简单的逻辑联结词与量词
简单的逻辑联结词、全称量词与存在量词
![简单的逻辑联结词、全称量词与存在量词](https://img.taocdn.com/s3/m/f45c991310a6f524ccbf85c7.png)
5 例1、已知命题p : x R, 使得 sin x ;命题q:x R, 2 C ________ 都有x 2 x 1 0, 下列结论中正确的是 __________D A.命题" p q" 是真命题 B.命题" p q" 是真命题 C.命题" p q" 是真命题 D.命题" p q" 是真命题
“有些” “有一个” “对某个” “有 的”等. 通常,将含有变量x的语句用p(x)、q(x)、
r(x)表示,变量x的取值范围用M表示。 特称命题“存在 M中的一个x ,使p(x)成立.
简记为:x M,p(x)
读作“存在一个x属于M,使P(x)成立”。
3、全称命题与特称命题的改写
含有一个量词的全称命题的否定,有下面的结论 全称命题 p : x M,p(x)
① 是真命题的为________.①p∨q;②p∧q.
5、已知命题P :" x [0,1],a e x,命题q :" x R, x 2 4 x a 0" 若命题p q是真命题,则实数a的 C 取值范围是 __________ __ A.( 4,) B.[1,4] C.[e,4] D.( ,1]
通常,将含有变量x的语句用p(x)、q(x)、 r(x)表示,变量x的取值范围用M表示。 全称命题“对 M中任意一个x, 有p(x)成立.
简记为:x M,p(x)
读作“任意x属于M,有P(x)成立”。
2、短语“存在一个”“至少一个” 在逻辑中通 常叫做存在量词.用符号“ ”表示。 含有存在量词的命题,叫做特称命题。 常见的存在量词还有
1.如果命题“p或q”是真命题,命题“p且q” 是假命题,那么( C ) A. 命题p与命题q都是假命题 B. 命题p与命题q都是真命题
简单的逻辑联结词-全称量词与存在量词
![简单的逻辑联结词-全称量词与存在量词](https://img.taocdn.com/s3/m/3aaac4d6690203d8ce2f0066f5335a8102d266fd.png)
可得a2-5a-3≥3, ∴a≥6或a≤-1. 命题q:不等式x2+ax+2<0有解,∴Δ=a2-8>0.
a 2 2或a 2 2.
从而命题q为假命题时, 2 2 a 2 2,
∴p真q假时,a的取值范围为 2 2 a 1.
练习: (1)x0 [1,1], x02 x0 1 a 0成立, 求a的取值范围.
(2)x [1,1], x02 x0 1 a 0成立,
求a的取值范围.
解 : (1)x0 [1,1], a x02 x0 1成立,
a ( x02 x0 1)max .
题型分类 深度剖析
题型一 用“或”、“且”、“非” 联结简单命题并判断其真假
【例1】写出由下列各组命题构成的“p∨q”、
“p∧q”、“ p”形式的复合命题,并判断真假.
(1)p:1是质数;q:1是方程x2+2x-3=0的根; (2)p:平行四边形的对角线相等;q:平行四边形的
对角线互相垂直; (3)p:0∈ ;q:{x|x2-3x-5<0} R; (4)p:5≤5;q:27不是质数.
x0 [1,1], x02 x0 a 3 (2)x [1,1],
1的 a x02
值域:[ 3 ,3] x0 14恒成
立
,
a ( x02 x0 1)min .
y由(1)知:a 3 4
例5:已知c 0,设P:函数y c x在R上单调 递减,Q : 不等式x x 2c 1的解集为R, 若P和Q有且只有一个正确,求c的取值范围
(C)
A. a∈R,f(x)在(0,+∞)上是增函数
逻辑联结词、量词 知识点+例题 分类全面
![逻辑联结词、量词 知识点+例题 分类全面](https://img.taocdn.com/s3/m/810097e5ec3a87c24028c46b.png)
p或q联结起来,就得到一个新命题,记作=∈B x x{|(加以否定,得到一个新的命题,记作在全集U中的补集:答案 B解析 因为M N ,所以a ∈M ⇒a ∈N ,反之,则不成立,故“a ∈N ”是“a ∈M ”的必要而不充分条件.故选B.6.若命题p :对于任意x ∈[-1,1],有f (x )≥0,则对命题p 的否定是________.答案 存在x 0∈[-1,1],使f (x 0)<07.已知命题p :x 2+2x -3>0;命题q :13-x>1,若“⌝q 且p ”为真,则x 的取值范围是____________________. 答案 (-∞,-3)∪(1,2]∪[3,+∞)解析 因为“綈q 且p ”为真,即q 假p 真,而q 为真命题时,x -2x -3<0,得2<x <3,所以q 假时有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,解得x <-3或1<x ≤2或x ≥3, 所以x 的取值范围是x <-3或1<x ≤2或x ≥3.8.下列结论:①若命题p :∃x ∈R ,tan x =1;命题q :∀x ∈R ,x 2-x +1>0.则命题“p ∧(⌝q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b=-3; ③命题“若x 2-3x +2=0,则x =1”的逆否命题:“若x ≠1,则x 2-3x +2≠0”.其中正确结论的序号为________.答案 ①③解析 ①中命题p 为真命题,命题q 为真命题,所以p ∧(綈q )为假命题,故①正确;②当b =a =0时,有l 1⊥l 2,故②不正确;③正确.所以正确结论的序号为①③.9.已知c >0,且c ≠1,设p :函数y =c x 在R 上单调递减;q :函数f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,若“p 且q ”为假,“p 或q ”为真,求实数c 的取值范围.解 ∵函数y =c x 在R 上单调递减,∴0<c <1.即p :0<c <1,∵c >0且c ≠1,∴綈p :c >1.又∵f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,∴c ≤12. 即q :0<c ≤12,∵c >0且c ≠1,∴綈q :c >12且c ≠1. 又∵“p 或q ”为真,“p 且q ”为假,∴p 真q 假或p 假q 真.①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1. ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅. 综上所述,实数c 的取值范围是⎩⎨⎧⎭⎬⎫c |12<c <1. 能力提升训练。
简单的逻辑联结词、全称量词与存在量词
![简单的逻辑联结词、全称量词与存在量词](https://img.taocdn.com/s3/m/7c1c49df2cc58bd63186bd95.png)
第3节简单的逻辑联结词、全称量词与存在量词最新考纲 1.了解逻辑联结词“或”、“且”、“非”的含义;2.理解全称量词与存在量词的意义;3.能正确地对含有一个量词的命题进行否定.知识梳理1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p∧q,p∨q,綈p的真假判断2.全称量词与存在量词(1)全称量词:短语“所有的”、“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)存在量词:短语“存在一个”、“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题和特称命题[常用结论与微点提醒]1.含有逻辑联结词的命题真假判断口诀:p∨q→见真即真,p∧q→见假即假,p 与綈p→真假相反.2.含有一个量词的命题的否定规律是“改量词,否结论”.诊断自测1.思考辨析(在括号内打“√”或“×”)(1)命题“5>6或5>2”是假命题.()(2)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.()(3)“长方形的对角线相等”是特称命题.()(4)∃x0∈M,p(x0)与∀x∈M,綈p(x)的真假性相反.()解析(1)错误.命题p∨q中,p,q有一真则真.(2)错误.p∧q是真命题,则p,q都是真命题.(3)错误.命题“长方形的对角线相等”是全称命题.答案(1)×(2)×(3)×(4)√2.(选修1-1P26A组T3改编)命题p:∃x0∈R,x0>1的否定是()A.綈p:∀x∈R,x≤1B.綈p:∃x∈R,x≤1C.綈p:∀x∈R,x<1D.綈p:∃x∈R,x<1解析特称命题的否定为全称命题.∴綈p:∀x∈R,x≤1.答案 A3.(2018·贵阳调研)下列命题中的假命题是()A.∃x0∈R,lg x0=1B.∃x0∈R,sin x0=0C.∀x∈R,x3>0D.∀x∈R,2x>0解析当x=10时,lg 10=1,则A为真命题;当x=0时,sin 0=0,则B为真命题;当x <0时,x 3<0,则C 为假命题;由指数函数的性质知,∀x ∈R ,2x >0,则D 为真命题.故选C.答案 C4.(2017·山东卷)已知命题p :∃x ∈R ,x 2-x +1≥0;命题q :若a 2<b 2,则a <b .下列命题为真命题的是( )A.p ∧qB.p ∧(綈q )C.(綈p )∧qD.(綈p )∧(綈q )解析 ∵一元二次方程x 2-x +1=0的判别式Δ=(-1)2-4×1×1<0, ∴x 2-x +1>0恒成立,∴p 是真命题,綈p 为假命题.∵当a =-1,b =-2时,(-1)2<(-2)2,但-1>-2,∴q 为假命题,綈q 为真命题.根据真值表可知p ∧(綈q )为真命题,p ∧q ,(綈p )∧q ,(綈p )∧(綈q )为假命题.答案 B5.若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________. 解析 ∵函数y =tan x 在⎣⎢⎡⎦⎥⎤0,π4上是增函数,∴y max =tan π4=1,依题意,m ≥y max ,即m ≥1.∴m 的最小值为1.答案 1考点一 含有逻辑联结词的命题的真假判断【例1】 (1)设a ,b ,c 是非零向量.已知命题p: 若a ·b =0,b ·c =0,则a ·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A.p ∨qB.p ∧qC.(綈p )∧(綈q )D.p ∧(綈q )(2)(2018·深圳联考)已知命题p :不等式ax 2+ax +1>0的解集为R ,则实数a ∈(0,4),命题q :“x 2-2x -8>0”是“x >5”的必要不充分条件,则下列命题正确的是( )A.p ∧qB.p ∧(綈q )C.(綈p )∧(綈q )D.(綈p )∧q解析 (1)取a =c =(1,0),b =(0,1),显然a ·b =0,b ·c =0,但a ·c =1≠0,∴p 是假命题.又a ,b ,c 是非零向量,由a ∥b 知a =x b ,由b ∥c 知b =y c ,∴a =xy c ,∴a ∥c ,∴q 是真命题.综上知p ∨q 是真命题,p ∧q 是假命题.又∵綈p 为真命题,綈q 为假命题.∴(綈p )∧(綈q ),p ∧(綈q )都是假命题.(2)命题p :当a =0时,有1>0恒成立;当a ≠0时 ,得⎩⎨⎧a >0,Δ=a 2-4a <0,解之得0<a <4. ∴实数a ∈[0,4),因此p 假,綈p 是真命题.命题q :由x 2-2x -8>0,得x >4或x <-2.因此“x 2-2x -8>0”是“x >5”的必要不充分条件,q 为真命题.故(綈p )∧q 为真命题.答案 (1)A (2)D规律方法 1.“p∨q”、“p∧q”、“綈p”形式命题真假的判断关键是对逻辑联结词“或”“且”“非”含义的理解,其操作步骤是:(1)明确其构成形式;(2)判断其中命题p,q的真假;(3)确定“p∨q”“p∧q”“綈p”形式命题的真假.2.p且q形式是“一假必假,全真才真”,p或q形式是“一真必真,全假才假”,非p则是“与p的真假相反”.【训练1】(2018·郑州调研)命题p:函数y=log2(x-2)的单调增区间是[1,+∞),命题q:函数y=13x+1的值域为(0,1).下列命题是真命题的为()A.p∧qB.p∨qC.p∧(綈q)D.綈q解析由于y=log2(x-2)在(2,+∞)上是增函数,∴命题p是假命题.由3x>0,得3x+1>1,所以0<13x+1<1,所以函数y=13x+1的值域为(0,1),故命题q为真命题.所以p∧q为假命题,p∨q为真命题,p∧(綈q)为假命题,綈q为假命题. 答案 B考点二含有一个量词命题的否定及真假判定【例2】(1)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n0(2)(2018·昆明一中质检)已知命题p:∀x∈R,x+1x≥2;命题q:∃x0∈(0,+∞),x20>x30,则下列命题中为真命题的是()A.(綈p )∧qB.p ∧(綈q )C.(綈p )∧(綈q )D.p ∧q解析 (1)全称命题的否定为特称命题,∴命题的否定是:∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0.(2)对于p :当x =-1时,x +1x =-2,∴p 为假命题.取x 0∈(0,1),此时x 20>x 30,∴q 为真命题.从而綈p 为真命题,(綈p )∧q 为真命题.答案 (1)D (2)A规律方法 1.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论.2.判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内至少找到一个x =x 0,使p (x 0)成立.【训练2】 命题p :存在x ∈⎣⎢⎡⎦⎥⎤0,π2,使sin x +cos x >2;命题q :“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是“∀x ∈(0,+∞),ln x ≠x -1”,则四个命题:( 綈p )∨(綈q ),p ∧q ,(綈p )∧q ,p ∨(綈q )中,正确命题的个数为( )A.1B.2C.3D.4解析 因为sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2,所以命题p 是假命题;又特称命题的否定是全称命题,因此命题q 为真命题.则(綈p )∨(綈q )为真命题,p ∧q 为假命题,(綈p )∧q 为真命题,p ∨(綈q )为假命题.∴四个命题中正确的有2个命题. 答案 B考点三 由命题的真假求参数的取值范围【例3】 (1)已知命题p :“∀x ∈[0,1],a ≥e x ”,命题q :“∃x 0∈R ,x 20+4x 0+a=0”.若命题“p ∧q ”是真命题,则实数a 的取值范围是( )A.(4,+∞)B.[1,4]C.[e ,4]D.(-∞,-1) (2)已知f (x )=ln(x 2+1),g (x )=⎝ ⎛⎭⎪⎫12x -m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________.解析 (1)由题意知p 与q 均为真命题,由p 为真,可知a ≥e ,由q 为真,知x 2+4x +a =0有解,则Δ=16-4a ≥0,∴a ≤4.综上可知e ≤a ≤4.(2)当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时,g (x )min =g (2)=14-m ,由f (x )min≥g (x )min ,得0≥14-m ,所以m ≥14.答案 (1)C (2)⎣⎢⎡⎭⎪⎫14,+∞ 规律方法 1.由含逻辑联结词的命题真假求参数的方法步骤:(1)求出每个命题是真命题时参数的取值范围;(2)根据每个命题的真假情况,求出参数的取值范围.2.全称命题可转化为恒成立问题含量词的命题中参数的取值范围,可根据命题的含义,利用函数的最值解决.【训练3】 本例(2)中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是_________________________________________.解析 当x ∈[1,2]时,g (x )max =g (1)=12-m ,由f (x )min ≥g (x )max ,得0≥12-m ,∴m ≥12.答案 ⎣⎢⎡⎭⎪⎫12,+∞基础巩固题组(建议用时:25分钟)一、选择题1.(2018·咸阳模拟)命题p:∀x<0,x2≥2x,则命题綈p为()A.∃x0<0,x20≥2x0B.∃x0≥0,x20<2x0C.∃x0<0,x20<2x0D.∃x0≥0,x20≥2x0解析全称命题的否定,应先改写量词,再否定结论,∴綈p:∃x0<0,x20<2x0.答案 C2.(2015·全国Ⅰ卷)设命题p:∃n∈N,n2>2n,则綈p为()A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∃n∈N,n2=2n解析命题p的量词“∃”改为“∀”,“n2>2n”改为“n2≤2n”,∴綈p:∀n∈N,n2≤2n.答案 C3.若命题p:∀x∈R,log2x>0,命题q:∃x0∈R,2x0<0,则下列命题为真命题的是()A.p∨(綈q)B.p∧qC.(綈p)∧qD.p∨q解析命题p和命题q都是假命题,则命题綈p和命题綈q都是真命题,故选A.答案 A4.第十三届全运会于2017年8月27日在天津市隆重开幕,在体操预赛中,有甲、乙两位队员参加.设命题p是“甲落地站稳”,q是“乙落地站稳”,则命题“至少有一位队员落地没有站稳”可表示为()A.(綈p )∨(綈q )B.p ∨(綈q )C.(綈p )∧(綈q )D.p ∨q解析 命题“至少有一位队员落地没有站稳”包含以下三种情况:“甲、乙落地均没有站稳”、“甲落地没站稳,乙落地站稳”、“乙落地没有站稳,甲落地站稳”,故可表示为(綈p )∨(綈q ).或者,命题“至少有一位队员落地没有站稳”等价于命题“甲、乙均落地站稳”的否定,即“p ∧q ”的否定选A.答案 A5.(2018·成都调研)已知命题p :对任意x ∈R ,总有|x |≥0;q :x =1是方程x +2=0的根.则下列命题为真命题的是( )A.p ∧(綈q )B.(綈p )∧qC.(綈p )∧(綈q )D.p ∧q解析 由题意知命题p 是真命题,命题q 是假命题,故綈p 是假命题,綈q 是真命题,由含有逻辑联结词的命题的真值表可知p ∧(綈q )是真命题.答案 A6.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( )A.(0,4]B.[0,4]C.(-∞,0]∪[4,+∞)D.(-∞,0)∪(4,+∞) 解析 因为命题p :∀x ∈R ,ax 2+ax +1≥0,所以命题綈p :∃x 0∈R ,ax 20+ax 0+1<0,则a <0或⎩⎨⎧a >0,Δ=a 2-4a >0,解得a <0或a >4.答案 D7.以下四个命题:①∀x ∈R ,x 2-3x +2>0恒成立;②∃x ∈Q ,x 2=2;③∃x ∈R ,x 2+1=0;④∀x ∈R ,4x 2>2x -1+3x 2,其中真命题的个数为( )A.0B.1C.2D.4解析 ∵Δ=(-3)2-4×2>0, ∴当x >2或x <1时,x 2-3x +2>0才成立,∴①为假命题;当且仅当x =±2时,x 2=2,∴不存在x ∈Q ,使得x 2=2,∴②为假命题; 对∀x ∈R ,x 2+1≠0,∴③为假命题;④中,当x =1时,4x 2=2x -1+3x 2;则④为假命题.答案 A8.(2018·北京朝阳区模拟)已知函数f (x )=a 2x -2a +1.若命题“∀x ∈(0,1),f (x )≠0”是假命题,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,1 B.(1,+∞) C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎭⎪⎫12,1∪(1,+∞) 解析 ∵函数f (x )=a 2x -2a +1,命题“∀x ∈(0,1),f (x )≠0”是假命题,∴原命题的否定是:“∃x 0∈(0,1),使f (x 0)=0”是真命题,∴f (1)f (0)<0,即(a 2-2a +1)(-2a +1)<0,∴(a -1)2(2a -1)>0,解得a >12,且a ≠1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫12,1∪(1,+∞). 答案 D二、填空题9.(2018·河北“五个一”名校联考改编)命题“∃x 0∈R ,1<f (x 0)≤2”的否定是________.答案 ∀x ∈R ,f (x )≤1或f (x )>210.若命题“∃x 0∈R ,使得x 20+(a -1)x 0+1<0”是真命题,则实数a 的取值范围是________.解析 ∵“∃x 0∈R ,使得x 20+(a -1)x 0+1<0”是真命题,∴Δ=(a -1)2-4>0,即(a -1)2>4,∴a -1>2或a -1<-2,∴a >3或a <-1.答案 (-∞,-1)∪(3,+∞)11.(2018·石家庄调研)已知下列四个命题:①“若x 2-x =0,则x =0或x =1”的逆否命题为“若x ≠0且x ≠1,则x 2-x ≠0”; ②“x <1”是“x 2-3x +2>0”的充分不必要条件;③命题p :存在x 0∈R ,使得x 20+x 0+1<0,则綈p :任意x ∈R ,都有x 2+x +1≥0;④若p ∧q 为假命题,则p ,q 均为假命题.其中为真命题的是________(填序号).解析 显然①③正确;②中,x 2-3x +2>0⇔x >2或x <1.∴“x <1”是“x 2-3x +2>0”的充分不必要条件,②正确;④中,若p ∧q 为假命题,则p ,q 至少有一个假命题,④错误.答案 ①②③12.已知命题p :x 2+2x -3>0;命题q :13-x>1,若“(綈q )∧p ”为真,则x 的取值范围是________.解析 因为“(綈q )∧p ”为真,即q 假p 真,而q 为真命题时,x -2x -3<0,即2<x <3,所以q 为假命题时,有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎨⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3, 所以x 的取值范围是{x |x ≥3或1<x ≤2或x <-3}.答案 (-∞,-3)∪(1,2]∪[3,+∞)能力提升题组(建议用时:10分钟)13.命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( )A.∀x ∈R ,∃n ∈N *,使得n <x 2B.∀x ∈R ,∀n ∈N *,使得n <x 2C.∃x ∈R ,∃n ∈N *,使得n <x 2D.∃x 0∈R ,∀n ∈N *,使得n <x 20解析 改变量词,否定结论.∴綈p 应为:∃x 0∈R ,∀n ∈N *,使得n <x 20.答案 D14.(2018·江西红色七校联考)已知函数f (x )=⎩⎨⎧3x ,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解,命题q :若m =19,则f (f (-1))=0,那么,下列命题为真命题的是( )A.p ∧qB.(綈p )∧qC.p ∧(綈q )D.(綈p )∧(綈q )解析 因为3x >0,当m <0时,m -x 2<0,所以命题p 为假命题;当m =19时,因为f (-1)=3-1=13,所以f (f (-1))=f ⎝ ⎛⎭⎪⎫13=19-⎝ ⎛⎭⎪⎫132=0, 所以命题q 为真命题,逐项检验可知,只有(綈p )∧q 为真命题.答案 B15.(2018·安徽江南十校联考)已知命题p :∃x 0∈R ,(m +1)(x 20+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∧q 为假命题,则实数m 的取值范围为________.解析 由命题p :∃x 0∈R ,(m +1)(x 20+1)≤0可得m ≤-1;由命题q :∀x ∈R ,x2+mx +1>0恒成立,即Δ=m 2-4<0,可得-2<m <2.因为p ∧q 为假命题,所以m ≤-2或m >-1.答案 (-∞,-2]∪(-1,+∞)16.(2018·郑州质量预测)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎢⎡⎦⎥⎤12,1,∃x 2∈[2,3],使得f (x 1)≤g (x 2),则实数a 的取值范围是________. 解析 依题意知f (x )max ≤g (x )max .∵f (x )=x +4x 在⎣⎢⎡⎦⎥⎤12,1上是减函数, ∴f (x )max =f ⎝ ⎛⎭⎪⎫12=172.又g (x )=2x +a 在[2,3]上是增函数,∴g (x )max =8+a , 因此172≤8+a ,则a ≥12.答案 ⎣⎢⎡⎭⎪⎫12,+∞。
简单的逻辑联结词、全称量词与存在量词
![简单的逻辑联结词、全称量词与存在量词](https://img.taocdn.com/s3/m/32b8c47fd4d8d15abf234ebc.png)
简单的逻辑联结词、全称量词与存在量词
【知识重温】
一、必记3个知识点
1.简单的逻辑联结词
(1) 命 题 中 的 ________
_________ 叫 做 逻 辑 联 结
判断真假 、 __________
判断为真 、判断为假
词.
(2)命题p且q、p或q、非p的真假判断
p
q
真
真
p且q
若q,则p
1
-x
+e ≥2,命题q:∃x0∈(0,+∞),2x0 = ,则下列判断正确的是
2
(
)
A.p∧q是真命题
B.(綈p)∧(綈q)是真命题
C.p∧(綈q)是真命题
D.(綈p)∧q是真命题
1
x
-x
x
解析:因为e +e =e + ≥2成立,所以命题p是真命题;又由
e
1
2x0 = =2 - 1 ,得x0 =-1∉(0,+∞),所以命题q是假命题.所以
______
真
假
______
綈q,则綈p
假
假
真
假
假
假
p或q
若______
p,则綈q
真
____
没有关系
____
必要
非p
假
相同
__
____
充分
____
真
2.全称量词与存在量词
(1)全称量词:短语“所有的”“任何一个”在逻辑中通常叫做全
充分不必要
称量词,用“∀”表示;含有全称量词的命题叫做________.
不管是全称命题,还是特称命题,若其真假不容易正面判断时,
可先判断其否定的真假.
命题
简单的逻辑联结词、全称量词与存在量词
![简单的逻辑联结词、全称量词与存在量词](https://img.taocdn.com/s3/m/88b7ee9b6bd97f192379e93a.png)
简单的逻辑联结词、全称量词与存在量词课前双击巩固1.简单的逻辑联结词命题中的、、叫作逻辑联结词,用符号分别表示为、、.2.全称量词与存在量词(1)短语“对所有的”“对任意一个”在逻辑中通常叫作,用符号“”表示.(2)短语“存在一个”“至少有一个”在逻辑中通常叫作,用符号“”表示.(3)含有一个量词的命题的否定:全称命题p:∀x∈M,p(x),它的否定是.特称命题q:∃x0∈M,q(x0),它的否定是.常用结论1.否命题是把原命题的条件与结论都否定,命题的否定只需否定命题的结论.2.用“并集”的概念来理解“或”,用“交集”的概念来理解“且”,用“补集”的概念来理解“非”.3.记忆口诀:(1)“p或q”,有真则真;(2)“p且q”,有假则假;(3)“非p”,真假相反.4.命题p∧q的否定是p∨q;命题p∨q的否定是p∧q.题组一常识题1.[教材改编]给出下列命题:①函数y=ln x是减函数;②2是方程x+2=0的根又是方程x-2=0的根;③28是5的倍数或是7的倍数.其中是“p或q”形式的命题的是.(填序号)2.[教材改编]p∨q是真命题,q是真命题,则p是(填“真”或“假”)命题.3.已知命题p:∃x0∈R,x02+x0-1<0,则命题p是.4.[教材改编]命题“有的四边形是平行四边形”的否定是.题组二常错题◆索引:全称命题或特称命题的否定出错;不会利用真值表判断命题的真假;复合命题的否定中出现逻辑联结词错误;考查命题真假时忽视对参数的讨论.5.[教材改编]命题“所有奇数的立方都是奇数”的否定是.6.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数.则下列命题中为真命题的是.(填序号)①p∨q;②p∧q;③p∧q;④p∨q.7.已知命题:若ab=0,则a=0或b=0,则其否命题为.8.已知命题“∀x∈R,ax2+4x+1>0”是假命题,则实数a的取值范围是.课堂考点探究探究点一含逻辑联结词的命题及真假1 在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.p∨qB.p∨qC.p∧qD.p∨q(2)给出下列两个命题:命题p:若在边长为1的正方形ABCD内任取一点M,则|MA|≤1的概率为π4.命题q:若函数f(x)=x+4x ,则f(x)在区间1,32上的最小值为4.那么,下列命题为真命题的是()A.p∧qB.pC.p∧qD.p∧q[总结反思]判断含有逻辑联结词的命题真假的一般步骤:(1)判断复合命题的结构;(2)判断构成这个命题的每个简单命题的真假;(3)依据“或”:一真即真,“且”:一假即假,“非”:真假相反,作出判断即可.式题(1)[2017·惠州调研]设命题p:若定义域为R的函数f(x)不是偶函数,则∀x∈R,f(-x)≠f(x),命题q:f(x)=x|x|在(-∞,0)上是减函数,在(0,+∞)上是增函数.则下列判断错误..的是()A.p为假B.q为真C.p∨q为真D.p∧q为假(2)已知命题p:若x>y,则-x<-y,命题q:若x<y,则x>y2.给出命题:①p∧q;②p∨q;③p∧q;④p∨q.其中为真命题的是()A.①③B.①④C.②③D.②④探究点二全称命题与特称命题2 (1)[2017·陕西师大附中二模]若命题p:对任意的x∈R,都有x3-x2+1<0,则p为()A.不存在x0∈R,使得x03-x02+1<0B.存在x0∈R,使得x03-x02+1<0C.对任意的x∈R,都有x3-x2+1≥0D.存在x0∈R,使得x03-x02+1≥0(2)下列命题中为假命题的是()A.∃α,β∈R,sin(α+β)=sin α+sin βB.∀φ∈R,函数f(x)=sin(2x+φ)都不是偶函数C.∃x0∈R,x03+a x02+bx0+c=0(a,b,c∈R且为常数)D.∀a>0,函数f(x)=(ln x)2+ln x-a有零点[总结反思]全称命题与特称命题的真假判断及其否定:命题命题形式真假判断方法否定形式全∀x∈M,所有对象为真则命题为真,存在一个对∃x0∈M,称命题p(x)象为假则命题为假p(x0)特称命题∃x0∈M,p(x0)存在一个对象为真则命题为真,所有对象为假则命题为假∀x∈M,p(x)式题[2017·山东师大附中二模]已知f(x)=e x-x,g(x)=ln x+x+1,命题p:∀x∈R,f(x)>0,命题q:∃x0∈(0,+∞),g(x0)=0,则下列说法正确的是()A.p是真命题,p:∃x0∈R,f(x0)<0B.p是假命题,p:∃x0∈R,f(x0)≤0C.q是真命题,q:∀x∈(0,+∞),g(x)≠0D.q是假命题,q:∀x∈(0,+∞),g(x)≠0探究点三根据命题的真假求参数的取值范围3 (1)[2017·南充一模]设p:∃x0∈1,52,g (x0)=log2(t x02+2x0-2)有意义,若p为假命题,则t的取值范围为.(2)[2017·湖南十三校二联]已知命题p:函数f(x)=2ax2-x-1(a≠0)在(0,1)内恰有一个零点;命题q:函数y=x2-a在(0,+∞)上是减函数.若p且q为真命题,则实数a的取值范围是.[总结反思]根据命题真假求参数的方法步骤:(1)根据题目条件,推出每一个命题的真假(有时不一定只有一种情况);(2)求出每个命题是真命题时参数的取值范围;(3)根据每个命题的真假情况,求出参数的取值范围.式题(1)[2018·衡水中学模拟]已知命题p:∃x0∈R,x02+ax0+a<0,若p是真命题,则实数a 的取值范围为()A.[0,4]B.(0,4)C.(-∞,0)∪(4,+∞)D.(-∞,0]∪[4,+∞)(2)[2017·太原二模]若命题“∀x∈(0,+∞),x+1≥m”是假命题,则实数m的取值范围x是.。
简单的逻辑联结词、全称量词与存在量词(高三)
![简单的逻辑联结词、全称量词与存在量词(高三)](https://img.taocdn.com/s3/m/48d3ad33524de518964b7dde.png)
栏目 导引
第一章 集合与常用逻辑用语
[做一做] 3.命题 p:∀x∈R,sin x<1;命题 q:∃x∈R,cos x≤ -1,则下列结论是真命题的是( B )
A.p∧q
B.綈 p∧q
C.p∨綈 q
D.綈 p∧綈 q
解析:p 是假命题,q 是真命题,所以 B 正确.
(2014·高考重庆卷)已知命题 p:对任意 x∈R,总有 2x>0; q:“x>1”是“x>2”的充分不必要条件. 则下列命题为真命题的是( D )
A.p∧q
B.綈 p∧綈 q
C.綈 p∧q
D.p∧綈 q
栏目 导引
第一章 集合与常用逻辑用语
[解析] 因为指数函数的值域为(0,+∞),所以对任意 x∈R,y=2x>0 恒成立,故 p 为真命题;因为当 x>1 时, x>2 不一定成立,反之当 x>2 时,一定有 x>1 成立,故“x>1” 是“x>2”的必要不充分条件,故 q 为假命题,则 p∧q、綈 p 为假命题,綈 q 为真命题,綈 p∧綈 q、綈 p∧q 为假命题, p∧綈 q 为真命题,故选 D.
(1)(2014·高考天津卷)已知命题 p:∀x>0,总有(x+ 1)ex>1,则綈 p 为( B ) A.∃x0≤0,使得(x0+1)ex0≤1 B.∃x0>0,使得(x0+1)ex0≤1 C.∀x>0,总有(x+1)ex≤1 D.∀x≤0,总有(x+1)ex≤1
栏目 导引
第一章 集合与常用逻辑用语
栏目 导引
第一章 集合与常用逻辑用语
1.(1)(2015·沈阳市教学质量监测)下列命题中, 真命题是( D ) A.∀x∈R,x2>0 B.∀x∈R,-1<sin x<1 C.∃x0∈R,2 x0 <0
简单的逻辑联结词、全称量词与存在量词
![简单的逻辑联结词、全称量词与存在量词](https://img.taocdn.com/s3/m/63d67732647d27284b735172.png)
§1.3简单的逻辑联结词、全称量词与存在量词考情考向分析逻辑联结词和含有一个量词的命题的否定是高考的重点;命题的真假判断常以函数、不等式为载体,考查学生的推理判断能力,题型为填空题,低档难度.1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断2.全称量词和存在量词(1)全称量词:“所有”、“任意一个”、“每一个”等表示全体的量词在逻辑中称为全称量词,用符号“∀”表示.(2)存在量词:“有一个”、“有些”、“存在一个”等表示部分的量词在逻辑中称为存在量词,用符号“∃”表示.3.全称命题、存在性命题及含有一个量词的命题的否定知识拓展1.含有逻辑联结词的命题真假的判断规律(1)p∨q:p,q中有一个为真,则p∨q为真,即有真为真.(2)p∧q:p,q中有一个为假,则p∧q为假,即有假即假.(3)綈p:与p的真假相反,即一真一假,真假相反.2.含有一个量词的命题的否定的规律是“改量词,否结论”.3.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则綈q”,否命题是“若綈p,则綈q”.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“3≥2”是真命题.(√)(2)命题p和綈p不可能都是真命题.(√)(3)若命题p,q中至少有一个是真命题,则p∨q是真命题.(√)(4)“全等三角形的面积相等”是存在性命题.(×)(5)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.(×)题组二教材改编2.[P13习题T3]已知p:2是偶数,q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数为________.答案 2解析p和q显然都是真命题,所以綈p,綈q都是假命题,p∨q,p∧q都是真命题.3.[P18习题T4]命题“正方形都是矩形”的否定是_________________________.答案存在一个正方形,这个正方形不是矩形题组三易错自纠4.已知命题p,q,“綈p为真”是“p∧q为假”的________条件.答案充分不必要解析由綈p为真知,p为假,可得p∧q为假;反之,若p∧q为假,则可能是p真q假,从而綈p 为假,故“綈p 为真”是“p ∧q 为假”的充分不必要条件. 5.下列命题中的假命题是________.(填序号) ①∃x ∈R ,lg x =1; ②∃x ∈R ,sin x =0; ③∀x ∈R ,x 3>0; ④∀x ∈R ,2x >0. 答案 ③解析 当x =10时,lg 10=1,则①为真命题; 当x =0时,sin 0=0,则②为真命题; 当x <0时,x 3<0,则③为假命题;由指数函数的性质知,∀x ∈R,2x >0,则④为真命题.6.已知命题p :∀x ∈R ,x 2-a ≥0;命题p :∃x ∈R ,x 2+2ax +2-a =0.若命题“p ∧q ”是真命题,则实数a 的取值范围为__________. 答案 (-∞,-2]解析 由已知条件,知p 和q 均为真命题,由命题p 为真,得a ≤0,由命题q 为真,得Δ=4a 2-4(2-a )≥0,即a ≤-2或a ≥1,所以a ≤-2.题型一 含有逻辑联结词的命题的真假判断1.设a ,b ,c 是非零向量.已知命题p :若a ·b =0,b ·c =0,则a ·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中的真命题是________.(填序号) ①p ∨q ;②p ∧q ;③(綈p )∧(綈q );④p ∨(綈q ). 答案 ① 解析 如图所示,若a =A 1A →,b =AB →,c =B 1B →,则a ·c ≠0,命题p 为假命题;显然命题q 为真命题,所以p ∨q 为真命题.2.(2017·山东改编)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是________.(填序号)①p ∧q ;②p ∧(綈q );③(綈p )∧q ;④(綈p )∧(綈q ). 答案 ②解析 ∵x >0,∴x +1>1,∴ln(x +1)>ln 1=0. ∴命题p 为真命题,∴綈p 为假命题.∵a >b ,取a =1,b =-2,而12=1,(-2)2=4, 此时a 2<b 2,∴命题q 为假命题,∴綈q 为真命题.∴p ∧q 为假命题,p ∧(綈q )为真命题,(綈p )∧q 为假命题,(綈p )∧(綈q )为假命题. 3.已知命题p :若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q :在空间中,对于三条不同的直线a ,b ,c ,若a ⊥b ,b ⊥c ,则a ∥c .对以上两个命题,有以下命题: ①p ∧q 为真;②p ∨q 为假;③p ∨q 为真;④(綈p )∨(綈q )为假. 其中,正确的是________.(填序号) 答案 ②解析 命题p 是假命题,这是因为α与γ也可能相交;命题q 也是假命题,这两条直线也可能异面,相交.思维升华 “p ∨q ”“p ∧q ”“綈p ”等形式命题真假的判断步骤 (1)确定命题的构成形式. (2)判断其中命题p ,q 的真假.(3)确定“p ∧q ”“p ∨q ”“綈p ”等形式命题的真假.题型二 含有一个量词的命题命题点1 全称命题、存在性命题的真假 典例 下列四个命题:①∃x ∈(0,+∞),⎝⎛⎭⎫12x <⎝⎛⎭⎫13x; ②∃x ∈(0,1),log 12x >13log x ;③∀x ∈(0,+∞),⎝⎛⎫12x>12log x ;④∀x ∈⎝⎛⎭⎫0,13,⎝⎛⎭⎫12x <13log x . 其中真命题序号为________. 答案 ②④解析 对于①,当x ∈(0,+∞)时,总有⎝⎛⎭⎫12x >⎝⎛⎭⎫13x成立,故①是假命题;对于②,当x =12时,有1=121log 2=131log 3>131log 2成立,故②是真命题;对于③,结合指数函数y =⎝⎛⎭⎫12x与对数函数y =12log x 在(0,+∞)上的图象,可以判断③是假命题;对于④,结合指数函数y =⎝⎛⎭⎫12x与对数函数y =13log x 在⎝⎛⎫0,13上的图象,可以判断④是真命题.命题点2 含有一个量词的命题的否定典例 (1)命题“∀x ∈R ,⎝⎛⎭⎫13x>0”的否定是________. 答案 ∃x ∈R ,⎝⎛⎭⎫13x ≤0解析 全称命题的否定是存在性命题,“>”的否定是“≤”. (2)(2017·苏州暑假测试)命题“∃x >1,x 2≥2”的否定是________. 答案 ∀x >1,x 2<2解析 根据存在性命题的否定规则得“∃x >1,x 2≥2”的否定是“∀x >1,x 2<2”. 思维升华 (1)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断存在性命题是真命题,只要在给定集合内找到一个x ,使p (x )成立. (2)对全称命题、存在性命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词; ②对原命题的结论进行否定.跟踪训练 (1)下列命题是假命题的是________.(填序号) ①∃α,β∈R ,使cos(α+β)=cos α+cos β; ②∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数;③∃x ∈R ,使x 3+ax 2+bx +c =0(a ,b ,c ∈R 且为常数); ④∀a >0,函数f (x )=ln 2x +ln x -a 有零点.答案 ②解析 取α=π2,β=-π4,cos(α+β)=cos α+cos β,①正确;取φ=π2,函数f (x )=sin ⎝⎛⎭⎫2x +π2=cos 2x 是偶函数,②错误; 对于三次函数y =f (x )=x 3+ax 2+bx +c ,当x →-∞时,y →-∞,当x →+∞时,y →+∞,又f (x )在R 上为连续函数,故∃x ∈R ,使x 3+ax 2+bx +c =0,③正确;当f (x )=0时,ln 2x +ln x -a =0,则有a =ln 2x +ln x =⎝⎛⎭⎫ln x +122-14≥-14,所以∀a >0,函数f (x )=ln 2x +ln x -a 有零点,④正确.(2)已知命题p :“∃x ∈R ,e x -x -1≤0”,则綈p 为________. 答案 ∀x ∈R ,e x -x -1>0解析 根据全称命题与存在性命题的否定关系,可得綈p 为“∀x ∈R ,e x -x -1>0”. 题型三 含参命题中参数的取值范围典例 (1)已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数,若p ∧q 是真命题,则实数a 的取值范围是________________. 答案 [-12,-4]∪[4,+∞)解析 若命题p 是真命题,则Δ=a 2-16≥0, 即a ≤-4或a ≥4;若命题q 是真命题, 则-a4≤3,即a ≥-12.∵p ∧q 是真命题,∴p ,q 均为真, ∴a 的取值范围是[-12,-4]∪[4,+∞).(2)已知f (x )=ln(x 2+1),g (x )=⎝⎛⎭⎫12x-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________. 答案 ⎣⎡⎭⎫14,+∞ 解析 当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时, g (x )min =g (2)=14-m ,由f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.引申探究本例(2)中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是________________. 答案 ⎣⎡⎭⎫12,+∞解析 当x ∈[1,2]时,g (x )max =g (1)=12-m ,由f (x )min ≥g (x )max ,得0≥12-m ,∴m ≥12.思维升华 (1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.跟踪训练 (1)已知命题“∃x ∈R ,使2x 2+(a -1)x +12≤0”是假命题,则实数a 的取值范围是________. 答案 (-1,3)解析 原命题的否定为∀x ∈R,2x 2+(a -1)x +12>0,由题意知,其为真命题,即Δ=(a -1)2-4×2×12<0,则-2<a -1<2,即-1<a <3.(2)已知p :∀x ∈⎣⎡⎦⎤14,12,2x <m (x 2+1),q :函数f (x )=4x +2x +1+m -1存在零点,若“p 且q ”为真命题,则实数m 的取值范围是__________. 答案 ⎝⎛⎭⎫45,1解析 由2x <m (x 2+1),可得m >2xx 2+1,令g (x )=2xx 2+1,则g (x )在⎣⎡⎦⎤14,12上单调递增, 故g (x )≤g ⎝⎛⎭⎫12=45,故当p 为真时,m >45; 函数f (x )=4x +2x +1+m -1=(2x +1)2+m -2,令f (x )=0,得2x =2-m -1, 若f (x )存在零点,则2-m -1>0,解得m <1, 故当q 为真时,m <1.若“p 且q ”为真命题,则实数m 的取值范围是⎝⎛⎭⎫45,1.常用逻辑用语考点分析 有关四种命题及其真假判断、充分必要条件的判断或求参数的取值范围、量词等问题几乎在每年高考中都会出现,多与函数、数列、立体几何、解析几何等知识相结合,难度中等偏下.解决这类问题应熟练把握各类知识的内在联系. 一、命题的真假判断典例1 (1)已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的________条件. 答案 必要不充分解析 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立.(2)已知函数f (x )=⎩⎪⎨⎪⎧3x,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解,命题q :若m =19,则f (f (-1))=0,则下列命题为真命题的是________.(填序号)①p ∧q ;②(綈p )∧q ;③p ∧(綈q );④(綈p )∧(綈q ). 答案 ②解析 因为3x >0,当m <0时,m -x 2<0, 所以命题p 为假命题;当m =19时,因为f (-1)=3-1=13,所以f (f (-1))=f ⎝⎛⎭⎫13=19-⎝⎛⎭⎫132=0, 所以命题q 为真命题,逐项检验可知,只有(綈p )∧q 为真命题. 二、充要条件的判断典例2 (1)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的________条件. 答案 必要不充分解析 若A =B =0,则S n =0,数列{a n }不是等比数列;若数列{a n }是等比数列,则由a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2及a 3a 2=a 2a 1,得A =-B .(2)已知圆C :(x -1)2+y 2=r 2(r >0).设p :0<r <3,q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的________条件. 答案 充要解析 圆C :(x -1)2+y 2=r 2的圆心(1,0)到直线x -3y +3=0的距离d =|1-3×0+3|2=2.当r ∈(0,1)时,直线与圆相离,圆C 上没有到直线的距离为1的点;当r =1时,直线与圆相离,圆C 上只有1个点到直线的距离为1;当r ∈(1,2)时,直线与圆相离,圆C 上有2个点到直线的距离为1;当r =2时,直线与圆相切,圆C 上有2个点到直线的距离为1;当r ∈(2,3)时,直线与圆相交,圆C 上有2个点到直线的距离为1.综上,当r ∈(0,3)时,圆C 上至多有2个点到直线的距离为1,又由圆C 上至多有2个点到直线的距离为1,可得0<r <3,故p 是q 的充要条件. 三、求参数的取值范围典例3 (1)已知命题p :∀x ∈[0,1],a ≥e x ,命题q :∃x ∈R ,x 2+4x +a =0,若命题“p ∧q ”是真命题,则实数a 的取值范围是__________. 答案 [e,4]解析 命题“p ∧q ”是真命题,p 和q 均是真命题.当p 是真命题时,a ≥(e x )max =e ;当q 为真命题时,Δ=16-4a ≥0,a ≤4,所以a ∈[e,4].(2)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎡⎦⎤12,3,∃x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是________. 答案 (-∞,0]解析 ∵x ∈⎣⎡⎦⎤12,3,∴f (x )≥2 x ·4x=4,当且仅当x =2时,f (x )min =4,当x ∈[2,3]时,g (x )min =22+a =4+a ,依题意,知f (x )min ≥g (x )min ,即4≥a +4,∴a ≤0.1.已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是________.(填序号)①p ∧q ;②(綈p )∧(綈q );③(綈p )∧q ;④p ∧(綈q ). 答案 ④解析 因为指数函数的值域为(0,+∞),所以对任意x ∈R ,y =2x >0恒成立,故p 为真命题;因为当x >1时,x >2不一定成立,反之,当x >2时,一定有x >1成立,故“x >1”是“x >2”的必要不充分条件,故q 为假命题.则p ∧q ,綈p 为假命题,綈q 为真命题,(綈p )∧(綈q ),(綈p )∧q 为假命题,p ∧(綈q )为真命题.2.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是________.(填序号) ①p 为真;②綈q 为假;③p ∧q 为假;④p ∨q 为真. 答案 ③解析 函数y =sin 2x 的最小正周期为2π2=π,故命题p 为假命题;x =π2不是y =cos x 的对称轴,故命题q 为假命题,故p ∧q 为假. 3.下列命题中为假命题的是________.(填序号) ①∀x ∈⎝⎛⎭⎫0,π2,x >sin x ; ②∃x ∈R ,sin x +cos x =2; ③∀x ∈R,3x >0; ④∃x ∈R ,lg x =0. 答案 ②解析 对于①,令f (x )=x -sin x ,则f ′(x )=1-cos x ,当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0.从而f (x )在⎝⎛⎭⎫0,π2上是增函数,则f (x )>f (0)=0,即x >sin x ,故①正确;对于②,由sin x +cos x =2sin ⎝⎛⎭⎫x +π4≤2<2知,不存在x ∈R ,使得sin x +cos x =2,故②错误;对于③,易知3x >0,故③正确;对于④,由lg 1=0知,④正确. 4.下列命题的否定为假命题的是________.(填序号) ①∀x ∈R ,-x 2+x -1<0; ②∀x ∈R ,|x |>x ;③∀x ,y ∈Z ,2x -5y ≠12; ④∀x ∈R ,sin 2x +sin x +1=0. 答案 ①解析 命题的否定为假命题亦即原命题为真命题,只有①为真命题.5.命题p :∀x ∈R ,sin x <1;命题q :∃x ∈R ,cos x ≤-1,则下列为真命题的是________.(填序号) ①p ∧q;②(綈p )∧q ;③p ∨(綈q ); ④(綈p )∧(綈q ).答案 ②解析 p 是假命题,q 是真命题,所以②正确.6.已知命题p :若a >1,则a x >log a x 恒成立;命题q :在等差数列{a n }中,m +n =p +q 是a n +a m =a p +a q 的充分不必要条件(m ,n ,p ,q ∈N *).则下列为真命题的是______.(填序号) ①(綈p )∧(綈q ); ②(綈p )∨(綈q );③p ∨(綈q );④p ∧q .答案 ②解析 当a =1.1,x =2时,a x =1.12=1.21,log a x =log 1.12>log 1.11.21=2,此时,a x <log a x ,故p 为假命题.命题q ,由等差数列的性质可知,当m +n =p +q 时,a n +a m =a p +a q 成立, 当公差d =0时,由a m +a n =a p +a q 不能推出m +n =p +q 成立,故q 是真命题.故綈p 是真命题,綈q 是假命题,所以p ∧q 为假命题,p ∨(綈q )为假命题,(綈p )∧(綈q )为假命题,(綈p )∨(綈q )为真命题.7.已知命题p :x 2+2x -3>0;命题q :13-x>1,若“(綈q )∧p ”为真,则x 的取值范围是________________.答案 (-∞,-3)∪(1,2]∪[3,+∞)解析 因为“(綈q )∧p ”为真,即q 假p 真,而q 为真命题时,x -2x -3<0,即2<x <3,所以q 为假命题时,有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3, 所以x 的取值范围是(-∞,-3)∪(1,2]∪[3,+∞).8.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是________. 答案 (-∞,0)∪(4,+∞)解析 因为命题p :∀x ∈R ,ax 2+ax +1≥0,所以綈p :∃x ∈R ,ax 2+ax +1<0,则a <0或⎩⎪⎨⎪⎧a >0,Δ=a 2-4a >0,解得a <0或a >4. 9.(2017·江苏南通中学月考)已知c >0,设命题p :函数y =c x 为减函数;命题q :当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x >1c恒成立.如果“p ∨q ”为真命题,“p ∧q ”为假命题,则c 的取值范围是________.答案 ⎝⎛⎦⎤0,12∪[1,+∞) 解析 若命题p :函数y =c x 为减函数为真命题,则0<c <1.当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x≥2(当且仅当x =1时取等号), 若命题q 为真命题,则1c <2,结合c >0可得c >12. ∵“p ∨q ”为真命题,“p ∧q ”为假命题,故p 与q 一真一假.当p 真q 假时,0<c ≤12; 当p 假q 真时,c ≥1.故c 的取值范围是为⎝⎛⎦⎤0,12∪[1,+∞). 10.已知函数f (x )的定义域为(a ,b ),若“∃x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则f (a +b )=________.答案 0解析 若“∃x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则“∀x ∈(a ,b ),f (x )+f (-x )=0”是真命题,即f (-x )=-f (x ),则函数f (x )是奇函数,则a +b =0,即f (a +b )=f (0)=0.11.以下四个命题:①∀x ∈R ,x 2-3x +2>0恒成立;②∃x ∈Q ,x 2=2;③∃x ∈R ,x 2+1=0;④∀x ∈R ,4x 2>2x -1+3x 2.其中真命题的个数为________.答案 0解析 ∵x 2-3x +2=0的判别式Δ=(-3)2-4×2>0,∴当x >2或x <1时,x 2-3x +2>0才成立,∴①为假命题;当且仅当x =±2时,x 2=2,∴不存在x ∈Q ,使得x 2=2,∴②为假命题;对∀x ∈R ,x 2+1≠0,∴③为假命题;4x 2-(2x -1+3x 2)=x 2-2x +1=(x -1)2≥0,即当x =1时,4x 2=2x -1+3x 2成立,∴④为假命题.∴①②③④均为假命题.故真命题的个数为0.12.已知命题p :∃x ∈R ,(m +1)·(x 2+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∧q 为假命题,则实数m 的取值范围为____________.答案 (-∞,-2]∪(-1,+∞)解析 由命题p :∃x ∈R ,(m +1)(x 2+1)≤0,可得m ≤-1,由命题q :∀x ∈R ,x 2+mx +1>0恒成立,可得-2<m <2,因为p ∧q 为假命题,所以m ≤-2或m >-1.13.已知函数f (x )=x 2-2x +3,g (x )=log 2x +m ,对任意的x 1,x 2∈[1,4]有f (x 1)>g (x 2)恒成立,则实数m 的取值范围是________________.答案 (-∞,0)解析 f (x )=x 2-2x +3=(x -1)2+2,当x ∈[1,4]时,f (x )min =f (1)=2,g (x )max =g (4)=2+m ,则f (x )min >g (x )max ,即2>2+m ,解得m <0,故实数m 的取值范围是(-∞,0).14.下列结论:①若命题p :∃x ∈R ,tan x =1;命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(綈q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b=-3; ③命题“若x 2-3x +2=0,则x =1”的逆否命题是“若x ≠1,则x 2-3x +2≠0”. 其中正确结论的序号为________.答案 ①③解析 ①中命题p 为真命题,命题q 为真命题,所以p ∧(綈q )为假命题,故①正确;②当b =a =0时,有l 1⊥l 2,故②不正确;③正确,所以正确结论的序号为①③.15.已知命题p :∃x ∈R ,e x -mx =0,命题q :∀x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是________.答案 [0,2]解析 若p ∨(綈q )为假命题,则p 假q 真.由e x-mx =0,可得m =e x x ,x ≠0, 设f (x )=e x x,x ≠0,则 f ′(x )=x e x -e x x 2=(x -1)e xx 2, 当x >1时,f ′(x )>0,函数f (x )=e x x在(1,+∞)上是单调增函数;当0<x <1或x <0时,f ′(x )<0,函数f (x )=e x x在(0,1)和(-∞,0)上是单调减函数,所以当x =1时,函数取得极小值f (1)=e ,所以函数f (x )=e x x的值域是(-∞,0)∪[e ,+∞),由p 是假命题,可得0≤m <e. 当命题q 为真命题时,有Δ=m 2-4≤0,即-2≤m ≤2.所以当p ∨(綈q )为假命题时,m 的取值范围是0≤m ≤2.16.已知函数f (x )=x 2-x +1x -1(x ≥2),g (x )=a x (a >1,x ≥2). (1)若∃x ∈[2,+∞),使f (x )=m 成立,则实数m 的取值范围为________________;(2)若∀x 1∈[2,+∞),∃x 2∈[2, +∞),使得f (x 1)=g (x 2),则实数a 的取值范围为________________.答案 (1)[3,+∞) (2)(1,3]解析 (1)因为f (x )=x 2-x +1x -1=x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x =2时等号成立,所以若∃x ∈[2,+∞),使f (x )=m 成立,则实数m 的取值范围为[3,+∞).(2)因为a >1,所以g (x )在[2,+∞)上单调递,即g (x )≥a 2.又当x ≥2时,f (x )≥3,g (x )≥a 2,若∀x 1∈[2,+∞),∃x 2∈[2,+∞),使得f (x 1)=g (x 2),则⎩⎪⎨⎪⎧a 2≤3,a >1, 解得a ∈(1,3].。
03简单的逻辑联结词、全称量词与存在量词
![03简单的逻辑联结词、全称量词与存在量词](https://img.taocdn.com/s3/m/1222d0dda58da0116c174911.png)
知识网络
命题 四种命题
原命题:若p则q
互否 互逆
命题及 其关系
四种命 题的相 互关系
逆命题:若q则p
互否
互为逆否
等价关系
否命题:若p则q
互逆
逆命题:若q则p
常 用 逻 辑 用 语
充分条件 必要条件 充要条件
充分条件
p ⇒q
必要条件 充要条件 且∧
p ⇐q p ⇔q p∧q
根据含有逻辑联结词的命题的真假,求参数的取值范围
【例 3】 设 a 为实数,给出命题 p:关于 x 的不等式
( 1 )| x 1| ≥ a 的 解 集 为 ∅ , 命 题 q : 函 数 f(x) = 2 lg[ax 2 (a 2) x 9 ] 的定义域为 R,若命题“p∨q”为真, 8
“p∧q”为假,求 a 的取值范围.
解:①若 p 正确,则由 0 ( 1 )| x1| ≤ 1 ,得 a>1.
2
②若 q 正确,则 ax +(a-2)x+ 8>0 解集为 R. 8 8 9 当 a=0 a=0 时,-2x+9>0 不合题意,舍去; 时,-2x+ >0 9 当 a=0 时,-2x+不合题意,舍去; 8 当 >0 8 不合题意,舍去; 8 a>0a>0 a>0 1
命题 ∀x∈M,p(x) ∃x0∈M,p(x0)
忆一忆知识要点
(1)含有一个量词的命题的否定 命题的否定 ∃x0∈M , ¬p(x0) ∀x∈M, ¬p(x)
全称命题的否定是存在性命题;存在性命题的否定是全称命题. (2) p或q, p且q的否定
p⋀q 的否定 p⋁q 的否定
简单的逻辑联结词、全称量词与存在量词
![简单的逻辑联结词、全称量词与存在量词](https://img.taocdn.com/s3/m/e348430bcfc789eb172dc86f.png)
第三节简单的逻辑联结词、全称量词与存在量词1.了解逻辑联结词“或”“且”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断[必记结论]1.真值表中“p且q”全真才真,“p或q”全假才假.2.“或”“且”联结词的否定形式:“p或q”的否定是“非p且非q”;“p且q”的否定是“非p或非q”.2.全称量词与存在量词(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,用“∀”表示;含有全称量词的命题叫做全称命题.(2)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,用“∃”表示;含有存在量词的命题叫做特称命题.[必记结论]1.判定全称命题为真,需证明对任意x∈M,p(x)恒成立;判定全称命题为假,我们只需找到一个x∈M,使p(x)不成立即可.2.判定特称命题为真,只需找到一个x∈M,使p(x)成立即可;判定特称命题为假,需证明对任意x∈M,p(x)均不成立.3.含有一个量词的命题的否定[必记结论]对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再写出命题的否定,否则易出错.[小题诊断]1.命题“∃x0≤0,x20≥0”的否定是()A.∀x≤0,x2<0B.∀x≤0,x2≥0C.∃x0>0,x20>0 D.∃x0<0,x20≤0答案:A2.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是()A.p∧命题q B.命题p∧qC.命题p∧命题q D.p∧q解析:由题意知命题p是真命题,命题q是假命题,故命题p是假命题,命题q是真命题,由含有逻辑联结词的命题的真值表可知p∧命题q是真命题.答案:A3.已知命题p:“x>3”是“x2>9”的充要条件,命题q:“a2>b2”是“a>b”的充要条件,则()A.p∨q为真B.p∧q为真C.p真q假D.p∨q为假解析:由x>3能够得出x2>9,反之不成立,故命题p是假命题;由a2>b2可得|a|>|b|,但a不一定大于b,反之也不一定成立,故命题q是假命题.所以p∨q为假.答案:D4.(优质试题·唐山模拟)已知命题p:∃x0∈N,x30<x20;命题q:∀a∈(0,1)∪(1,+∞),函数f(x)=log a(x-1)的图象过点(2,0),则()A.p假q真B.p真q假C.p假q假D.p真q真解析:由x30<x20,得x20(x0-1)<0,解得x0<0或0<x0<1,在这个范围内没有自然数,∴命题p为假命题;∵对任意的a∈(0,1)∪(1,+∞),均有f(2)=log a1=0,∴命题q为真命题.答案:A5.下列四个命题:p 1:对任意x ∈R ,都有2x >0; p 2:存在x ∈R ,使得x 2+x +1<0; p 3:对任意x ∈R ,都有sin x <2x ; p 4:存在x ∈R ,使得cos x >x 2+x +1. 其中的真命题是( ) A .p 1,p 2 B .p 2,p 3 C .p 3,p 4D .p 1,p 4解析:由指数函数的性质可知p 1为真命题;∵x 2+x +1=⎝⎛⎭⎫x +122+34>0恒成立,∴p 2为假命题;∵sin ⎝⎛⎭⎫-3π2=1>2-3π2,∴p 3为假命题;∵当x =-12时,cos x >cos π6=32>⎝⎛⎭⎫-122+⎝⎛⎭⎫-12+1,∴p 4为真命题.故选D. 答案:D6.若命题“对∀x ∈R ,kx 2-kx -1<0”是真命题,则k 的取值范围是________. 解析:“对∀x ∈R ,kx 2-kx -1<0”是真命题,当k =0时,则有-1<0;当k ≠0时,则有k <0且Δ=(-k )2-4×k ×(-1)=k 2+4k <0,解得-4<k <0,综上所述,实数k 的取值范围是(-4,0].答案:(-4,0]◆ 易错通关 ◆1.注意命题所含的量词,对于量词隐含的命题要结合命题的含义显现量词,再进行否定;2.注意“或”“且”的否定,“或”的否定为“且”,“且”的否定为“或”.[小题纠偏]1.命题“全等三角形的面积一定都相等”的否定是________. 答案:存在两个全等三角形的面积不相等2.命题“若ab =0,则a =0或b =0”,其否定为________. 答案:若ab =0,则a ≠0且b ≠0考点一 全称命题与特称命题 自主探究 基础送分考点——自主练透[题组练通]1.(优质试题·西安质检)已知命题p:∃x0∈R,)≤0,则()解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题:命题p:∀x∈R,log2(3x +1)>0.故应选B.答案:B2.已知命题p:∀x>0,总有(x+1)e x>1,则命题p为()A.∃x0≤0,使得(x0+1)e x0≤1B.∃x0>0,使得(x0+1)e x0≤1C.∀x>0,使得(x+1)e x≤1D.∀x≤0,使得(x+1)e x≤1解析:由全称命题“∀x∈M,p(x)”的否定为“∃x0∈M,命题p(x0)”,可得命题p:∃x0>0,使得(x0+1)e x0≤1.故选B.答案:B全称命题与特称命题真假的判断方法注意无论是全称命题还是特称命题,若其真假不容易正面判断时,都可先判断其否定的真假.考点二含有逻辑联结词的真假判断互动探究重点保分考点——师生共研[典例](1)(优质试题·高考山东卷)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A .p ∧qB .p ∧命题qC .命题p ∧qD .命题p ∧命题q(2)已知命题p :若a <b ,则ac 2<bc 2;命题q :∃x 0>0,使得x 0-1-ln x 0=0,则下列命题为真命题的是( )A .p ∧qB .p ∨(命题q )C .(命题p )∧qD .(命题p )∧(命题q )解析:(1)∵∀x >0,x +1>1,∴ln(x +1)>0,∴命题p 为真命题;当b <a <0时,a 2<b 2,故命题q 为假命题,由真值表可知B 正确,故选B.(2)依题意,对于p ,注意到当c =0时,ac 2=bc 2,因此命题p 是假命题;对于q ,注意到当x 0=1时,x 0-1-ln x 0=0,因此命题q 是真命题,命题命题q 是假命题,p ∧q 是假命题,p ∨(命题q )是假命题,(命题p )∧q 是真命题,(命题p )∧(命题q )是假命题,综上所述,选C.答案:(1)B (2)C判断含有逻辑联结词命题真假的2个步骤 (1)先判断简单命题p ,q 的真假.(2)再根据真值表判断含有逻辑联结词命题的真假.[即时应用]1.(优质试题·安庆模拟)设命题p :∃x 0∈(0,+∞),x 0+1x 0>3;命题q :∀x ∈(2,+∞),x 2>2x ,则下列命题为真的是( )A .p ∧(命题q )B .(命题p )∧qC .p ∧qD .(命题p )∨q解析:对于命题p ,当x 0=4时,x 0+1x 0=174>3,故命题p 为真命题;对于命题q ,当x =4时,24=42=16,即∃x 0∈(2,+∞),使得2x 0=x 20成立,故命题q 为假命题,所以p ∧(命题q )为真命题,故选A.答案:A2.已知函数f (x )=⎩⎪⎨⎪⎧2x,x <0,m -x 2,x ≥0,给出下列两个命题: 命题p :若m =14,则f [f (-1)]=0;命题q :∃m ∈(-∞,0),方程f (x )=0有解. 那么,下列命题为真命题的是( )A .p ∧qB .(命题p )∧qC .p ∧(命题q )D .(命题p )∧(命题q )解析:若m =14,则f [f (-1)]=f ⎝⎛⎭⎫12=0,故命题p 为真命题.当x <0时,f (x )=2x >0;当x ≥0时,若m <0,则f (x )=m -x 2<0.故∀m ∈(-∞,0),方程f (x )=0无解,所以命题q 为假命题.所以p ∧q ,(命题p )∧q ,(命题p )∧(命题q )为假命题,p ∧(命题q )为真命题,故选C.答案:C考点三 与逻辑联结词、全(特)称命题有关的参数问题 变式探究 母题变式考点——多练题型[典例] (优质试题·济南模拟)给定命题p :对任意实数x ,都有ax 2+ax +1>0成立;命题q :关于x 的方程x 2-x +a =0有实数根,若p ∧q 为真,则a 的取值范围是________.解析:当p 为真命题时,对任意实数x 都有ax 2+ax +1>0成立⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0,∴0≤a<4.当q 为真命题时,关于x 的方程x 2-x +a =0有实数根⇔Δ=1-4a ≥0,∴a ≤14.p ∧q 为真时,0≤a ≤14.答案:[0,14][变式探究1]若p ∨q 为真,问题不变.解析:由本例中知p ∨q 为真,分三种情况: ①p 真q 假;②p 假q 真;③p 、q 均为真,即⎩⎪⎨⎪⎧ 0≤a <4,a >14或⎩⎪⎨⎪⎧ a <0或a ≥4,a ≤14或⎩⎪⎨⎪⎧0≤a <4,a ≤14.∴a <4. 答案:(-∞,4) [变式探究2]若p ∨q 为真命题,p ∧q 为假命题,问题不变. 解析:∵p ∨q 为真命题,p ∧q 为假命题, ∴p ,q 一真一假.∴若p 真q 假,则有0≤a <4,且a >14,∴14<a <4; 若p 假q 真,则有⎩⎪⎨⎪⎧a <0或a ≥4,a ≤14,∴a <0.故实数a 的取值范围为(-∞,0)∪⎝⎛⎭⎫14,4. 答案:(-∞,0)∪⎝⎛⎭⎫14,4根据复合命题的真假求参数范围的步骤(1)先求出每个简单命题是真命题时参数的取值范围;(2)再根据复合命题的真假确定各个简单命题的真假情况(有时不一定只有一种情况); (3)最后由(2)的结论求出满足条件的参数取值范围.[即时应用]设p :实数a 满足不等式3a ≤9,q :函数f (x )=13x 3+3(3-a )2x 2+9x 无极值点.(1)若“p ∧q ”为假命题,“p ∨q ”为真命题,求实数a 的取值范围;(2)已知“p ∧q ”为真命题,并记为r ,且t :a 2-⎝⎛⎭⎫2m +12a +m ⎝⎛⎭⎫m +12>0,若r 是命题t 的必要不充分条件,求正整数m 的值.解析:(1)若p 为真,则3a ≤9,得a ≤2.若q 为真,则函数f (x )无极值点,∴f ′(x )=x 2+3(3-a )x +9≥0恒成立, 得Δ=9(3-a )2-4×9≤0,解得1≤a ≤5. ∵“p ∧q ”为假命题,“p ∨q ”为真命题, ∴p 与q 只有一个命题是真命题.若p 为真命题,q 为假命题,则⎩⎪⎨⎪⎧a ≤2,a <1或a >5⇒a <1;若q 为真命题,p 为假命题,则⎩⎪⎨⎪⎧a >2,1≤a ≤5⇒2<a ≤5.综上,实数a 的取值范围为{a |a <1或2<a ≤5}. (2)∵“p ∧q ”为真命题,∴p 、q 都为真命题,∴⎩⎪⎨⎪⎧a ≤2,1≤a ≤5⇒1≤a ≤2. ∵a 2-⎝⎛⎭⎫2m +12a +m ⎝⎛⎭⎫m +12>0, ∴(a -m )⎣⎡⎦⎤a -⎝⎛⎭⎫m +12>0, ∴a <m 或a >m +12,即t :a <m 或a >m +12,从而命题t :m ≤a ≤m +12,∵r 是命题t 的必要不充分条件,∴命题t ⇒r ,r ⇒/ 命题t , ∴⎩⎪⎨⎪⎧m ≥1,m +12≤2(两个不等式不能同时取等号), 解得1≤m ≤32,又∵m ∈N *,∴m =1.课时作业单独成册 对应学生用书第213页A 组——基础对点练1.(优质试题·郑州模拟)命题“∃x 0∈R ,x 20-x 0-1>0”的否定是( ) A .∀x ∈R ,x 2-x -1≤0 B .∀x ∈R ,x 2-x -1>0C .∃x 0∈R ,x 20-x 0-1≤0D .∃x 0∈R ,x 20-x 0-1≥0解析:依题意得,命题“∃x 0∈R ,x 20-x 0-1>0”的否定是“∀x ∈R ,x 2-x -1≤0”,选A.答案:A2.命题“∀x ∈R ,|x |+x 2≥0”的否定是( ) A .∀x ∈R ,|x |+x 2<0 B .∀x ∈R ,|x |+x 2≤0 C .∃x 0∈R ,|x 0|+x 20<0D .∃x 0∈R ,|x 0|+x 20≥0解析:命题的否定是否定结论,同时把量词作对应改变,故命题“∀x ∈R ,|x |+x 2≥0”的否定为“∃x 0∈R ,|x 0|+x 20<0”,故选C.答案:C3.(优质试题·沈阳模拟)命题p :“∀x ∈N *,(12)x ≤12”的否定为( )A .∀x ∈N *,(12)x >12B .∀x ∉N *,(12)x >12C .∃x 0∉N *,(12)x 0>12D .∃x 0∈N *,(12)x 0>12解析:命题p 的否定是把“∀”改成“∃”,再把“(12)x ≤12”改为“(12)x 0>12”即可,故选D.答案:D4.(优质试题·武昌调研)已知函数f (x )=2ax -a +3,若∃x 0∈(-1,1),使得f (x 0)=0,则实数a 的取值范围是( )A .(-∞,-3)∪(1,+∞)B .(-∞,-3)C .(-3,1)D .(1,+∞)解析:依题意可得f (-1)·f (1)<0,即(-2a -a +3)·(2a -a +3)<0,解得a <-3或a >1,故选A.答案:A5.已知命题p :若a =0.30.3,b =1.20.3,c =log 1.20.3,则a <c <b ;命题q :“x 2-x -6>0”是“x >4”的必要不充分条件,则下列命题正确的是( )A .p ∧qB .p ∧(命题q )C .(命题p )∧qD .(命题p )∧(命题q )解析:因为0<a =0.30.3<0.30=1,b =1.20.3>1.20=1,c =log 1.20.3<log 1.21=0,所以c <a <b ,故命题p 为假命题,命题p 为真命题;由x 2-x -6>0可得x <-2或x >3,故“x 2-x -6>0”是“x >4”的必要不充分条件,q 为真命题,故(命题p )∧q 为真命题,选C.答案:C6.命题“∀x ∈R ,x 2≠x ”的否定是( ) A .∀x ∉R ,x 2≠x B .∀x ∈R ,x 2=x C .∃x 0∉R ,x 20≠x 0D .∃x 0∈R ,x 20=x 0解析:全称命题的否定是特称命题:∃x 0∈R ,x 20=x 0,选D. 答案:D7.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ) A .命题p :∀x ∈A,2x ∉B B .命题p :∀x ∉A,2x ∉BC.命题p:∃x0∉A,2x0∈BD.命题p:∃x0∈A,2x0∉B解析:由命题的否定易知选D,注意要把全称量词改为存在量词.答案:D8.命题“存在实数x0,使x0>1”的否定是()A.对任意实数x,都有x>1B.不存在实数x0,使x0≤1C.对任意实数x,都有x≤1D.存在实数x0,使x0≤1解析:由特称命题的否定为全称命题可知,原命题的否定为:对任意实数x,都有x≤1,故选C.答案:C9.已知命题p:“a=2”是“直线l1:ax+2y-6=0与直线l2:x+(a-1)y+a2-1=0平行”的充要条件,命题q:“∀n∈N*,f(n)∈N*且f(n)>2n”的否定是“∃n0∈N*,f(n0)∉N*且f(n0)≤2n0”,则下列命题为真命题的是()A.p∧q B.(命题p)∧qC.p∧(命题q) D.(命题p)∧(命题q)解析:由l1∥l2得a(a-1)=2,解得a=2或a=-1,故“a=2”是“直线l1:ax+2y -6=0与直线l2:x+(a-1)y+a2-1=0平行”的充分不必要条件,则p是假命题,命题p 是真命题;“∀n∈N*,f(n)∈N*且f(n)>2n”的否定是“∃n0∈N*,f(n0)∉N*或f(n0)≤2n0”,故q是假命题,命题q是真命题.所以p∧q,(命题p)∧q,p∧(命题q)均为假命题,(命题p)∧(命题q)为真命题,选D.答案:D10.已知命题p:∀x∈R,e x-x-1>0,则命题p是()A.∀x∈R,e x-x-1<0B.∃x0∈R,e x0-x0-1≤0C.∃x0∈R,e x0-x0-1<0D.∀x∈R,e x-x-1≤0解析:因为全称命题的否定是特称命题,所以命题p:∀x∈R,e x-x-1>0,则命题p:∃x0∈R,e x0-x0-1≤0.故选B.答案:B11.下列命题错误的是()A.若p∨q为假命题,则p∧q为假命题。
简单的逻辑联结词、全称量词与存在量词
![简单的逻辑联结词、全称量词与存在量词](https://img.taocdn.com/s3/m/a1b40518700abb68a882fb9e.png)
简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:p q p∧q p∨q非p真真真真假假真假真真真假假真假假假假假真命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词量词名称常见量词表示符号全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有一个、某个、有些、某些等∃3.全称命题与特称命题命题名称命题结构命题简记全称命题对M中任意一个x,有p(x)成立∀x∈M,p(x)特称命题存在M中的一个x0,使p(x0)成立∃x0∈M,p(x0) 4.全称命题与特称命题的否定命题命题的否定∀x∈M,p(x)∃x0∈M,非p(x0)∃x0∈M,p(x0)∀x∈M,非p(x)二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.考点一判断含有逻辑联结词命题的真假[典例](1)(2017·山东高考)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p∧q B.p∧非qC.非p∧q D.非p∧非q(2)(2019·安徽安庆模拟)设命题p:∃x0∈(0,+∞),x0+1x0>3;命题q:∀x∈(2,+∞),x2>2x,则下列命题为真的是()A.p∧(非q)B.(非p)∧qC.p∧q D.(非p)∨q[解析](1)当x>0时,x+1>1,因此ln(x+1)>0,即p为真命题;取a=1,b=-2,这时满足a>b,显然a2>b2不成立,因此q为假命题.由复合命题的真假性,知B为真命题.(2)对于命题p,当x0=4时,x0+1x0=174>3,故命题p为真命题;对于命题q,当x=4时,24=42=16,即∃x0∈(2,+∞),使得2x0=x20成立,故命题q为假命题,所以p∧(非q)为真命题,故选A.[答案](1)B(2)A[题组训练]1.(2019·惠州调研)已知命题p,q,则“非p为假命题”是“p∧q是真命题”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B充分性:若非p为假命题,则p为真命题,由于不知道q的真假性,所以推不出p∧q是真命题.必要性:p∧q是真命题,则p,q均为真命题,则非p为假命题.所以“非p为假命题”是“p∧q是真命题”的必要不充分条件.2.已知命题p:“若x2-x>0,则x>1”;命题q:“若x,y∈R,x2+y2=0,则xy=0”.下列命题是真命题的是()A.p∨(非q)B.p∨qC.p∧q D.(非p)∧(非q)解析:选B若x2-x>0,则x>1或x<0,故p是假命题;若x,y∈R,x2+y2=0,则x =0,y=0,xy=0,故q是真命题.则p∨q是真命题.考点二全称命题与特称命题[典例](1)命题∀x∈R,e x-x-1≥0的否定是()A.∀x∈R,e x-x-1≤0B.∀x∈R,e x-x-1≥0C.∃x0∈R,e x0-x0-1≤0D.∃x0∈R,e x0-x0-1<0(2)对命题∃x0>0,x20>2x0,下列说法正确的是()A.真命题,其否定是∃x0≤0,x20≤2x0B.假命题,其否定是∀x>0,x2≤2xC.真命题,其否定是∀x>0,x2≤2xD.真命题,其否定是∀x≤0,x2≤2x[解析](1)改全称量词为存在量词,把不等式中的大于或等于改为小于.故选D.(2)已知命题是真命题,如32=9>8=23,其否定是∀x>0,x2≤2x.故选C.[答案](1)D(2)C[题组训练]1.命题“∀x∈R,∃n∈N*,使得n≤x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n>x2B.∀x∈R,∀n∈N*,使得n>x2C.∃x0∈R,∃n∈N*,使得n>x20D.∃x0∈R,∀n∈N*,使得n>x20解析:选D∀改写为∃,∃改写为∀,n≤x2的否定是n>x2,则该命题的否定形式为“∃x0∈R,∀n∈N*,使得n>x20”.2.已知命题p:∃n∈R,使得f(x)=nxn2+2n是幂函数,且在(0,+∞)上单调递增;命题q:“∃x0∈R,x20+2>3x0”的否定是“∀x∈R,x2+2<3x”.则下列命题为真命题的是()A.p∧q B.(非p)∧qC.p∧(非q)D.(非p)∧(非q)解析:选C当n=1时,f(x)=x3为幂函数,且在(0,+∞)上单调递增,故p是真命题,则非p是假命题;“∃x0∈R,x20+2>3x0”的否定是“∀x∈R,x2+2≤3x”,故q是假命题,非q是真命题.所以p∧q,(非p)∧q,(非p)∧(非q)均为假命题,p∧(非q)为真命题,选C.考点三根据命题的真假求参数的取值范围[典例]已知p:存在x0∈R,mx20+1≤0,q:任意x∈R,x2+mx+1>0.若p或q为假命题,求实数m的取值范围.[解]依题意知p,q均为假命题,当p是假命题时,则mx2+1>0恒成立,则有m≥0;当q是真命题时,则Δ=m2-4<0,-2<m<2.因此由p,q均为假命题得{m≥0,m≤-2或m≥2,即m≥2.所以实数m的取值范围为[2,+∞).[变透练清]1.(变条件)若本例将条件“p或q为假命题”变为“p且q为真命题”,其他条件不变,则实数m的取值范围为________.解析:依题意,当p是真命题时,有m<0;当q是真命题时,有-2<m<2,<0,2<m<2,可得-2<m<0.所以m的取值范围为(-2,0).答案:(-2,0)2.(变条件)若本例将条件“p或q为假命题”变为“p且q为假,p或q为真”,其他条件不变,则实数m的取值范围为________.解析:若p且q为假,p或q为真,则p,q一真一假.当p真q<0,≥2或m≤-2,所以m≤-2;当p假q≥0,2<m<2,所以0≤m<2.所以m的取值范围为(-∞,-2]∪[0,2).答案:(-∞,-2]∪[0,2)3.(变条件)若本例将条件q变为:存在x0∈R,x20+mx0+1<0,其他条件不变,则实数m 的取值范围为________.解析:依题意,当q是真命题时,Δ=m2-4>0,所以m>2或m<-2.≥0,2≤m≤2,得0≤m≤2,所以m的取值范围为[0,2].答案:[0,2][课时跟踪检测]1.(2019·西安摸底)命题“∀x>0,xx-1>0”的否定是()A.∃x0≥0,x0x0-1≤0B.∃x0>0,0≤x0≤1C.∀x>0,xx-1≤0D.∀x<0,0≤x≤1解析:选B∵xx-1>0,∴x<0或x>1,∴xx-1>0的否定是0≤x≤1,∴命题的否定是“∃x0>0,0≤x0≤1”.2.下列命题中,假命题的是()A.∀x∈R,21-x>0B.∃a0∈R,y=xa0的图象关于y轴对称C.函数y=x a的图象经过第四象限D.直线x+y+1=0与圆x2+y2=12相切解析:选C对于A,由指数函数的性质可知为真命题;对于B,当a=2时,其图象关于y轴对称;对于C,当x>0时,y>0恒成立,从而图象不过第四象限,故为假命题;对于D,因为圆心(0,0)到直线x+y+1=0的距离等于12,等于圆的半径,命题成立.3.(2019·陕西质检)已知命题p:对任意的x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧q B.(非p)∧(非q)C.(非p)∧q D.p∧(非q)解析:选D由指数函数的性质知命题p为真命题.易知x>1是x>2的必要不充分条件,所以命题q为假命题.由复合命题真值表可知p∧(非q)为真命题.4.(2018·湘东五校联考)下列说法中正确的是()A.“a>1,b>1”是“ab>1”成立的充分条件B.命题p:∀x∈R,2x>0,则非p:∃x0∈R,2x0<0C.命题“若a>b>0,则1a <1b”的逆命题是真命题D.“a>b”是“a2>b2”成立的充分不必要条件解析:选A对于选项A,由a>1,b>1,易得ab>1,故A正确.对于选项B,全称命题的否定是特称命题,所以命题p:∀x∈R,2x>0的否定是非p:∃x0∈R,2x0≤0,故B错误.对于选项C,其逆命题:若1a<1b,则a>b>0,可举反例,如a=-1,b=1,显然是假命题,故C错误.对于选项D,由“a>b”并不能推出“a2>b2”,如a=1,b=-1,故D错误.故选A.5.(2019·唐山五校联考)已知命题p:“a>b”是“2a>2b”的充要条件;命题q:∃x0∈R,|x0+1|≤x0,则()A.(非p)∨q为真命题B.p∧(非q)为假命题C.p∧q为真命题D.p∨q为真命题解析:选D由题意可知命题p为真命题.因为|x+1|≤x的解集为空集,所以命题q 为假命题,所以p∨q为真命题.6.下列说法错误的是()A.命题“若x2-5x+6=0,则x=2”的逆否命题是“若x≠2,则x2-5x+6≠0”B.若命题p:存在x0∈R,x20+x0+1<0,则非p:对任意x∈R,x2+x+1≥0C.若x,y∈R,则“x=y”是“xy”的充要条件D.已知命题p和q,若“p或q”为假命题,则命题p与q中必一真一假解析:选D由原命题与逆否命题的关系,知A正确;由特称命题的否定知B正确;由xy⇔4xy≥(x+y)2⇔4xy≥x2+y2+2xy⇔(x-y)2≤0⇔x=y,知C正确;对于D,命题“p或q”为假命题,则命题p与q均为假命题,所以D不正确.7.(2019·长沙模拟)已知命题“∀x∈R,ax2+4x+1>0”是假命题,则实数a的取值范围是()A.(4,+∞)B.(0,4]C.(-∞,4]D.[0,4)解析:选C当原命题为真命题时,a>0且Δ<0,所以a>4,故当原命题为假命题时,a≤4.8.下列命题为假命题的是()A.存在x>y>0,使得ln x+ln y<0B.“φ=π2”是“函数y=sin(2x+φ)为偶函数”的充分不必要条件C.∃x0∈(-∞,0),使3x0<4x0成立D.已知两个平面α,β,若两条异面直线m,n满足m⊂α,n⊂β且m∥β,n∥α,则α∥β解析:选C对于A选项,令x=1,y=1e,则ln x+ln y=-1<0成立,故排除A.对于B选项,“φ=π2”是“函数y=sin(2x+φ)为偶函数”的充分不必要条件,正确,故排除B.对于C选项,根据幂函数y=xα,当α<0时,函数单调递减,故不存在x0∈(-∞,0),使3x0<4x0成立,故C错误.对于D选项,已知两个平面α,β,若两条异面直线m,n满足m⊂α,n ⊂β且m∥β,n∥α,可过n作一个平面与平面α相交于直线n′.由线面平行的性质定理可得n′∥n,再由线面平行的判定定理可得n′∥β,接下来由面面平行的判定定理可得α∥β,故排除D,选C.9.若命题p的否定是“∀x∈(0,+∞),x>x+1”,则命题p可写为________________________.解析:因为p是非p的否定,所以只需将全称量词变为特称量词,再对结论否定即可.答案:∃x0∈(0,+∞),x0≤x0+110.已知命题p:x2+4x+3≥0,q:x∈Z,且“p∧q”与“非q”同时为假命题,则x =________.解析:若p为真,则x≥-1或x≤-3,因为“非q”为假,则q为真,即x∈Z,又因为“p∧q”为假,所以p为假,故-3<x<-1,由题意,得x=-2.答案:-211.已知p:a<0,q:a2>a,则非p是非q的________条件(填:充分不必要、必要不充分、充要、既不充分也不必要).解析:由题意得非p:a≥0,非q:a2≤a,即0≤a≤1.因为{a|0≤a≤1}{a|a≥0},所以非p是非q的必要不充分条件.答案:必要不充分12.已知命题p:a2≥0(a∈R),命题q:函数f(x)=x2-x在区间[0,+∞)上单调递增,则下列命题:①p∨q;②p∧q;③(非p)∧(非q);④(非p)∨q.其中为假命题的序号为________.解析:显然命题p为真命题,非p为假命题.∵f(x)=x2-x-1 4,∴函数f(x)在区间1 2,+∴命题q为假命题,非q为真命题.∴p∨q为真命题,p∧q为假命题,(非p)∧(非q)为假命题,(非p)∨q为假命题.答案:②③④13.设t∈R,已知命题p:函数f(x)=x2-2tx+1有零点;命题q:∀x∈[1,+∞),1x -x≤4t2-1.(1)当t=1时,判断命题q的真假;(2)若p∨q为假命题,求t的取值范围.解:(1)当t=1=0,1x-x≤3在[1,+∞)上恒成立,故命题q为真命题.(2)若p∨q为假命题,则p,q都是假命题.当p为假命题时,Δ=(-2t)2-4<0,解得-1<t<1;当q≤4t2-1,即4t2-1≥0,解得t≤-12或t≥12,∴当q为假命题时,-12<t<12,∴t -1 2,。
[整理版]逻辑连接词与量词
![[整理版]逻辑连接词与量词](https://img.taocdn.com/s3/m/653025750a1c59eef8c75fbfc77da26925c59665.png)
逻辑连接词与量词【考点导读】1.了解逻辑联结词“或”,“且”,“非”的含义;能用“或”,“且”,“非”表述相关的数学内容.2.理解全称量词与存在量词的意义;能用全称量词与存在量词叙述简单的数学内容.理解对含有一个量词的命题的否定的意义;能正确地对含有一个量词的命题进行否定.【基础知识】1、简单的逻辑联结词逻辑联结词有,不含的命题是简单命题.由的命题是复合命题.复合命题的构成形式有三种:,(其中p,q都是简单命题).2、量词(1)短语“对所有的”“任意一个”在逻辑中通常叫做全称量词。
含有全称量词的命题,叫做全称命题。
(2)短语“存在一个”“至少一个”在逻辑中通常叫做存在量词。
含有存在量词的命题,叫做特称命题。
全称命题的否定是特称命题;特称命题的否定是全称命题。
3、真值表p q p 且q p 或q 非p真真真真假真假假真假假真假真真假假假假真4、全称命题及存在性命题的真假判定【基础题回顾】1.判断下列命题是全称命题:存在性命题:1)任何实数的平方都是非负数; 2)任何数与0相乘,都等于0; 3)任何一个实数都有相反数;4)△ABC的内角中有锐角.2.判断下列命题是真命题的是::1)中国的所有的江河都流入太平洋2)有的四边形既是矩形,又是菱形;3)实系数方程都有实数解; 4)有的数比它的倒数小;3.写出命题“中学生的年龄都在15以上”的否定: ;4.写出命题” x∈R,x2>x”的否定:5. 写出命题” 6是2的倍数也是4的倍数”的否命题:【典型例题】例1.分别指出下列复合命题的形式及构成它的简单命题,并判断其真假.(1)相似三角形周长相等或对应角相等;(2)9的算术平方根不是3;(3)垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.变式训练1.写出由下列各组命题构成的“p 或q ”,“p 且q ”,“非p ”形式的命题,并判断真假.(1)p :2是4的约数,q :2是6的约数; (2)p :矩形的对角线相等,q :矩形的对角线互相平分;(3)p :方程210x x -+=的两实根的符号相同,q :方程210x x -+=的两实根的绝对值相等.例2. 写出下列命题的否定:(1)所有人都晨练;(2) ∀ x ∈R,x 2+x+1>0; (3)平行四边形的对边相等;(4) ∃x ∈R,x 2-x+1=0变式训练2.写出下列命题的否定,并判断真假.(1)p :所有末位数字是0或5的整数都能被5整除;(2)p :每一个非负数的平方都是正数;(3)p :存在一个三角形,它的内角和大于180°;(4)p :有的四边形没有外接圆;(5)p :某些梯形的对角线互相平分.例 3. p:关于x 的不等式{},0|1<>x x a x的解集是q :函数2l g ()y a x x a =-+的定义域为R ,P Q a 如果和有且只有一个正确,求的取值范围。
简单的逻辑联结词、全称量词与存在量词
![简单的逻辑联结词、全称量词与存在量词](https://img.taocdn.com/s3/m/2bb258155a8102d276a22fff.png)
简单的逻辑联结词、全称量词与存在量词考纲解读1.了解逻辑联结词“且”、“或”、“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.命题趋势探究预测高考主要考查:复合命题真假的判断、全称命题与存在性命题的否定以及利用命题的真假求参数范围.题型主要以选择题、填空题为主.知识点精讲1.简单的逻样联结词(1)一般地,用联结词“且”把命题p和q联结起来,得到一个新命颐,记作p q∧,读作“p且q;(2)一般地,用联结词“或”把命题p和q联结起来,得到一个新命题.记作p q∨,读作“p或q”;(3)一般地,对一个命题p否定,得到一个新命题,记作p⌝,读作“非p”或“p的否定”.逻辑联结词的真值规律如表1-2所示.表1-2口诀:(1)“p 且q ”,一假则假,全真才真;(2)“p 或q ”,一真则真,全假才假;(3)“p ⌝”,真假相对. 2.全称量词与存在童词(1)全称量词与全称命题.短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题叫做全称命题.全称命题“对M 中的任意一个x ,有()p x 成立”可用符号简记为“,()x M p x ∀∈”,读作“对任意x 属于M ,有()p x 成立”.(2)存在量词与特称命题.短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题叫做特称命题.特称命题“存在M 中的一个0x ,使0()p x 成立”可用符号简记为“00,()x M P x ∃∈”,读作“存在M 中元素0x ,使0()p x 成立”(特称命题也叫存在性命题).3.含有一个量词的命题的否定(1)全称命题的否定是特称命题.全称命题:,()p x M p x ∀∈的否定p ⌝为0x M∃∈,0()p x ⌝.(2)特称命题的否定是全称命题.特称命题00:,()p x M p x ∃∈的否定p ⌝为,()x M p x ∀∈⌝.注:全称、特称命题的否定是高考常见考点之一. 区别否命题与命题的否定:①只有“若p ,则q ”形式的命题才有否命题,而所有的命班都有否定形命题“若p,则q”的否命题是“若p⌝,则q⌝,而否定形式为“若p,则q⌝”.②一个命题与其否定必有一个为真,一个为假;而一个命题与其否命题的真假无必然联系.题型归纳及思路提示题型7 判断含逻辑联结词的命题的真假思路提示判断命题真假的一般步骤为:(1)确定命题的构成形式;(2)判断所用的逻辑联结词联结的每个简单命题的真假;(3)报据真值表判断新命题的真假.例1.15 判断下列命题的真假.(1)24既是8的倍数,也是6的倍数;(2)矩形的对角线互相垂直或相等;(3)菱形不是平行四边形;(4)30≥.分析:解题步骤为分析命题的构成、联系真值表、下结论.变式1(优质试题·山东)已知命题01)0p x l n x ∀>+>:,(;命题q :22 a b a b 若>,则> , 下列命题为真命题的是( )A .p ∧qB .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝变式2 已知命题,p q ,则“p 或q 为真”是p 且q 为真”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件变式3(优质试题·商丘模拟)已知命题p :函数1(10)1x y a a a >≠+=+且的图象恒过点()1,2-;命题q :已知//αβ平面平面,则直线//m α是直线//m β的A . p q ∧B .()()p q ⌝∧⌝C .( )p q ⌝∧D .()p q ∧⌝题型8 含有一个量词的命题的否定 思路提示(1)含有一个量词的命题的否定:先否定量词(即“任意”变“存在”、“存在”变“任意”).再否定结论;(2)清楚命题是全称命题还是特称命题,是正确写出命题否定的前提; (3)注意命题的否定与否命题的区别;(4)当p ⌝的真假不易判断时,可转化为去判断p 的真假.例1.16 写出下列命题的否定并判断其真假. (1):p 不论m 取何实数,方程210x mx +-=必有实数根; (2):p 有的三角形的三条边相等;(4)0:N p x ∃∈,200210x x -+≤.评注:命题的否定,往往需要对正面叙述的词语进行否定,常用的正面叙述的词语及其否定如表1-3所示. 表1-3特别地,联结词“且”的否定为“或”, “或”的否定为“且”.“p 且q ”的否定是“p ⌝或q ⌝”,“p 或q ”的否定是“p ⌝且q ⌝”.即)()()(q p q p ⌝∨⌝=∧⌝,)()()(q p q p ⌝∧⌝=∨⌝,与集合的德摩根法则可类比记忆. 变式1 命题“存在0x R ∈,020x ≤”的否定是( )A .不存在0x R ∈,020x≤B .存在0x R ∈,020x≥C .对任意的R x ∈,20x ≤D .对任意的R x ∈,20x >变式2(优质试题·成都七中半期)设命题:(0,),tan 2p x x x π∀∈<,则p ⌝为( )A.000(0,),tan 2x x x π∃∈≥ B .(0,),tan 2x x x π∀∈≥B.000(0,),tan 2x x x π∃∈<D .(0,),tan 2x x x π∀∈=题型9 根据命题真假求参数的范围例1.17 命题p:关于x的不等式2240x∈恒成立,q:x ax++>,对一切R指数函数()()32x=-是增函数.若p或q为真,p且q为假,求实数a的取值范f x a围.分析由命题p或q为真,p且q为假,则p与q中有且只有一个为真命题,由此进行讨论.评注:正确理解p 或q 为真,p 且q 为假的含义是解本题的关键点.把p 和q 在数轴上表示出来,在q p 中去掉q p ,剩余部分就是所求,即()pqp q ð.变式1 已知命题P :关于x 的不等式22(1)0x a x a +-+≤的解集为ϕ;命题q :函数()22xy a a =-为增函数.若命题q p ∧为真命题,则实数a 的取值范围为变式2 给定两个命题:P :对任意实数x ,都有210ax ax ++>恒成立.Q :关于x 的方程20x x a -+=有实数根.如果P 与q 中有且仅有一个为真命题,求实数a 的取值范围.例 1.18已知f(x)=ln(x2+1),g(x)=(12)x-m,若对∀x1∈[0,3],∃x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是()A.[14,+∞) B.(-∞,14]C.[12,+∞) D.(-∞,-12]变式1已知函数f(x)=x2-2x+3,g(x)=log2x+m,对任意的x1,x2∈[1,4]有f(x1)>g(x2)恒成立,则实数m的取值范围是________________.最有效训练3(限时45分钟)1.(优质试题·浙江)命题“**()()n N f n N f n n ∀∈∈≤,且”的否定形式是( )A .**()()n N f n N f n n ∀∈∉>,且B .**()()n N f n N f n n ∀∈∉>,或C .0000()*()*n N f n N f n n ∃∈∉>,且D .0000()*()*n N f n N f n n ∃∈∉>,或2.已知p ,q 是简单命题,则“q p ∧是真命题”是“p ⌝是假命题”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.已知命题p :存在),0(,+∞∈b a ,当1=+b a 时,+a1;31=b命题q :任意01,2≥+-∈x x R x 恒成立,则下列命题中是假命题的是( )A .p ⌝或q ⌝B .p ⌝且q ⌝C .p ⌝或 qD .p ⌝且q 4.已知命题:,2lg ;p x R x x ∃∈->命题2,:x R x q ∈∀>0则( ) A .命题q p ∨是假命题B .命题q p ∧是真命题C .命题)(q p ⌝∨是假命题D .命题)(q p ⌝∧是真命题5.已知命题[];0,2,1:2≥-∈∀a x x p 命题,:R x q ∈∃.0222=-++a ax x 若命题p 且q 是真命题,则实数a 的取值范围为( )10.(优质试题·郑州一模)已知函数f(x)=x+4x,g(x)=2x+a,若∀x1∈[12,3],∃x2∈[2,3]使得f(x1)≥g(x2),则实数a的取值范围是()A.a≤1 B.a≥1 C.a≤0 D.a≥013.已知函数f(x)=x2-x+1x-1(x≥2),g(x)=a x(a>1,x≥2).(1)若∃x0∈[2,+∞),使f(x0)=m成立,则实数m的取值范围为________________;(2)若∀x1∈[2,+∞),∃x2∈[2, +∞)使得f(x1)=g(x2),则实数a的取值范围为________________.。
简单的逻辑联结词、全称量词与存在量词
![简单的逻辑联结词、全称量词与存在量词](https://img.taocdn.com/s3/m/435902f70b1c59eef9c7b40c.png)
简单的逻辑联结词、全称量词与存在量词‖知识梳理‖1.简单的逻辑联结词(1)常用的简单的逻辑联结词有“或”“且”“非”.(2)命题p∧q、p∨q、綈p的真假判断(1)全称量词和存在量词(2)| 微点提醒|1.逻辑联结词“或”“且”“非”对应着集合运算中的“并”“交”“补”.因此,可以借助集合的“并、交、补”的意义来求解“或、且、非”三个逻辑联结词构成的命题问题.2.含有逻辑联结词的命题真假判断口诀:p∨q见真即真,p∧q见假即假,p与綈p真假相反.3.全称命题(特称命题)的否定是特称命题(全称命题).其真假性与原命题相反.要写一个命题的否定,需先分清其是全称命题还是特称命题,对照否定结构去写,否定的规律是“改量词,否结论”.4.“p ∨q ”的否定是“(綈p )∧(綈q )”;“p ∧q ”的否定是“(綈p )∨(綈q )”.‖易错辨析‖判断下列结论是否正确(请在括号中打”√”或“×”) (1)命题p ∧q 为假命题,则命题p 、q 都是假命题.(×) (2)命题p 和綈p 不可能都是真命题.(√)(3)若命题p 、q 至少有一个是真命题,则p ∨q 是真命题.(√) (4)写特称命题的否定时,存在量词变为全称量词.(√) (5)∃x 0∈M ,p (x 0)与∀x ∈M ,綈p (x )的真假性相反.(√)‖自主测评‖1.若命题p :对任意的x ∈R ,都有x 3-x 2+1<0,则綈p 为( ) A .不存在x ∈R ,使得x 3-x 2+1<0B .存在x 0∈R ,使得x 30-x 20+1<0C .对任意的x ∈R ,都有x 3-x 2+1≥0D .存在x 0∈R ,使得x 30-x 20+1≥0 解析:选D 命题p :对任意的x ∈R ,都有x 3-x 2+1<0的否定綈p :存在x 0∈R ,使得x 30-x 20+1≥0.故选D. 2.已知命题p :对任意x ∈R ,总有|x |≥0;q :x =1是方程x +2=0的根.则下列命题为真命题的是( ) A .p ∧(綈q ) B .(綈p )∧q C .(綈p )∧(綈q )D .p ∧q解析:选A 因为命题p 为真命题,q 为假命题,故綈q 为真命题,所以p ∧(綈q )为真命题. 3.(教材改编题)下列命题是真命题的是( ) A .所有的素数都是奇数 B .∀x ∈R ,x 2+1≥0C .对于每一个无理数x ,x 2是有理数D .∀x ∈Z ,1x∉Z解析:选B 对于A,2是素数,但2不是奇数,A 假;对于B ,∀x ∈R ,总有x 2≥0,则x 2+1≥0恒成立,B 真;对于C ,π是无理数,(π)2=π还是无理数,C 假;对于D,1∈Z ,但11=1∈Z ,D 假,故选B.4.命题“∃x 0∈R ,x 20-x 0-1>0”的否定是________.解析:依题意得,命题“∃x 0∈R ,x 20-x 0-1>0”的否定是“∀x ∈R ,x 2-x -1≤0”.答案:∀x ∈R ,x 2-x -1≤05.若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________. 解析:因为0≤x ≤π4,所以0≤tan x ≤1,又因为∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ,故m ≥1, 即m 的最小值为1. 答案:1…………考点一 含有逻辑联结词的命题的真假判断………|讲练互动型|…………|互动探究|【典例】 (1)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( ) A .p ∧q B .p ∧(綈q ) C .(綈p )∧qD .(綈p )∧(綈q )(2)已知命题p :对于任意的非零向量a ,b 都有a·b ≤|a|·|b|;命题q :对于任意的非零实数x ,都有x +1x ≥2.则下列命题:①p ∧q ,②p ∨q ,③p ∧(綈q ),④(綈p )∨q ,⑤(綈p )∧(綈q ),⑥(綈p )∨(綈q )中正确的个数为( ) A .2 B .3 C .4D .5[解析] (1)当x >0时,x +1>1,因此ln(x +1)>0,即p 为真命题;取a =1,b =-2,这时满足a >b ,显然a 2>b 2不成立,因此q 为假命题.易知B 为真命题.(2)对于任意的非零向量a ,b ,都有a·b ≤|a·b|=|a|·|b||cos 〈a ,b 〉|≤|a|·|b|,即命题p 为真命题,故綈p 为假命题;当x <0时,x +1x ≤-2,即命题q 为假命题,故綈q 为真命题.从而p ∨q 、p ∧(綈q )、(綈p )∨(綈q )为真命题,故选B. [答案] (1)B (2)B『名师点津』………………………………………………|品名师指点迷津| 1.“p ∨q ”“p ∧q ”“綈p ”形式命题真假的判断步骤(1)确定命题的构成形式; (2)判断命题p ,q 的真假;(3)根据真值表确定“p ∨q ”“p ∧q ”“綈p ”形式命题的真假. 2.含逻辑联结词命题真假的等价关系(1)p ∨q 真⇔p ,q 至少一个真⇔(綈p )∧(綈q )假. (2)p ∨q 假⇔p ,q 均假⇔(綈p )∧(綈q )真. (3)p ∧q 真⇔p ,q 均真⇔(綈p )∨(綈q )假. (4)p ∧q 假⇔p ,q 至少一个假⇔(綈p )∨(綈q )真. (5)綈p 真⇔p 假;綈p 假⇔p 真.|变式训练|1.设a ,b ,c 是非零向量.已知命题p :若a·b =0,b·c =0,则a·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( ) A .p ∨q B .p ∧q C .(綈p )∧(綈q )D .p ∨(綈q )解析:选A 由题意知命题p 为假命题,命题q 为真命题,所以p ∨q 为真命题.故选A. 2.已知命题p :∀x ≥4,log 2x ≥2;命题q :在△ABC 中,若A >π3,则sin A >32.则下列命题为真命题的是( ) A .p ∧q B .p ∧(綈q ) C .(綈p )∧(綈q )D .(綈p )∨q解析:选B ∀x ≥4,log 2x ≥log 24=2,所以命题p 为真命题;A =2π3>π3,sin A =32,所以命题q 为假命题.故p ∧(綈q )为真命题.故选B.………………考点二 全称量词与特称量词………………|多维探究型|……………|多角探明|角度一 全称命题与特称命题的否定【例1】 (1)已知命题p :∀x 1,x 2∈R ,[]f (x 2)-f (x 1)(x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0 B .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0C .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0D .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0(2)命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是( ) A .∀x ∈(0,+∞),ln x ≠x -1 B .∀x ∉(0,+∞),ln x =x -1 C .∃x 0∈(0,+∞),ln x 0≠x 0-1 D .∃x 0∉(0,+∞),ln x 0=x 0-1[解析] (1)根据“全称命题q :∀x ∈M ,q (x )的否定是綈q :∃x 0∈M ,綈q (x 0)”可知“綈p :∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0”.(2)特称命题的否定为全称命题,所以“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是“∀x ∈(0,+∞),ln x ≠x -1”,故选A. [答案] (1)C (2)A角度二 全称命题与特称命题的真假判断 【例2】 (1)下列命题中的假命题为( ) A .∀x ∈R ,e x >0 B .∀x ∈N ,x 2>0 C .∃x 0∈R ,ln x 0<1D .∃x 0∈N *,sinπx 02=1 (2)(2018届长沙模拟)已知函数f (x )=x 12,则( )A .∃x 0∈R ,f (x 0)<0B .∀x ∈(0,+∞),f (x )≥0C .∃x 1,x 2∈[0,+∞),f (x 1)-f (x 2)x 1-x 2<0D .∀x 1∈[0,+∞),∃x 2∈[0,+∞),f (x 1)>f (x 2)[解析] (1)对于选项A ,由函数y =e x 的图象可知,∀x ∈R ,e x >0,故选项A 为真命题;对于选项B ,当x =0时,x 2=0,故选项B 为假命题;对于选项C ,当x 0=1e 时,ln 1e =-1<1,故选项C 为真命题;对于选项D ,当x 0=1时,sin π2=1,故选项D 为真命题.综上知选B.(2)幂函数f (x )=x 12的值域为[0,+∞),且在定义域上单调递增,故A 、C 错误,B 正确;D选项中当x 1=0时,结论不成立,故选B. [答案] (1)B (2)B『名师点津』………………………………………………|品名师指点迷津| 1.全称命题与特称命题的否定(1)改写量词:找到命题所含的量词,没有量词的要结合命题的含义加上量词,再改变量词. (2)否定结论:对原命题的结论进行否定. 2.全称命题与特称命题的真假判断方法(1)要判断一个全称命题是真命题,必须对限定集合M 中的每个元素x 验证p (x )成立;但要判断全称命题是假命题,只要能找出集合M 中的一个x =x 0,使得p (x 0)不成立即可(这就是通常所说的“举出一个反例”).(2)要判断一个特称命题是真命题,只要在限定集合M 中,至少能找到一个x =x 0,使p (x 0)成立即可,否则,这一特称命题就是假命题.|变式训练|1.(2019届河南商丘模拟)已知f (x )=sin x -x ,命题p :∃x ∈⎝⎛⎭⎫0,π2,f (x )<0,则( ) A .p 是假命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0 B .p 是假命题,綈p :∃x ∈⎝⎛⎭⎫0,π2,f (x )≥0 C .p 是真命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0 D .p 是真命题,綈p :∃x ∈⎝⎛⎭⎫0,π2,f (x )≥0 解析:选C 易知f ′(x )=cos x -1<0,所以f (x )在⎝⎛⎭⎫0,π2上是减函数,因为f (0)=0,所以f (x )<0,所以命题p :∃x ∈⎝⎛⎭⎫0,π2,f (x )<0是真命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0,故选C. 2.下列命题: ①∀x ∈R ,x 2+2>0; ②∀x ∈N ,x 4≥1; ③∃x ∈Z ,x 3<1; ④∃x ∈Q ,x 2=3; ⑤∀x ∈R ,x 2-3x +2=0; ⑥∃x ∈R ,x 2+1=0.其中真命题的序号为________.解析:①由于∀x ∈R ,都有x 2≥0, 因而有x 2+2≥2,即x 2+2>0,所以命题“∀x ∈R ,x 2+2>0”是真命题.②由于0∈N ,当x =0时,x 4≥1不成立,所以命题“∀x ∈N ,x 4≥1”是假命题. ③由于-1∈Z ,当x =-1时,x 3<1,所以命题“∃x ∈Z ,x 3<1”是真命题.④由于使x 2=3成立的数只有±3,而它们都不是有理数,因此,没有任何一个有理数的平方能等于3,所以命题“∃x ∈Q ,x 2=3”是假命题.⑤由于只有当x =2或x =1时,满足x 2-3x +2=0,所以命题“∀x ∈R ,x 2-3x +2=0”是假命题.⑥由于不存在一个实数x 使x 2+1=0成立,所以命题“∃x ∈R ,x 2+1=0”是假命题. 答案:①③………考点三 由命题的真假确定参数的取值范围…………|典例迁移型|……………|研透母题|【典例】 已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,求实数m 的取值范围.[解析] 依题意知p ,q 均为假命题,当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q是真命题时,则有Δ=m 2-4<0,-2<m <2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.所以实数m 的取值范围为[2,+∞).[迁移探究1] (变设问)本典例条件不变,若p ∧q 为真,求实数m 的取值范围. [解] 依题意,当p 是真命题时,有m <0; 当q 是真命题时,有-2<m <2,由⎩⎪⎨⎪⎧m <0,-2<m <2,可得-2<m <0. 所以实数m 的取值范围是(-2,0).[迁移探究2] (变设问)本典例条件不变,若p ∧q 为假,p ∨q 为真,求实数m 的取值范围. [解] 若p 且q 为假,p 或q 为真,则p ,q 一真一假.当p 真q 假时⎩⎪⎨⎪⎧m <0,m ≥2或m ≤-2,所以m ≤-2;当p 假q 真时⎩⎪⎨⎪⎧m ≥0,-2<m <2,所以0≤m <2.所以m 的取值范围是(-∞,-2]∪[0,2).[迁移探究3] (变条件)本典例中的条件q 变为:存在x 0∈R ,x 20+mx 0+1<0,其他不变,求实数m 的取值范围.[解] 依题意,当q 是真命题时,Δ=m 2-4>0,所以m >2或m <-2.由⎩⎪⎨⎪⎧m ≥0,-2≤m ≤2,得0≤m ≤2,所以m 的取值范围是[0,2].『名师点津』………………………………………………|品名师指点迷津|根据命题的真假求参数取值范围的策略(1)全称命题:可转化为恒成立问题,特称命题转化为存在性问题. (2)含逻辑联结词问题:①求出每个命题是真命题时参数的取值范围; ②根据题意确定每个命题的真假;③由各个命题的真假列关于参数的不等式(组)求解|变式训练|1.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)解析:选D 因为命题p :∀x ∈R ,ax 2+ax +1≥0,所以命题綈p :∃x 0∈R ,ax 20+ax 0+1<0,则a <0或⎩⎪⎨⎪⎧a >0,Δ=a 2-4a >0,解得a <0或a >4.2.已知命题p :关于x 的不等式a x >1(a >0,a ≠1)的解集是{x |x <0},命题q :函数y =lg(ax 2-x +a )的定义域为R ,如果p ∨q 为真命题,p ∧q 为假命题,则实数a 的取值范围为________. 解析:由关于x 的不等式a x >1(a >0,a ≠1)的解集是{x |x <0},知0<a <1; 由函数y =lg(ax 2-x +a )的定义域为R , 知不等式ax 2-x +a >0的解集为R ,则⎩⎪⎨⎪⎧a >0,Δ=1-4a 2<0,解得a >12.因为p ∨q 为真命题,p ∧q 为假命题,所以p 和q 一真一假,即“p 假q 真”或“p 真q 假”,故⎩⎪⎨⎪⎧ a ≤0或a ≥1,a >12或⎩⎪⎨⎪⎧0<a <1,a ≤12,解得a ≥1或0<a ≤12,故实数a 的取值范围是⎝⎛⎦⎤0,12∪[1,+∞). 答案:⎝⎛⎦⎤0,12∪[1,+∞) 核心素养系列 易错辨析——混淆“命题的否定”与“否命题的概念”【典例】 (1)已知p :若a ∈A ,则b ∈B ,那么命题綈p 是( ) A .若a ∈A ,则b ∉B B .若a ∉A ,则b ∉B C .若a ∈A ,则b ∈BD .若b ∈B ,则a ∈A(2)命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( ) A .若f (x )是奇函数,则f (-x )不是奇函数 B .若f (x )不是奇函数,则f (-x )不是奇函数 C .若f (-x )是奇函数,则f (x )是奇函数 D .若f (-x )不是奇函数,则f (x )不是奇函数[解析] (1)“若p ,则q ”命题的否定是条件不变,只否定结论,故原命题的否定为“若a ∈A ,则b ∉B ”,故选A.(2)命题“若p ,则q ”的否命题为“若綈p ,则綈q ”,而“是”的否定是“不是”.故选B.[答案] (1)A (2)B[点评] “否命题”与“命题的否定”不是同一概念.“否命题”是对原命题“若p ,则q ”既否定其条件,又否定其结论;而“命题p 的否定”即非p ,只是否定命题p 的结论.。
简单的逻辑联结词、全称量词与存在量词(含解析)
![简单的逻辑联结词、全称量词与存在量词(含解析)](https://img.taocdn.com/s3/m/74f9181379563c1ec5da7159.png)
归纳与技巧:简单的逻辑联结词、全称量词与存在量词基础知识归纳一、简单的逻辑联结词1.用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.2.用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.3.对一个命题p全盘否定,就得到一个新命题,记作綈p,读作“非p”或“p的否定”.4.命题p∧q,p∨q,綈p的真假判断:p∧q中p、q有一假为假,p∨q有一真为真,p与非p必定是一真一假.二、全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题.(3)特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为∃x0∈M,P(x0),读作“存在M中的元素x0,使p(x0)成立”.三、含有一个量词的命题的否定基础题必做1.若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.綈p是真命题D.綈q是真命题答案:D2.(教材习题改编)下列命题中的假命题是()A.∃x0∈R,x0+1x0=2 B.∃x0∈R,sin x0=-1C.∀x∈R,x2>0 D.∀x∈R,2x>0答案:C3.命题“∃x0∈∁R Q,x30∈Q”的否定是()A.∃x0∉∁R Q,x30∈Q B.∃x0∈∁R Q,x30∉QC.∀x∉∁R Q,x3∈Q D.∀x∈∁R Q,x3∉Q解析:选D其否定为∀x∈∁R Q,x3∉Q.4.(教材习题改编)命题p:有的三角形是等边三角形.命题綈p:__________________.答案:所有的三角形都不是等边三角形5.命题“∃x0∈R,2x20-3ax0+9<0”为假命题,则实数a的取值范围为________.解析:∃x0∈R,2x20-3ax0+9<0为假命题,则∀x∈R,2x2-3ax+9≥0恒成立,有Δ=9a2-72≤0,解得-22≤a≤2 2.答案:[-22,2 2 ]解题方法归纳1.逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.正确区别命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.含有逻辑联结词命题的真假判定典题导入[例1]已知命题p:∃x0∈R,使tan x0=1,命题q:x2-3x+2<0的解集是{x|1<x<2},给出下列结论:①命题“p∧q”是真命题;②命题“p∧(綈q)”是假命题;③命题“(綈p)∨q”是真命题;④命题“(綈p)∨(綈q)”是假命题.其中正确的是()A.②③B.①②④C.①③④D.①②③④[自主解答]命题p:∃x0∈R,使tan x0=1是真命题,命题q:x2-3x+2<0的解集是{x|1<x<2}也是真命题,故①命题“p∧q”是真命题;②命题“p∧(綈q)”是假命题;③命题“(綈p)∨q”是真命题;④命题“(綈p)∨(綈q)”是假命题.[答案] D解题方法归纳1.“p∧q”“p∨q”“綈p”形式命题的真假判断步骤(1)准确判断简单命题p、q的真假;(2)判断“p∧q”“p∨q”“綈p”命题的真假.2.含有逻辑联结词的命题的真假判断规律(1)p∨q:p、q中有一个为真,则p∨q为真,即一真全真;(2)p∧q:p、q中有一个为假,则p∧q为假,即一假即假;(3)綈p:与p的真假相反,即一真一假,真假相反.以题试法1.(1)如果命题“非p或非q”是假命题,给出下列四个结论:①命题“p且q”是真命题;②命题“p且q”是假命题;③命题“p或q”是真命题;④命题“p或q”是假命题.其中正确的结论是()A.①③B.②④C.②③D.①④(2) 已知命题p:“∀x∈[0,1],a≥e x”,命题q:“∃x∈R,x2+4x+a=0”,若命题“p∧q”是真命题,则实数a的取值范围是()A.(4,+∞) B.[1,4]C.[e,4] D.(-∞,1]解析:(1)选A“非p或非q”是假命题⇒“非p”与“非q”均为假命题⇒p与q均为真命题.(2)选C “p ∧q ”是真命题,则p 与q 都是真命题.p 真则∀x ∈[0,1],a ≥e x ,需a ≥e ;q 真则x 2+4x +a =0有解,需Δ=16-4a ≥0,所以a ≤4.p ∧q 为真,则e ≤a ≤4.全称命题与特称命题的真假判断典题导入[例2] 下列命题中的假命题是( )A .∀a ,b ∈R ,a n =an +b ,有{a n }是等差数列B .∃x 0∈(-∞,0),2x 0<3x 0C .∀x ∈R,3x ≠0D .∃x 0∈R ,lg x 0=0[自主解答] 对于A ,a n +1-a n =a (n +1)+b -(an +b )=a 常数.A 正确;对于B ,∀x ∈(-∞,0),2x >3x ,B 不正确;对于C ,易知3x ≠0,因此C 正确;对于D ,注意到lg 1=0,因此D 正确.[答案] B解题方法归纳1.全称命题真假的判断方法(1)要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,证明p (x )成立;(2)要判断一个全称命题是假命题,只要能举出集合M 中的一个特殊值x =x 0,使p (x 0)不成立即可.2.特称命题真假的判断方法要判断一个特称命题是真命题,只要在限定的集合M 中,找到一个x =x 0,使p (x 0)成立即可,否则这一特称命题就是假命题.以题试法2. 下列命题中的真命题是( ) A .∃x 0∈R ,使得sin x 0cos x 0=35B .∃x 0∈(-∞,0),2x 0>1C .∀x ∈R ,x 2≥x -1D .∀x ∈(0,π),sin x >cos x解析:选C 由sin x cos x =35,得sin 2x =65>1,故A 错误;结合指数函数和三角函数的图象,可知B ,D 错误;因为x 2-x +1=⎝⎛⎭⎫x -122+34>0恒成立,所以C 正确.全称命题与特称命题的否定典题导入[例3] 命题“所有不能被2整除的整数都是奇数”的否定是( ) A .所有能被2整除的整数都是奇数 B .所有不能被2整除的整数都不是奇数 C .存在一个能被2整除的整数是奇数 D .存在一个不能被2整除的整数不是奇数[自主解答] 命题“所有不能被2整除的整数都是奇数”的否定是“存在一个不能被2整除的整数不是奇数”,选D.[答案] D若命题改为“存在一个能被2整除的整数是奇数”,其否定为________. 答案:所有能被2整除的整数都不是奇数解题方法归纳1.弄清命题是全称命题还是特称命题是写出命题否定的前提.2.注意命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定. 3.要判断“綈p ”命题的真假,可以直接判断,也可以判断“p ”的真假,p 与綈p 的真假相反.4.常见词语的否定形式有:原语句 是 都是 >至少有一个 至多有一个 对任意x ∈A 使p (x )真 否定形式不是不都是≤一个也没有至少有两个存在x 0∈A 使p (x 0)假以题试法3. 已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0解析:选C 命题p 的否定为“∃x 1,x 2∈R ,(f (x 2)-f ( x 1))(x 2-x 1)<0”.1.将a 2+b 2+2ab =(a +b )2改写成全称命题是( ) A .∃a ,b ∈R ,a 2+b 2+2ab =(a +b )2 B .∃a <0,b >0,a 2+b 2+2ab =(a +b )2 C .∀a >0,b >0,a 2+b 2+2ab =(a +b )2 D .∀a ,b ∈R ,a 2+b 2+2ab =(a +b )2解析:选D 全称命题含有量词“∀”,故排除A 、B ,又等式a 2+b 2+2ab =(a +b )2对于全体实数都成立,故选D.2. 设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是( )A .p 为真B .q 为真C .p ∧q 为假D .p ∨q 为真解析:选C 命题p ,q 均为假命题,故p ∧q 为假命题.3. 已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是( )A .(綈p )∨qB .p ∧qC .(綈p )∧(綈q )D .(綈p )∨(綈q )解析:选D 不难判断命题p 为真命题,命题q 为假命题,所以綈p 为假命题,綈q 为真命题,所以(綈p )∨(綈q )为真命题.4.下列命题中,真命题是( )A .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数B .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数C .∀m ∈R ,函数f (x )=x 2+mx (x ∈R )`都是偶函数D .∀m ∈R ,函数f (x )=x 2+mx (x ∈R )都是奇函数解析:选A 由于当m =0时,函数f (x )=x 2+mx =x 2为偶函数,故“∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )为偶函数”是真命题.5. 下列命题中,真命题是( ) A .∃x 0∈R ,e x 0≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab =-1D .a >1,b >1是ab >1的充分条件解析:选D 因为∀x ∈R ,e x >0,故排除A ;取x =2,则22=22,故排除B ;a +b =0,取a =b =0,则不能推出ab=-1,故排除C.6. 已知命题p 1:∃x 0∈R ,x 20+x 0+1<0;p 2:∀x ∈[1,2],x 2-1≥0.以下命题为真命题的是( )A .(綈p 1)∧(綈p 2)B .p 1∨(綈p 2)C .(綈p 1)∧p 2D .p 1∧p 2解析:选C ∵方程x 2+x +1=0的判别式Δ=12-4=-3<0,∴x 2+x +1<0无解,故命题p 1为假命题,綈p 1为真命题;由x 2-1≥0,得x ≥1或x ≤-1,∴∀x ∈[1,2],x 2-1≥0,故命题p 2为真命题,綈p 2为假命题.∵綈p 1为真命题,p 2为真命题,∴(綈p 1)∧p 2为真命题.7. 下列说法中错误的是( )A .对于命题p :∃x 0∈R ,使得x 0+1x 0>2,则綈p :∀x ∈R ,均有x +1x ≤2B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”D .若p ∧q 为假命题,则p ,q 均为假命题解析:选D 显然选项A 正确;对于B ,由x =1可得x 2-3x +2=0;反过来,由x 2-3x +2=0不能得知x =1,此时x 的值可能是2,因此“x =1”是“x 2-3x +2=0”的充分不必要条件,选项B 正确;对于C ,原命题的逆否命题是:“若x ≠1,则x 2-3x +2≠0”,因此选项C 正确;对于D ,若p ∧q 为假命题,则p ,q 中至少有一个为假命题,故选项D错误.8. 已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0,若“p 且q ”为真命题,则实数a 的取值范围是( )A .a =1或a ≤-2B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤1解析:选A 若命题p :∀x ∈[1,2],x 2-a ≥0真,则a ≤1.若命题q :∃x 0∈R ,x 20+2ax 0+2-a =0真,则Δ=4a 2-4(2-a )≥0,a ≥1或a ≤-2,又p 且q 为真命题所以a =1或a ≤-2.9.命题“存在x 0∈R ,使得x 20+2x 0+5=0”的否定是________. 答案:对任何x ∈R ,都有x 2+2x +5≠010.已知命题p :“∀x ∈N *,x >1x ”,命题p 的否定为命题q ,则q 是“________”;q的真假为________(填“真”或“假”).解析:q :∃x 0∈N *,x 0≤1x 0,当x 0=1时,x 0=1x 0成立,故q 为真.答案:∃x 0∈N *,x 0≤1x 0真11.若命题“存在实数x 0,使x 20+ax 0+1<0”的否定是假命题,则实数a 的取值范围为________.解析:由于命题的否定是假命题,所以原命题为真命题,结合图象知Δ=a 2-4>0,解得a >2或a <-2.答案:(-∞,-2)∪(2,+∞)12.若∃θ∈R ,使sin θ≥1成立,则cos ⎝⎛⎭⎫θ-π6的值为________. 解析:由题意得sin θ-1≥0.又-1≤sin θ≤1,∴sin θ=1. ∴θ=2k π+π2(k ∈Z ).故cos ⎝⎛⎭⎫θ-π6=12. 答案:1213.已知命题p :∃a 0∈R ,曲线x 2+y 2a 0=1为双曲线;命题q :x -1x -2≤0的解集是{x |1<x <2}.给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧(綈q )”是真命题;③命题“(綈p )∨q ”是真命题;④命题“(綈p )∨(綈q )”是真命题.其中正确的是________.解析:因为命题p 是真命题,命题q 是假命题,所以命题“p ∧q ”是假命题,命题“p ∧(綈q )”是真命题,命题“(綈p )∨q ”是假命题,命题“(綈p )∨(綈q )”是真命题.答案:②④ 14.下列结论:①若命题p :∃x 0∈R ,tan x 0=2;命题q :∀x ∈R ,x 2-x +12>0.则命题“p ∧(綈q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab =-3;③“设a 、b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a 、b ∈R ,若ab <2,则a 2+b 2≤4”.其中正确结论的序号为________.(把你认为正确结论的序号都填上)解析:在①中,命题p 是真命题,命题q 也是真命题,故“p ∧(綈q )”是假命题是正确的.在②中l 1⊥l 2⇔a +3b =0,所以②不正确.在③中“设a 、b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a 、b ∈R ,若ab <2,则a 2+b 2≤4”正确.答案:①③1.下列说法错误的是( )A .如果命题“綈p ”与命题“p 或q ”都是真命题,那么命题q 一定是真命题B .命题“若a =0,则ab =0”的否命题是:若“a ≠0,则ab ≠0”C .若命题p :∃x 0∈R ,ln(x 20+1)<0,则綈p :∀x ∈R ,ln(x 2+1)≥0D .“sin θ=12”是“θ=30°”的充分不必要条件解析:选D sin θ=12是θ=30°的必要不充分条件,故选D.2. 命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p 或q ”是真命题B .“p 或q ”是假命题C .綈p 为假命题D .綈q 为假命题解析:选B ∵当a ·b >0时,a 与b 的夹角为锐角或零度角,∴命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎪⎨⎪⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题.3.已知命题p :“∃x 0∈R,4x 0-2x 0+1+m =0”,若命题綈p 是假命题,则实数m 的取值范围是________.解析:若綈p 是假命题,则p 是真命题,即关于x 的方程4x -2·2x +m =0有实数解,由于m =-(4x -2·2x )=-(2x -1)2+1≤1,∴m ≤1.答案:(-∞,1] 4.下列四个命题:①∃x 0∈R ,使sin x 0+cos x 0=2;②对∀x ∈R ,sin x +1sin x≥2;③对∀x ∈⎝⎛⎭⎫0,π2,tan x +1tan x≥2;④∃x 0∈R ,使sin x 0+cos x 0= 2. 其中正确命题的序号为________.解析:∵sin x +cos x =2sin ⎝⎛⎭⎫x +π4∈[-2, 2 ]; 故①∃x 0∈R ,使sin x 0+cos x 0=2错误; ④∃x 0∈R ,使sin x 0+cos x 0=2正确; ∵sin x +1sin x ≥2或sin x +1sin x ≤-2,故②对∀x ∈R ,sin x +1sin x≥2错误;③对∀x ∈⎝⎛⎭⎫0,π2,tan x >0,1tan x >0,由基本不等式可得tan x +1tan x ≥2正确. 答案:③④5.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围. 解:(1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0. 又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,解得⎩⎪⎨⎪⎧-2≤x ≤3,x <-4或x >2,即2<x ≤3.所以q 为真时,2<x ≤3.若p ∧q 为真,则⎩⎨⎧1<x <3,2<x ≤3⇔2<x <3, 所以实数x 的取值范围是(2,3).(2)设A ={x |x ≤a ,或x ≥3a },B ={x |x ≤2,或x >3},因为綈p 是綈q 的充分不必要条件,所以A B .所以0<a ≤2且3a >3,即1<a ≤2.所以实数a 的取值范围是(1,2].6.已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题“p ∨q ”是假命题,求a 的取值范围.解:由2x 2+ax -a 2=0,得(2x -a )(x +a )=0,∴x =a 2或x =-a , ∴当命题p 为真命题时, ⎪⎪⎪⎪a 2≤1或|-a |≤1, ∴|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2.∴当命题q 为真命题时,a =0或a =2.∴命题“p ∨q ”为真命题时,|a |≤2.∵命题“p ∨q ”为假命题,∴a >2或a <-2.即a 的取值范围为{ a |}a >2,或a <-2.1. 有下列四个命题:p 1:若a ·b =0,则一定有a ⊥b ;p 2:∃x ,y ∈R ,sin(x -y )=sin x -sin y ;p 3:∀a ∈(0,1)∪(1,+∞),函数f (x )=a 1-2x +1都恒过定点⎝⎛⎭⎫12,2;p 4:方程x 2+y 2+Dx +Ey +F =0表示圆的充要条件是D 2+E 2-4F ≥0.其中假命题的是( )A .p 1,p 4B .p 2,p 3C .p 1,p 3D .p 2,p 4解析:选A 对于p 1:∵a ·b =0⇔a =0或b =0或a ⊥b ,当a =0,则a 方向任意,a ,b 不一定垂直,故p 1假,否定B 、D ,又p 3显然为真,否定C.2.若命题p :关于x 的不等式ax +b >0的解集是⎩⎨⎧⎭⎬⎫xx >-b a ,命题q :关于x 的不等式(x -a )(x -b )<0的解集是{x |a <x <b },则在命题“p ∧q ”“p ∨q ”“綈p ”“綈q ”中,是真命题的有________.解析:依题意可知命题p 和q 都是假命题,所以“p ∧q ”为假、“p ∨q ”为假、“綈p ”为真、“綈q ”为真.答案:綈p ,綈q3.已知p :方程x 2+mx +1=0有两个不等的负根;q :方程4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.解:若方程x 2+mx +1=0有两个不等的负根x 1,x 2,则⎩⎪⎨⎪⎧ Δ>0,x 1+x 2<0,x 1x 2>0,即⎩⎨⎧Δ=m 2-4>0,m >0. 解得m >2,即p :m >2.若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0.解得1<m <3,即q :1<m <3.∵p 或q 为真,p 且q 为假,∴p 、q 两命题应一真一假,即p 为真、q 为假或p 为假、q 为真.∴⎩⎪⎨⎪⎧ m >2,m ≤1或m ≥3或⎩⎨⎧ m ≤2,1<m <3. 解得m ≥3或1<m ≤2.∴m 的取值范围是(1,2]∪[3,+∞).。
简单的逻辑联结词、全称量词与存在量词
![简单的逻辑联结词、全称量词与存在量词](https://img.taocdn.com/s3/m/424df444af1ffc4ffe47aca0.png)
03 简单的逻辑联结词、全称量词与存在量词 知识梳理1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题2.(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,用“∀”表示;含有全称量词的命题叫做全称命题.(2)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,用“∃”表示;含有存在量词的命题叫做特称命题.(3)1.若p ∧q 为真,则p ,q 同为真;若p ∧q 为假,则p ,q 至少有一个为假;若p ∨q 为假,则p ,q 同为假;若p ∨q 为真,则p ,q 至少有一个为真.2.“p ∧q ”的否定是“(非p )∨(非q )”;“p ∨q ”的否定是“(非p )∧(非q )”.题型一. 含有一个逻辑联结词命题的真假性例1. 已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( )A .p ∧qB .(非p )∧(非q )C .(非p )∧qD .p ∧(非q )解析: 根据指数函数的图象可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以非q 为真命题.逐项检验可知只有p ∧(非q )为真命题.故选D.[答案] D判断含有一个逻辑联结词命题的真假性的步骤第一步:先判断命题p 与q 的真假性,从而得出非p 与非q 的真假性.第二步:根据“p ∧q ”与“p ∨q ”的真值表进行真假性的判断.变式1.设命题p :3≥2,q :函数f (x )=x +1x(x ∈R )的最小值为2,则下列命题为假命题的是( )A .p ∨qB .p ∨(非q )C .(非p )∨qD .p ∧(非q )解析:选C.命题p :3≥2是真命题,命题q 是假命题,∴(非p )∨q 为假命题,故选C.变式2.已知命题p :∀x ∈R ,2x <3x ,命题q :∃x ∈R ,x 2=2-x ,若命题(非p )∧q 为真命题,则x 的值为( )A .1B .-1C .2D .-2解析:选D.∵非p :∃x ∈R ,2x ≥3x ,要使(非p )∧q 为真,∴非p 与q 同时为真.由2x ≥3x 得⎝⎛⎭⎫23x ≥1, ∴x ≤0,由x 2=2-x 得x 2+x -2=0,∴x =1或x =-2,又x ≤0,∴x =-2.变式3.设p :y =log a x (a >0,且a ≠1)在(0,+∞)上是减函数;q :曲线y =x 2+(2a -3)x +1与x 轴有两个不同的交点,若p ∨(非q )为假,则a 的范围为__________.解析:∵p ∨(非q )为假,∴p 假q 真.p 为假时,a >1,q 为真时,(2a -3)2-4>0,即a <12或a >52,∴a 的范围为(1,+∞)∩⎣⎡⎦⎤⎝⎛⎭⎫-∞,12∪⎝⎛⎭⎫52,+∞ =⎝⎛⎭⎫52,+∞. 答案:⎝⎛⎭⎫52,+∞ 题型二. 含有一个量词的命题的否定例2. 命题“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是( )A .∀x ∈(0,+∞),ln x ≠x -1B .∀x ∉(0,+∞),ln x =x -1C .∃x 0∈(0,+∞),ln x 0≠x 0-1D .∃x 0∉(0,+∞),ln x 0=x 0-1解析: 由特称命题的否定为全称命题可知,所求命题的否定为全称命题,则所求命题的否定为∀x ∈(0,+∞),ln x ≠x -1,故选A.[答案] A(1)特称命题与全称命题否定的判断方法:“∃”“∀”相调换,否定结论得命题.对没有量词的要结合命题的含义加上量词,再进行否定;(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立即可.变式1.命题p :∃x 0∈R ,x 20+2x 0+2≤0的否定为( )A .非p :∃x 0∈R ,x 20+2x 0+2>0B .非p :∀x ∈R ,x 2+2x +2≤0C .非p :∀x ∈R ,x 2+2x +2>0D .非p :∃x 0∈R ,x 20+2x 0+2<0解析:选C.根据特称命题的否定形式知非p :∀x ∈R ,x 2+2x +2>0,故选C.变式2.设命题p :任意两个等腰三角形都相似,q :∃x 0∈R ,x 0+|x 0|+2=0,则下列结论正确的是 ( )A .p ∨q 为真命题B .(非p )∧q 为真命题C .p ∨(非q )为真命题D .(非p )∧(非q )为假命题解析:选C.∵p 假,非p 真;q 假,非q 真,∴p ∨q 为假,(非p )∧q 为假,p ∨(非q )为真,(非p )∧(非q )为真,故选C.题型三. 全称命题与特称命题真假性的应用例3. 已知p :∃x 0∈R ,mx 20+1≤0,q :∀x ∈R ,x 2+mx +1>0,若p ∨q 为假命题,则实数m 的取值范围是( )A .[2,+∞)B .(-∞,-2]C .(-∞,-2]∪[2,+∞)D .[-2,2]解析: 依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此由p ,q 均为假命题得⎩⎨⎧m ≥0,m ≤-2或m ≥2,即m ≥2. [答案] A根据全称与特称命题的真假性求参数范围的步骤第一步:对两个简单命题进行真假性判断.第二步:根据p ∧q 为真,则p 真q 真,p ∧q 为假,则p与q 至少有一个为假,p ∨q 为真,则p 与q 至少有一个为真,p ∨q 为假,则p 假q 假. 第三步:根据p 、q 的真假性列出关于参数的关系式,从而求出参数的范围.变式1.若命题“存在实数x 0,使x 20+ax 0+1<0”的否定是真命题,则实数a 的取值范围为( )A .(-∞,-2]B .[-2,2]C .(-2,2)D .[2,+∞)解析:选 B.因为该命题的否定为:“∀x ∈R ,x 2+ax +1≥0”是真命题,则Δ=a 2-4×1×1≤0,解得-2≤a ≤2.故实数a 的取值范围是[-2,2].变式2.(名师原创)若“∀x ∈⎣⎢⎡⎦⎥⎤π6,2π3,sin x ≤m ”是真命题,则实数m 的范围为( ) A .[1,+∞) B .(-∞,1]C.⎝⎛⎦⎤-∞,12 D .⎣⎢⎡⎭⎪⎫32,+∞ 解析:选A.∵∀x ∈⎣⎢⎡⎦⎥⎤π6,2π3,12≤sin x ≤1. ∴“∀x ∈⎣⎢⎡⎦⎥⎤π6,2π3,sin x ≤m ”为真命题时,m ≥1,故选A. 【真题演练】1.【浙江理数】命题“*x n ∀∈∃∈,R N ,使得2n x >”的否定形式是( )A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x <【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D .2.【高考新课标1,理3】设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤(C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈【答案】C【解析】p ⌝:2,2nn N n ∀∈≤,故选C.3.【高考浙江,理4】命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是( ) A. **,()n N f n N ∀∈∈且()f n n > B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D. **00,()n N f n N ∃∈∈或00()f n n >【答案】D.【解析】根据全称命题的否定是特称命题,可知选D.4.【陕西卷】原命题为“若z 1,z 2互为共轭复数,则|z 1|=|z 2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真B .假,假,真C .真,真,假D .假,假,假【答案】B5.【重庆卷】已知命题p :对任意x ∈R ,总有2x >0,q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .非p ∧非qC .非p ∧qD .p ∧非q【答案】D【解析】根据指数函数的图像可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以非q 为真命题,所以p ∧非q 为真命题.6.【湖北卷】在一次跳伞中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(⌝p)∨(⌝q)B .p ∨(⌝q)C .(⌝p)∧(⌝q)D .p ∨q【答案】A “至少一位学员没降落在指定区域”即“甲没降落在指定区域或乙没降落在指定区域”,可知选A.。
简单的逻辑联结词、全称量词与存在量词(3)
![简单的逻辑联结词、全称量词与存在量词(3)](https://img.taocdn.com/s3/m/a49d2ecab8f67c1cfad6b89d.png)
1.3简单的逻辑联结词、全称量词与存在量词[知识梳理]1.简单的逻辑联结词(1)命题中的或、且、非叫做逻辑联结词.(2)概念用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;对命题p的结论进行否定,得到复合命题“非p”,记作綈p.(3)命题p∧q,p∨q,綈p的真假判断(4)命题的否定与否命题的区别①定义:命题的否定是直接对命题的结论进行否定,而否命题则是对原命题的条件和结论分别否定,即命题“若p,则q”的否定为“若p,则綈q”,而否命题为“若綈p,则綈q”.②与原命题的真假关系:命题的否定的真假与原命题的真假总是相对的,即一真一假,而否命题的真假与原命题的真假无必然的联系.2.全称量词和存在量词3.全称命题和特称命题4.复合命题的否定(1)“綈p”的否定是“p”;(2)“p∨q”的否定是“(綈p)∧(綈q)”;(3)“p∧q”的否定是“(綈p)∨(綈q)”.[诊断自测]1.概念思辨(1)若p∧q为真,则p∨q必为真;反之,若p∨q为真,则p∧q必为真.()(2)全称命题一定含有全称量词,特称命题一定含有存在量词.()(3)写特称命题的否定时,存在量词变为全称量词.()(4)∃x0∈M,p(x0)与∀x∈M,綈p(x)的真假性相反.()答案(1)×(2)×(3)√(4)√2.教材衍化(1)(选修A2-1P27T3)命题“∀x>0,都有x2-x+3≤0”的否定是()A.∃x>0,使得x2-x+3≤0B.∃x>0,使得x2-x+3>0C.∀x>0,都有x2-x+3>0D.∀x≤0,都有x2-x+3>0答案 B解析命题“∀x>0,都有x2-x+3≤0”的否定是:∃x>0,使得x2-x+3>0.故选B.(2)(选修A2-1P18T1)已知命题p:∃x∈R,x-2>lg x,命题q:∀x∈R,x2>0,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(綈q)是真命题D.命题p∨(綈q)是假命题答案 C解析由于x=10时,x-2=8,lg x=lg 10=1,故命题p为真命题,令x=0,则x2=0,故命题q为假命题,依据复合命题真假性的判断法则,得到命题p∨q是真命题,命题p∧q是假命题,綈q是真命题,进而得到命题p∧(綈q)是真命题,命题p∨(綈q)是真命题.故选C.3.小题热身(1)(2015·浙江高考)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0 答案 D解析 “f (n )∈N *且f (n )≤n ”的否定为“f (n )∉N *或f (n )>n ”,全称命题的否定为特称命题.故选D.(2)(2015·山东高考)若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________.答案 1解析 若0≤x ≤π4,则0≤tan x ≤1,∵“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,tan x ≤m ”是真命题,∴m ≥1.∴实数m 的最小值为1.题型1 含有逻辑联结词的命题的真假典例1 (2018·江西七校联考)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解;命题q :若m =19,则f [f (-1)]=0,那么,下列命题为真命题的是( )A .p ∧qB .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q )利用复合命题的真假判断方法,逐项验证法.答案 B解析 因为3x >0,当m <0时,m -x 2<0, 所以命题p 为假命题;当m =19时,因为f (-1)=3-1=13,所以f [f (-1)]=f ⎝ ⎛⎭⎪⎫13=19-⎝ ⎛⎭⎪⎫132=0,所以命题q 为真命题,逐项检验可知,只有(綈p )∧q 为真命题.故选B.典例2(2017·武汉模拟)若存在正常数a ,b ,使得∀x ∈R 有f (x +a )≤f (x )+b 恒成立,则称f (x )为“限增函数”.给出下列三个函数:①f (x )=x 2+x +1;②f (x )=|x |;③f (x )=sin x 2,其中是“限增函数”的是( )A .①②③B .②③C .①③D .③注意放缩法的应用.答案 B解析 对于①,f (x +a )≤f (x )+b 可化为 (x +a )2+(x +a )+1≤x 2+x +1+b ,即2ax ≤-a 2-a +b ,即x ≤-a 2-a +b 2a对一切x ∈R 均成立,因函数的定义域为R ,故不存在满足条件的正常数a ,b ,故f (x )=x 2+x +1不是“限增函数”;对于②,若f (x )=|x |是“限增函数”,则 f (x +a )≤f (x )+b 可化为:|x +a |≤|x |+b , ∴|x +a |≤|x |+b 2+2b |x |恒成立,又 |x +a |≤|x |+a ,∴|x |+a ≤|x |+b 2+2b |x |, ∴|x |≥a -b 22b ,显然当a <b 2时式子恒成立, ∴f (x )=|x |是“限增函数”; 对于③,∵-1≤f (x )=sin x 2≤1, ∴f (x +a )-f (x )≤2,∴当b ≥2时,a 为任意正数,使f (x +a )≤f (x )+b 恒成立,故f (x )=sin x 2是“限增函数”.故选B.方法技巧1.判断含逻辑联结词命题真假的方法与步骤(1)判断含有逻辑联结词的命题的真假的关键是对逻辑联结词“或”“且”“非”的含义的理解,应根据组成各个命题的语句中所出现的逻辑联结词进行命题结构与真假的判断.见冲关针对训练1.(2)判断命题真假的步骤确定含有逻辑联结词的命题的构成形式⇒判断其中简单命题的真假⇒根据真值表判断含有逻辑联结词的命题的真假2.含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(綈p)∧(綈q)假.(2)p∨q假⇔p,q均假⇔(綈p)∧(綈q)真.(3)p∧q真⇔p,q均真⇔(綈p)∨(綈q)假.(4)p∧q假⇔p,q至少一个假⇔(綈p)∨(綈q)真.(5)綈p真⇔p假;綈p假⇔p真.见典例1.冲关针对训练1.(2018·天星二联)已知命题p:若a=0.30.3,b=1.20.3,c=log1.20.3,则a<c<b;命题q:“x2-x-6>0”是“x>4”的必要不充分条件,则下列命题正确的是() A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)答案 C解析因为0<a=0.30.3<0.30=1,b=1.20.3>1.20=1,c=log1.20.3<log1.21=0,所以c<a<b,故命题p为假命题,綈p为真命题;由x2-x-6>0可得x<-2或x>3,故“x2-x-6>0”是“x>4”的必要不充分条件,q为真命题,故(綈p)∧q为真命题.故选C.2.(2018·山西八校联考)已知命题p:存在n∈R,使得f(x)=nxn2+2n是幂函数,且在(0,+∞)上单调递增;命题q:“∃x∈R,x2+2>3x”的否定是“∀x∈R,x2+2<3x”.则下列命题为真命题的是()A .p ∧qB .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q )答案 C解析 当n =1时,f (x )=x 3为幂函数,且在(0,+∞)上单调递增,故p 是真命题,则綈p 是假命题;“∃x ∈R ,x 2+2>3x ”的否定是“∀x ∈R ,x 2+2≤3x ”,故q 是假命题,綈q 是真命题.所以p ∧q ,(綈p )∧q ,(綈p )∧(綈q )均为假命题,p ∧(綈q )为真命题.故选C.题型2 全称命题与特称命题角度1 全称命题、特称命题的真假判断典例(2017·贵阳模拟)下列命题是假命题的是( ) A .∃α,β∈R ,使sin(α+β)=sin α+sin β B .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数C .∃x 0∈R ,使x 30+ax 20+bx 0+c =0(a ,b ,c ∈R 且为常数)D .∀a >0,函数f (x )=ln 2x +ln x -a 有零点本题用赋值法、分离常数法.答案 B解析 取α=0时,sin(α+β)=sin α+sin β,A 正确;取φ=π2时,函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π2=cos2x 是偶函数,B 错误;对于三次函数f (x )=x 3+ax 2+bx +c ,当x →-∞时,y →-∞,当x →+∞时,y →+∞,又f (x )在R 上为连续函数,故∃x 0∈R ,使x 30+ax 20+bx 0+c =0,C 正确;当f (x )=0时,ln 2x +ln x -a =0,则有a =ln 2x +lnx =⎝⎛⎭⎪⎫ln x +122-14≥-14,所以∀a >0,函数f (x )=ln 2x +ln x -a 有零点,D 正确.故选B.角度2 全称命题、特称命题的否定典例 (2018·厦门模拟)已知命题p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,sin x <x ,则( ) A .p 是真命题,綈p :∀x ∈⎝⎛⎭⎪⎫0,π2,sin x ≥xB .p 是真命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,sin x 0≥x 0C .p 是假命题,綈p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,sin x ≥xD .p 是假命题,綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,sin x 0≥x 0 用构造函数法,求导法.答案 B解析 令f (x )=sin x -x ,则f ′(x )=cos x -1<0, 函数f (x )在⎝⎛⎭⎪⎫0,π2递减,f (x )max <f (0)=0,故sin x <x ,命题p 是真命题,由命题的否定的定义,要否定命题的结论,同时改写量词知綈p :∃x 0∈⎝ ⎛⎭⎪⎫0,π2,sin x 0≥x 0.故选B.方法技巧全(特)称命题的常见题型及解题策略1.全(特)称命题的真假判断.①要判断一个全称命题是真命题,必须对限定的集合M 中的每个元素x 验证p (x )成立,但要判断一个全称命题为假命题,只要能举出集合M 中的一个x =x 0,使得p (x 0)不成立即可.②要判断一个特称命题为真命题,只要在限定的集合M 中,找到一个x =x 0,使p (x 0)成立即可,否则这一特称命题就是假命题.见角度1典例.2.全(特)称命题的否定.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.见角度2典例.冲关针对训练1.(2018·晋中模拟)已知f (x )=e x -x ,g (x )=ln x +x +1,命题p :∀x ∈R ,f (x )>0,命题q :∃x 0∈(0,+∞),使得g (x 0)=0,则下列说法正确的是( )A .p 是真命题,綈p :∃x 0∈R ,f (x 0)<0B .p 是假命题,綈p :∃x 0∈R ,f (x 0)≤0C .q 是真命题,綈q :∀x ∈(0,+∞),g (x )≠0D .q 是假命题,綈q :∀x ∈(0,+∞),g (x )≠0 答案 C解析 f ′(x )=e x -1,由f ′(x )>0得x >0,由f ′(x )<0得x <0,即当x =0时,函数f (x )取得极小值,同时也是最小值f (0)=e 0-0=1-0=1>0,所以∀x ∈R ,f (x )>0成立,即p 是真命题.g (x )=ln x +x +1在(0,+∞)上为增函数,当x →0时,g (x )<0,g (1)=0+1+1=2>0,则∃x 0∈(0,+∞),使得g (x 0)=0成立,即命题q 是真命题.则綈p :∃x 0∈R ,f (x 0)≤0,綈q :∀x ∈(0,+∞),g (x )≠0, 综上只有C 成立.故选C.2.(2017·安徽皖江名校联考)命题p :存在x ∈⎣⎢⎡⎦⎥⎤0,π2,使sin x +cos x >2;命题q :“∃x 0∈(0,+∞),ln x 0=x 0-1”的否定是“∀x ∈(0,+∞),ln x ≠x -1”,则四个命题:(綈p )∨(綈q ),p ∧q ,(綈p )∧q ,p ∨(綈q )中,正确命题的个数为( )A .1B .2C .3D .4 答案 B解析 因为sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≤2,所以命题p 是假命题;又特称命题的否定是全称命题,因此命题q 为真命题.则(綈p )∨(綈q )为真命题,p ∧q 为假命题,(綈p )∧q 为真命题,p ∨(綈q )为假命题.∴四个命题中正确的有2个命题.故选B.题型3 由命题的真假求参数的取值范围典例1已知命题P :函数y =log a (1-2x )在定义域上单调递增;命题Q :不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立.若P ∨Q 是假命题,则实数a的取值范围是________.注意分情况讨论.答案 a ≤-2或a >2解析 命题P :函数y =log a (1-2x )在定义域上单调递增,∴0<a <1. 又∵命题Q :不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立,∴a =2或⎩⎪⎨⎪⎧a -2<0,Δ=4(a -2)2+16(a -2)<0, 即-2<a ≤2.若P ∨Q 为假命题,则P 假Q 假,命题P 为假时,有a ≤0或a ≥1;命题Q 为假时,有a ≤-2或a >2,所以P ∨Q 为假时a ≤-2或a >2.[结论探究] 在本例条件下,若P ∨Q 为真命题,P ∧Q 为假命题,则实数a 的取值范围为________.答案 -2<a ≤0或1≤a ≤2解析 若P ∨Q 为真,P ∧Q 为假,命题P 和Q 一真一假,若P 真Q 假,无解;若P 假Q 真,有-2<a ≤0或1≤a ≤2.典例2 (2018·河北调研)对任意的x >0,总有f (x )=a -x -|lg x |≤0,则a 的取值范围是( )A .(-∞,lg e -lg (lg e)]B .(-∞,1]C .[1,lg e -lg (lg e)]D .[lg e -lg (lg e),+∞)用数形结合法.答案 A解析 对任意的x >0,总有f (x )=a -x -|lg x |≤0,即a -x ≤|lg x |恒成立,设y =-x +a ,g (x )=|lg x |,如图,当直线y =-x +a 与g (x )相切时,a 取得最大值,设切点为A (x ,y ),则-1=(-lg x )′,得到x =lg e ,所以y =-lg (lg e),所以切线方程为:y +lg (lg e)=-(x -lg e),令x =0得到y =lg e -lg (lg e), 所以a 的取值范围为(-∞,lg e -lg (lg e)].故选A.方法技巧利用命题真假求参数取值范围的求解策略1.根据含逻辑联结词的命题真假求参数的方法步骤:(1)根据题目条件,推出每一个命题的真假(有时不一定只有一种情况);(2)求出每个命题是真命题时参数的取值范围;(3)根据每个命题的真假情况,求出参数的取值范围.见典例1.2.全称命题可转化为恒成立问题.同时注意数形结合思想的应用.见典例2.冲关针对训练(2018·寿县月考)已知命题P :∀x ∈(2,3),x 2+5>ax 是假命题,则实数a 的取值范围是( )A .[25,+∞)B.⎣⎢⎡⎭⎪⎫92,+∞C.⎣⎢⎡⎭⎪⎫143,+∞ D .(-∞,25]答案 A解析 若∀x ∈(2,3),x 2+5>ax 恒成立,则a <⎝ ⎛⎭⎪⎫x +5x min ,x ∈(2,3). ∵f (x )=x +5x 在(2,5)上是减函数,在(5,3)上为增函数,∴函数f (x )的最小值是f (5)=25,则a <2 5.∵命题P :∀x ∈(2,3),x 2+5>ax 是假命题,∴a ≥25,实数a 的取值范围是[25,+∞).故选A.1.(2017·山东高考)已知命题p :∀x >0,ln (x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧(綈q )C.(綈p)∧q D.(綈p)∧(綈q)答案 B解析∵x>0,∴x+1>1,∴ln (x+1)>ln 1=0,∴命题p为真命题,∴綈p为假命题.∵a>b,取a=1,b=-2,而12=1,(-2)2=4,此时a2<b2,∴命题q为假命题,∴綈q为真命题.∴p∧q为假命题,p∧(綈q)为真命题,(綈p)∧q为假命题,(綈p)∧(綈q)为假命题.故选B.2.(2018·郑州质检)设命题p:∀x>0,log2x<2x+3,则綈p为()A.∀x>0,log2x≥2x+3 B.∃x>0,log2x≥2x+3C.∃x>0,log2x<2x+3 D.∀x<0,log2x≥2x+3答案 B解析由全称命题的否定为特称命题,知綈p为∃x>0,log2x≥2x+3.故选B.3.(2017·石家庄质检)下列选项中,说法正确的是()A.若a>b>0,则ln a<ln bB.向量a=(1,m),b=(m,2m-1)(m∈R)垂直的充要条件是m=1C.命题“∀n∈N*,3n>(n+2)·2n-1”的否定是“∀n∈N*,3n≥(n+2)·2n-1”D.已知函数f(x)在区间[a,b]上的图象是连续不断的,则命题“若f(a)·f(b)<0,则f(x)在区间(a,b)内至少有一个零点”的逆命题为假命题答案 D解析A中,因为函数y=ln x(x>0)是增函数,所以若a>b>0,则ln a>ln b,错误;B中,若a⊥b,则m+m(2m-1)=0,解得m=0,错误;C中,命题“∀n∈N*,3n>(n+2)·2n-1”的否定是“∃n∈N*,3n≤(n+2)·2n-1”,错误;D中,原命题的逆命题是“若f(x)在区间(a,b)内至少有一个零点,则f(a)·f(b)<0”,该逆命题是假命题,如函数f(x)=x2-2x-3在区间[-2,4]上的图象是连续不断的,且在区间(-2,4)内有两个零点,但f(-2)·f(4)>0,正确.故选D.4.(2017·皖南名校联考)设命题p:函数f(x)=x3-ax-1在区间[-1,1]上单调递减;命题q:函数y=ln (x2+ax+1)的值域是R,如果命题p或q是真命题,p 且q为假命题,则实数a的取值范围是()A.(-∞,3] B.(-∞,-2]∪[2,3)C .(2,3]D .[3,+∞)答案 B 解析 若p 为真命题,则f ′(x )=3x 2-a ≤0在区间[-1,1]上恒成立,即a ≥3x 2在区间[-1,1]上恒成立,所以a ≥3;若q 为真命题,则方程x 2+ax +1=0的判别式Δ=a 2-4≥0,即a ≥2或a ≤-2.由题意知,p 与q 一真一假.当p 真q 假时,⎩⎪⎨⎪⎧ a ≥3,-2<a <2,则a ∈∅;当p 假q 真时,⎩⎪⎨⎪⎧a <3,a ≥2或a ≤-2,则a ≤-2或2≤a <3. 综上所述,a ∈(-∞,-2]∪[2,3).故选B.[基础送分提速狂刷练]一、选择题1.(2018·武邑模拟)已知命题p:∀x>0,总有(x+1)e x>1,则綈p为() A.∃x0≤0,使得(x0+1)e x0≤1 B.∃x0>0,使得(x0+1)e x0≤1C.∀x>0,总有(x+1)e x≤1 D.∀x≤0,总有(x+1)e x≤1答案 B解析“∀x>0,总有(x+1)e x>1”的否定是“∃x0>0,使得(x0+1)e x0≤1”.故选B.2.下列四个命题:其中的真命题是()A.p1,p3B.p1,p4C.p2,p3D.p2,p4答案 D解析3.已知a >0,函数f (x )=ax 2+bx +c .若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)答案 C解析 由题知:x 0=-b 2a 为函数f (x )图象的对称轴方程,所以f (x 0)为函数的最小值,即对所有的实数x ,都有f (x )≥f (x 0),因此∀x ∈R ,f (x )≤f (x 0)是错误的.故选C.4.(2018·广东五校一诊)下列命题错误的是( )A .若p ∨q 为假命题,则p ∧q 为假命题B .若a ,b ∈[0,1],则不等式a 2+b 2<14成立的概率是π16C .命题“∃x ∈R ,使得x 2+x +1<0”的否定是“∀x ∈R ,x 2+x +1≥0”D .已知函数f (x )可导,则“f ′(x 0)=0”是“x 0是函数f (x )的极值点”的充要条件答案 D解析 选项A ,若p ∨q 为假命题,则p 为假命题,q 为假命题,故p ∧q 为假命题,正确;选项B ,使不等式a 2+b 2<14成立的a ,b ∈⎝ ⎛⎭⎪⎫0,12,故不等式a 2+b 2<14成立的概率是14×π×⎝ ⎛⎭⎪⎫1221×1=π16,正确;选项C ,特称命题的否定是全称命题,正确;选项D ,令f (x )=x 3,则f ′(0)=0,但0不是函数f (x )=x 3的极值点,错误.故选D.5.(2017·河西区三模)已知命题p :∀x ∈[1,2],使得e x -a ≥0.若綈p 是假命题,则实数a 的取值范围为( )A .(-∞,e 2]B .(-∞,e]C .[e ,+∞)D .[e 2,+∞)答案 B解析 命题p :∀x ∈[1,2],使得e x -a ≥0.∴a ≤(e x )min =e ,若綈p 是假命题,∴p 是真命题,∴a ≤e.则实数a 的取值范围为(-∞,e].故选B.6.已知命题p :∃x ∈R ,mx 2+1≤0,命题q :∀x ∈R ,x 2+mx +1>0,若p ∧q 为真命题,则实数m 的取值范围是( )A .(-∞,-2)B .[-2,0)C .(-2,0)D .(0,2)答案 C解析 由题可知若p ∧q 为真命题,则命题p 和命题q 均为真命题,对于命题p 为真,则m <0,对于命题q 为真,则m 2-4<0,即-2<m <2,所以命题p 和命题q 均为真命题时,实数m 的取值范围是(-2,0).故选C.7.(2018·黄冈模拟)下列四个结论:①若x >0,则x >sin x 恒成立;②命题“若x -sin x =0,则x =0”的逆否命题为“若x ≠0,则x -sin x ≠0”; ③“命题p ∧q 为真”是“命题p ∨q 为真”的充分不必要条件;④命题“∀x ∈R ,x -ln x >0”的否定是“∃x 0∈R ,x 0-ln x 0<0”.其中正确结论的个数是( )A .1B .2C .3D .4答案 C解析 对于①,令y =x -sin x ,则y ′=1-cos x ≥0,则函数y =x -sin x 在R 上递增,则当x >0时,x -sin x >0-0=0,即当x >0时,x >sin x 恒成立,故①正确;对于②,命题“若x -sin x =0,则x =0”的逆否命题为“若x ≠0,则x -sin x ≠0”,故②正确;对于③,命题p ∨q 为真即p ,q 中至少有一个为真,p ∧q 为真即p ,q 都为真,可知“p ∧q 为真”是“p ∨q 为真”的充分不必要条件,故③正确;对于④,命题“∀x ∈R ,x -ln x >0”的否定是“∃x 0∈R ,x 0-ln x 0≤0”,故④错误.综上,正确结论的个数为3.故选C.8.(2017·广东七校联考)已知命题p :∃a ∈⎝ ⎛⎭⎪⎫-∞,-14,函数f (x )=⎪⎪⎪⎪⎪⎪x +a x +1在⎣⎢⎡⎦⎥⎤12,3上单调递增;命题q :函数g (x )=x +log 2x 在区间⎝ ⎛⎭⎪⎫12,+∞上无零点.则下列命题中是真命题的是( )A .綈pB .p ∧qC .(綈p )∨qD .p ∧(綈q )答案 D解析 设h (x )=x +a x +1.易知当a =-12时,函数h (x )为增函数,且h ⎝ ⎛⎭⎪⎫12=16>0,则此时函数f (x )在⎣⎢⎡⎦⎥⎤12,3上必单调递增,即p 是真命题;∵g ⎝ ⎛⎭⎪⎫12=-12<0,g (1)=1>0,∴g (x )在⎝ ⎛⎭⎪⎫12,+∞上有零点,即q 是假命题,根据真值表可知p ∧(綈q )是真命题.故选D.9.(2018·广州测试)已知命题p :∃x >0,e x -ax <1成立,q :函数f (x )=-(a -1)x 在R 上是减函数,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 作出y =e x 与y =ax +1的图象,如图.当a =1时,e x ≥x +1恒成立,故当a ≤1时,e x -ax <1不恒成立;当a >1时,可知存在x ∈(0,x 0),使得e x -ax <1成立,故p 成立,即p :a >1,由函数f (x )=-(a -1)x 是减函数,可得a -1>1,得a >2,即q :a >2,故p 推不出q ,q 可以推出p ,p 是q 的必要不充分条件.故选B.10.(2017·泰安模拟)已知命题p :存在x 0∈R ,mx 20+1<1,q :对任意x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是( )A .(-∞,0)∪(2,+∞)B .(0,2]C .[0,2]D .R答案 C解析 对于命题p ,mx 2+1<1,得mx 2<0,若p 为真命题,则m <0,若p 为假命题,则m ≥0;对于命题q ,对任意x ∈R ,x 2+mx +1≥0,若命题q 为真命题,则m 2-4≤0,即-2≤m ≤2,若命题q 为假命题,则m <-2或m >2.因为p ∨(綈q )为假命题,则需要满足命题p 为假命题且命题q 为真命题,即⎩⎪⎨⎪⎧m ≥0,-2≤m ≤2,解得0≤m ≤2,故选C.二、填空题11.若∀a ∈(0,+∞),∃θ∈R ,使a sin θ≥a 成立,则cos ⎝ ⎛⎭⎪⎫θ-π6的值为________. 答案 12解析 因为∀a ∈(0,+∞),∃θ∈R ,使a sin θ≥a 成立,所以sin θ≥1.又sin θ∈[-1,1],所以sin θ=1,故θ=π2+2k π(k ∈Z ).所以cos ⎝ ⎛⎭⎪⎫θ-π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π2+2k π-π6=cos ⎝ ⎛⎭⎪⎫π3+2k π=cos π3=12. 12.已知命题p :方程x 2-mx +1=0有实数解,命题q :x 2-2x +m >0对任意x 恒成立.若命题q ∨(p ∧q )真、綈p 真,则实数m 的取值范围是________.答案 (1,2)解析 由于綈p 真,所以p 假,则p ∧q 假,又q ∨(p ∧q )真,故q 真,即命题p 假、q 真.当命题p 假时,即方程x 2-mx +1=0无实数解,此时m 2-4<0,解得-2<m <2;当命题q 真时,4-4m <0,解得m >1.所以所求的m 的取值范围是1<m <2.13.若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤0,12 解析 由于函数g (x )在定义域[-1,2]内是任意取值的,且必存在x 0∈[-1,2],使得g (x 1)=f (x 0),因此问题等价于函数g (x )的值域是函数f (x )值域的子集.函数f (x )的值域是[-1,3],函数g (x )的值域是[2-a,2+2a ],则有2-a ≥-1且2+2a ≤3,即a ≤12.又a >0,故a 的取值范围是⎝ ⎛⎦⎥⎤0,12. 14.(2017·衡水调研)直线x =1与抛物线C :y 2=4x 交于M ,N 两点,点P 是抛物线C 准线上的一点,记OP →=aOM →+bON →(a ,b ∈R ),其中O 为抛物线C 的顶点.(1)当OP →与ON →平行时,b =________;(2)给出下列命题:①∀a ,b ∈R ,△PMN 不是等边三角形;②∃a <0且b <0,使得OP →与ON →垂直;③无论点P 在准线上如何运动,a +b =-1恒成立.其中,所有正确命题的序号是________.答案 (1)-1 (2)①②③解析 (1)∵OM →=(1,2),ON →=(1,-2),∴OP →=aOM →+bON →=(a +b,2a -2b ).∵OP →∥ON →,∴2a -2b +2(a +b )=0,∴a =0.∵抛物线的准线为x =-1,点P 在准线上,∴P 点的横坐标为-1,∴a +b =-1,∴b =-1.(2)对于①,假设是等边三角形,则P (-1,0),|PM |=22,|MN |=4,|MN |≠|PM |,这与假设矛盾,∴假设不成立,原结论正确;对于②,OP →与ON →垂直,OP →·ON →=0,得到a =53b ,∴②正确;③显然成立.三、解答题15.(2018·吉林大学附中模拟)设a 为实常数,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=9x +a 2x +7.若“∃x ∈[0,+∞),f (x )<a +1”是假命题,求实数a 的取值范围.解 y =f (x )是定义在R 上的奇函数,故可求解析式为f (x )=⎩⎪⎨⎪⎧ 9x +a 2x -7,x >0,0,x =0,9x +a 2x +7,x <0.又“∃x ≥0,f (x )<a +1”是假命题,则∀x ≥0,f (x )≥a +1是真命题,①当x=0时,0≥a +1,解得a ≤-1;②当x >0时,9x +a 2x -7≥a +1,结合基本不等式有6|a |-7≥a +1,得a ≥85或a ≤-87,①②取交集得a 的取值范围是a ≤-87.16.(2018·福建晨曦中学联考)已知命题p :函数y =x 2-2x +a 在区间(1,2)上有1个零点,命题q :函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点.如果p ∧q 是假命题,p ∨q 是真命题,求a 的取值范围.解 若命题p 为真,则函数y =x 2-2x +a 在区间(1,2)上有1个零点,因为二次函数图象开口向上,对称轴为x =1,所以⎩⎪⎨⎪⎧ 12-2×1+a <0,22-2×2+a >0,所以0<a <1.若命题q 为真,则函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点,由Δ=(2a -3)2-4>0,得4a 2-12a +5>0,解得a <12或a >52.因为p ∧q 是假命题,p ∨q 是真命题,所以p ,q 一真一假.①若p 真q 假,则⎩⎨⎧ 0<a <1,12≤a ≤52,所以12≤a <1;②若p 假q 真,则⎩⎨⎧ a ≤0或a ≥1,a <12或a >52,所以a ≤0或a >52.故实数a 的取值范围是a ≤0或12≤a <1或a >52.。