(完整版)初一数学人教版(下册)与三角形有关的角练习题一(含答案)
与三角形有关的角练习题
与三角形有关的角练习题一、选择题:1.若一个三角形的三个内角互不相等,则它的最小角必小于( )A.45B.60C.30D.12.下列命题中,不正确的为( )A .钝角三角形是斜三角形B .在一个三角形中至多有一个内角不小于60C .三角形的没有公共顶点的两个外角的和大于平角D .三角形的外角中,最小的一个是钝角,那它一定是锐角三角形3.以下命题正确的是( )A.三角形三个外角的和是360 B .三角形一个外角大于它的两个内角的和C 。
三角形的外角都不大于90D .三角形中的内角没有大于120的4.下列说法正确的是( )A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B .一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D .一个等边三角形一定不是钝角三角形,也不是直角三角形5.三角形的三个外角中,钝角的个数最少是( )A .3B .2C .1D .06.如图,ABC ∆中,AD 是BC 边上中线,AE 是BD 边的中线,AF 是DC 边的中线,且AB<AC,则下列结论中错误的是( )A .1>2>3>C ∠∠∠∠B .BE=ED=DF=FCC .1>4+5+C ∠∠∠∠D .AE=AF7.锐角三角形中,两个锐角的和必大于( )A .120B .110C .100D .908.如图,在△ADE 中,引线段EB 与EC ,下列各等式中,正确的是( )A .A+1+7=D+3+6∠∠∠∠∠∠B .1+5=2+7∠∠∠∠C .6+A=2+7∠∠∠∠D .A+5+7=2+8+6∠∠∠∠∠∠9.若一个三角形的三个外角的度数之比为2:3:4,则与之对应的三个内角的度数之比为 ( )A .4:3:2 B .3:2:4 C .5:3:1 D .3:1:510.如图,已知1=60,A+B+C+D+E+F ∠∠∠∠∠∠∠( )A .360B .540C .240D .28011.a , b ,c 是ABC ∆的三边长,且22(a b)(b c)+=+,则ABC ∆一定是( ) A .等腰三角形 B .直角三角形C 。
七年级下册数学《三角形有关的角》例题
三角形有关的角有疑问的题目请发在“51加速度学习网”上,让我们来为你解答()51加速度学习网整理一、知识回顾1、任何三角形的内角和都等于180°2、三角形的一个外角等于不相邻的两个内角之和。
3、三角形的外角和等于360°。
二、典型例题例1:一个三角形的三个内角中()A.至少有一个钝角B.至少有一个直角C.至多有一个锐角D.至少有两个锐角分析:此题考查三角形内角和定理,较为容易.解答:根据三角形内角和定理,一个三角形的三个内角中至少有两个锐角.故选D._________________________________________________________________________例2:已知在△ABC中,∠A=70°-∠B,则∠C等于()A.35°B.70°C.110°D.140°分析:结合已知条件,根据三角形的内角和为180°求解.解答:∵∠A=70°-∠B,∴∠A+∠B=70°,∴∠C=180°-(∠A+∠B)=180°-70°=110°(三角形的内角和为180°).故选C._________________________________________________________________________例3:(2012•天门)如图,AB∥CD,∠A=48°,∠C=22°.则∠E等于()A.70°B.26° C.36° D.16°分析:由AB∥CD,根据两直线平行,内错角相等,即可求得∠1的度数,又由三角形外角的性质,即可求得∠E的度数.解答:∵AB∥CD,∠A=48°,∴∠1=∠A=48°,∵∠C=22°,∴∠E=∠1-∠C=48°-22°=26°.故选B.______________________________________________________________________________ 例4:(2012•云南)如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A.40° B.45° C.50° D.55°分析:首先利用三角形内角和定理求得∠BAC的度数,然后利用角平分线的性质求得∠CAD 的度数即可.解答:∵∠B=67°,∠C=33°,∴∠BAC=180°-∠B-∠C=180°-67°-33°=80°∵AD是△ABC的角平分线,∴∠CAD=1/2 ∠BAD=1/2 ×80°=40°故选A.______________________________________________________________________________例5:(1999•南昌)已知△ABC中,∠A:∠B:∠C=2:3:4,则这个三角形是()A.锐角三角形B.直角三角形 C.钝角三角形D.等腰三角形分析:根据比例,设三个内角为2k、3k、4k,根据三角形的内角和定理求出最大角的度数.解答:根据题意,设∠A、∠B、∠C分别为2k、3k、4k,则∠A+∠B+∠C=2k+3k+4k=180°,解得k=20°,∴4k=4×20°=80°<90°,所以这个三角形是锐角三角形.故选A.______________________________________________________________________________例6:(2012•肇庆)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100° B.90° C.80° D.70°分析:先根据平行线的性质求出∠C的度数,再根据三角形内角和定理求出∠A的度数即可.解答:∵DE∥BC,∠AED=40°,∴∠C=∠AED=40°,∵∠B=60°,∴∠A=180°-∠C-∠B=180°-40°-60°=80°.故选C.例7:(2009•铁岭)如图所示,已知直线AB∥CD,∠C=125°,∠A=45°,则∠E的度数为()A.70° B.80° C.90° D.100°分析:首先根据两条直线平行,同位角相等,得∠BFE的度数;再根据三角形的一个外角等于和它不相邻的两个内角和求解.解答:∵AB∥CD,∠C=125°∴∠BFE=125°∴∠E=∠BFE-∠A=125°-45°=80°.故选B例8:(2008•聊城)如图,∠1=100°,∠2=145°,那么∠3=()A.55°B.65° C.75°D.85°分析:由题可知,∠4=180°-∠1,∠5=180°-∠2,又因为∠3+∠4+∠5=180°,从而推出∠3=65°解答:∵∠1=100°,∠2=145°,∴∠4=180°-∠1=180°-100°=80°,∠5=180°-∠2=180°-145°=35°,∵∠3=180°-∠4-∠5,∴∠3=180°-80°-35°=65°.故选B.三、解题经验本节题目常常结合前面所学的知识来考查,我们要对三角形的内角和定理必须理解,感兴趣的同学可以把三角形拼成平行四边形来证明这个定理。
人教版初中数学七年级下册《三角函数》测试题(含答案)
人教版初中数学七年级下册《三角函数》测试题(含答案)1. 三角函数只适用于正三角形吗?答案:不仅适用于正三角形,还适用于普通三角形和任意角的三角形。
2. 在直角三角形ABC中,已知∠B=90°,AB=6cm,BC=8cm,求∠A和∠C的正弦、余弦、正切值。
答案:- 正弦值:sinA = AB/AC = 6/10 = 0.6,sinC = BC/AC = 8/10 = 0.8- 余弦值:cosA = BC/AC = 8/10 = 0.8,cosC = AB/AC = 6/10 = 0.6- 正切值:tanA = AB/BC = 6/8 = 0.75,tanC = BC/AB = 8/6 =1.333. 在任意三角形ABC中,已知∠A=30°,a=8cm,b=5cm,求∠B和∠C的正弦、余弦、正切值。
答案:- 正弦值:sinB = b/AC = 5/8.66 ≈ 0.577,sinC = c/AC = √3/2 ≈ 0.866- 余弦值:cosB = c/AC = √3/2 ≈ 0.866,cosC = a/AC = 4/8.66 ≈ 0.462- 正切值:tanB = b/a = 5/8 ≈ 0.625,tanC = c/a = √3/4 ≈ 0.8664. 已知sinA = 0.4,且A为锐角,求A的值。
答案:A = arcsin(0.4) ≈ 23.58°5. 已知∠A=60°,求cosA的值。
答案:cosA = cos(60°) = 0.56. 在任意三角形ABC中,已知a=6cm,b=8cm,c=10cm,求∠A、∠B、∠C的正弦、余弦、正切值。
答案:- 正弦值:sinA = a/BC = 6/10 = 0.6,sinB = b/AC = 8/10 = 0.8,sinC = c/AB = 10/8 ≈ 1.25- 余弦值:cosA = b/AB = 8/10 = 0.8,cosB = a/AC = 6/10 = 0.6,cosC = c/BC = 10/6 ≈ 1.67- 正切值:tanA = a/b = 6/8 = 0.75,tanB = b/a = 8/6 ≈ 1.33,tanC = c/a = 10/6 ≈ 1.67。
七年级下册数学三角形测试题(含答案)
第7章三角形一、选择题1.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( ).A .3 B .4 C .5 D .6 2.下面四个图形中,线段BE 是⊿ABC 的高的图是( )3.(20XX 年••福州市)已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm4.三角形一个外角小于与它相邻的内角,这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .属于哪一类不能确定 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高, DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、18007.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个8.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有( )A.1个B.2个C.3个D.4个第5题图第6题图二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。
人教版初中数学三角形经典测试题及答案
人教版初中数学三角形经典测试题及答案本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March人教版初中数学三角形经典测试题及答案一、选择题1.如图,在菱形ABCD 中,点A 在x 轴上,点B 的坐标轴为()4,1, 点D 的坐标为()0,1, 则菱形ABCD 的周长等于( )A .5B .43C .45D .20【答案】C【解析】【分析】 如下图,先求得点A 的坐标,然后根据点A 、D 的坐标刻碟AD 的长,进而得出菱形ABCD 的周长.【详解】如下图,连接AC 、BD ,交于点E∵四边形ABCD 是菱形,∴DB ⊥AC ,且DE=EB又∵B ()4,1,D ()0,1∴E(2,1)∴A(2,0)∴AD=()()2220015-+-= ∴菱形ABCD 的周长为:45故选:C【点睛】本题在直角坐标系中考查菱形的性质,解题关键是利用菱形的性质得出点A 的坐标,从而求得菱形周长.2.如图,在ABC 中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=︒,则2∠的度数是( )A .30°B .35°C .40°D .45°【答案】C【解析】【分析】 先根据等腰三角形的性质和三角形内角和可得ACB ∠度数,由三角形外角的性质可得AED ∠的度数,再根据平行线的性质得同位角相等,即可求得2∠.【详解】∵AB AC =,且30A ∠=︒,∴18030752ACB ∠︒-︒==︒, 在ADE ∆中,∵1145A AED ∠∠∠=+=︒,∴14514530115AED A ∠∠=︒-=︒-︒=︒,∵//a b ,∴2AED ACB ∠∠∠=+,即21157540∠=︒-︒=︒,故选:C .【点睛】本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于180 ;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.3.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°【答案】D【解析】【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.4.如图,11∥l2,∠1=100°,∠2=135°,则∠3的度数为()A .50°B .55°C .65°D .70°【答案】B【解析】【分析】 如图,延长l 2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l 2,交∠1的边于一点,∵11∥l 2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B .【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.5.如图,在ABC 中,AB AC =,点E 在AC 上,ED BC ⊥于点D ,DE 的延长线交BA 的延长线于点F ,则下列结论中错误的是( )A .AE CE =B .12DEC BAC ∠=∠ C .AF AE =D .1902B BAC ∠+∠=︒ 【答案】A【解析】【分析】 由题意中点E 的位置即可对A 项进行判断;过点A 作AG ⊥BC 于点G ,如图,由等腰三角形的性质可得∠1=∠2=12BAC ∠,易得ED ∥AG ,然后根据平行线的性质即可判断B 项;根据平行线的性质和等腰三角形的判定即可判断C 项;由直角三角形的性质并结合∠1=12BAC ∠的结论即可判断D 项,进而可得答案. 【详解】解:A 、由于点E 在AC 上,点E 不一定是AC 中点,所以,AE CE 不一定相等,所以本选项结论错误,符合题意;B 、过点A 作AG ⊥BC 于点G ,如图,∵AB =AC ,∴∠1=∠2=12BAC ∠, ∵ED BC ⊥,∴ED ∥AG ,∴122DEC BAC ∠=∠=∠,所以本选项结论正确,不符合题意; C 、∵ED ∥AG ,∴∠1=∠F ,∠2=∠AEF ,∵∠1=∠2,∴∠F =∠AEF ,∴AF AE =,所以本选项结论正确,不符合题意;D 、∵AG ⊥BC ,∴∠1+∠B =90°,即1902B BAC ∠+∠=︒,所以本选项结论正确,不符合题意.故选:A .【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质以及直角三角形的性质等知识,属于基本题型,熟练掌握等腰三角形的判定和性质是解题的关键.6.下列说法不能得到直角三角形的( )A .三个角度之比为 1:2:3 的三角形B .三个边长之比为 3:4:5 的三角形C .三个边长之比为 8:16:17 的三角形D .三个角度之比为 1:1:2 的三角形 【答案】C【解析】【分析】三角形内角和180°,根据比例判断A 、D 选项中是否有90°的角,根据勾股定理的逆定理判断B 、C 选项中边长是否符合直角三角形的关系.【详解】A 中,三个角之比为1:2:3,则这三个角分别为:30°、60°、90°,是直角三角形; D 中,三个角之比为1:1:2,则这三个角分别为:45°、45°、90°,是直角三角形;B 中,三边之比为3:4:5,设这三条边长为:3x 、4x 、5x ,满足:()()()222345x x x +=,是直角三角形;C 中,三边之比为8:16:17,设这三条边长为:8x 、16x 、17x ,()()()22281617x x x +≠,不满足勾股定理逆定理,不是直角三角形故选:C【点睛】本题考查直角三角形的判定,常见方法有2种;(1)有一个角是直角的三角形;(2)三边长满足勾股定理逆定理.7.如图,□ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=12BC,连接OE.下列结论:①AE=CE;②S△ABC=AB•AC;③S△ABE=2S△AOE;④OE=14BC,成立的个数有()A.1个B.2个C.3个D.4【答案】C【解析】【分析】利用平行四边形的性质可得∠ABC=∠ADC=60°,∠BAD=120°,利用角平分线的性质证明△ABE是等边三角形,然后推出AE=BE=12BC,再结合等腰三角形的性质:等边对等角、三线合一进行推理即可.【详解】∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∠AEB=60°,∵AB=12BC , ∴AE=BE=12BC , ∴AE=CE ,故①正确;∴∠EAC=∠ACE=30°∴∠BAC=90°,∴S △ABC =12AB•AC ,故②错误; ∵BE=EC ,∴E 为BC 中点,O 为AC 中点,∴S △ABE =S △ACE=2 S △AOE ,故③正确;∵四边形ABCD 是平行四边形,∴AC=CO ,∵AE=CE ,∴EO ⊥AC ,∵∠ACE=30°,∴EO=12EC , ∵EC=12AB , ∴OE=14BC ,故④正确; 故正确的个数为3个,故选:C .【点睛】此题考查平行四边形的性质,等边三角形的判定与性质.注意证得△ABE 是等边三角形是解题关键.8.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB ,则EFGH 的面积是( )A.6 B.8 C.9 D.12【答案】B【解析】【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE 22EF,EF2AE,即可得到结论.【详解】解:∵在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°,∵四边形EFGH为正方形,∴EH=EF,∠AFE=∠FEH=90°,∴∠AEF=∠DEH=45°,∴AF=EF,DE=DH,∵在Rt△AEF中,AF2+EF2=AE2,∴AF=EF 2 AE,同理可得:DH=DE=22EH又∵EH=EF,∴DE=22EF=22×22AE=12AE,∵AD=AB=6,∴DE=2,AE=4,∴EH=2DE=22,∴EFGH的面积为EH2=(22)2=8,故选:B.【点睛】本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.9.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm【答案】B【解析】【分析】根据“AAS”证明ΔABD≌ΔEBD .得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.【详解】∵BD是∠ABC的平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD是公共边,∴△ABD≌△EBD (AAS),∴AD=ED,AB=BE,∴△DEC的周长是DE+EC+DC=AD+DC+EC=AC+EC=AB+EC=BE+EC=BC=10 cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质. 掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.10.如图,正方体的棱长为6cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( )A .9B .310C .326+D .12【答案】B【解析】【分析】 将正方体的左侧面与前面展开,构成一个长方形,用勾股定理求出距离即可.【详解】解:如图,AB=22(36)3310++= .故选:B .【点睛】此题求最短路径,我们将平面展开,组成一个直角三角形,利用勾股定理求出斜边就可以了.11.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.50°【答案】C【解析】∵等腰三角形有一个是50°∴有两种可能①是三个角为50°、50°、80°;②是三个角为50°、65°、65°分情况说明如下:①当三个角为50°、50°、80°时,根据图①,可得其一条腰上的高与底边的夹角∠DAB=40°;②当三个角为50°、65°、65°,根据图②,可得其一条腰上的高与底边的夹角∠DAB=25°故故选:C① ②点睛:本题主要考查三角形内角和定理:三角形内角和为180°.12.如图,在平面直角坐标系中,已知点A(﹣2,0),B(0,3),以点A为圆心,AB 长为半径画弧,交x轴的正半轴于点C,则点C的横坐标介于()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【答案】B【解析】【分析】先根据点A ,B 的坐标求出OA ,OB 的长度,再根据勾股定理求出AB 的长,即可得出OC 的长,再比较无理数的大小确定点C 的横坐标介于哪个区间.【详解】∵点A ,B 的坐标分别为(﹣2,0),(0,3),∴OA =2,OB =3,在Rt △AOB 中,由勾股定理得:AB =∴AC =AB ,∴OC 2,∴点C 2,0),∵34<< ,∴122<< ,即点C 的横坐标介于1和2之间,故选:B .【点睛】本题考查了弧与x 轴的交点问题,掌握勾股定理、无理数大小比较的方法是解题的关键.13.满足下列条件的是直角三角形的是( )A .4BC =,5AC =,6AB =B .13BC =,14AC =,15AB = C .::3:4:5BC AC AB =D .::3:4:5A B C ∠∠∠=【答案】C【解析】【分析】要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【详解】A .若BC=4,AC=5,AB=6,则BC 2+AC 2≠AB 2,故△ABC 不是直角三角形;B.若13BC =,14AC =,15AB =,则AC 2+AB 2≠CB 2,故△ABC 不是直角三角形; C .若BC :AC :AB=3:4:5,则BC 2+AC 2=AB 2,故△ABC 是直角三角形;D .若∠A :∠B :∠C=3:4:5,则∠C <90°,故△ABC 不是直角三角形;故答案为:C .【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.14.如图,在ABC ∆中,AB 的垂直平分线交AB 于点D ,交BC 于点E .ABC ∆的周长为19,ACE ∆的周长为13,则AB 的长为( )A .3B .6C .12D .16【答案】B【解析】【分析】 根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【详解】∵AB 的垂直平分线交AB 于点D ,∴AE=BE ,∵△ACE 的周长=AC+AE+CE=AC+BC=13,△ABC 的周长=AC+BC+AB=19,∴AB=△ABC 的周长-△ACE 的周长=19-13=6,故答案为:B .【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.15.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】【详解】要使△ABP与△ABC全等,必须使点P到AB的距离等于点C到AB的距离,即3个单位长度,所以点P的位置可以是P1,P2,P4三个,故选C.16.如图,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,要利用“SSS”证明△ABC≌△FDE,还可以添加的一个条件是()A.AD=FB B.DE=BD C.BF=DB D.以上都不对【答案】A【解析】∵AC=FE,BC=DE,∴要利用“SSS”证明△ABC≌△FDE,需添加条件“AB=DF”或“AD=BF”.故选A.17.满足下列条件的两个三角形不一定全等的是()A.有一边相等的两个等边三角形B.有一腰和底边对应相等的两个等腰三角形C.周长相等的两个三角形D.斜边和一条直角边对应相等的两个等腰直角三角形【答案】C【解析】A.根据全等三角形的判定,可知有一边相等的两个等边三角形全等,故选项A不符合;B.根据全等三角形的判定,可知有一腰和底边对应相等的两个等腰三角形全等,故选项B 不符合;C.根据全等三角形的判定,可知周长相等的两个三角形不一定全等,故选项C符合;D.根据全等三角形的判定,可知斜边和直角边对应相等的两个等腰直角三角形全等,故选项B不符合.故本题应选C.18.△ABC中,AB=AC,∠A=36°,∠ABC和∠ACB的平分线BE、CD交于点F,则共有等腰三角形( )A.7个B.8个C.9个D.10个【答案】B【解析】∵等腰三角形有两个角相等,∴只要能判断出有两个角相等就行了,将原图各角标上后显示如左下:因此,所有三角形都是等腰三角形,只要判断出有哪几个三角形就可以了.如右上图,三角形有如下几个:①,②,③;①+②,③+②,①+④,③+④;①+②+③+④;共计8个. 故选:B.点睛:本题考查了等腰三角形的判定与性质、三角形内角和定理以及三角形外角的性质,此题难度不大,解题的关键是求得各角的度数,掌握等角对等边与等边对等角定理的应用.19.如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 的度数为( )A .30°B .45°C .36°D .72°【答案】A【解析】∵AB=AC ,BD=BC=AD ,∴∠ABC=∠C=∠BDC ,∠A=∠ABD ,又∵∠BDC=∠A+∠ABD ,∴∠BDC=∠C=∠ABC=2∠A ,∵∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,即5∠A=180°,∴∠A=36°.故选A.20.如图,在ABC ∆中,90C =∠,30B ∠=,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ∆∆=A .1B .2C .3D .4【答案】D【解析】【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论.【详解】题干中作图方法是构造角平分线,①正确;∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线∴∠CAD=∠DAB=30°∴∠ADC=60°,②正确∵∠DAB=∠B=30°∴△ADB 是等腰三角形∴点D 在AB 的垂直平分线上,③正确在Rt △CDA 中,设CD=a ,则AD=2a在△ADB 中,DB=AD=2a ∵1122DAC S CD AC a CD ∆=⨯⨯=⨯,13(CD+DB)22BAC S AC a CD ∆=⨯⨯=⨯ ∴:1:3DAC ABC S S ∆∆=,④正确故选:D【点睛】本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.。
(完整word版)初一数学人教版(下册)三角形练习题一(含答案)
(完整word版)初一数学人教版(下册)三角形练习题一(含答案)亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~第七章三角形A1卷•基础知识点点通班级姓名得分一、选择题(3分×8=24分)1.一个三角形的三个内角中()A 、至少有一个钝角B 、至少有一个直角C 、至多有一个锐角D、至少有两个锐角2.下列长度的三条线段能组成三角形的是()A、3,4,8B、5,6,11C、1,2,3D、5,6,103.关于三角形的边的叙述正确的是()A、三边互不相等B、至少有两边相等C、任意两边之和一定大于第三边D、最多有两边相等4.图中有三角形的个数为()A、4个B、6个C、8个D、10个5.如图在△ABC中,∠ACB=900,CD是边AB上的高。
那么图中与∠A相等的角是()A、∠BB、∠ACDC、∠BCDD、∠BDC6.下列图形中具有稳定性有()A、2个B、3个C、4个D、5个7.一个多边形的内角和等于它的外角和,这个多边形是()A 、三角形B、四边形C、五边形D、六边形8.一个多边形内角和是10800,则这个多边形的边数为()A、6B、7C、8D、9二、填空题(4分×9=36分)9.一个三角形有条边,个内角,个顶点,个外角10.如图,图中有个三角形,把它们用符号分别表示为11.长为11,8,6,4的四根木条,选其中三根组成三角形有种选法,它们分别是12.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,则根据图形填空:⑴BE= =21;⑵∠BAD= =21第(4)题EDCBA第(5)题DCBA(1)(2)(3)(4)(5)(6)⑶∠AFB= =900;13.在△ABC 中,若∠A=800,∠C=200,则∠B= 0, 若∠A=800,∠B=∠C ,则∠C= 0 14.已知△ABC 的三个内角的度数之比∠A :∠B :∠C=1:3:5,则∠B= 0,∠C= 015.如图,在△ABC 中,∠BAC=600,∠B=450,AD 是△ABC 的一条角平分线,则∠DAC= 0,∠ADB= 016.十边形的外角和是 0;如果十边形的各个内角都相等,那么它的一个内角是 0 17.如图,∠1=∠2=300,∠3=∠4,∠A=800,则=x ,=y三、解下列各题18.对下面每个三角形,过顶点A 画出中线,角平分线和高(4分×3=12分)19.求出下列图中x 的值:(4分×3=12分)20.(8分)一个多边形的外角和是内角和的72,求这个多边形的边数第(10)题E D C BA第(12)题B第(15)题D CA800yx4321第(17)题E D CBA(1)CBACBA(2)CBA(3)(1)x 0x 0(2)(3)4x ︒3x ︒3x ︒2x ︒21.在△ABC 中,∠A=21∠C=21∠ABC , BD 是角平分线,求∠A 及∠BDC 的度数(8分)附加题(10分×2=20分)22.如图,已知∠1=∠2,∠3=∠4,∠A=1000,求x 的值。
初一数学与三角形有关的角试题
初一数学与三角形有关的角试题1.一个三角形中最多有_____个内角是钝角,最多可有_____个角是锐角.【答案】,【解析】本题主要考查了三角形内角和. 根据三角形内角和是180°即可解决问题.解:如果一个三角形中出现2个或3个钝角,那么三角形的内角和就大于180°,不符合三角形内角和是180°,如果一个三角形中出现2个或3个直角,再加上第三个角,那么三角形的内角和就大于180°,也不符合三角形内角和是180°,所以,三角形中最多有一个钝角或直角,最少有两个锐角,一个三角形中最多有3个锐角,如锐角三角形,∴一个三角形最多有1钝角;最多有3个锐角.2.如图,_____.【答案】【解析】本题主要考查三角形的内角和定理. 连接∠2和∠4的顶点,可得两个三角形,根据三角形的内角和定理即可求出答案.解:连接∠2和∠4的顶点,可得两个三角形,根据三角形的内角和定理,∠1+∠2+∠3+∠4=360°.3.如图,已知折线,且.说明:.【答案】证明见解析【解析】本题考查的是三角形内角和定理.根据三角形内角和定理和平行线的判定求证解:连结BD在△BDC中,∠BDC+∠DBC+∠C=180°∵∴∠ABD+∠EDB =180°∴4.在△ABC中,若∠A=∠B=∠C,则∠C等于()A.45°B.60°C.90°D.120°【答案】C【解析】本题主要考查了三角形的内角和定理.依据三角形内角和定理得,∠C+∠C+∠C=180°,解得∠C=90°5.一个三角形的内角中,至少有()A.一个钝角B.一个直角C.一个锐角D.两个锐角【答案】D【解析】本题主要考查了三角形的内角和定理. 根据三角形的内角和等于180°,而直角与钝角都不小于90°,所以最多只能有一个,所以至少有两个锐角.解:∵三角形的内角和等于180°,∴直角或钝角至多有一个,∴锐角至少有两个.故选D.6.如图所示,∠1+∠2+∠3+∠4的度数为()A100° B.180° C.360° D.无法确定【答案】C【解析】本题主要考查了三角形的内角和定理.作如图辅助线,这样把∠1、∠2、∠3、∠4四个角的和转化为两个三角形的内角和,即2×180°=360°故选C7.如图所示,∠1+∠2+∠3+∠4的度数为 .【答案】300°【解析】本题主要考查了三角形的内角和定理. 根据三角形的内角和等于180°求解∵∠1+∠2=180°-30°=150°,∠3+∠4=180°-30°=150°,∴∠1+∠2+∠3+∠4=150°+150°=300°8.如图所示,在△ABC中,∠A=60°,BD,CE分别是AC,AB 上的高,H是BD,CE的交点,求∠BHC的度数.【答案】120°【解析】本题主要考查了三角形内角和定理.根据三角形内角和等于180°求解解:因为BD,CE分别是AC,AB 上的高,所以∠ADB=∠BEH=90°,所以∠ABD=180°-∠ADB-∠A=180°-90°-60°=30°,因此∠BHC=∠BEH+∠ABD=90°+30°=120°9.如图,______.【答案】【解析】本题主要考查了三角形的内角和定理.运用了三角形的内角和定理计算解:∵∠1+∠2=180°-40°=140°,∠3+∠4=180°-40°=140°,∴∠1+∠2+∠3+∠4=280°.10.已知∠A的两边与∠B的两边互相垂直,若∠A=80º,则∠B的度数是 .【答案】80º或100º【解析】本题主要考查角的概念若两个角的边互相垂直,那么这两个角必相等或互补,即可得到结果.两个角的边互相垂直,那么这两个角必相等或互补,∠A=80º,∠B80º或100º。
(完整版)七年级数学《角》练习题及答案
七年级数学《角》练习题及答案一、选择题1.下列说法正确的是( )A.两点之间直线最短B .用一个放大镜能够把一个图形放大,也能够把一个角的度数放大C .把一个角分成两个角的射线叫角的平分线D .直线l 经过点A ,那么点A 在直线l 上呢2. 下列4个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )3.下列关于平角、周角的说法正确的是( ).A .平角是一条直线B .周角是一条射线C .反向延长射线OA ,就形成一个平角D .两个锐角的和不一定小于平角4、右图中,小于平角的角有( )A.5个B.6个C.7个D.8个5. 如图所示,射线OA 表示的方向,射线OB 表示的方向,则∠AOB=( )A.155 °B.205 °C.85°D.105°6、一个人从A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC=( )A .60°B .15° C.45° D.70°二、填空题:7. 角也可以看作由 旋转面形成的图形。
8. 2周角= 1平角=9. 1°的_____ 是1′10. 1周角= 平角= 直角= ;南东75︒40︒O A 4题图 5题图 6题图11. 换算:42°27′= °,68°45′36″= °;12.2点15分,钟表的时针与分针所成的锐角是度;13.钟面上从4点到5点,时针与分针重合时,此时4点________分14.计算:(1)53°18′36″-16°51′(2)(43°13′28″÷2-10°5′18″)×315.如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.16.(如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求∠ACB17、(如图,已知:∠AOE=100°,∠BOF=80°,OE平分∠BOC,OF平分∠AOC,求∠EOF的度数。
人教版数学七年级下册第七章三角形测试题(含答案)
人教版数学七年级下册第七章三角形测试题(含答案)人教版数学七年级下册第七章三角形测试题一、精心选一选,慧眼识金!1.下列判断正确的是()A.角的平分线是线段B.三角形的角平分线都在三角形的内部C.钝角三角形的高线都在三角形外D.三角形两边中点的连线是三角形的中线2.若一个三角形的两个内角之差等于第三个内角,则它是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形3.直角三角形两锐角的平分线所交的角的度数是()A.45° B.135°C.45°或135° D.以上答案都不对4.为了让居民有更多休闲和娱乐的地方,政府又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖。
现有下面几种形状的正多边形地砖,其中不能进行平面镶嵌的是()A.正三角形 B.正方形 C.正五边形 D.正六边形5.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是()A.8 B.9 C.10 D.116.如果多边形的边数减少1条,那么它的外角和()A.减少180°B.不变 C.增加180° D.答案是A或B7.n边形的每个外角都为24°,则边数n为()A.14 B.15 C.16 D.178.下列说法:①四边形的四个内角可以都是锐角;②四边形的四个内角可以都是钝角;③四边形的四个内角可以都是直角;④四边形的四个内角最多可以有两个钝角;⑤四边形的四个内角最多可以有两个锐角。
其中正确的有()A.1个 B.2个 C.3个 D.4个9.在三角形的三个外角中,锐角的个数最多只有()A. 3个B.2个 C.1个 D.0个10.在一个三角形的每个顶点处各取一个外角,这三个外角度数之比为3:4:5,则这个三角形为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形二、耐心填一填,一锤定音!11.图中有个三角形,它们分别是。
【能力培优】与三角形有关的角(含答案)
11.2与三角形有关的角专题一利用三角形的内角和求角度1.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15° B.20° C.25° D.30°2.如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D. 若AP平分∠BAC且交BD于P,求∠BPA的度数.3.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:__________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系.(直接写出结论即可)专题二利用三角形外角的性质解决问题4.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20° C.25° D.30°5.如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=40°,∠B=72°.(1)求∠DCE的度数;(2)试写出∠DCE与∠A、∠B的之间的关系式.(不必证明)6.如图:(1)求证:∠BDC=∠A+∠B+∠C;(2)如果点D与点A分别在线段BC的两侧,猜想∠BDC、∠A、∠ABD、∠ACD这4个角之间有怎样的关系,并证明你的结论.状元笔记【知识要点】1.三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的性质及判定性质:直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.3.三角形的外角及性质外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质:三角形的外角等于与它不相邻的两个内角的和.【温馨提示】1.三角形的外角是一边与另一边的延长线组成的角,而不是两边延长线组成的角.2.三角形的外角的性质中的内角一定是与外角不相邻的内角.【方法技巧】1.在直角三角形中已知一个锐角求另一个锐角时,可直接使用“直角三角形的两个锐角互余”.2.由三角形的外角的性质可得出:三角形的外角大于任何一个与它不相邻的内角.参考答案:1.C解析:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠1=12∠ACE,∠2=12∠ABC.又∵∠D=∠1-∠2,∠A=∠ACE-∠ABC,∴∠D=12∠A=25°.故选C.2.解:(法1)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°.因为BD平分∠ABC,AP平分∠BAC ,∠BAP=12∠BAC,∠ABP=12∠ABC ,即∠BAP+∠ABP=45°,所以∠APB=180°-45°=135°.(法2)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°,因为BD平分∠ABC,AP平分∠BAC,∠DBC=12∠ABC,∠PAC=12∠BAC ,所以∠DBC+∠PAD=45°.所以∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C =45°+90°=135°.3.解:(1)∠A+∠D=∠B+∠C;(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P,又∵AP、CP分别平分∠DAB和∠BCD,∴∠1=∠2,∠3=∠4,∴∠P-∠D=∠B-∠P,即2∠P=∠B+∠D,∴∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D.4.B 解析:延长DC,与AB交于点E.根据三角形的外角等于不相邻的两内角和,可得∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.设AC与BP相交于点O,则∠AOB=∠POC,∴∠P+12∠ACD=∠A+12∠ABD,即∠P=50°-12(∠ACD-∠ABD)=20°.故选B.5.解:(1)∵∠A=40°,∠B=72°,∴∠ACB=68°.∵CD平分∠ACB,6.(1)证明:延长BD交AC于点E,∵∠BEC是△ABE的外角,∴∠BEC=∠A+∠B.∵∠BDC是△CED的外角,∴∠BDC=∠C+∠DEC=∠C+∠A+∠B.(2)猜想:∠BDC+∠ACD+∠A+∠ABD=360°.祝福语祝你考试成功!。
人教版七年级数学三角形测试试卷及答案解析
人教版七年级数学三角形测试试卷一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,要测量河两岸相对有两点,的距离,先在的垂线上取两点,,使,再画出的垂线,使,,在一条直线上,可以证明的理由是( ).A. 角角角B. 边边边C. 角边角D. 边角边2、不一定在三角形内部的线段是()A. 三角形的边的垂直平分线B. 三角形的高C. 三角形的中线D. 三角形的角平分线3、已知如图所示、分别是的中线、高,且,,则与的周长之差为 ,与的面积关系为 .A. ,相等B. ,相等C. ,相等D. ,相等4、在和中,已知,直接判定的根据是()A.B.C.D.5、下图中,全等的图形有()A. 对B. 对C. 对D. 对6、如图,用尺规作出了,作图痕迹中,弧是()A. 以为圆心,长为半径的弧B. 以为圆心,长为半径的弧C. 以为圆心,长为半径的弧D. 以为圆心,长为半径的弧7、下列图形中,与已知图形全等的是()A.B.C.D.8、如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A. 三边中线的交点B. 三边垂直平分线的交点C. 三条角平分线的交点D. 三边高的交点9、使两个直角三角形全等的条件是()A. 两条边对应相等B. 一条边对应相等C. 两个锐角对应相等D. 一个锐角对应相等10、下列图形中,不具有稳定性的是()A.B.C.D.11、已知图中的两个三角形全等,则度数是()A.B.C.D.12、已知的底边上的高为,当它的底边从变化到时,的面积()A. 从变化到B. 从变化到C. 从变化到D. 从变化到13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角14、如图,已知,,用尺规作图的方法在上取一点,使得,则下列选项正确的是()A.B.C.D.15、已知一个等腰三角形的两边长分别是和,则该等腰三角形的周长为()A. 或B.C.D. 或二、填空题(本大题共有5小题,每小题5分,共25分)16、"利用三角形全等测距离",其实质就是利用三角形全等的方法来说明相等.17、解决难以测量或无法测量的线段(或角)的关键:构建三角形,得到线段相等或角相等.18、如图所示,在中,,,已知,,,则.19、一个三角形的三边为、、,另一个三角形的三边为、、,若这两个三角形全等,则.20、如图,于,那么图中以为高的三角形有个.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,已知,,求证:.22、如图,在四边形中,,直线与边、分别相交于点、,求的度数.?23、在中,平分,,垂足为,过作,交于,若,求线段的长.参考答案一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,要测量河两岸相对有两点,的距离,先在的垂线上取两点,,使,再画出的垂线,使,,在一条直线上,可以证明的理由是( ).A. 角角角B. 边边边C. 角边角D. 边角边【答案】C【解析】解:,,.,,().故答案应选:角边角.2、不一定在三角形内部的线段是()A. 三角形的边的垂直平分线B. 三角形的高C. 三角形的中线D. 三角形的角平分线【答案】B【解析】解:三角形的角平分线都在三角形的内部,故答案不正确三角形的中线都在三角形的内部,故答案不正确三角形的高有的在形内,有的在形上,有的在形外,故答案正确三角形的边的垂直平分线都在三角形的内部,故答案不正确故正确答案为:三角形的高3、已知如图所示、分别是的中线、高,且,,则与的周长之差为 ,与的面积关系为 .A. ,相等B. ,相等C. ,相等D. ,相等【答案】D【解析】解:、分别是的中线、高,,故答案为:与的周长之差为,的面积等于的面积.4、在和中,已知,直接判定的根据是()A.B.C.D.【答案】B【解析】解:,和分别是、的对边,根据可判定两三角形全等.故正确答案是.5、下图中,全等的图形有()A. 对B. 对C. 对D. 对【答案】C【解析】解:如图,全等图形有对.6、如图,用尺规作出了,作图痕迹中,弧是()A. 以为圆心,长为半径的弧B. 以为圆心,长为半径的弧C. 以为圆心,长为半径的弧D. 以为圆心,长为半径的弧【答案】B【解析】解:以点为圆心,为半径作弧交于,然后以点为圆心,为半径画弧,两弧相交于,则.故正确答案是:以为圆心,长为半径的弧7、下列图形中,与已知图形全等的是()A.B.C.D.【答案】B【解析】解:由已知图形可得:与全等.8、如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A. 三边中线的交点B. 三边垂直平分线的交点C. 三条角平分线的交点D. 三边高的交点【答案】A【解析】解:支撑点应是三角形的重心,三角形的重心是三角形三边中线的交点.9、使两个直角三角形全等的条件是()A. 两条边对应相等B. 一条边对应相等C. 两个锐角对应相等D. 一个锐角对应相等【答案】A【解析】解:一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故错误;两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故错误;一条边对应相等,再加一组直角相等,不能得出两三角形全等,故错误;两条边对应相等,若是两条直角边相等,可利用证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故正确.10、下列图形中,不具有稳定性的是()A.B.C.D.【答案】C【解析】解:可以看成一个三角形和一个四边形,而四边形不具有稳定性,则这个图形一定不具有稳定性.其他三个图形都是有三角形组成,一定具有稳定性.11、已知图中的两个三角形全等,则度数是()A.B.C.D.【答案】D【解析】解:两个三角形全等,.12、已知的底边上的高为,当它的底边从变化到时,的面积()A. 从变化到B. 从变化到C. 从变化到D. 从变化到【答案】C【解析】解:当的底边上的高为,底边时,;底边时,.故从变化到.13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角【答案】B【解析】解:,,,,和互为余角.14、如图,已知,,用尺规作图的方法在上取一点,使得,则下列选项正确的是()A.B.C.D.【答案】A【解析】解:,而,,点在的垂直平分线上,即点为的垂直平分线与的交点.15、已知一个等腰三角形的两边长分别是和,则该等腰三角形的周长为()A. 或B.C.D. 或【答案】B【解析】解:当为腰时,因为,所以不能组成三角形,所以为腰,所以等腰三角形的周长.二、填空题(本大题共有5小题,每小题5分,共25分)16、"利用三角形全等测距离",其实质就是利用三角形全等的方法来说明相等.【答案】全等三角形的对应边【解析】解:"利用三角形全等测距离",其实质就是利用三角形全等的方法来说明全等三角形的对应边相等.故答案为:全等三角形的对应边.17、解决难以测量或无法测量的线段(或角)的关键:构建三角形,得到线段相等或角相等.【答案】全等【解析】解:解决难以测量或无法测量的线段(或角)的关键:构建全等三角形,得到线段相等或角相等.故答案为:全等.18、如图所示,在中,,,已知,,,则.【答案】10/3【解析】解:,,.,,,.故正确答案为:.19、一个三角形的三边为、、,另一个三角形的三边为、、,若这两个三角形全等,则.【答案】16【解析】解:这两个三角形全等,两个三角形中都有,两三角形中长度为的边是一组对应边,与是一组对应边,与是一组对应边,,,.故答案是:.20、如图,于,那么图中以为高的三角形有个.【答案】6【解析】解:于,而图中有一边在直线上,且以为顶点的三角形有个,以为高的三角形有个.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,已知,,求证:.【解析】证明:在和中.,,..22、如图,在四边形中,,直线与边、分别相交于点、,求的度数.?【解析】解:由三角形的内角和定理,得,,,由邻补角的性质,得,,,故答案为:.23、在中,平分,,垂足为,过作,交于,若,求线段的长.【解析】解:平分,,,,,,,,,,,,,.。
最新版初中七年级数学题库 数学七年级下人教新课标7.2 与三角形有关的角同步测试题
数学:7.2 与三角形有关的角同步测试题(人教新课标七年级下)A 卷基础题一、精心选一选,慧眼识金!(每小题4分,共24分) 1.六边形的对角线的条数为( ) A.15 B.9 C.8 D.6 2.)1(+n 边形的内角和比n 边形的内角和多( ) A.0180B.0360C.0180⋅nD.0360⋅n3.(2008年••恩施自治州市)为了让州城居民有更多休闲和娱乐的地方,政府又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖.现有下面几种形状的正多边形地砖,其中不能..进行平面镶嵌的是( ) A. 正三角形 B. 正方形 C. 正五边形 D. 正六边形4.如果一个多边形的每个外角都相等,且小于45,那么这个多边形的边数最少是( ) A.8 B.9 C.10 D.115.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形的边数为( ) A.3 B.4 C.5 D.6 6.一个多边形截去一个角(截线不过顶点)之后,所形成的一个多边形的内角和是2520,那么原多边形的边数是( ) A.13 B.15C.17D.197.如果一个正多边形的一个内角等于135,则这个正多边形是( ) A.正八边形 B.正九边形 C.正七边形 D.正十边形 二、耐心填一填,一锤定音!(每小题4分,共32分) 1.将一个正方形砍去一个角,其内角和将变成______.2.如图是正八边形为“基本单位”铺成的图案的一部分(其中有43⨯个“基本图形”),其间存有若干个小正方形空隙,边沿上有小三角形空隙,以及图案的4个角的更小的三角形空隙.若密铺54⨯个“基本单位”的图案,并填充满空隙则需要______个小正方形,______个小三角形.(不含图案的4个角).3.从()3n n >边形的一个顶点出发的时角线有______条,可将多边形分成______个三角形. 4.一个多边形的每个外角都是72,这个多边形是______边形,其内角和为______. 5.各内角都相等的多边形中,一个外角等于相邻内角的15,则它的每一个内角都是______. 6.一个六边形所有内角都相等,则每个内角为_____度.7.一个多边形截去一个角(截线不过顶点)之后,所形成的一个多边形的内角和是02520,那么原多边形的边数是______.第1个第2个第3个8.黑白两种颜色的正方形纸片,按如图所示的规律拼成若干个图案,(1)第4个图案中有白色纸片_____块。
【新】人教版七年级下册数学 三角形章节测试卷 ( 含答案)
七年级下册数学三角形全章测试一、选择题:1.已知△ABC 的一个内角是40°,∠A =∠B ,那么∠C 的外角的大小是( ). (A)140°(B)80°或100° (C)100°或140° (D)80°或140°2.如图,在四边形ABCD 中,点E 在BC 上,AB ∥DE ,∠B =78°,∠C =60°,则∠EDC 的度数为( ).(A)42° (B)60° (C)78°(D)80°3.如图,是赛车跑道的一段示意图,其中AB ∥DE ,测得∠B =140°,∠D =120°,则∠C 的度数为( ).(A)120° (B)100° (C)140°(D)90°4.上午9时,一艘船从A 处出发以20海里/时的速度向正北航行,11时到达B 处,若在A 处测得灯塔C 在北偏西34°,且,23BAC ACB ∠=∠则灯塔C 应在B 处的( ). (A)北偏西68° (B)南偏西85° (C)北偏西85°(D)南偏西68°5.在△ABC 中,若AB =3,BC =1-2x ,CA =8,则x 的取值范围是( ). (A)0<x <2 (B)-5<x <-2 (C)-2<x <5(D)x <-5或x >26.在△ABC 中,若∠A ∶∠B =5∶7,∠C -∠A =10°,则∠C 等于( ). (A)75°(B)60°(C)50°(D)40°7.在△ABC 中,若AB =AC ,其周长为12,则AB 的取值范围是( ).(A)AB>6 (B)AB<3(C)4<AB<7 (D)3<AB<68.若一个多边形的内角和是其外角和的二倍,则它的边数是( ).(A)四(B)五(C)六(D)七9.若一个正多边形的每个内角与它相邻的外角的差为100°,则这个正多边形的边数是( )(A)七(B)八(C)九(D)十10.下列命题中,结论正确的是( ).①外角和大于内角和的多边形只有三角形.②一个三角形的内角中,至少有一个不小于60°.③三角形的一个外角大于它的任何一个内角.④多边形的边数增加时,其内角和随着增加,外角和不变.(A)①②③④(B)①②④(C)①③④(D)①④11.在下面四种正多边形中,用同一种图形不能平面镶嵌的是( ).12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( ).(A)∠A=∠1+∠2 (B)2∠A=∠1+∠2(C)3∠A=2∠1+∠2 (D)3∠A=2(∠1+∠2)二、填空题:13.如图,AB∥CD,直线PQ分别交AB、CD于点E、F,EG是∠FED的平分线,交AB于点G.若∠QED=40°,那么∠EGB等于______.14.若一个多边形的每一个外角都等于45°,则这个多边形共有______条对角线.15.把“同角的补角相等”改写成“如果…那么…”的形式是______________________________________________________________________. 16.把一幅三角板按如图方式放置,则两条斜边所形成的钝角=______度.17.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=______.18.下列各命题中:①对顶角一定相等;②两条直线被第三条直线所截,内错角相等;③若∠A=∠B,∠B=∠C,则∠A=∠C,④同角的补角相等;⑤若∠AOB+∠BOC=180°;则∠AOB与∠BOC互为邻补角.其中错误的命题是______(填序号)19.如图,长方形的长和宽分别为2cm和1cm,则图中由弧AB、弧CD和AC、BD围成的阴影部分的面积为_______.20.一个广场面的一部分如图所示,地面的中央是一块正六边形的地砖,周围用正三角形和正方形的大理石地砖拼成.从里往外共12层(不包括中央的正六边形地砖),每一层的外界都围成一个多边形.若中央正六边形地砖的边长是0.5米,则第12层的外边界所围成的多边形的周长是______米.三、解答题:21.已知:钝角△ABC.分别画出AC边上的高BD、BC边上的中线AE及△ABC中∠ACB的平分线CF.22.已知:如图,AB∥DE,∠1=∠2,AC平分∠BAD,求证:AD∥BC.23.已知:在△ABC中,BE平分∠ABC交AC于E,CD⊥AC交AB于D,∠BCD=∠A,求∠BEA的度数.24.已知:如图,点E在AC上,点F在AB上,BE,CF交于点O,且∠C-∠B=20°,∠EOF -∠A=70°,求∠C的度数.25.三角形的一条中线把其面积等分,试用这条规律完成下面问题.(1)把一个三角形分成面积相等的4块(至少给出两种方法);(2)在一块均匀的三角形草地上,恰好可放养84只羊,如图,现被两条中线分成4块,则四边形的一块(阴影部分)恰好可放养几只羊?四、探究题26.已知△ABC中,∠ABC的n等分线与∠ACB的n等分线相交于G1、G2、G3,…、G n-1,试猜想:∠BG n-1C与∠A的关系.(其中n≥2的整数)首先得到:当n=2时,如图1,∠BG1C=______,当n=3时,如图2,∠BG2C=______,…………猜想∠BG n-1C=______.图1 图2 图n。
与三角形有关的角(人教版)(含答案)
与三角形有关的角(人教版)试卷简介:本套试卷侧重于考查三角形中转移角的方法:平行转移角、外角转移角、内角和转移角等方法学生是否掌握,能力是否具备。
一、单选题(共10道,每道10分)1.下列语句中,正确的有( )①等边三角形一定是锐角三角形;②互补的两个角一定是一个锐角,一个钝角;③三角形的三个内角中至少有两个锐角;④三角形的外角大于任何一个内角.A.1个B.2个C.3个D.4个答案:B解题思路:判断这类题要注意有理有据,根据定义、定理进行判断,错误选项要能举出反例.(1)等边三角形的三个角都是60°,∴等边三角形一定是锐角三角形,①正确.(2)互补的两个角还可以是两个直角;②错误.(3)锐角三角形的三个角都是锐角、直角三角形和钝角三角形都有两个锐角,③正确.(4)三角形的外角定理指的是三角形的一个外角等于与之不相邻两个内角的和,大于任意一个与之不相邻的内角.对比④的说法和定理内容,差别在于“不相邻”,外角不一定大于与之相邻的内角,比如钝角三角形中钝角的外角是一个锐角,小于与之相邻的内角,故④不正确。
∴有2个说法正确,故选B试题难度:三颗星知识点:三角形外角的性质2.如图中有四条互相不平行的直线l1,l2,l3,l4所截出的七个角.关于这七个角的度数关系,下列正确的是( )A.∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360°答案:C解题思路:解:如图,∠2是△ADE的外角,∴∠2=∠4+∠6,而∠6≠∠7,∴A选项错误;∠3是△ABC的外角,∴∠3=∠BAC+∠ABC,∠1=∠BAC,∠ABC≠∠6,∴B选项错误;在△ADE中,∠DAE+∠4+∠6=180°,又∵∠1=∠DAE,∴∠1+∠4+∠6=180°,故C选项正确.∠2,∠3,∠5不是同一个三角形的三个外角,∴∠2+∠3+∠5≠360°故D选项错误试题难度:三颗星知识点:三角形的外角定理3.一副三角板按如图所示方式叠放在一起,则图中∠α的度数是( )A.60°B.75°C.90°D.105°答案:D解题思路:解:如图,由题意可得,∠AEB=45°,∠B=60°,∵∠α是△BDE的外角,∴∠α=∠AEB+∠B=45°+60°=105°.故选D试题难度:三颗星知识点:三角形的外角定理4.如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.315°B.270°C.180°D.135°答案:B解题思路:第一步:分析条件,探索思路:∠1和∠2无法单独求解,故需作为一个整体求出它们的和第二步:设计解决方案:①可以看作是四边形ABDE的内角,则∠1+∠2=360°-∠A-∠B,根据题意,在Rt△ABC中,∠A+∠B=90°。
与三角形有关的角测试题及答案
与三角形有关的角测试题一、选择题1、一个三角形的两个内角分别是55°和65°,不可能是这个三角形外角的是()A.115° B.120°C.125° D.130°2、如图,已知∠1=20°,∠2=25°∠A=35°,则∠BDC的度数为()A.50° B.80°C.70° D.60°3、已知如下图所示,△ABC,(1)如图(1),若P点是∠ABC和∠ACB的角平分线的交点,则(2)如图(2),若P点是∠ABC和∠ACE的角平分线的交点,则∠P=90°-∠A;(3)如图(3),若P点是外角∠CBF和∠BCE的角平分线的交点,则上述说法正确的个数是()A.0个 B.1个C.2个 D.3个4、如图,∠1+∠2+∠3+∠4=()A.100° B.200°C.280° D.300°5、下列语句中,正确的是()A.三角形的外角大于它的内角B.三角形的一个外角等于它的两个内角C.三角形的一个内角小于和它不相邻的外角D.三角形的外角和为180°6、如图所示,住宅小区呈三角形ABC形状,且周长为2000m,现规划沿小区周围铺上宽为3m的草坪,则草坪的面积(精确到1m)是()A.6000m2 B.6016m2C.6028m2 D.6036m27、在△ABC中,AD⊥BC于D,且AD将∠BAC分成的两个小角度分别为20°和50°,则此三角形一定是()A.锐角三角形 B.钝角三角形C.直角三角形 D.以上都不对8、如图∠2+α=180°,则下列式子中值为180°的是()A.α+β+γ B.α+β-γC.β+γ-α D.α-β+γ9、如图,∠A+∠B+∠C+∠D+∠E=()A.150° B.180°C.135° D.120°10、若△ABC的三个内角满足关系式∠B+∠C=3∠A,则这个三角形()A.一定有一个内角为45° B.一定有一个内角为60°C.一定是直角三角形 D.一定是钝角三角形二、解答题11、如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=_______.12、如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF的度数为________.13、在△ABC中,∠B=66°,∠ACB=54°,BE⊥AC于E,CF⊥AB于F,BE与CF 交于H,试求∠BHC的度数.14、△ABC中,∠A=96°,延长BC于D,∠ABC与∠ACD的平分线相交于A1点,∠A1BC与∠A1CD的平分线相交于A2点,依次类推∠A4BC与∠A4CD的平分线相交于A5,则∠A5的大小是多少.15、已知:如图,在△ABC中,AE平分∠BAC,∠C>∠B,F为AE上一点,且FD⊥BC 于D.(1)试推导∠EFD与∠B、∠C的大小关系;(2)当点F在AE的延长线上时,图(2)其余条件都不变,你在(1)中推导的结论是否仍然成.16、如图,AC、BD相交于点O,BP、CP分别平分∠ABD、∠ACD,且交于点P.(1)若∠A=70°,∠D=60°,求∠P的度数;(2)试探索∠P与∠A、∠D间的数量关系;(3)若∠A:∠D:∠P=2:4:x,求x的值.答案:1—10 DBCCC CABBA11、220度12、68度13、因为∠ABC=66°,∠ACB=54°,又BE⊥AC于E,CF⊥AB于F,∠HBC=90°-54°=36°,∠HCB=90°-66°=24°,∴∠BHC=180°-∠HBC-∠HCB=120°.14、∵∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∴而∠ACD=2∠A1CD,∠ABC=2∠A1BC,∴∠A1=∠A,同理15、16、(1)由∠CEB=∠D+∠DCE=∠P+∠EBP,得由∠OFB=∠P+∠PCE=∠A+∠FBA可得.。
人教版初中数学与三角形有关的角(含答案)
7.2 与三角形有关的角一、选择题:1.如果三角形的三个内角的度数比是5:3:4,则它是( )A.锐角三角形B.钝角三角形;C.直角三角形D.钝角或直角三角形2.下列说法正确的是( )A.三角形的内角中最多有一个锐角;B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角;D.三角形的内角都大于60°3.已知三角形的一个内角是另一个内角的3倍,是第三个内角的6倍,则这个三角形各内角的度数分别为( )A.18°,54°,108°B.48°,72°,60°C.48°,32°,38°D.40°,50°,90°4.若一个三角形的一个外角等于与它相邻的内角,则这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.无法确定5.如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( )A.30°B.60°C.90°D.120°6.已知三角形的三个外角的度数比为1:2:2,则它的最大内角的度数为( )A.90°B.110°C.108°D.120°7.已知三角形两个内角的和大于第三个内角,则它是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形8.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ中( )A.有两个锐角、一个钝角B.有两个钝角、一个锐角C.至少有两个钝角D.三个都可能是锐角9.在△ABC中,∠A=2∠B=3∠C,则此三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形10.已知等腰三角形的一个外角是120°,则它是( )11.如图所示,若∠A =30°,∠B =55°,∠C =40°,则∠DFE 等于( )A .120°B .125°C .110°D .105°F EDCBA654321FECBA第11题 第12题 12.如图所示,在△ABC 中,E ,F 分别在AB ,AC 上,则下列各式不能成立的是( )A .∠BOC =∠2+∠6+∠A ;B .∠2=∠5-∠A ;C .∠5=∠1+∠4;D .∠1=∠ABC +∠4 二、填空题:1.三角形中,若最大内角等于最小内角的3倍,最小内角又比另一个内角小30°,则此三角形的最小内角的度数是________.2.在△ABC 中,若∠A +∠B =∠C ,则此三角形为_______三角形;若∠A +∠B <∠C ,则此三角形是_____三角形.3.三角形的三个外角中,最多有_______个锐角.4.如果一个三角形的各内角与一个外角的和是250°,则与这个外角相邻的内角是____度.5.已知等腰三角形的一个外角为100°,则它的底角为_____.6.已知等腰三角形的两个内角的度数之比为1: 2, 则这个等腰三角形的顶角为_______.7.在△ABC 中,∠B ,∠C 的平分线交于点O ,若∠BOC =120°,则∠A =_______度.8.如图所示,已知∠1=20°,∠2=25,∠A =35°,则∠BDC 的度数为________. 21DCB AEODCBA三、解答题1.如图所示,在△ABC 中,AD ⊥BC 于D ,AE 平分∠BAC (∠C >∠B ), 试说明∠EAD =12(∠C -∠B ). E D CBA2. 如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°, 求∠DAC 的度数.4321D CBA3.如图所示,已知∠1=∠2,∠3=∠4,∠C =32°,∠D =28°,求∠P 的度数.43P21DCBA4.如图所示,在△ABC 中,∠A =α,△ABC 的内角平分线或外角平分线交于点P , 且∠P =β,试探求下列各图中α与β的关系,并选择一个加以说明.(1)PCBA(2)PCBA(3)PCBA5.如图所示,将△ABC 沿EF 折叠,使点C 落到点C ′处,试探求∠1,∠2与∠C 的关系.21C 'FEC BA参考答案一、选择题C B A A C C A C B C B C 二、填空题1.30°2.直角 钝角3.14.110°5、80°或 50°6、36°7.60°8.80° 三、解答题 1.解:∵AD ⊥BC ,∴∠BDA =90°, ∴∠BAD =90°-∠B , 又∵AE 平分∠BAC , ∴∠BAE =12∠BAC =12(180°-∠B -∠C ), ∴∠EAD =∠BAD -∠BAE=90°-∠B -12(180°-∠B -∠C ) =90°-∠B -90°+12∠B +12∠C=12∠C -12∠B =12(∠C -∠B ). 2.240 3.3004. 00111(1)90(2)(3)90222βαβαβα=+==-(说明略)5.解:∵∠1=180°-2∠CEF ,∠2=180°-2∠CFE ,∴∠1+∠2=360°-2(∠CEF + ∠CFE ) =360°-2(180°-∠C ) =360°-360°+2∠C =2∠C .。
初一数学人教版(下册)三角形同步测试卷(含答案)
七年级数学(下)三角形同步测试卷满分:100分时间:60分钟得分:_________一、选择题(每小题3分,计24分)1.(2009·柳州)如图,图中三角形的个数是( )A.1 B.2 C.3 D.42.三角形的角平分线是()A.直线B.射线C.线段D.以上答案均不对3.(2009·齐齐哈尔)如图,为估计池塘岸边A、B间的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米.则A、B间的距离不可能是( )A.20米B.15米C.10米D.5米4.如图,三角形被遮住的两个角不可能是( ) A.一个锐角和一个钝角B.两个锐角C.一个锐角和一个直角D.两个钝角5.下面四个图形中,线段BE是△ABC的高的是()6.(2008·陕西)已知一个三角形三个内角的度数之比为2:3:7.则这个三角形是( ) A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形7.(2009·新疆)如图.将三角尺的直角顶点放在直尺的一边上.已知∠1=30°,∠2=50°,则∠3的度数为()A.50°B.30°C.20°D.15°8.已知一个多边形的内角和等于外角和的2倍,那么这个多边形是( ) A.六边形B.五边形C.四边形D.三角形二、填空题(每小题3分.计24分)9.在△ABC中,∠A=45°,∠B=63°,则∠C=_________.10.木工师傅有两根分别长80 cm、150cm的木条,他要找第三根木条,将它们钉成一个三角形框架.现有70cm、105 cm、200 cm、300cm四根木条.他可以选择长为_______的木条.11.(2008·宁德)如图是用一副三角尺拼成的图案,则∠AEB=_________.12.如图,∠1=100°,∠2=140°,那么∠3=________.13.如图,小亮从A点出发前进10 m,向右转30°,再前进10 m,又向右转30°……这样一直走下去.他第一次回到出发点A时,一共走了_________m.14.如图,国旗上五角星的五个角的度数是相同的,每一个角的度数都是_________.15.(2009·恩施)如图,AB∥ED,∠B=58°,∠C=35°,则∠D的度数为_________.16.(2009·济宁)观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有_________个.三、解答题(本题共6小题,计52分)17.(本题满分5分)请画出△ABC的中线AD、角平分线BE和高CF.18.(本题满分5分)如图.在△ABC中,AD是BC边上的中线,△ADC的周长是8 cm,△ABD的周长是10 cm.AB比AC长多少厘米?19.(本题满分5分)已知一个正多边形每个外角都是45°,求这个正多边形的边数.20.(本题满分6分)下面是小明课后练习中的一道习题:长度为2 cm、6 cm、4 cm的三条线段能否组成三角形,为什么?解:因为2+6>4,所以上述三条线段能组成三角形.小明的解法正确吗?请发表你的观点,并说明理由.21.(本题满分8分)一个零件的形状如图所示,按规定:∠A=90°,∠B和∠C应分别是32°和21°.检验工人量得∠BDC=148°,就断定这个零件不合格.请运用三角形的相关知识说明零件不合格的理由.22.(本题满分8分)在平面内,分别把3根、5根、6根……火柴首尾依次相接,能搭成什么形状的三角形呢?通过尝试,列表如下:火柴数356……示意图形状等边三角形等腰三角形等边三角形…根据上述内容,解答下面的问题:(1)4根火柴能搭成三角形吗?(2)8根、12根火柴分别能搭成几种不同形状的三角形?请画出它们的示意图.23.(本题满分5分)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=n·90°,则n=____________.24.(本题满分8分)如图,AB∥ED,α=∠A+∠E,β=∠B+∠C+∠D.证明:β=2α.参考答案-、1.C 2.C 3.D 4.D 5.C 6.D 7.C 8.A二、9.72°10.105 cm或200 cm 11.75°12.60°13.12014.36°15.23°16.121三、17.如图18.根据题意,得AB+BD+AD=10 cm,AD+DC+AC=8 cm.又因为BD=CD,所以AB-AC=2(cm)19.设这个正多边形的边数为x,根据题意得45x=360.解得x=820.错误21.延长BD交AC于E(图略),则∠CED=∠A+∠B=122°.所以∠BDC=∠CED+∠C=122°+21°=143°≠148°,所以这个零件不合格22.(1)由4根火柴组成的三条线段只能是1、1、2,因为1+1=2,所以不能搭成三角形(2)8根火柴能搭成等腰三角形,边长分别为3,3,2.12根火柴可以搭成等边三角形、等腰三角形和不等边三角形,三边长分别为4,4,4;5,5,2;3,4,5.图略23.如图,设AF与BG相交于点Q,则∠AQG=∠A+∠D+∠G.于是∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠B+∠C+∠E+∠F+∠AQG=∠B+∠C+∠E+∠F+∠BQF=540°=6×90°.所以n=6.24.提示:如图,过点C作CF∥AB,α=∠A+∠E=180°,由CF∥AB∥DE,得(∠B+∠1)+(∠2+∠D)=360°.故β=2α.。
(完整word版)初一数学人教版(下册)三角形练习题一(含答案)
第七章三角形A1卷•基础知识点点通班级姓名得分一、选择题(3分×8=24分)1.一个三角形的三个内角中()A 、至少有一个钝角B 、至少有一个直角C 、至多有一个锐角D、至少有两个锐角2.下列长度的三条线段能组成三角形的是()A、3,4,8B、5,6,11C、1,2,3D、5,6,103.关于三角形的边的叙述正确的是()A、三边互不相等B、至少有两边相等C、任意两边之和一定大于第三边D、最多有两边相等4.图中有三角形的个数为()A、4个B、6个C、8个D、10个5.如图在△ABC中,∠ACB=900,CD是边AB上的高。
那么图中与∠A相等的角是()A、∠BB、∠ACDC、∠BCDD、∠BDC6.下列图形中具有稳定性有()A、2个B、3个C、4个D、5个7.一个多边形的内角和等于它的外角和,这个多边形是()A 、三角形B、四边形C、五边形D、六边形8.一个多边形内角和是10800,则这个多边形的边数为()A、6B、7C、8D、9二、填空题(4分×9=36分)9.一个三角形有条边,个内角,个顶点,个外角10.如图,图中有个三角形,把它们用符号分别表示为11.长为11,8,6,4的四根木条,选其中三根组成三角形有种选法,它们分别是12.如图,在△ABC中,AE是中线,AD是角平分线,AF是高,则根据图形填空:⑴BE= =21;⑵∠BAD= =21第(4)题EDCBA第(5)题DCBA(1)(2)(3)(4)(5)(6)⑶∠AFB= =900;13.在△ABC 中,若∠A=800,∠C=200,则∠B= 0, 若∠A=800,∠B=∠C ,则∠C= 014.已知△ABC 的三个内角的度数之比∠A :∠B :∠C=1:3:5,则∠B= 0,∠C= 015.如图,在△ABC 中,∠BAC=600,∠B=450,AD 是△ABC 的一条角平分线,则∠DAC= 0,∠ADB= 016.十边形的外角和是 0;如果十边形的各个内角都相等,那么它的一个内角是17.如图,∠1=∠2=300,∠3=∠4,∠A=800,则=x ,=y三、解下列各题18.对下面每个三角形,过顶点A 画出中线,角平分线和高(4分×3=12分)19.求出下列图中x 的值:(4分×3=12分)20.(8分)一个多边形的外角和是内角和的72,求这个多边形的边数第(10)题E D CBA第(12)题B第(15)题D CA800yx4321第(17)题E D CBA(1)C B A C B A(2)C B A (3)(1)x 0x 0(2)(3)4x ︒3x ︒3x ︒2x ︒21.在△ABC 中,∠A=21∠C=21∠ABC , BD 是角平分线,求∠A 及∠BDC 的度数(8分)附加题(10分×2=20分)22.如图,已知∠1=∠2,∠3=∠4,∠A=1000,求x 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则∠CDE=∠C+∠CAD,∠BDE=∠B+∠BAD,
8如图所示,在△ABC中,∠A=60°,BD,CE分别是AC,AB上的高,H是BD,CE的交点,求∠BHC的度数.
第二课时答案:
1.(1 )110°(2)58°(3)60°(4)120°;2.35°;3.180°,提示:因为∠1=∠B+∠D,∠2=∠C+∠E,所以∠A +∠B+∠C+∠D+∠E=∠A+∠1+∠2=180°;4.A,提示:因为AB∥CD,所以∠ABD=∠3,因此∠1=∠2+∠ABD=∠2+∠3;5.B,提示:三角形的一个外角大于与它不相邻的任何一个内角,故选B;6.D,提示:设三角形三个内角分别为 ,则 ,解得 ,所以三角形三个内角分别为30°,60°,90°,与之相邻的三个外角的度数分别为150°,120°,90°,所以选D;
4.如图所示,已知AB∥CD,则()
A.∠1=∠2+∠3 .B.∠1=2∠2+∠3 C.∠1=2∠2-∠3 D.∠1=180°-∠2-∠3
5如图所示,D是△ABC边AC上的一点,E是BD上的一点,∠1,∠2,∠A之间的关系描述正确的是()
A.∠A<∠1>∠2 B.∠2>∠1>∠A C.∠1>∠2>∠A D.无法确定
6.在△ABC中:(1)若∠A=80°,∠B=60°,则∠C=
(2)若∠A=50°,∠B=∠C,则∠C=
(3)若∠A∶∠B∶∠C=1∶2∶3,则∠A=∠B=∠C=;
(4)若∠A=80°,∠B-∠C=40°,则∠C=
7.如图所示,∠1+∠2+∠3+∠4的度数为 .
8.一幅三角板,如图所示叠放在一起,则2 中 的度数为()
3.一个三角形的内角中,至少有()
A一个内角B.两个内角C.一内钝角D.一个直角
4.如图所示,∠1+∠2+∠3+∠4的度数为()
A100°B.180°C.360°D.无法确定
5.如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是( )
A.31°B.35°C.41°D.76 °
A.75° B.60°C.65°D.55°
9.如图所示,AD、AE分别是△ABC的角平分线和高,若∠B=5 0°,∠C=70°,
求∠DAC据三角形内角和定理得, ∠C+ ∠C+∠C=180°,解得∠C=90°;3.B;4.C,提示:作如图辅助线,这样把∠1、∠2、∠3、∠4四个角的和转化为两个三角形的内角和,
6..若一噶三角形三个内角的度数之比为1∶2∶3,则与之相邻的三个外角的度数之比为()
A. 1∶2∶3 B. 3∶2∶1 C. 3∶4∶5 D. 5∶4∶3
7.一个零件的形状如图所示,按规定∠A应等于90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.
即2×180°=360°
5.C,提示:∵AB∥CD,∴∠D=∠A=35°.∠DOC=180°-∠BOD=180°-76°=104°,
在△COD中,∠C=180°-∠D-∠DOC=180°-35°-104°=41°;
6.(1)40°;(2)65°;(3)30°,60°,90°(4)30°
7.300°,提示:∵∠1+∠2=180°- 30°=150°,∠3+∠4=180°-30°=150°,
与三角形有关的角课时练
第一课时7.2.1与三角形有关的内角
1.在我们的生活中处处有数学的身影,请看图,折叠一张三角形纸片,
把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写
出这一定理的结论:三角形的三个内角和等于°
2.在△ABC中,若∠A=∠B= ∠C,则∠C等于()
A.45°B.60°C.90°D.120°
1.根据图形填空:
(1)如图①,已知∠A=72°,∠B=38°,则∠ACD=.;
(2)如图②已知AC⊥BC∠CBD=148°,则∠A=;
(3)如图③, = ;
(4)如图④∠A =∠B=∠C= ,则∠ACD=.;
2.如图所示,已知AB∥CD,∠A=55°,∠C=20°,则∠P=;
3.如图所示,∠A +∠B+∠C+∠D+∠E=;
∴∠1+∠2+∠3+∠4=150°+150°=300°;8.A
9.解:∵∠B=50°,∠C=70°,
∴∠BAC=60°,又∵AD是△ABC的角平分线
∴∠BAD= .又∵AE是△ABC的高
∴∠BAE=180°-∠B-∠AEB=40°,∴∠DAC=∠BAE-∠BAD=10°.
第二课时7.2.2三角形的外角