数字推理八大解题方法

合集下载

数字推理答题技巧(公开版)

数字推理答题技巧(公开版)

数字推理答题技巧施久亮解题突破五大要诀――抓住数列的阿喀琉斯之踵一、先加减,后乘除,根据数字大小变化的规律判断属于何种数列类型1、数字快速增减的2、数字平稳增减的3、数字高低起伏的4、数字非常接近的二、分析项数,确定关键项,注意项与项之间关系,注意数列的级数(确定是几项关联、几级数列或组合还是间隔)1、项数低于或等于5项的2、项数为6项的3、项数大于6项的4、项数超多的三、抓住关键项,分析敏感数字1、平方数、立方数及其相邻数2、0、1及其相邻数以及常见变化3、基本数列4、分数题注意通分后的变化,关注小分子分母项四、找准起步点1、特别注意1、2项之间的关系五、寻找薄弱环节,确定关键数字,一举突破1、数列的不和谐部分、与众不同部分2、敏感数字,如0或1及其附近数3、从选项中找突破口基本功练习一、心算练习二、数字基础三、熟练基本数列四、中央及浙江真题练习数字推理基础一、基本数列(加减乘除)1、加减法数列差的几种形式:等差(常数):3例1:2 5 8 11 14自然顺序数:1、2、3、4、5例1:2 3 5 8 12 17平方数或立方数例1:5 6 10 19 45 70加减法单项数列1、2、3、4、5加减法双项数列2 3 5 8 13 21 例1:56,79,129,202,325 ()例2:3,-1,5,1,()A.3B.7.C.25D.64加减法三项数列例1:1 2 4 7 13 24 ()例2:1 4 3 5 2 6 4 7 ()2、乘除法数列乘除法单项数列乘除法双项数列例1:3,4,12,48,()A 96B 36C 192D 5763、加减法和乘除法混合数列例1:16 17 36 111 448 ( )例2:5,( ),39,60,105.A.10B.14C.25D.30例3:-2 ,-1, 1, 5 () 29A.17B.15C.13D.11例4:172,84,40,18,()例5:-1,0,1,2,9,()A.11B.82C.729D.730例6:3, 7, 16, 107,()A.1707B.1704C.1086D.1072二、数列的组合和延伸一级数列二级数列三级数列间隔组合数列分段组合数列对称组合数列三、题目类型1、单项数列例1:27 16 5 ()1/7例2:1\7 1\26 1\63 1\124 ( )例3:-1,0,27,()。

数字推理:八大类数列及变式总结

数字推理:八大类数列及变式总结

数字推理:八大类数列及变式总结数字推理:八大类数列及变式总结数字推理的题目通常状况下是给出一个数列,但整个数列中缺少一个项,要求仔细观察这个数列各项之间的关系,判断其中的规律。

解题关键:1、培养数字、数列敏感度是应对数字推理的关键。

2、熟练掌握各类基本数列。

3、熟练掌握八大类数列,并深刻理解“变式”的概念。

4、进行大量的习题训练,自己总结,再练习。

下面是八大类数列及变式概念。

例题是帮助大家更好的理解概念,掌握概念。

虽然这些理论概念是从教材里得到,但是希望能帮助那些没有买到教材,那些只做大量习题而不总结的朋友。

最后跟大家说,做再多的题,没有总结,那样是不行的。

只有多做题,多总结,然后把别人的理论转化成自己的理论,那样做任何的题目都不怕了。

一、简单数列自然数列:1,2,3,4,5,6,7,……奇数列:1,3,5,7,9,……偶数列:2,4,6,8,10,……自然数平方数列:1,4,9,16,25,36,……自然数立方数列:1,8,27,64,125,216,……等差数列:1,6,11,16,21,26,……等比数列:1,3,9,27,81,243,……二、等差数列1,等差数列:后一项减去前一项形成一个常数数列。

例题:12,17,22,27,(),37解析:17-12=5,22-17=5,……2,二级等差数列:后一项减去前一项形成一个新的数列是一个等差数列。

例题1:9,13,18,24,31,()解析:13-9=4,18-13=5,24-18=6,31-24=7,……例题2.:66,83,102,123,()解析:83-66=17,102-83=19,123-102=21,……3,二级等差数列变化:后一项减去前一项形成一个新的数列,这个新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。

例题1:0,1,4,13,40,()解析:1-0=1,4-1=3,13-4=9,40-13=27,……公比为3的等比数列例题2:20,22,25,30,37,()解析:22-20=2,25-22=3,30-25=5,37-30=7,…….二级为质数列4,三级等差数列及变化:后一项减去前一项形成一个新的数列,再在这个新的数列中,后一项减去前一项形成一个新的数列,这个新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。

【数量关系】''数字推理''的解题技巧

【数量关系】''数字推理''的解题技巧

【数量关系】''数字推理''的解题技巧一、解题前的准备1.熟记各种数字的运算关系。

如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。

这是迅速准确解好数字推理题材的前提。

常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。

所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。

当看到这些数字时,立刻就能想到平方立方的可能性。

熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。

如216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。

2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。

根号运算掌握简单规律则可,也不难。

3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。

二、解题方法按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。

又分为等差、移动求和或差两种。

(1)等差关系。

这种题属于比较简单的,不经练习也能在短时间内做出。

建议解这种题时,用口算。

12,20,30,42,()127,112,97,82,()3,4,7,12,(),28(2)移动求和或差。

公考数字推理攻略汇总

公考数字推理攻略汇总

公务员数字推理技巧总结精华版数字推理技巧总结备考规律一:等差数列及其变式(后一项与前一项的差 d 为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1) 后面的数字与前面数字之间的差等于一个常数。

如7,11,15,( 19 ) (2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。

如7,11,16,22,( 29 )(3)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。

如7,11,13,14,( 14.5 )(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。

【例题】7,11,6,12,( 5 )(5) 后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。

【例题】7,11,16,10,3,11,(20 )备考规律二:等比数列及其变式(后一项与除以前一项的倍数 q 为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。

【例题】4,8,16,32,( 64 )(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。

【例题】4,8,24,96,( 480 )(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘 2【例题】4,8,32,256,( 4096 )(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为 3 的n 次方。

【例题】2,6,54,1428,( 118098 )(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。

【例题】2,-4,-12,48,(240 )备考规律三:“平方数”数列及其变式(an=n2+d,其中d为常数或存在一定规律)(1) “平方数”的数列【例题】1,4,9,16,25,36 ,49,64,81,100,121,144,169,196(2)每一个平方数减去或加上一个常数【例题】 0,3,8,15,24,(35 )【例题变形】2,5,10,17,26,(37 )(3) 每一个平方数加去一个数值,而这个数值本身就是有一定规律的。

数字推理之解题技巧(精华版)

数字推理之解题技巧(精华版)

数字推理之解题技巧(精华版)(1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b(注:a、b为前后数)(2)深一层次的,①各数之间的差有规律,如 1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

②各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

(注:前一就是高中数学常说的差后等差数列或等比数列)(3)看各数的大小组合规律,作出合理的分组。

如 7,9,40,74,1526,5436,可以划分为7和9,40和74,1526和5436三组,这三组各自是大致处于同一大小和位数级别,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个小组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40 , 9*9-7=74 ,40*40-74=1526 ,74*74-40=5436,这就是规律。

(4)如根据大小不能分组的,①,看首尾关系,如7,10,9,12,11,14,这组数 7+14=10+11=9+12。

首尾关系经常被忽略,但又是很简单的规律。

②,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

(5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这里就要看各位对数字敏感程度如何了。

如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。

(注意,这组数比较巧的是都是6的倍数,大家容易导入歧途。

)6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系;如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3;如论坛上fjjngs所解答的一道题:256,269,286,302,(),2+5+6=132+6+9=17 2+8+6=16 3+0+2=5,∵256+13=269 269+17=286 286+16=302 ∴下一个数为302+5=307。

数字推理九大解题法

数字推理九大解题法

目前总结了九大种方法,解数字推理问题最关键的是第一步,大部分人的做题习惯是:如果一眼看不出规律,首先会选择前后项做差的方法,来判断差之间的关系。

而事实上我在总结的过程中也发现,利用做差关系来命题占了很大一部分。

诸如此类的规律在解题当中很有帮助!本文主要列举一些例子,总结一些方法,希望能给各位起到抛砖引玉的作用,大家一起总结规律。

数字推理第一步解题法一、做差3,5,8,13,20,做差得到:2,3,5,7,11为质数34,47,62,79,98,(做差得到:13,15,17,19,21 等差-5,1,8,16,(25)做差得到:6,7,8,912,13,17,26,42,(67)做差得到:1,4,9,16,2522,17,23,20,28,27,(37)做差得到:5,-6,3,-8,1,-10 奇偶分开1,3,5,7,8,(10)两个一组做差是21,4,7,19,40,()做差跟前项比较3*1+4=7,3*4+7=19,3*7+19=40,3*19+40=9712,18,24,33,45,()12/2+18=24,18/2+24=33,24/2+33=45,33/2+45=61.55,6,8,10,14,(19)A.16 B.18 C.19 D.20C-A=3,4,6,9 隔项差,二次等差4,11,31,64,110,(169)做差得到:7,20,33,46,(59)做差得到:13,13,13,13456,567,678,789,(900)A8910,B. 890 C. 900 D.989做差得到:111,111,111,1112. 3,7,22,45,() A.58 B.73 C.94 D.116三级等差数列45+28=73二、分解各项因式8,12,16,18,20,(除以2得到:4,6,8,9,10,12素数2,12,36,80,()2*1,3*4,4*9,5*16,6*25=1500,4,18,48,100,()0*1,1*4,2*9,3*16,4*258,18,40,63,110,()A.140 B.144 C.150 D.1562*4=8,3*6=18,5*8=40,7*9=63,11*10=110,13*12=156质数*素数7,8,9,24,100,(216)A.190 B.216 C.153 D.200能被1,2,3,4,5,6整除1,24,135,448,() A.1125 B 1104 C 1060 D 985被1 8 27 64 125 整数三、A+B=C4,3,7,10,178,7,5,2,7,(9)A+B取个位得到C1,1,3,5,11,(21)1*2+1=3,1*2+3=5,3*2+5=11,5*2+11=21四、A+B+C=D1,0,2,3,5,10,五、通分1/2,4/7,5/8,2/3,(3/6,4/7,5/8,6/9,7/10六、A*B7,8,6,8,8,4,(2)A*B取个位得到C4,3,11,32,()4*3-1=11,3*11-1=32,11*32-1=351七、B/A4,4,6,12,30,B/A=1,1.5,2,2.5,34,7,12,10,36,13,(108),16 A.72 B.49 C.98 D.108 奇数项:4,12,36,108 偶数项:7,10,131/3,1/2,3/4,9/8,A*3/2=B6,2,15,5,21,7,(36),12 A.28 B.36 C.42 D.486/2=15/5=21/7=36/12分组同商4,7,8,14,16,(28)A.22 B.24 C.26 D.28奇数项:4,8,16 偶数项:7,14,28八、常数的乘方-1,0,3,80^2-1=-1,1^2-1=0,2^2-1=3,3^2-1=8,4^2-1=15 3,8,24,48,()2^2-1=3,3^2-1=8,5^2-1=24,7^2-1=48,11^2-1=120 32,81,64,25,(),12^5,3^4,4^3,5^2,6^1=6,7^00,0,1,4,() A.10 B.11 C.12 D.132^0-1 2^1-2 2^2-3 2^3-4 2^4-5=1114,20,54,76,()A.104B.116C.144D.1263^2+5 5^2-5 7^2+5 9^2-5 11^2+5=126九、个位和十位35,44,53,80,(71)A.71 B.91 C.102 D.993+5=4+4=5+3=8+0=7+1=8134,532,426,615,(628)A.844 B.734 C.628 D.3481+3=4,3+2=5,4+2=6,1+5=6,6+2=8,1/2,1/5,4/5,5/7,( 4/11) A.12/13 B.4/11 C.7/11 D.7/13分子+分母得到:3,6,9,12,1547,58,71,79,(95)A.95 B.100 C.87 D.9247+4+7=58,58+5+8=71,71+7+1=79,79+7+9=95十、1十一、 1十二、 1十三、 1图形推理的50项规律1.大小变化2.方向旋转3.笔画增减(数字,线条数)4.图形求同5.相同部份去掉6.图形叠加(简单叠加,合并叠加,去同叠加)7.图形组合变化(如:首尾两个图形中都包含中间图形)8.对应位置阴影变化(两图相同或不同则第三图对应位置变阴影或变空白)9.顺时针或逆时针旋转10.总笔画成等差数列11.由内向外逐步包含12.相同部件,上下,左右组合13.类似组合(如平行,图形个数一样等)14.横竖线条之比有规律(如横线3条竖线4条,横线4条竖线5条等)15.缺口相似或变化趋势相似(如逐步远离或靠近)16.图形运动变化(同一个图形从各个角度看的不同样子)17.图形拆分(有三个图构成,后两个图为第一个图的构成部件)18.线条交点数有规律19.方向规律(上,下,左,右)20.相隔一个图形分别对称(如:以第三个图为中心,1和5对称,2和4对称)21.含义依据条件而变(如一个错号,可以表"划",也可以表示"两划")22.图形趋势明显(点或图形从左到右,从上到下变化等)23.图形的上,中,下部分分别变化(求同,重叠,或去同叠加)24.相似类(包含,平行,覆盖,相交,不同图形组成,含同一图形等)25.上,中,下各部分别翻转变化26.角的度数有规律27.阴影重合变空白28.翻转,叠加,再翻转30.与特定线的交点数相同(如:与折线的交点数有规律,有直线的交点数不用考虑)31.图形有多条对称轴,且有共同交点,轴对称图形(如正三角形,正方形)32.平行,上下移动33.图形翻转对称34.图形边上角的个数增多或减少35.不同图形叠加形成新图36.图形中某条线均为长线或短线(寻找共同部分)37.线段间距离共性.(如:直线上有几个点,分成几条线段,上部覆盖有另一个图形,如圆,三角形等,但是上面的图形占的位置都不大于最外面两点间的距离)38.图形外围,内部分别顺或逆时针旋转(内外部变化相反)39.特殊位置变化有规律(如当水平时,垂直时图形有一规律)40.各图形组成部件属于同一类(如:均为三条曲线相交)41.以第几幅图为中心进行变化(如:旋转,走近,相反等)42.求共同部分再加点变化(如:提出共同部分,然后让共同部分都变黑什么的)43.除去共同部分有规律44.数线段出头数,有规律(成等差数列,或有明显规律)45.图形每行图形被分割成的空间数相同46.以中间图形为中心,上下,对角分别成对称47.先递增再递减规律48.整套图形横着看,或竖着看,分别有规律.49.注意考虑图形部分变化(如:分别为上下不变中间变化,然后上中下一起变化,左右分别变化,左右一起变化等)50.顺着次序变化.(如:原来在内部的放大变为外部图形,内部图形相应变化.左右组成的图,上一个右边图等于下个左边图,右边再加个新图,如此循环)。

行测数字推理之解题技巧(精华版)

行测数字推理之解题技巧(精华版)

数字推理之解题技巧(精华版)(1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b(注:a、b为前后数)(2)深一层次的,①各数之间的差有规律,如 1、2、5、10、17。

它们之间的差为1、3、5、7,成等差数列。

这些规律还有差之间成等比之类。

②各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。

(注:前一就是高中数学常说的差后等差数列或等比数列)(3)看各数的大小组合规律,作出合理的分组。

如 7,9,40,74,1526,5436,可以划分为7和9,40和74,1526和5436三组,这三组各自是大致处于同一大小和位数级别,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个小组。

而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。

所以7*7-9=40 , 9*9-7=74 ,40*40-74=1526 ,74*74-40=5436,这就是规律。

(4)如根据大小不能分组的,①,看首尾关系,如7,10,9,12,11,14,这组数 7+14=10+11=9+12。

首尾关系经常被忽略,但又是很简单的规律。

②,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。

(5)各数间相差较大,但又不相差大得离谱,就要考虑乘方,这里就要看各位对数字敏感程度如何了。

如6、24、60、 120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。

(注意,这组数比较巧的是都是6的倍数,大家容易导入歧途。

)6)看大小不能看出来的,就要看数的特征了。

如21、31、47、56、69、72,它们的十位数就是递增关系;如 25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3;如论坛上fjjngs所解答的一道题:256,269,286,302,(),2+5+6=132+6+9=17 2+8+6=16 3+0+2=5,∵256+13=269 269+17=286 286+16=302 ∴下一个数为302+5=307。

公务员考试行测数字推理解题方法

公务员考试行测数字推理解题方法

数字推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧对解答数字推理问题大有帮助。

1.快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。

2.推导规律时往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算。

3.空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导。

(一)等差数列相邻数之间的差值相等,整个数字序列依次递增或递减。

等差数列是数字推理测验中排列数字的常见规律之一。

它还包括了几种最基本、最常见的数字排列方式:自然数数列:1,2,3,4,5,6……偶数数列:2,4,6,8,10,12……奇数数列:1,3,5,7,9,11,13……例题1 :103,81,59,( ),15。

A.68B.42C.37D.39解析:答案为C。

这显然是一个等差数列,前后项的差为22。

例题2:2,5,8,( )。

A.10B.11C.12D.13解析:从题中的前3个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。

题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8 3=11,第四项应该是11,即答案为B。

例题3:123,456,789,( )。

A.1122B.101112C.11112D.100112解析:答案为A。

这题的第一项为123,第二项为456,第三项为789,三项中相邻两项的差都是333,所以是一个等差数列,未知项应该是789 333=1122。

注意,解答数字推理题时,应着眼于探寻数列中各数字间的内在规律,而不能从数字表面上去找规律,比如本题从123,456,789这一排列,便选择101112,肯定不对。

数字推理解题方法汇总篇1

数字推理解题方法汇总篇1

数字推理技巧总结:备考规律一:等差数列及其变式(后一项与前一项的差d为固定的或是存在一定规律(这种规律包括等差、等比、正负号交叉、正负号隔两项交叉等)(1) 后面的数字与前面数字之间的差等于一个常数。

如7,11,15,( 19 )(2)后面的数字与前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。

如7,11,16,22,( 29 )(3) 后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。

如7,11,13,14,( 14.5 )(4)后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进行交叉变换的规律。

【例题】7,11,6,12,( 5 )(5) 后面的数字与前面数字之间的差是存在一定的规律的,但这个规律是一种正负号每“相隔两项”进行交叉变换的规律。

【例题】7,11,16,10,3,11,(20 )备考规律二:等比数列及其变式(后一项与除以前一项的倍数q为固定的或是存在一定规律(这种规律包括等差、等比、幂字方等)(1)“后面的数字”除以“前面数字”所得的值等于一个常数。

【例题】4,8,16,32,( 64 )(2)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数加1。

【例题】4,8,24,96,( 480 )(3)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数乘2【例题】4,8,32,256,( 4096 )(4)后面的数字与前面数字之间的倍数是存在一定的规律的,倍数为3的n次方。

【例题】2,6,54,1428,( 118098 )(5)后面的数字与前面数字之间的倍数是存在一定的规律的,“倍数”之间形成了一个新的等差数列。

【例题】2,-4,-12,48,(240 )备考规律三:“平方数”数列及其变式(an=n2+d,其中d为常数或存在一定规律)(1)“平方数”的数列【例题】1,4,9,16,25,(36 )(2) 每一个平方数减去或加上一个常数【例题】0,3,8,15,24,(35 )【例题变形】2,5,10,17,26,(37 )(3) 每一个平方数加去一个数值,而这个数值本身就是有一定规律的。

数字推理题技巧

数字推理题技巧

数字推理题技巧
1. 理解题意:首先要理解题目的意思,把握其中的关键词,把题目分解成几个部分,把题目中给出的信息提取出来,明确问题的答案类型,这是解题的第一步。

2. 找出解题关键:把题目中给出的信息分析清楚,找出解题的关键,确定解题的方向,把握解题的思路,这是解题的第二步。

3. 找出解题方法:把题目中的信息和条件进行整理,根据所给的条件和信息,找出解题的方法,这是解题的第三步。

4. 求解答案:根据解题的方法,求出答案,这是解题的最后一步。

数字推理的方法与思路

数字推理的方法与思路

数字推理的方法与思路
数字推理是一种通过数字之间的关系来推断出未知数字或者规
律的方法。

其核心思想是发现数字之间的规律性,并利用这些规律性来推理。

以下是数字推理的一些方法和思路:
1. 找出数字之间的模式。

例如,从1、3、5、7、9中可以发现每个数字都比前一个数字大2,因此下一个数字应该是11。

2. 观察数字之间的差异。

例如,从2、4、7、11、16中可以发现每个数字之间的差异分别为2、3、4、5,因此下一个数字应该是21。

3. 利用数字之间的比例来推理。

例如,从1、2、4、8、16中可以发现每个数字都是前一个数字的两倍,因此下一个数字应该是32。

4. 利用数字之间的关系来推理。

例如,从2、4、8、16、32中可以发现每个数字都是前一个数字乘以2,再减去2,因此下一个数字应该是62。

5. 利用数字之间的运算符来推理。

例如,从1、3、6、10、15中可以发现每个数字都是前一个数字加上一个递增的数,因此下一个数字应该是21。

总之,数字推理是一种基于数字之间的规律性来推理未知数字或者规律的方法,可以通过找出数字之间的模式、观察数字之间的差异、利用数字之间的比例或关系、利用数字之间的运算符等多种方法来进行推理。

- 1 -。

行政能力测试数字推理的规律及其解题过程

行政能力测试数字推理的规律及其解题过程

行政能力测试数字推理的规律及其解题过程数字推理的主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。

在实际解题过程中,根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列:数列中相邻两个数的比值相等6、二级等比:数列中相邻两个数相减后的差值成等比数列7、前一个数的平方等于第二个数8、前一个数的平方再加或者减一个常数等于第二个数;9、前一个数乘一个倍数加减一个常数等于第二个数;10、隔项数列:数列相隔两项呈现一定规律,11、全奇、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律。

1、数列中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n3、数列中每一个数字都是n的倍数加减一个常数以上是数字推理的一些基本规律,必须掌握。

但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。

第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。

第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。

当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。

这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案。

数字推理全方法介绍(绝对经典)

数字推理全方法介绍(绝对经典)

数字推理全方法介绍写在前面的话1、希望能给数字推理比较弱的同学帮助2、做数推,重点不是怎么做,而是:“你怎么会想到这种做法?思路在哪?突破口呢?”3、只要你认真看完这个帖子,你的数字推理一定会有进步4、例子来源于真题5、觉得好一定要顶,让更多的人能来交流言归正传(一)等差、倍数关系介绍要学会观察变化趋势(1)数变化很大,一般和乘法和次方有关。

如:2,5,13, 35,97 ()-------------A*2+1 3 9 27 81=B又如:1,1,3,15,323,()---------------数跳很大,考虑是次方和乘法。

此题-------------(A+B)^2-1 =c再如:1 ,2 ,3 ,35 ()------------(a*b)^2-1=c0.4 1.6 8 56 560 ()--------4 5 7 10倍,倍数成二级等差A、2240B、3136C、4480D、784009国考真题14 20 54 76 ()A.104 B.116 C.126 D1449+525-549+5…(2)数差(数跳不大,考虑是做差)等差数列我就不说了,很简单下面说下数字变化不大,但是做差没规律怎么办?一般三种可以尝试的办法(1)隔项相加、相减(2)递推数列(3)自残(一般用得很少,真题里我好像没见过?也许是我忘了吧)09江苏真题1,1,3,5,11,()A.8 B.13 C.21 D.32满足C-A=2 4 8 16-3,7,14,15,19,29,()A 35B 36C 40D 42------------------------------满足A+C=11 22 33 44 5521,37,42,45,62,()A 57B 69C 74D 8721+3*7=4237+4*2=4542+4*5=6245+6*2=57(3)倍数问题(二)三位数的数字推理的思路(1)数和数之间的差不是很大的时候考虑做差(2)很多三位数的数字推理题都用“自残法”如:252,261,270,279,297,()252+2+5+2=261261+2+6+1=270270+2+7+0=27909国考真题153, 179, 227, 321, 533, ( )A.789B.919C.1079D.1229150+3170+9200+27….左边等差,右边等比(三)多项项数的数字推理多项项数的数推”比如:5,24,6,20,(),15,10,()上面个数列有8项,我习惯把项数多余6项的数列叫做“多项数列”。

数字推理题的解题技巧大全

数字推理题的解题技巧大全

第一部分:数字推理题的解题技巧一、解题前的准备1.熟记各种数字的运算关系。

如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。

这是迅速准确解好数字推理题材的前提。

常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。

所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。

当看到这些数字时,立刻就能想到平方立方的可能性。

熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。

如 216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样 215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。

2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。

根号运算掌握简单规律则可,也不难。

3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。

二、解题方法按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。

又分为等差、移动求和或差两种。

(1)等差关系。

这种题属于比较简单的,不经练习也能在短时间内做出。

建议解这种题时,用口算。

12,20,30,42,()127,112,97,82,()3,4,7,12,(),28(2)移动求和或差。

数字推理解题方法

数字推理解题方法

数字推理解题方法数字推理解题方法数字推理的主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。

在实际解题过程中,根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列:数列中相邻两个数的比值相等6、二级等比:数列中相邻两个数相减后的差值成等比数列7、前一个数的平方等于第二个数8、前一个数的平方再加或者减一个常数等于第二个数;9、前一个数乘一个倍数加减一个常数等于第二个数;10、隔项数列:数列相隔两项呈现一定规律11、全奇、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律。

1、数列中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n3、数列中每一个数字都是n的倍数加减一个常数以上是数字推理的一些基本规律,但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。

第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答。

第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。

第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。

当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。

这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案数字推理题的一些经验1)等差、等比这种最简单的不用多说,深一点就是在等差、等比上再加、减一个数列,如2 4,70,208,622,规律为a*3-2=b2)深一点模式,各数之间的差有规律,如1、2、5、10、17。

数字推理绝招

数字推理绝招

一、解题前的准备1.熟记各种数字的运算关系。

如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。

这是迅速准确解好数字推理题材的前提。

常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-14413-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。

所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。

当看到这些数字时,立刻就能想到平方立方的可能性。

熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。

如216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。

2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。

根号运算掌握简单规律则可,也不难。

3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。

二、解题方法按数字之间的关系,可将数字推理题分为以下十种类型:1.和差关系。

又分为等差、移动求和或差两种。

(1)等差关系。

这种题属于比较简单的,不经练习也能在短时间内做出。

建议解这种题时,用口算。

12,20,30,42,()127,112,97,82,()3,4,7,12,(),28(2)移动求和或差。

公务员考试数字推理解题十大规律

公务员考试数字推理解题十大规律

公务员考试数字推理解题十大规律备考规律一:等差数列及其变式【例题】7,11,15,( )A.19B.20C.22D.25【答案】A选项【解析】这是一个典型的等差数列,即后面的数字及前面数字之间的差等于一个常数。

题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个及第二个数字之间也满足此规律,那么在此根底上对未知的一项进展推理,即15+4=19,第四项应该是19,即答案为A。

〔一〕等差数列的变形一:【例题】7,11,16,22,( )A.28B.29C.32D.33【答案】B选项【解析】这是一个典型的等差数列的变形,即后面的数字及前面数字之间的差是存在一定的规律的,这个规律是一种等差的规律。

题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个及第二个数字之间的差值是5;第四个及第三个数字之间的差值是6。

假设第五个及第四个数字之间的差值是X,我们发现数值之间的差值分别为4,5,6,X。

很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=7,那么第五个数为22+7=29。

即答案为B选项。

〔二〕等差数列的变形二:【例题】7,11,13,14,( )A.15C.16D.17【答案】B选项【解析】这也是一个典型的等差数列的变形,即后面的数字及前面数字之间的差是存在一定的规律的,但这个规律是一种等比的规律。

题中第二个数字为11,第一个数字为7,两者的差为4,由观察得知第三个及第二个数字之间的差值是2;第四个及第三个数字之间的差值是1。

假设第五个及第四个数字之间的差值是X。

我们发现数值之间的差值分别为4,2,1,X。

很明显数值之间的差值形成了一个新的等差数列,由此可以推出X=0.5,那么第五个数为14+0.5=14.5。

即答案为B选项。

〔三〕等差数列的变形三:【例题】7,11,6,12,( )A.5B.4C.16D.15【答案】A选项【解析】这也是一个典型的等差数列的变形,即后面的数字及前面数字之间的差是存在一定的规律的,但这个规律是一种正负号进展穿插变换的规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字推理八大解题方法【真题精析】例,5,8,11,14,( )A.15 B.16 C.17 D.18[答案]C[解析]数列特征明显单调且倍数关系不明显,优先采用逐差法。

差值数列是常数列。

如图所示,因此,选C。

【真题精析】例1、(2006·国考A类)102,96,108,84,132,( )A.36 B.64 C.70 D.72[答案]A[解析]数列特征明显不单调,但相邻两项差值的绝对值呈递增趋势,尝试采用逐差法。

差值数列是公比为-2的等比数列。

如图所示,因此,选A。

【真题精析】例1.(2009·江西)160,80,40,20,( )A. B.1 C.10 D.5[答案]C[解析]数列特征明显单调且倍数关系明显,优先采用逐商法。

商值数列是常数列。

如图所示,因此,选C【真题精析】例1、2,5,13,35,97,( )A.214 B.275 C.312 D.336[答案]B[解析]数列特征明显单调且倍数关系明显,优先采用逐商法。

商值数列是数值为2的常数列,余数数列是J2-I:h为3的等比数列。

如图所示,因此,选B。

【真题精析】例1、(2009·福建)7,21,14,21,63,( ),63A.35 B.42 C.40 D.56[答案]B[解析]数列特征明显单调且倍数关系明显,优先采用逐商法。

商值数列是以为周期的周期数列。

如图所示,因此,选B。

【真题精析】例1. 8,8,12,24,60,( )A.90 B.120 C.180 D.240[答案]C[解析]逐商法,做商后商值数列是公差为的等差数列。

【真题精析】例1. -3,3,0,3,3,( )A.6 B.7 C.8 D.9[答案]A[解析]数列特征:(1)单调关系不明显;(2)倍数关系不明显;(3)数字差别幅度不大。

优先采用加和法。

【真题精析】例1、(2008·湖北B类)2,3,5,10,20,( )A.30 B.35 C 40 D.45[答案]C[解析]数列特征明显单调且倍数关系不明显,优先做差后得到结果选项中不存在;则考虑数列特征:(1)倍数关系不明显;(2)数字差别幅度不大,采用加和法。

还是无明显规律。

再仔细观察发现,2+3=5,2+3+5=10,2+3+5+10=20。

因此原数列未知项为2+3+5+10+20=40。

此数列为全项和数列,其规律为:前面所有项相加得后一项。

如图所示,因此,选C。

【真题精析】例1、 1,2,2,4,8,32,( )A.64 B.128 C.160 D.256[答案]D[解析]数列特征:(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向。

优先采用累积法。

例1、1,1,2,2,4,16,( )A.32 B.64 C.128 D.256[答案]C[解析]数列特征:(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向。

积后无明显规律,尝试三项求积。

即从第四项起,每一项都是前面三项的乘积。

因此,选C。

【真题精析】例1、(2008·河北)1,2,2,4,16,( )A.64 B.128 C.160 D.256[答案]D[解析]数列特征:(1)单调关系明显;(2)倍数关系明显;(3)有乘积倾向。

优先采用累积法。

做积后无明显规律。

仔细观察发现,1×2=2,1×2×2=4,1×2×2×4=16,1×2×2×4×16=(256)。

此数列是全项积数列,从第三项起,每一项都是前面所有项的乘积。

因此,选D。

【真题精析】例1. (2007·国考)0,2,10,30,( )A.68 B.74 C.60 D.70[答案]A[解析]数列项数较少,做一次差后无明显规律,不能继续做差,因此考虑使用因数分解将原数列化为如下形式:分别观察由0,1,2,3和1,2,5,10组成的数列,前者是公差为1的等差数列,后者做一次差后得到奇数数列,推断其第五项分别为4和17,故所填数字应为4X17=68,答案为A。

例1. 1,2,5,10,17,( )A.24 B.25 C.26 D.27[答案]C[解析]此题的突破口建立在“数字敏感”的基础之上。

由数字5,10,17,联想到5=4+1,10=9+1, 17=16+1,故可以判定此数列由多次方数构造而成。

平方数列的底数是自然数列。

如上所示,因此,选C。

【真题精析】例1. (2009·天津)187,259,448,583,754,( )A.847 B.862 C.915 D.944[答案]B[解析]原数列单调关系明显,倍数关系不明显,优先使用逐差法无明显规律;观察数列特征:多位数连续出现,幅度变化无明显规律,考虑位数拆分。

对原数列各数位进行求和:1+8+7=16,2+5+9=16,4+4+8=16,5+8+3=16,7+5+4=16,(8+6+2=16),原数列中所有项各位数字相加之和为16。

因此,选B。

【真题精析】例1.[答案]A[解析]数列中大部分为非最简分数,优先考虑将其约分变为最简分数。

得到常数列。

如上所示,因此,选A。

【真题精析】例1、[答案]A[解析]数列中有两项的分母相同,且为另外两项的倍数。

因此,先进行通分将各项的分母统一为12。

得到的分子数列为质数列。

如上所示,因此,选A。

【真题精析】例1、[答案]B[解析]数列特征不明显,由联想到中间的2可化成。

此时,各项的分子分母表现出一定的单调性,因此考虑将反约分化为。

根据该思路,将原数列进行变形。

分子数列、分母数列都是自然数列。

如上所示,因此,选B。

【真题精析】例1、[答案]C[解析]分别分析各项的整数部分与分数部分。

整数部分为平方数列,分数部分是公比为的等比数列,如上所示,故未知项为81+1=82,因此,选C。

【真题精析】例1、[答案]C[解析]数列的二、三、六项分别出现,因此考虑将一、四项拆分出带有根号的式子。

【真题精析】例1. (2010·江西)3,3,4,5,7,7,11,9,( ),( )A.13,11 B.16,12 C.18,11 D.17,13[答案]C[解析]数列较长,数字变化幅度不大,并且有两个未知项,优先进行交叉分组。

【真题精析】例1、 (2007·河北)1,2,2,6,3,15,3,21,4,( )A.46 B.20 C.12[答案]D[解析]数列不具有单调性,变化幅度不大且数列较长,优先使用多元素分组法。

由于相邻两项之间具有明显的倍数关系,故考虑两两分组。

得到质数列。

如图所示,因此,选D。

【真题精析】例1、8,6,10,11,12,7,( ),24,28A.15 B.14 C.9 D.18[答案]B[解析]数列单调关系和倍数关系均不明显,变化幅度不大,项数较多,优先采用多元素分组法。

交叉及分段分组都没有明显的规律,尝试采用对称分组法。

对称分组后组内求和,得到公差为6的等差数列。

如图所示,因此,选B。

【真题精析】例1、1,2,3,7,16,( )A.66 B.65 C.64 D.63[答案]B[解析]基于“数形敏感”,由数列的三、四、五项可以得出。

经过验证有:2,故该数列的通项为因此,所填数字为,答案为B。

【真题精析】例1、2,12,36,80,( )A.100 B.125 C.150 D.175[答案]C[解析]基于“数字敏感”,数列的第四项80可以拆分成,第三项可以拆分成36=,基于“数列敏感”,可以推测数列是由平方数列和立方数列相加得到,经过验证有2=1+1,,故数列的通项公式为。

因此,所求数字为150,答案选C。

【真题精析】例1、6,12,36,102,( ),3A.24 B.71 C.38 D.175[答案]A[解析]数列各项都可以被3整除。

公务员行测指导:30种数字推理解题技巧2012-01-21 来源:学宝教育国家公务员考试网2【字体:大中小】一、当一列数中出现几个整数,而只有一两个分数而且是几分之一的时候,这列数往往是负幂次数列。

【例】1、4、3、1、1/5、1/36、()92 124 262 343二、当一列数几乎都是分数时,它基本就是分式数列,我们要注意观察分式数列的分子、分母是一直递增、递减或者不变,并以此为依据找到突破口,通过“约分”、“反约分”实现分子、分母的各自成规律。

【例】1/16 2/13 2/5 8/7 4 ( )A 19/3B 8C 39D 32三、当一列数比较长、数字大小比较接近、有时有两个括号时,往往是间隔数列或分组数列。

【例】33、32、34、31、35、30、36、29、()A. 33B. 37C. 39D. 41四、在数字推理中,当题干和选项都是个位数,且大小变动不稳定时,往往是取尾数列。

取尾数列一般具有相加取尾、相乘取尾两种形式。

【例】6、7、3、0、3、3、6、9、5、()五、当一列数都是几十、几百或者几千的“清一色”整数,且大小变动不稳定时,往往是与数位有关的数列。

【例】448、516、639、347、178、( )六、幂次数列的本质特征是:底数和指数各自成规律,然后再加减修正系数。

对于幂次数列,考生要建立起足够的幂数敏感性,当数列中出现6?、12?、14?、21?、25?、34?、51?、312?,就优先考虑43、112(53)、122、63、44、73、83、55。

【例】0、9、26、65、124、( )A. 165B. 193C. 217D. 239七、在递推数列中,当数列选项没有明显特征时,考生要注意观察题干数字间的倍数关系,往往是一项推一项的倍数递推。

【例】118、60、32、20、( )八、如果数列的题干和选项都是整数且数字波动不大时,不存在其它明显特征时,优先考虑做差多级数列,其次是倍数递推数列,往往是两项推一项的倍数递推。

【例】0、6、24、60、120、()九、当题干和选项都是整数,且数字大小波动很大时,往往是两项推一项的乘法或者乘方的递推数列。

【例】3、7、16、107、 ( )十、当数列选项中有两个整数、两个小数时,答案往往是小数,且一般是通过乘除来实现的。

当然如果出现了两个正数、两个负数诸如此类的标准配置时,答案也是负数。

【例】2、13、40、61、()C.十一、数字推理如果没有任何线索的话,记得要选择相对其他比较特殊的选项,譬如:正负关系、整分关系等等。

【例】2、7、14、21、294、()十二、小数数列是整数与小数部分各自呈现规律,日期数列是年、月、日各自呈现规律,且注意临界点(月份的28、29、30或31天)。

【例】、、、、、( )A. B. C. D.十三、对于图形数列,三角形、正方形、圆形等其本质都是一样的,其运算法则:加、减、乘、除、倍数和乘方。

相关文档
最新文档