运动学
运动学和动力学的基本概念及其区别
运动学和动力学的基本概念及其区别运动学和动力学是物理学中两个重要的概念,它们分别研究物体的运动和力学原理。
本文将探讨运动学和动力学的基本概念以及它们之间的区别。
一、运动学的基本概念运动学是研究物体运动状态的物理学分支,它关注物体的位置、速度、加速度等与运动相关的物理量。
运动学主要研究物体运动的几何性质和轨迹,在不考虑外部力的情况下研究物体的运动规律。
1. 位移:位移是指物体从初始位置到终止位置的位置变化,通常用Δx表示。
位移的大小和方向与路径有关,是一个矢量量。
2. 速度:速度是指物体单位时间内位移的变化率,通常用v表示。
速度可正可负,正表示正向运动,负表示反向运动。
平均速度的定义是位移与时间的比值,即v=Δx/Δt;瞬时速度则是极限过程中的速度。
3. 加速度:加速度是指物体单位时间内速度的变化率,通常用a表示。
加速度也可正可负,正表示加速运动,负表示减速运动。
平均加速度的定义是速度变化量与时间的比值,即a=Δv/Δt;瞬时加速度则是极限过程中的加速度。
二、动力学的基本概念动力学是研究物体运动中作用力和物体运动规律的物理学分支,它关注物体所受的力以及这些力对物体运动的影响。
动力学通过牛顿定律描述物体的运动规律,并研究力的产生和作用。
1. 牛顿第一定律:牛顿第一定律也被称为惯性定律,它表明物体在受力为零时保持静止或匀速直线运动的状态。
2. 牛顿第二定律:牛顿第二定律描述了物体运动时力与加速度的关系,它可以表达为F=ma,其中F是物体所受的合力,m是物体的质量,a是物体的加速度。
根据这个定律,物体的加速度与它所受的力成正比,与它的质量成反比。
3. 牛顿第三定律:牛顿第三定律表明作用力与反作用力大小相等、方向相反且作用于不同的物体上。
这个定律也被称为作用与反作用定律,它说明力是一对相互作用的力。
三、运动学和动力学的区别尽管运动学和动力学都研究物体的运动,但它们关注的角度和内容有所不同。
1. 角度不同:运动学主要从物体自身的运动状态出发,研究物体的位移、速度和加速度等几何性质;动力学则主要从力的作用和物体所受的力的影响出发,研究物体的加速度和受力情况。
理论力学——运动学
v2
n
加速度a的大小:
a
aτ + a n
2
2
dv 2 v 2 2 ( ) ( ) dt
加速度和主法线所夹的锐角的正切:
tan
aτ an
4、直角坐标于自然坐标之间的关系:
ds 2 dx 2 dy 2 dz 2 v ( ) ( ) ( ) ( ) dt dt dt dt
2
2
九、刚体的基本运动
1、刚体的平动
(1)刚体平动的定义 刚体运动时,若其上任一直线始终保持与它的初始
位置平行,则称刚体作平行移动,简称为平动或移动 。 (2) 平动刚体的运动特点
刚体平动时,其上各点的轨迹形状相同;同一瞬时,
各点的速度相同,加速度也相同。
刚体平动判别:P169题三图,P176题五图,题七图
点加的速度
i + y j + z k vx
a vx i + v y j + vz k xi + yj + zk
ax v x x ay v y y az v z z
3、自然法
用自然法描述的运动方程:
s பைடு நூலகம் f (t )
a 2 a x a y a z a an
1
2
2
2
2
2
a 2 a v2
2
5、匀速、匀变速公式
(1)
aτ=常数,
v v0 aτ t
( 2)v=常数,
1 2 s s0 v0t aτ t 2 2 v 2 v0 2a ( s s0 )
平面运动。
运动学的基本概念与应用
运动学的基本概念与应用运动学是物理学中的一个重要分支,研究物体的运动状态和运动规律。
它通过分析物体的位置、速度和加速度等物理量,来揭示运动的本质和规律。
本文将介绍运动学的基本概念以及其在日常生活中的应用。
一、运动学的基本概念1. 位移:位移是物体在某一时间段内从初始位置到终止位置的变化量。
通常用Δx表示,是一个矢量,包括位移的大小和方向。
2. 速度:速度是物体在单位时间内通过的位移。
平均速度指在某一段时间内的位移与时间的比值,即v=Δx/Δt。
瞬时速度指在某一瞬间的速度,即v=lim(Δt→0)Δx/Δt,是一个瞬时值。
3. 加速度:加速度是物体在单位时间内速度变化的快慢。
平均加速度指在某一段时间内速度的变化量与时间的比值,即a=Δv/Δt。
瞬时加速度指在某一瞬间的加速度,即a=lim(Δt→0)Δv/Δt,是一个瞬时值。
4. 匀速运动和变速运动:匀速运动指物体在单位时间内位移的大小保持不变,即速度恒定;变速运动指物体在单位时间内位移的大小会发生变化,即速度不恒定。
5. 自由落体:自由落体是指物体在只受重力作用下的自由下落运动。
在自由落体运动中,物体的加速度恒定,大小为g,方向竖直向下。
二、运动学的应用1. 车辆行驶距离计算:运动学可以用于计算车辆行驶的距离。
通过测量车辆的平均速度和行驶时间,可以利用v=Δx/Δt的公式来计算车辆行驶的距离。
这对交通管理和车辆调度具有重要意义。
2. 运动员成绩分析:运动学可以用于分析运动员的竞技成绩。
通过测量运动员的速度和时间,可以计算出运动员在比赛中的平均速度。
根据平均速度的高低,可以对运动员的表现进行评价和改进训练方法。
3. 坠物运动研究:运动学可以用于研究坠物的运动规律。
通过测量物体的自由落体时间和位移,可以计算物体下落的加速度。
这对于研究物体的质量和重力的关系,以及天体物理学的研究具有重要作用。
4. 机械运动分析:运动学可以用于分析机械装置的运动状态和运动轨迹。
第六章 运动学基础2
a2
at 2
an2
(v2
c2 )a2 v2
(v2 )2
(1
v2 c2 v2
)a2
v4
2
c2 v2
a2
v4
2
a v3 (负号不合理舍去)
c
v2 c2 a v
§ 6-3 刚体的平动
一、定义 Translational motion of a rigid body
z 刚体在运动过程中,其上任
点的切向加速度和法向加速度的大小分别为:
a v 0 ,
an
v2
80
因为: a a2 an2 32 an
所以:
v2 80
an 32
即: ρ = 2.5 (m)
例6-7 半径为r的轮子沿直线轨道无滑动的滚动(称为纯滚
动),设轮子转角=t,如图所示。求用直角坐标和弧坐标表
示的轮缘上任一点M的运动方程,并求该点的速度、切向加速
5. 点的加速度
v vτ
a dv dv τ v dτ dv τ v dτ ds dv τ v2 dτ
dt dt dt dt ds dt dt
ds
dv τ v2 n
dt
①②
dτ 1 n
ds
at an
①切向加速度at---反映速度的大小随 时间的变化率,方向沿切线方向。
v2
at dt , an
v
a
aE
v D
a
F a v
aG v =0
提示:图示各点的速度均为可能,在速度可能的情况下, 点 C,E, F,G 的加速度为不可能,点 A,B,D 的加速度为可能
例6-5 列车沿半径为R=800m的圆弧轨道作匀加速运动。 如初速度为零,经过2min后,速度到达54km/h。求列车 起点和未点的加速度。
第一章运动学
第一章 运动学第1节 质点运动的基本概念一.质点运动的基本概念1.位置、位移和路程:位置指运动质点在某一时刻的处所,在直角坐标系中,可用质点在坐标轴上的投影坐标(x,y,z )来表示。
在定量计算时,为了使位置的确定与位移的计算一致,人们还引入位置矢量(简称位矢)的概念,如图所示,在直角坐标系中,位矢r 定义为自坐标原点到质点位置P(x,y,z)所引的有向线段,故有222z y x r ++=,r 的方向为自原点O 点指向质点P 。
位移指质点在运动过程中,某一段时间t ∆内的位置变化,即位矢的增量t t t r r s _)(∆+=,它的方向为自始位置指向末位置。
在直角坐标系中,在计算位移时,通常先求得x 轴、y 轴、z 轴三个方向上位移的三个分量后,再按矢量合成法则求合位移。
路程指质点在时间内通过的实际轨迹的长度,它是标量,只有在单方向的直线运动中,路程才等于位移的大小。
2.平均速度和平均速率:平均速度是质点在一段时间内通过的位移和所用时间之比:t s v ∆=平,平均速度是矢量,方向与位移s 的方向相同。
平均速率是质点在一段时间内通过的路程与所用时间的比值,是标量。
3.瞬时速度和瞬时速率:瞬时速度是质点在某一时刻或经过某一位置是的速度,它定义为在时的平均速度的极限,简称为速度,即ts v t ∆=→∆0lim 。
瞬时速度是矢量,它的方向就是平均速度极限的方向。
瞬时速度的大小叫瞬时速率,简称速率。
4.加速度:加速度是描述物体运动速度变化快慢的物理量,等于速度对时间的变化率,即t v a ∆∆=,这样求得的加速度实际上是物体运动的平均加速度,瞬时加速度应为tv a t ∆∆=→∆0lim。
加速度是矢量。
5.匀变速直线运动:质点运动轨迹是一条直线的运动称为直线运动,而加速度又恒定不变的直线运动称为匀变速直线运动,若a 的方向与v 的方向一致称为加速运动,否则称为减速运动。
匀变速直线的运动规律为: 20021at t v s s ++= )(20202s s a v v t -=-二、解题指导:例1:如图所示,物体A 置于水平面上,A 前固定一滑轮B ,高台上有一定滑轮D ,一根轻绳一端固定在C两段绳子的夹角为ɑ时,A 的运动速度。
运动学基础
ad d vtττvτ2naττannaτan
切向加速度:
a
d v dt
s
表示速度矢量大小的变化率;
法向加速度:
an
v 2
表示速度矢量方向的变化率;
点的速度与加速度
描述点的运动的弧坐标表示法
讨论1:
弧坐标中的加速度表示:
点沿着一螺旋线自外向 内运动。点所走过的弧长 与时间的一次方成正比。 请判断点的运动性质:
s
弧坐标中的加速度表示:
P'
P
/2
dτ
d
lim τ lim 2τ
0
0
sin
2
sin
lim
2
0
1
当 0时,
2 的极限方向垂直于 ,亦即n方向。
dτ n d
点的速度与加速度
描述点的运动的弧坐标表示法
s
弧坐标中的加速度表示:
P'
P
/2
d dsd 1
dt
dt
ds
vτ
其中:
d 1 曲率 ds
平移刚体上各点的加速度
平移的特点
平移的特点
应该注意,平移刚体内的点,不一定沿直线运动,也 不一定保持在平面内运动,它的轨迹可以是任意的空间曲 线。
—运动副
高副—通过点、线接触
低副—通过面接触
移动副 转动副
6.2 点的运动
描述点的运动的矢量法
z
O
x
位置矢量为变矢量
P
P´
r = r (t) ---点的运动方程
r r´ r P
点P在运动过程中,其位置矢量 的端点描绘出一条连续曲线
y ----位矢端图(运动轨迹)
第一章人体运动学总论
(2)转动:指运动过程中,身体上的各点都围绕同一直线(即轴) 作圆周运动,称转动。转动时人体各点距离轴的距离不同,所以 其线速度也不同,只能简化成刚体来处理。
(3)复合运动:人体的绝大部分运动包括 平动和转动,两者结合的运动称为复合运 动。如骑自行车时,躯干可近似地看作平 动,下肢各关节围绕关节轴进行多级转动。 研究中通常把复合运动分解为平动和转动, 使问题大大简化。 人体的机械运动都是在一定的空间和时间 中进行的。
二、人体运动的相对性、坐标系和始发姿势
宇宙万物处于永恒的运动状态,从哲学的观点看,运动是 绝对的。 机械运动是物体间相对位置的变化,要描述某物体的运动 情况,一般需要选定一个或多个物体作参考,观察要描述 的物体与这些参考物体相对位置的变化情况。如果相对位 置变化了,称物体是运动的,如果没有变化,称物体是静 止的。 可见,判断一个物体是运动还是静止是相对而言的。从这 个角度观察运动,运动又是相对的。 物体的运动取决于参考物体选取的性质叫运动的相对性。
拉格朗日和汉密尔顿分别引入了广义坐标、广义 速度和广义动量等概念,为在多维空间中用几何 方法描述多自由度质点系统的运动开辟了新途径, 促进了分析动力学的发展。
19世纪末以来,为了适应不同生产需要、各种机 器广泛使用,机构学应运而生。
机构学的任务是分析机构的运动规律,根据需要 实现的运动设计新的机构和进行机构的综合。现 代仪器和自动化技术的发展又促进机构学的进一 步发展,提出了各种平面和空间机构运动分析和 综合的问题。
后者则是采用人体系统仿真方法/多刚体系统动力学理论 建立抽象的力学模型,将运动主体和运动过程进行数学语 言的描述,应用数学、力学理论和计算推导出各种人体运 动的普遍规律和内在机理。
(三)人体运动学与康复治疗学的关系
什么是运动学和动力学?
什么是运动学和动力学?
运动学和动力学是物理学中两个重要的分支,用于研究和描述物体在运动过程中的行为和相互作用。
什么是运动学和动力学:
1.运动学:运动学研究的是物体的运动状态、速度、加速度
等与时间相关的属性,而不考虑引起这些运动的原因。
它关注的是物体的几何形状和轨迹,以及描述物体位置、速度和加速度的数学关系。
运动学主要涉及到位移、速度和加速度等概念,并使用图表、方程式和向量等工具来描述和分析运动。
2.动力学:动力学研究的是物体运动背后的原因和力的作用。
它涉及到物体受到的力、质量和运动状态之间的关系。
动力学使用牛顿定律和其他力学原理,研究物体的运动如何受到力的影响。
它能够描述物体的加速度、力和质量之间的相互作用,以及描述物体受到外部力和内部力时的运动变化。
简单说,运动学描述了物体在运动中的位置、速度和加速度等属性,而动力学则研究导致物体运动变化的力和原因。
运动学关注物体的几何特征和轨迹,而动力学则关注物体运动背后的力学原理和相互作用。
这两个分支在物理学、工程学和生物学等领域都有广泛应用。
它们在描述和解释物体的运动行为、设计运动系统、预测物体的轨迹等方面都起着重要的作用。
运动学基础--第二章 运动学基础
Resist
Force
Axis
Example: Neck
extension
(2)第2类杠杆 省力杠杆
Force
Force Resist. Axis
通过籽骨、肌在骨上附着点的隆起等来延长力臂。
(3)第3类杠杆 速度杠杆
Force
3.杠杆的原理在康复医学中的应用
(1)省力 要用较小的力去克服较大阻 力,就要使力臂增长或缩短阻力臂。
力矩,物体倾倒,平衡破坏。 所以,物体越重,其稳定力矩越大,抗
倾倒的能力越强。
三、人体平衡与稳定特点
1、人体不能处于绝对静止的状态
由于人体的呼吸和循环的存在,肌 张力也不恒定,重心在一定范围内 波动,因此人体平衡是相对的静态 平衡。
2、人体形状可变 人体在完成或维持静力姿势的过程中,
当人体重心发生偏移有失去平衡的倾向时,人 体能借助于补偿动作在一定范围内“中和”或 “抵消”重心的不适宜移动。
F4
F2
F1
A
F2
F4
F3
FR
平面汇交力系
空间一般力系
A F1
F5
平面平行力系
力系平衡的类型
(二)、平衡类型
上支撑点平衡
重点与支撑点的关系 下支撑点平衡
混合支撑平衡
平衡
稳定平衡
平衡稳定程度 有限稳定平衡
不稳定平衡
随遇平衡
人体平衡的分类
1、根据人体重心与支撑点的位置关系 上支撑平衡(悬垂平衡) 下支撑平衡(倒立平衡) 混合支撑平衡(肋木侧平衡)
(3)稳定角
是重心垂直投影线和重 心至支撑面边缘相应点 的连线间的夹角。
运动学
1.2运动学解题指导(1)描述物体作平动的四个物理量:位置矢量r、位移、速度v、加速度a都是矢量.要注意矢量的基本运算(矢量加减法,两矢量的点积、叉积等基本运算法则).(2)掌握解运动学两类问题的方法.第一类问题是已知质点的运动及运动方程,求质点运动的速度和加速度.第二类问题是已知质点的加速度及初始条件,求质点运动的速度和运动方程.第一类问题利用数学上求导数的方法,第二类问题用积分的方法.1.3典型例题1-1一质点在x O y平面内运动,其运动方程可能是:问表示质点作直线运动、圆周运动、双曲线运动、椭圆运动、抛物线运动的,分别是哪个方程?解题思路要判断质点在平面内作什么运动,只要求出质点在平面中运动的轨迹方程,从轨迹方程可分辨出质点的不同运动.已知运动方程,求轨迹方程的方法是:将运动方程中的时间t消去,即可得到轨迹方程.解它们的轨迹方程分别是:(1) y = 5 – 2 x,直线;(2) ,抛物线;(3),圆;(4) ,椭圆;(5) ,双曲线.1-2路灯离地面高度为H,一人在灯下水平路面上以匀速度步行,如图1.3-2.人身高为h,求当人与灯的水平距离为x时,他的头顶在地面上所对应的影子移动的速度V的大小.解题思路取如图1.3-2所示x坐标轴,人的坐标为x,影的坐标为,人的速度为,影子的速度为 .先从图中求出x,之间的关系式,将对时间求一阶导数即得影的速度.解从图中可得影子也以匀速度V移动,若人的速度是变速度,则影子移动的速度也为变速度,比例系数为 .1-3一质点在x O y平面内运动,运动方程为,式中x, y以m计,t以s计.求:(1) 写出t =3 s时质点的位置矢量,并计算第3 s内的平均速度的大小;(2) t =3 s时,质点的速度和加速度;(3) 什么时刻,质点的位置矢量恰与速度矢量垂直?解题思路:(1)位置矢量r = x i + y j ,将运动方程x ( t ), y ( t )代入即可求得.求平均速度,先算出0~3s的位移,再根据求出;(2) 运动学第一类问题,已知运动方程求速度和加速度:;(3) 位置矢量和速度都是矢量,两矢量垂直的条件是点积为零,即 .解(1)(2) 第一种方法第二种方法:速度和加速度是矢量,可分别求出它的大小和方向来表示. t =3s的速度3s时速度的大小方向:3s时速度跟x轴所成的角度t =3s的加速度大小为,方向为负y.(3) 两矢量垂直的条件是两矢量的点积为零:1- 4 一质点在半径为R的圆周上运动,其速度与时间的关系为,求:(1) t时刻质点的切向加速度及法向加速度;(2) 从t = 0到t时刻质点通过的路程.解题思路:(1) ;(2) 运动学第二类问题,已知速度求运动方程,.解(1) .(2) .1-5 一质点沿半径为R的圆周运动,运动方程为.求当切向加速度的大小为总加速度大小的一半时,θ的值是多少?解题思路作出切向加速度、法向加速度、总加速度的矢量图,如图1.3-5所示,根据题意求解.解所以.1- 6一艘正在沿直线行驶的汽船速度为,关闭发动机后,由于阻力,得到一个与船速方向相反、大小与船速平方成正比的加速度,即,k为常数.求船速及船行驶的距离跟时间t的关系.解题思路本题为求解运动学中的第二类问题,即已知加速度及初始条件,求速度及运动方程,用积分方法.解两边积分又根据,两边积分.注意:(1)对一维的直线运动,在公式中可不用矢量计算,而简单地用标量计算,如a, v, x 都用标量,其方向用正、负表示,正的表示方向沿x正方向,负的表示沿x负方向.(2)积分上、下限的取法.下限为初始条件,t = 0时,;上限时间为t,速度为v,位置为x.1- 7 一飞机相对于空气以恒定速度V沿正方形轨道飞行,在无风天气其运动周期为T,若有恒定的风沿平行于正方形的一对边吹来,风速为v = K V (K<<1).求飞机沿原正方形(对地)飞行的周期的增加量.解题思路此题为相对运动问题.当有风存在时,,分别求出每边机对地的速度,再算出飞行一周的时间跟原来无风时的周期比较,即可求得.解设正方形边长为l,无风时周期.有风时周期1.4 习题选解1.一质点在平面上作曲线运动,其速率v与路程S的关系为,写出切向加速度以路程S来表示的表式.解根据,将代入,得.注意:S是随时间而变的量,.如果,就错了.2.在离水面高为h的岸边,有人用绳拉船靠岸.当人以的速度收绳,求船在离岸边处船的速度和加速度各为多少?解建立如图1.4-2所示的坐标系x O y,船在任一时刻的矢径.根据速度的定义,.因为,又由题意可知,所以船速.时,.根据加速度定义,.时,.3.一小球沿斜面向上运动,其运动方程为(SI),则小球运动到最高点的时刻是多少?解小球运动到最高点时v=0,所以.4.一质点的运动方程为式中是正常数.试求:(1) 质点的运动轨迹;(2) 时刻质点的速度.解(提示:本题是在极坐标情况下求解运动轨迹及速度表式.)速度表式:.(1) 从②式得,代入①式,,螺旋线.(2)5.设质点的运动方程为,在计算质点的速度和加速度时:第一种方法是,先求出,然后根据及而求得结果;第二种方法是,先计算速度和加速度的分量,再合成求得结果,即.你认为两种方法中哪一种正确?解第二种方法是正确的.因为速度和加速度都是矢量,根据定义,所以.第一种方法中,及只考虑了矢径r的量值r随时间t的变化.根据定义,速度是描述位置变化快慢的大小及方向的物理量.从图1.4-5中看质点从位置1经过时间变化到位置2,位移,速度,而是的长度减去的长度:.从图中看出的长度||也不等于,所以也不是速度的大小.只有在直线运动中,速度的大小才等于.对加速度的大小也可以用同样方法加以讨论.6.已知一质点沿x轴运动,其加速度为,式中A,ω为常数,且t =0时,,.求运动方程.解由,,两边积分得由,两边积分得7.小球从某一高度h以速度u沿水平方向抛出,下落到地面上,发生碰撞后损失一部分能量.已知竖直方向的分速度碰撞后与碰撞前之比为k (k<1).设水平方向没有摩擦,因而水平方向分速度大小不变.试求从抛出小球到其停止跳跃之点的水平距离.解小球的运动轨迹如图1.4-7所示.第一次碰撞前,竖直方向的速度和运动的时间分别为.第一次碰撞后,竖直方向的速度,以碰撞后起跳的瞬间作时间的起点,竖直方向的位移,令,则第一次碰撞到第二次碰撞的时间,由得出,同理得到第n次碰撞后,竖直方向的速度为,第n次碰撞到第(n+1)次碰撞的时间为,故小球沿水平方向运动的总时间为.因为k<1,括号内为递减的无穷几何级数之和,所以.因而,小球从抛出到它停止跳跃时,水平距离为.8.求证:从原点在竖直平面内以相同的初速度向各个方向投射出的物体,它们的最高点位于同一椭圆上(忽略空气阻力).解如图1.4-8所示,设物体到达最高点的时间为,则.令最高点的坐标为,有所以.将上两式两边平方求和,得,即.此式为一椭圆方程,椭圆中心在.9.一人站在山坡上,山坡与水平面成角.他扔出一个初始速度为的小石子,与水平面成角向上.(1) 如忽略空气阻力,试求小石子落在斜坡上距离OP为处;(2) 由此证明,对于给定的和值,S在时有最大值.解(1) 取如图1.4-9所示的坐标系x O y,;速度在x O y平面x, y轴的分量.在x O y坐标系中的运动方程为:P点坐标(x,0).,代入①式得(2) ,固定,x是θ的函数,x有最大值.,,时有最大值.10.有一宽为l的大江,江水由北向南流去,设江中心流速为,靠两岸的流速为零,江中任一点的流速与江中心流速之差和江心至该点距离的平方成正比.今有相对于水的速度为的汽船由西岸出发,向东偏北方向航行,试求其航线轨迹方程以及到达东岸的地点.解设坐标为x处的水流速度为u,则.当x=0时,u=0,得,将③式代入②式得由③④两式消去t得航线轨迹方程(用到到达东岸地点.11.如图1.4-11所示,一辆汽车以速度在雨中行驶,雨滴落下的速度与竖直方向偏前角,问车后的一捆行李是否会被淋湿?解选雨滴为研究对象.设雨对车的速度为,.由速度矢量图1.4-11(b)可得,即.由上式可求得.当,即时,行李不会被雨淋湿,而当时,行李就会被淋湿.12.设甲船平行于平直的海岸线航行,离岸的距离为D,速率为,一艘速率为的淡水补给船乙从一港口出发去拦截这条船以提供淡水.(1) 试证乙船必须在甲船行驶过海岸线的某一点之前出发,这一点在乙船后边距离x处:;(2) 如果乙船在尽可能迟的时刻出发,问它在什么地方和什么时候截住这条船?解(1) 设乙船截住甲船所用的时间为t,则根据题意,②式代入①式得由得,故x在处取极小值(可证明),将代入③式得.(2) 由②式可得13.一升降机以加速度上升,当上升速度为时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74 m.计算:(1) 螺帽从天花板落在底面所需的时间;(2) 螺帽相对于升降机外固定柱子的下降距离.解(1)我们站在升降机里来看螺帽下落到底面所用的时间,.(2) .14.以速度v与地面成角发射一火箭,在驱动力、阻力和重力三者作用下,保持速度v不变的曲线运动.已知驱动力和阻力所产生的加速度只有切向分量,求轨迹方程.解如图1.4-14所示,选取自然坐标,,①式中,R为质点所在处的曲率半径,为g与轨迹法线之间的夹角(即切向方向与x轴的夹角).又,②将②式代入①式得,而,故.将上式积分,.当x=0时,,故,所以当x = 0时,y = 0,故= 0,.。
运动学
右, y 轴竖直向下 如图所示。 轴竖直向下, 如图所示。
o
x l x
h
l x
h y
v v v r = x i +h j
dy dx vy = = 0, v x = =? dt dt
设小船到坐标原点的距离为l, 设小船到坐标原点的距离为 任意时刻小船到 岸边的距离x总满足 岸边的距离 总满足 x 2 = l 2 − h 2 dx dl = 2l 两边对时间t 求导数, 两边对时间 求导数 得 2 x dt dt dl 绞车拉动纤绳的速率, = −u绞车拉动纤绳的速率 纤绳随时间在缩
O
∆v dv d2r & a = lim = = 2 =& r ∆t → ∆ 0 t dt dt
单位 : m/s2
1. 速度和加速度 – 矢量法
矢端曲线
速度 矢径矢端曲线切线
加速度 速度矢端曲线切线
Part C 速度和加速度
2. 速度和加速度 – 直角坐标系
z M(x,y,z) r k O i y x j x z y
Part B 点的运动方程
1.怎样描述一个点的运动? 1.怎样描述一个点的运动? 怎样描述一个点的运动
不同的坐标系,对于点的运动的描述是不同的。 不同的坐标系,对于点的运动的描述是不同的。 • 矢量表示; 矢量表示; • 直角坐标系; 直角坐标系; • 自然坐标系 . 使用运动方程以及轨迹方程来描述点的运动。 使用运动方程以及轨迹方程来描述点的运动。
y = (tanθ 0 )x −
令y = 0,得 ,
g 2(v0 cosθ 0 )
g
2
2
x
2
( tanθ 0 ) x −
2( v0 cosθ 0 )
力学--运动学
解:(1)
( 2)
v 2.0i 4.0tj
2 x 2 y
y 19.0 0.5x
2
8t dv d ( v v ) at et et et 2 dt dt 1 4t
第一章 运动学
12
物理学
第五版
6
a 随 t 变化 例:
例3 已知a=4t,t=0时,v0=5 m· s-1,x0=5 m, 求:(1)速度随时间的变化关系 v(t)=? (2) x x0 ?
z
P’(.t+dt) d r .P(t)
4 角加速度
d d 2 dt dt
第一章 运动学
x
8
物理学
第五版
4 角量与线量的关系
t 0, 线量:r , r , v , a (an , at )
角量: (t ), , ,
AB AB r
dv 4t 解 ( 1) a dt
dx ( 2) v dt
dv 4tdt
v0 0
v
t
解得:v v0 2t
t 2
2
x
( v 2 t ) d t d x 0 0 5 2 3 解得:x x0 x 5 v0t t 3
第一章 运动学y14Fra bibliotek物理学
第五版
6
a 随 v 变化 例:
dv 1.0 v 解 a dt v dv t v0 v 0 dt t v v0e dy t v v0 e dt y t t dy v0 e dt
0 0
o
v0
y
y 10 ( 1 e )
运动学基础知识
运动学基础知识运动学是物理学的一个分支,研究物体的运动规律和运动量的变化。
它涉及到速度、加速度、位移、时间等概念,是理解物体运动的基础。
本文将介绍运动学的基本概念和公式,以及它们在实际生活和科学研究中的应用。
1. 位置、位移和路径在运动学中,位置是指物体所处的空间坐标,通常用直角坐标系表示。
位移是指物体从一个位置到另一个位置的变化量,是个矢量量值。
路径是物体在运动过程中经过的轨迹,可以是直线、曲线或复杂的曲线。
2. 速度和速度的变化率速度是物体在单位时间内移动的位移,是一个矢量量值。
平均速度可以通过总位移除以总时间得到。
当时间间隔趋近于无穷小时,得到瞬时速度,即物体在某一时刻的速度。
速度的变化率称为加速度,是一个矢量量值。
平均加速度可以通过总速度变化量除以总时间得到。
当时间间隔趋近于无穷小时,得到瞬时加速度,即物体在某一时刻的加速度。
3. 动力学方程动力学方程描述了物体运动过程中的力学关系。
根据牛顿第二定律,物体的加速度与其受到的合外力成正比,与物体的质量成反比。
用公式表示为 F = ma,其中 F 是合外力,m 是物体的质量,a 是物体的加速度。
4. 一维运动一维运动是指运动仅发生在一个方向上的运动。
在一维运动中,位移、速度和加速度可以是正数、负数或零。
物体的加速度为零时,物体处于匀速运动状态;物体的加速度不为零时,物体处于匀加速运动状态。
在一维运动中,可以使用一些基本的公式来计算位移、速度和加速度之间的关系,如位移公式、速度公式和加速度公式。
5. 二维运动二维运动是指运动发生在二维平面上的运动。
在二维运动中,物体的位置可以用二维坐标来表示,速度和加速度可以分解为横向和纵向的分量。
在二维运动中,可以使用向量表示位移、速度和加速度。
位移向量是从初始位置指向末位置的矢量,速度向量是位移向量除以时间的矢量,加速度向量是速度向量除以时间的矢量。
6. 自由落体运动自由落体是指物体在重力作用下自由下落的运动。
运动学
忽略物体的形状和大小, 忽略物体的形状和大小,保留物体原有质量的一个理想 的物理点模型。 的物理点模型。
1)运动过程中,物体各部分运动相同 如物体的平动 ); )运动过程中,物体各部分运动相同(如 ;
2)物体的尺寸相对运动范围很小。 )物体的尺寸相对运动范围很小。
▲选择合适的参考系
以方便确定物体的运动性质; 以方便确定物体的运动性质; ▲建立恰当的坐标系 以定量地描述物体的运动; 以定量地描述物体的运动; ▲提出较准确的物理模型 以确定所提问题最基本运动律. 以确定所提问题最基本运动律
2
∆θ t A θ
O
参考
弧度/秒 弧度 秒2(rad/s2)
为恒量的圆周运动,称为匀变速圆周运动。 角加速度β为恒量的圆周运动,称为匀变速圆周运动。
dω = β dt
∫ω
∫θ
θ
0
ω
0
dω = ∫ β dt
0
t 0
t
ω = ω0 + βt
1 2 θ = θ0 +ω0t + βt 2 3 2 ω −ω0 = 2(θ −θ0 )
dv aτ = τ dt
dv d s aτ = = 2 dt dt
沿切向方向
2
描述速度大小随时间的变化快慢,即速率对时间的变化率。 描述速度大小随时间的变化快慢,即速率对时间的变化率。
dτ an = v dt
an =
v
2
ρ
沿法线方向。 沿法线方向。若是圆周运动则指向圆心 描述速度方向随时间的变化快慢,即速度方向的变化率。 描述速度方向随时间的变化快慢,即速度方向的变化率。
dv y
2
2
2
dv x d 2 x = 2 ax = dt dt dv y d 2 y 中 a y = = 2 dt dt 2 a = dvz = d z 2 z dt dt
第四章运动学
2、平面运动分解为平动和转动
如图,分析平面图形S的 运动,当图形上的A点不动时, 刚体作定轴转动;刚不变时, 刚体作平动。
刚体的平面运动是平动和转动的合成运动。
平面运动
平动 图中,选择A点为基点,车 轮的平面运动可以看成是车轮 随同车的平动和相对车厢的转 动合成。 刚体的平面运动可以分解为随基 点的平动和绕基点的转动。 转动
2)有关加速度瞬心 在图形中总能找到一点,其加速度为零,该点称 为加速度瞬心。 ①一般情况下,加速度瞬心和速度瞬心不是同一 个点; ②一般情况下,对于加速度没有类似速度投影定 理的关系式。
通常:
在某瞬时,当图形ω=0时,图形瞬时平动,有:
例:半径为R的车轮沿直线作纯滚 动,已知轮心O速度vO及加速度aO, 求车轮与轨道接触点P的加速度。 分析:由加速度基点合成法
合成运动就是把相对于某一参考系的运动由相对 于其它参考系的几个运动进行组合。
1)基本概念
动点:研究分析对象;
定参考系:与地面固定的参考系,用Oxyz 表示;
动参考系:相对于定系运动的参考系,用O'x'y'z' 表示; 绝对运动:动点相对于定系的运动;
相对运动:动点相对于动系的运动;
牵连运动:动系相对于定系的运动;
5、平面图形内各点的加速度
1)基点法: 某一瞬时,平面图形内A点的 加速度为aA,图形的角速度和角加 速度分别为ω和ε
以A点为基点,B点的运动可 以看成是随图形的平动和绕A点的 转动,根据加速度合成定理,有:
由:a= at+an 得:
得: 其中:aBA=AB· ε,为切向加速度 aBAn=AB· 2,为法向加速度 ω 平面图形内任意一点的加速度等于基点的加速度 与该点随图形绕基点转动的切向加速度和法向加速度 的矢量和。
第一讲-运动学的基本概念
第一讲运动学的基本概念【学习目的】1、理解质点、时间间隔、时刻、参考系、位移、速度、加速度等基本概念。
2、理解相关知识之间的联系和区别(如时间和时刻、位移和路程、瞬时速度和平均速度、速度和加速度等)。
【知识梳理】一、质点1、物体可被看成质点的条件若物体的大小和形状对所研究的问题没有影响,或者其影响可以忽略不计时该物体可看成质点。
2、对质点的理解(1)质点是对实际物体科学的抽象,是研究物体运动时,抓住主要因素,忽略次要因素,对实际物体进行的近似,是一种理想化模型,真正的质点是不存在的。
(2)质点是只有质量而无大小和形状的点;质点占有位置但不占有空间。
(3)能把物体看成质点的几种情况①平动的物体通常可视为质点(所谓平动,就是物体上任意一点的运动与整体的运动有相同特点的运动),如水平传送带上的物体随传送带的运动。
②有转动,但相对平动而言可以忽略时,也可以把物体视为质点.如汽车在运行时,虽然车轮转动,但我们关心的是车辆整体的运动快慢,故汽车可看做质点。
③物体的大小和形状对所研究运动的影响可以忽略不计时,不论物体大小如何,都可将其视为质点。
二、参考系1、对参考系的理解(1)运动是绝对的,静止是相对的.一个物体是运动的还是静止的,都是相对于参考系而言的。
(2)考系的选取可以是任意的。
(3)判断一个物体是运动还是静止,如果选择不同的物体作为参考系,可能得出不同的结论。
(4)参考系本身既可以是运动的物体,也可以是静止的物体.在讨论问题时,被选为参考系的物体,我们常假定它是静止的。
(5)比较两个物体的运动情况时,必须选择同一个参考系。
2、选取参考系的原则选取参考系时,应以观测方便和使运动的描述尽可能简单为原则。
一般应根据研究对象和研究对象所在的系统来决定。
例如研究地球公转的运动情况,一般选太阳作为参考系;研究地面上物体的运动时,通常选地面或相对地面静止的物体为参考系;研究物体在运动的火车上的运动情况时,通常选火车为参考系。
运动学
名字解释终末旋转:伸膝的开链运动中,从膝关节20度屈至完全伸直胫骨相对股骨外旋20度所有韧带拉紧,膝关节螺旋锁扣机制。
是膝关节最稳定状态。
力矩:是力和力臂的乘积,是使物的转动状态改变的原因Q角:股四头肌腱中线和馈韧带中线在嵌骨的中心形成一个夹角,称“Q角”,平均值为13°~18°。
主动不足:多关节肌作为原动肌工作时,其肌力充分作用于一个关节后,就不能再充分作用于其他关节,这种现象叫多关节肌“主动不足”(其实质是肌力不足)。
稳定角:指重力作用线和重心至支撑面边缘相应点的连线间的夹角简答题髋关节由哪些组成?髋臼、股骨头、股骨颈、股骨近端与内部骨结构。
制动对骨骼肌的影响?肌代谢障碍、肌萎缩、肌力下降、肌性挛缩。
制动对骨与关节的影响?骨代谢异常(骨钙负平衡、骨密度降低)、关节挛缩、关节退行性变、异位骨化。
臀大肌步态形成的机制?由于伸髋肌群无力,行走时躯干用力后仰,重力线通过髋关节后方以维持被动伸髋,并控制躯干的惯性向前,形成仰胸、凸腹的姿态。
肌肉的收缩运动形式?等长收缩、等张收缩、单收缩、强直收缩劲椎病的分型:颈型、神经根型、脊髓型、椎动脉型、交感型、混合型静力性运动的描述?骨骼肌收缩不产生明显的关节活动,是维持躯体一定姿势的基础。
抗抗阻运动:由骨骼肌主动收缩克服自身重力和外来阻力完成全关节活动范围的运动;肌力达4~5级时,可以进行抗阻运动,抗阻运动可以有效增强肌力和耐力、改善关节活动和神经系统的协调功能。
运动形式:上肢基本运动形式(推、拉、鞭打)下肢运动形式(缓冲、磴伸、鞭打)全身运动形式(摆动、躯干扭转、相向运动)下肢呈稳定性的评价指标:稳定角、稳定系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 运动学
补充知识点: 1.参考系。
2.斜抛。
3.牵连物系速度。
例1、一只老鼠从老鼠洞沿直线爬出,已知爬出速度v 的大小与距老鼠洞中心的距离s 成反比,当老鼠到达距老鼠洞中心距离s 1=1m 的A 点时,速度大小为v 1=20cm/s ,问当老鼠到达距老鼠洞中心s 2=2m 的B 点时,其速度大小v 2=?老鼠从A 点到达B 点所用的时间t=?
例2、如图所示,在同一铅垂面上向图示的两个方向以s m v s m v B
A /20/10==、的初速度抛出
A 、
B 两个质点,问1s 后A 、B 相距多远?
例3.由于汽车在冰面上行驶时摩擦因数很小,所以其最大加速度不能超过a=0.5m/s 2.根据要求,驾驶员必须在最短时间内从A 点到达B 点,直线AB 垂直于汽车的初始速度υ,如图所示.如果A 、B 之间的距离AB=375 m ,而初速度υ=10 m/s ,那么这个最短时间为多少?其运动轨迹是什么?
例4、如图所示,从A 点以0v 的初速度抛出一个小球,在离A 点水平距离为s 处有一堵高度为h 的墙BC ,要求小球能越过B 点。
问小球以怎样的角度抛出,才能使
例5、图中的AC 、BD 两杆均以角速度ω绕A 、B 两固定轴在同一竖直面内转动,转动方向如图示。
当t=0时,==βa 60º,试求t 时刻两棒交点M 点的速度和加速度。
课后练习:
1.线段AB 长S ,分成n 等分,一质点由A 静止出发以加速度a 向B 作分段匀加速度直线运动,当质点到达每一等分的末端时,它的加速度增加a
n
,求质点运动到B 点时的速度。
2.质点P 1,以1υ由A 向B 作匀速运动,同时质点P 2以2υ从B 指向C 作匀速运动,AB l =,∠ABC=α且为锐角,如图2—8,试确定何时刻P 1P 2的间距d 最短,为多少?
3.处于一平直轨道上的甲、乙两物相距S ,同时同向开始运动.甲以初速0υ、加速度a 1向乙作匀加速运动,乙作初速为零、加速度为a 2的匀加速直线运动,设两车相互超前时各不影响,试讨论两车相遇的条件及对应的相遇次数.
4.在倾角为030α=足够长的斜坡上,以初速度0υ发射一炮弹,设0υ与斜坡的夹角为0
60β=,如图2—9所示,求炮弹落地点离发射点的距离L .
5. 两直杆1l 、2l ,交角为θ,交点为A ,若二杆各以垂直于自身的速度1υ、2υ沿着纸平面运动,如图2—10所示.求交点A 运动速度的大小.
6. 一块小木块P 放在很粗糙的水平面上,被一根绳拉着滑动,绳的另一端Q 以速度0υ在轨道中运动,绳长l ,绳与轨道的夹角是θ(图2—11).求此时P 的速度和加速度.
7. 一个足够大的房间高为H ,一盏灯挂在离地面高h 处,灯泡破裂,碎片以同样大小的速度向四面八方飞去,如果碎片与天花板的碰撞是弹性的,与地板的碰撞是完全非弹性的,那么碎片洒落在地板上的半径多大?若H 二5m ,0υ=10 m/s ,求:h 为多大时,R 有最大值,并求出该最大值。
8、物体做斜上抛运动
(1)已知抛出速度v 0和抛射角θ,求物体的水平位移S 。
(2)假设一个人站在光滑冰面上,以相对自己的速度v 0斜向上抛出一个球,当小球下落至抛出点高度时,水平位移为L ,设人与球的质量分别为M 和m ,求抛出速度v 0的最小值,以及小球抛出时速度与水平方向的夹角θ。
9、二次世界大战中物理学家曾经研究,当大炮的位置固定,以同一速度v 0沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包络线。
此抛物线为在大炮上方h=v 2/2g 处,以v 0平抛物体的轨迹。
)
10、一只木筏离开河岸,初速度为V ,方向垂直于岸边,航行路线如图。
经过时间T 木筏划到路线上标有符号处。
河水速度恒定U 用作图法找到在2T ,3T ,4T 时刻木筏在航线上的确切位置。
11、细杆AB 长L ,两端分别约束在x 、 y 轴上运动,(1)试求杆上与A 点相距aL (0< a <1)的P 点运动轨迹;(2)如果v A 为已知,试求P 点的x 、 y 向分速度v Px 和v Py 对杆方位角θ的函数。