★□□□□□□□现在“2”、“4”已经填入,当把其它数字都填入后,算式中唯一的减数(★处)是 .【考点】填横式数字谜之复杂的横式数字谜 【难度】4星 【题型】填空 【关键词】迎春杯,高年级,初赛,3试题 【解析】 方法一:首先可以估算四位数的取值范围:四位数不大于()2007913428010+-⨯-=,不小于()2007198427638+-⨯-=.显然四位数的千位数字只能是7.再由四位数与2的和能被4整除,可以确定四位数的个位数字一定是偶数,只能是6或8.若为6,由个位是8而能被4整除的数其十位数字是偶数,可知四位数只能为7986,而()7986241997+÷=,故只需利用剩下的数凑出10即可.剩下的数字是1,3,5,不能凑出10.所以四位数的个位数字不是6.四位数的个位数字是8时,由个位是0而能被4整除的数其十位数字是偶数,故四位数的十位数字是1、3、7或9.当四位数的十位数字是1时,四位数只可能是7918,而()7918241980+÷=,故只需利用剩下的数凑出27即可.剩下的数字是3,5,6,不能凑出27;当四位数的十位数字是3时,四位数只可能是7938,而()7938241985+÷=,故只需利用用剩下的数凑出22即可.剩下的数字是1,5,6,不能凑出22;当四位数的十位数字是5时,四位数只可能是7658或7958,若为7958,则由()7958241990+÷=,需利用剩下的数凑出17即可.剩下的数字是1,3,6,不能凑出17;若为7658,有()7658249312007+÷+-=;当四位数的十位数字是9时,四位数只可能是7698,而()7968241925+÷=,故只需利用剩下的数凑出82即可.剩下的数字是3,5,6,不能凑出82;故此题只有惟一答案:()7658249312007+÷+-=.算式中唯一的减数是1.方法二:根据弃九法,7□□□+2+4+□□+★被9整除,而(7□□□+2)÷4+□□-★也被9整除。
五年级奥数乘除法数字谜(二)教师版

五年级奥数乘除法数字谜(二)教师版1.数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2.数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3.解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字;⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字;⑷ 数字谜解出之后,最好验算一遍.模块一、与数论结合的数字谜(1)、特殊数字【例 1】如图,不同的汉字代表不同的数字,其中“变”为1,3,5,7,9,11,13这七个数的平均数,那么“学习改变命运”代表的多位数是 .1999998⨯学习改变命运变【考点】与数论结合的数字谜之特殊数字 【难度】2星 【题型】填空【关键词】学而思杯,4年级,第9题【解析】 “变”就是7,19999987285714÷=【答案】285714例题精讲知识点拨教学目标5-1-2-3.乘除法数字谜(二)【例 2】右边是一个六位乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是______ 。
杯小9望99999×赛赛希学 【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空【关键词】希望杯,4年级,初赛,20题【解析】 赛×赛的个位是9,赛=3或7,赛=3,小学希望杯赛=333333,不合题意,舍去;故赛=7,小学希望杯赛=999999÷7=142857【答案】142857【例 3】右面算式中相同的字母代表相同的数字,不同的字母代表不同的数字,问A 和E 各代表什么数字?E AE D EE E E E ×3C B【考点】与数论结合的数字谜之特殊数字 【难度】3星 【题型】填空【解析】由于被乘数的最高位数字与乘数相同,且乘积为EEEEEE ,是重复数字根据重复数字的特点拆分, 将其分解质因数后为:=37111337EEEEEE E ⨯⨯⨯⨯⨯,所以3A =或者是7A =①若A =3,因为3×3=9,则E =1,而个位上1×3=3≠1,因此,A≠3。
五年级高斯奥数之数字谜综合含答案

第10讲 数字谜综合一内容概述涉及小数、分数、循环小数酌数字谜问题;需要利用数论知识解决的数字谜问题.典型问题兴趣篇1.有一个四位数,在它的某位数字后加上一个小数点,得到一个小数,再把这个小数和原来的四位数相加,得数是4003.64求这个四位数.2.试将1、2、3、4、5、6、7分别填人下面的方框中,每个数字只用一次:口口口(这是一个三位数),口口口(这是一个三位数),口(这是一个一位数),使得这三个数中任意两个都互质.已知其中一个三位数已填好,它是714,求另外两个数.3.用1至9这9个数字各一次组成若干个数,这些数中最多有多少个合数?4.如图13-!,4个小三角形的顶点处有6个圆圈,在这些圆圈中分别填上6个质数(可以重复),使得它们的和是20,而且每个小三角形3个顶点上的数之和相等,请问:这6个质数的乘积是多少?5.在一个带有余数的除法算式中,商比除数大2,在被除数、除数、商和余数中,最大数与最小数之差是1023.请问:此算式中的4个数之和最大可能是多少?6.在乘法算式“好好好春杯迎杯=⨯”中,不同的汉字表示不同的数字,相同的汉字表示相同的数字.请问:“迎+春+杯+好”等于多少?7.将1至9这9个数填入下面算式中的9个方框内(每个数字只能用一次),使等式成立. 口口口×口口=口口×口口=55688.循环小数B A.0化成最简分数后,分子与分母之和为40,那么A 和B 分别是多少? 9.在算式“7=+金杯竞赛华罗庚数学”中,华、罗、庚、金、杯、数、学、竞、赛九个字,分别代表数字1、2、3、4、5、6、7、8、9.已知“竞 = 8,赛 = 6”,请把这个算式写出来.10.已知“GOOD BAD BAD =+”是一个正确的加法算式,其中相同的字母代表相同的数字,不同的字母代表不同的数字,已知GOOD 不是8的倍数.请问:ABGD 代表的四位数是什么?拓展篇1.[4.2×5 - (1+2.5 + 9.1 + 0.7)] + 0.04=100.改动上面算式中一个数的小数点的位置,使其成为一个正确的等式,那么被改动的数变为多少?2.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940,另外三个数可能是多少?3.学数学科学数数=⨯.在上面的算式中,每一个汉字代表一个数字,不同的汉字代表不同的数字.请问:“数学”所代表的两位数是多少?4.在等式“口△×△口×口O×◇△=口△口△口△”中,口、△、O 、◇分别代表不同的数字.四位数◇O 口△是多少?5.将1、2、3、4、5、6、7、8、9这9个数字分别填人下式的各个方框中,使等式成立:口口×口口=口口×口口口=3634.6.已知a 是一个自然数,A 、B 是1至9中的数字,最简分数差B A a 33.0222=.请问:a 是多少?7.把质数373按数位拆开(不改变各数之间的顺序),只能得到3、7、37、73这四个数,它们仍然都是质数,请找出所有具有这种性质的质数.8.在下面各题中,请你用给出的四个数,适当进行加、减、乘、除运算,每个数恰好用一次,使得计算结果等于24. (1)1,4,5,6; (2)1,5,5,5; (3)3,3,7,7; (4)3,3,8,8.9.把1至6填人下面的方框中,每个数字恰好使用一次,使得等式成立,请写出所有的答案. 口.口×口.口=口.口10.如图13-2所示,三角形纸片盖住的都是质数数字,正方形纸片盖住的都是合数数字,要使得两个加数的差尽可能小,较大的加数是多少?11.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.花相似人不同代表的六位数是多少? 花相似岁岁年年=⨯ 不同人年年年年÷=÷12.在图13-3所示的算式中,每个字母代表一个数字,不同的字母代表不同的数字.如果CHINA代表的五位数能被24整除,那么这个五位数是多少?超越篇1.两个学生计算同一个乘法算式,两个乘数都是两位数,他们各抄错了一个数字,但计算结果都是1360.实际上正确结果的个位不是0,那么正确结果应该是多少?2.用0至9这10个数字组成一些质数(每个数字恰好用一次),这些质数的和最小是多少?3.已知b 13a.0A 是纯循环小数,将它写成最简分数后,使得分母最小.那么这个分数是多少?4.数学家维纳在博士毕业典礼上说:“我现在年龄的三次方是一个四位数,现在年龄的四次方是一个六位数,并且这两个数刚好包含数字0至9各一次,所以所有数字都得朝拜我,我将在数学领域干出一番大事业.”请问:他是几岁毕业的?5.一个四位数的每一位数字都是非零的偶数,它又恰好是某个偶数数字组成的数的平方,请问:这个四位数是多少?6.在图134所示算式的每个方框内填人一个数字,要求所填的数字都是质数,并使竖式成立.7.a 、b 、c 是三个互不相同的自然数,且满足cba ×7bc =bca ×abc ,求三位数abc8.已知算式234235286= cab ×bca ×abc ,其中a > b > c .后来发现右边的乘积的数字顺序出现错误,但是知道个位的6是正确的,那么原式中的abc 是多少?第13讲数字谜综合一内容概述涉及小数、分数、循环小数酌数字谜问题;需要利用数论知识解决的数字谜问题.典型问题兴趣篇1.有一个四位数,在它的某位数字后加上一个小数点,得到一个小数,再把这个小数和原来的四位数相加,得数是4003.64求这个四位数.答案:3964详解:在一个数的十位后添加小数点,相当于缩小10倍,由这个小数和原来的四位数相加,得数是4003.64,可知这个小数点至少是在百位以后,若是在百位以后添加小数点,则原数是小数的100倍4003.64÷(100+1)=39.64,原数是3964,若是在千位以后添加小数点,则原数是小数的1000倍4003.64÷(1000+1),但是它除不尽,所以原来的四位数是3964.2.试将1、2、3、4、5、6、7分别填人下面的方框中,每个数字只用一次:口口口(这是一个三位数),口口口(这是一个三位数),口(这是一个一位数),使得这三个数中任意两个都互质.已知其中一个三位数已填好,它是714,求另外两个数.答案:5和263详解:714=2×3×7×17,因为两两互质,另外两个数一定不包含714的约数,2.3.6排除,所以这个一位数只能填5,剩下的三位数之能有2,3,6组成,这个数不能是偶数,所以个位只能是3,263和623,623=7×89有约数7,排除。
五年级奥数专题-数字谜

五年级奥数专题-数字谜(一)数字谜小朋友们都玩过字谜吧,就是一种文字游戏,例如“空中码头”(打一城市名).谜底你还记得吗?记不得也没关系,想想“空中”指什么?“天”.这个地名第1个字可能是天.“码头”指什么呢?码头又称渡口,联系这个地名开头是“天”字,容易想到“天津”这个地名,而“津”正好又是“渡口”的意思.这样谜底就出来了:天津.算式谜又被称为“虫食算”,意思是说一道算式中的某些数字被虫子吃掉了无法辨认,需要运用四则运算各部分之间的关系,通过推理判定被吃掉的数字,把算式还原.“虫食算”主要指横式算式谜和竖式算式谜,其中未知的数字常常用□、△、☆等图形符号或字母表示.文字算式谜是前两种算式谜的延伸,用文字或字母来代替未知的数字,在同一道算式中不同的文字或字母表示不同的数字,相同的数字或字母表示同一个数字.文字算式谜也是最难的一种算式谜.在数学里面,文字也可以组成许许多多的数学游戏,就让我们一起来看看吧.①横式字谜一、例题与方法指导例1 □,□8,□97在上面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150.那么所填的3个数字之和是多少?思路导航:150*3-8-97-=345所以3个数之和为3+4+5=12.例2 在下列算式的□中填上适当的数字,使得等式成立:(1)6□□4÷56=□0□,(2)7□□8÷37=□1□,(3)3□□3÷2□=□17,(4)8□□□÷58=□□6.分析:(1) 6104/56=109(2)7548/37=204(3) 3393/29=117(4)8468/58=146例3 在算式40796÷□□□=□99……98的各个方框内填入适当的数字后,就可以使其成为正确的等式.求其中的除数.分析:40796/102=399...98.例4 我学数学乐×我学数学乐=数数数学数数学学数学在上面的乘法算式中,“我、学、数、乐”分别代表的4个不同的数字.如果“乐”代表9,那么“我数学”代表的三位数是多少?分析:学=1,我=8,数=6 ,81619*81619=6661661161例5 □÷(□÷□÷□)=24在式中的4个方框内填入4个不同的一位数,使左边的数比右边的数小,并且等式成立.思路导航:这样,我们可以先用字母代替数字,原等式写成:a/(b/c/d)=a/(b/c*d)=a*c*d/b,(a<b<c<d)当a=1时,有6*8/2=24,8*9/3=24;当a=2时,有4*9/3=12,6*8/4=12,8*9/6=12;所以,满足要求的等式有:1÷(2÷6÷8)=24,1÷(3÷8÷9)=24,2÷(3÷4÷9)=24,2÷(4÷6÷8)=24,2÷(6÷8÷9)=24.例6 ①□×□=5□;②12+□-□=□,把1至9这9个数字分别填入上面两个算式的各个方框中,使等式成立,这里有3个数字已经填好.分析:根据第一个等式,只有两种可能:7*8=56,6*9=54;如果为7*8=56,则余下的数字有:3、4、9,显然不行;而当6*9=54时,余下的数字有:3、7、8,那么,12+3-7=8或12+3-8=7都能满足.二、训练巩固1. 迎迎×春春=杯迎迎杯,数数×学学=数赛赛数,春春×春春=迎迎赛赛在上面的3个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.如果这3个等式都成立,那么,“迎+春+杯+数+学+赛”等于多少?分析:考察上面三个等式,可以从最后一个等式入手:能够满足:春春×春春=迎迎赛赛的只有88*88=7744,于是,春=8,迎=7,赛=4;这样,不难得到第一个为:77*88=6776,第二个为:55*99=5445;所以,迎+春+杯+数+学+赛=7+8+6+5+9+4=39.2. 迎+春×春=迎春,(迎+杯)×(迎+杯)=迎杯在上面的两个横式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.那么“迎+春+杯”等于多少?分析:同样可以从第二个算式入手,发现满足要求的只有(8+1)*(8+1)= 81,于是,迎=8;这样,第一个算式显然只有:8+9*9=89;所以,迎+春+杯=8+9+1=18.三、拓展提升1.在下列各式的□中分别填入相同的两位数:(1)5×□=2□;(2)6×□=3□.2.将3~9中的数填入下列各式,使算式成立,要求各式中无重复的数字:(1)□÷□=□÷□;(2)□÷□>□÷□.3.在下列各式的□中填入合适的数字:(1)448÷□□=□;(2)2822÷□□=□□;(3)13×□□= 4□6.4.在下列各式的□中填入合适的数:(1) □÷32=8……31;(2)573÷32=□……29;(3)4837÷□=74……27.答案与提示练习224.(1)287;(2)17;()65.②竖式字谜一、例题与方法指导例1 在图4-1所示的算式中,每一个汉字代表一个数字,不同的汉字代表不同的数字.那么“喜欢”这两个汉字所代表的两位数是多少?分析:首先看个位,可以得到“欢”是0或5,但是“欢”是第二个数的十位,所以“欢”不能是0,只能是5. 再看十位,“欢”是5,加上个位有进位1,那么,加起来后得到的“人”就应该是偶数,因为结果的百位也是“人”,所以“人”只能是2;由此可知,“喜”等于8. 所以,“喜欢”这两个汉字所代表的两位数就是85.例2 在图4-2所示的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.如果:巧+解+数+字+谜=30,那么“数字谜”所代表的三位数是多少?分析:还是先看个位,5个“谜”相加的结果个位还是等于“谜”,“谜”必定是5(0显然可以排出);接着看十位,四个“字”相加再加上进位2,结果尾数还是“字”,那说明“字”只能是6;再看百位,三个“数”相加再加上进位2,结果尾数还是“数”,“数”可能是4或9;再看千位,(1)如果“数”为4,两个“解”相加再加上进位1,结果尾数还是“解”,那说明“解”只能是9;5+6+4+9=24,30-24=6,“巧”等于6与“字”等于6重复,不能;(2)如果“数”为9,两个“解”相加再加上进位2,结果尾数还是“解”,那说明“解”只能是8;5+6+9+8=28,30-28=2,可以. 所以“数字谜”代表的三位数是965.例3在图4-3所示的加法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.请把这个竖式翻译成数字算式.分析:首先万位上“华”=1;再看千位,“香”只能是8或9,那么“人”就相应的只能是0或1.但是“华”=1,所以,“人”就是0;再看百位,“人”=0,那么,十位上必须有进位,否则“港”+“人”还是“港”.由此可知“回”比“港”大1,这样就说明“港”不是9,百位向千位也没有进位.于是可以确定“香”等于9的;再看十位,“回”+“爱”=“港”要有进位的,而“回”比“港”大1,那么“爱”就等于8;同时,个位必须有进位;再看个位,两数相加至少12,至多13,即只能是5+7或6+7,显然“港”=5,“回”=6,“归”=7. 这样,整个算式就是:9567+1085=10652.例4 图4-4是一个加法竖式,其中E,F,I,N,O,R S,T,X,Y分别表示从0到9的不同数字,且F,S不等于零.那么这个算式的结果是多少?分析:先看个位和十位,N应为0,E应为5;再看最高位上,S比F大1;千位上O最少是8;但因为N等于0,所以,I只能是1,O只能是9;由于百位向千位进位是2,且X不能是0,因此决定了T、R只能是7、8这两个;如果T=7,X=3,这是只剩下了2、4、6三个数,无法满足S、F是两个连续数的要求.所以,T=8、R=7;由此得到X=4;那么,F=2,S=3,Y=6.所以,得到的算式结果是31486.二、训练巩固1. 在图4-5所示的减法算式中,每一个字母代表一个数字,不同的字母代表不同的数字.那么D+G等于多少?分析:先从最高位看,显然A=1,B=0,E=9;接着看十位,因为E等于9,说明个位有借位,所以F只能是8;由F=8可知,C=7;这样,D、G有2、4,3、5和4、6三种可能.所以,D+G就可以等于6,8或10.2. 王老师家的电话号码是一个七位数,把它前四位组成的数与后三位组成的数相加得9063,把它前三位数组成的数与后四位数组成的数相加得2529.求王老师家的电话号码.分析:我们可以用abcdefg来表示这个七位数电话号码.由题意知,abcd+efg=9063,abc+defg=2529;首先从第一个算式可以看出,a=8,从第二个算式可以看出,d=1;再回到第一个算式,g=2,掉到第二个算式,c=7;又回到第一个算式,f=9,掉到第二个算式,b=3;那么,e=6.所以,王老师家的电话号码是8371692.3. 将一个四位数的各位顺序颠倒过来,得到一个新的四位数.如果新数比原数大7902,那么在所有符合这样条件的四位数中,原数最大是多少?分析:用abcd来表示愿四位数,那么新四位数为dcba,dcba-abcd=7902;由最高为看起,a最大为2,则d=9;但个位上10+a-d=2,所以,a只能是1;接下来看百位,b最大是9,那么,c=8正好能满足要求.所以,原四位数最大是1989.三、拓展提升1.已知图4-6所示的乘法竖式成立.那么ABCDE是多少?分析:由1/7的特点易知,ABCDE=42857.142857*3=428571.2. 某个自然数的个位数字是4,将这个4移到左边首位数字的前面,所构成的新数恰好是原数的4倍.问原数最小是多少?分析:由个位起逐个递推:4*4=16,原十位为6;4*6+1=25,原百位为5;4*5+2=22,原千位为2;4*2+2=10,原万位为0; 1*4=4,正好.所以,原数最小是102564.3. 在图4-7所示的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.则符合题意的数“迎春杯竞赛赞”是多少?分析:同第10题一样,也是利用1/7的特点.因为每个字母代表不同的数字,因此“好”只有3和6可选:好=3,则:142857*3=428571;好=6,则:142857*6=857142;两个都能满足,所以,符合题意的数“迎春杯竞赛赞”可能是428571或857142.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三十二周算式谜
例题1 有一个六位数,它的个位数字是6,如果将6移至第一位前面,所得的新六位数是原数的4倍。
求原六位数。
分析设原六位数是ABCDE6,则新六位数是6ABCDE,根据题意列成竖式再进行分析:
ABCDE6
× 4
6ABCDE
(1)由个位6×4=24可知,E=4;(2)由十位4×4+2=8可知,D=8;(3)由百位8×4+1=33可知,C=3;(4)由千位3×4+3=15可知,B=5;(5)由万位5×4+1=21可知,A=1。
所以,原六位数是153846。
练习一
1.已知六位数1ABCDE,这个六位数的3倍正好是ABCDE1,求这个六位数。
2.下面式子中每个汉字代表一个数字,不同的汉字代表不同的数字,请说出各个汉字分别代表什么数字。
2华罗庚金杯×3=华罗庚金杯2
3.不同的汉字代表不同的数字,请便分析出“我们热爱科学”分别代表什么数字。
我们热爱科学×学=好好好好好好
例题2 下面竖式中每个小方格都代表一个数字,请把这个算式写完整。
2 8 5
×□□
1 □
2 □
□□□□
□ 9 □□
分析设乘数为ab,(1)根据285×b=1□2□可知,b可以取4、5、6、7四个数字中的一个。
因为b取4、6和7时,积的个位都不是2,所以b只能是5。
(2)根据258×a=□□□可知,a可以取1、2、3三个数字中的一个。
因为a取1或2时,这一部分的积与前一部分的积相加时,和的百位得不到9,所以a只能是3。
因此,原式写成横式是285×35=9975。
练习二
1.把下面的算式写完整。
□□□
× 8 9
□□□□
□□□
□□□□
2.在算式的()里填上合适的数字。
() 2 ()()
×() 6
()() 0 4 ()() 7 ()
()()()()()3.在□里填上合适的数字。
□□
6□□□□□ 1
□□ 7
□□□□
□□ 6 1
例题3 下图的五个方格中已经填入84和72两个两位数,请你在其余的三格中也分别填入一个两位数,使得横行的三个数与竖行的三个数之和相等,并且这五个两位数正好由0~9十个数字组成。
分析十个数字中已用了4个数字,还剩下0、1、3、5、6、9六个数字。
因为中间方格中的数横行和竖行中都用到,所以,只要满足上一格中的数加下一格中的数和是84+72=156就行。
在余下的六个数字中,95+61=156,所以95和61分别填上、下两格,剩下的30填中间。
想一想:你还有不同的填法吗?
练习三
1.把0~9这十个数字填到圆圈内,每个数字只能用一次,使三个算式成立。
○+○=○○-○=○○×○=○○
2.把44、2、11、12、22、33六个数分成两组,使每组中的两个数的积相等。
□×□×□=□×□×□
例题4 把0、1、2、3、4、5、6、7、8、9这十个数字填入下面的小方格中,使三个等式都成立。
□+□=□
□-□=□
□×□=□□
分析在0~9这十个数中,因为A+0=A,A-0=A,A×0=0,所以,0不能填在加法和减法算式里,也不能填在乘法中作因数,0只能填在积的个位。
因此,第三个等式一定是5×2=10、5×4=20、5×6=30、5×8=40中的一个。
如果是5×2=10,剩下的3、4、6、7、8、9经计算不能使上面两个等式成立。
同样道理,5×6=30和5×8=40这两个算式也应被排除,正确的填法是3+6=9,8-1=7,5×4=20。
练习四
1.将1、2、3、4、5、6、7、8、9九个不同的数字分别填在○中,使下面的三个算式成立。
○+○=○○-○=○○×○=○
2.将0、1、2、3、4、5、6填到下面只有一、两位数的算式中,使等式成立。
○×○=○=○÷○
3.把0、1、2、3、4、5、6填到下面□里,使等式成立。
□×□□□+□+□=□
例题5 把2、3、4、5、7、9这六个数字分别填在六个()里,使乘积最大,应该怎样填?
()()()×()()()
分析(1)7和9应分别放在首位:
( 9 )()()×( 7 )()()
(2)5与4分别放在十位上,且5摆在7的后面比4摆在7的后面能多算一个900,反之只能多算一个700;94()×75();
(3)同样道理:3摆在5后面比2摆在5后面能多算一个940,反之只能多算一个750:( 9 )( 4 )( 2 )×( 7 )( 5 )( 3 )积最大。
练习五
1.用9、8、2、1四个数字组成两个两位数,并且使它们的积最大。
2.用6、1、2、5、9、7组成两个三位数,并且使它们的积最小。
3.“我喜欢×小数报”表示两个三位数相乘,“我、喜、欢、小、数、报”这六个字分别代表3、4、5、6、7、8这六个数,这个算式的乘积最大是多少?
参考答案:
一、例1:153846×4=615384
1.142857;
2.华8,罗5,庚7,金1,杯4。
二、例2:285×35=9975
1.112×89=9968
2.1234×56=69104
3.8931÷687=13
三、1. 8-7=1,3+6=9,4×5=20;2.44×33×2=12×22×11
四、1. 4+5=9,8-7=1, 2×3=6;
2. 3×4=12=60÷5
3.0×146+2+3=5或0×456+1+2=3。
五、1.91×82;2.157×269;3.854×763。