人教版初二数学下册《分式方程PPT课件》优秀公开课

合集下载

初中八年级下册数学 《分式方程》分式与分式方程PPT(第3课时)优质课件PPT

初中八年级下册数学 《分式方程》分式与分式方程PPT(第3课时)优质课件PPT

汽车的速度.
解:设大汽车的速度为2x千米/小时,小汽车的速度为5x千米/小时.得
135-2x
5
135 =
1 2
5x
2x
5x
解得x=9.
经检验x=9是原方程的解.
则2x=18,5x=45.
答:大汽车的速度是18千米 /小时,小汽车的速度是45千米/小时.
2021/02/21
12
强化训练
2.阅读材料,并回答问题 .
2021/02/21
10
活动探究
一项工程, 需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队 独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好 在规定日期内完成,问规定日期是几天?
解:设规定日期是x天,则甲队独做需x天,乙队独做需(x+3)天,
根据题意,得
2 x
2021/02/21
8
活动探究
问题2:某市从今年1月1日起调整居民用水价格,每立方米水费涨价1/3.小丽家去
年12月份的水费15元,而今年7月份的水费是30元.已知小丽家今年7月份的用水量比去
年12月份的用水量多5立方米,求该市今年居民用水的价格.
解:设该市去年居民用水的价格为x元/立方米,则今年的水价为1

(填序号)
3.甲、乙、丙班学生参加植树造林,已知甲班每天比乙班多植 5 棵树,甲班植 80 棵
树所用的天数与乙班8植 0 = 7070棵树所用的天数相等,若设甲班每天植树 x 棵,则根据题意可列
出的方程为
x x5

2021/02/21
3
活动探究
探究点一 问题1:某单位将沿街的一部分房屋出租,每间房屋的租金第二年比第一年 多500元,所有房屋的租金第一年为9.6万元,第二年为10.2万元. (1)你能找出这一情境中的等量关系吗? (2)根据这一情境你能提出哪些问题? (3)你能利用方程求出这两年每间房屋的租金各是多少? 解:(1)第二年每间房屋的租金=第一年每间房屋的租金+500元; 第一年出租房屋间数=第二年出租的房屋间数 出租房屋间数=所有出租房屋的租金÷每间房屋的租金.

分式方程ppt课件

分式方程ppt课件
36
36
根据题意,得 x =
+2,
(1+50%)x
解得 x=6.
经检验,x=6 是方程的解.
答:该施工队原计划每天改造 6 m.
知3-练
例 5 [情境题 校园文化]为了进一步丰富校园文体活动,
某中学准备一次性购买若干个足球和排球,用480 元
购买足球的数量和用390 元购买排球的数量相同,已
知足球的单价比排球的单价多15 元.





③ =x;④
+3=




其中是分式方程的是________(填序号).
③④
知识点 2 分式方程的解法
知2-讲
1. 解分式方程的基本思路:去分母,把分式方程转化为整
式方程.
2. 解分式方程的一般步骤
知2-讲
3. 检验分式方程解的方法
(1)直接检验法:将整式方程的解代入原分式方程,这
车的速度.
知3-练
思路引导:
知3-练
解:设大型客车的速度为x km/h,


则小型客车的速度为1.2x km/h,12 min= h.


根据题意,得 -


= ,解得x
.
经检验,x = 6 0 是方程的解.
答:大型客车的速度是60 km/h.
= 6 0.
知3-练
3-1.[中考·广州] 随着城际交通的快速发展, 某次动车平

;(3) =1;
- +





(4)

;(5) -2=x(a为非零常数).

+ -
解题秘方:利用判别分式方程的依据——分母中含有

分式方程的ppt课件

分式方程的ppt课件
这些解法的共同特点是先去分母,将分式方程转化
为整式方程,再解整式方程.
问题2
你能试着解分式方程
90 30+v
=
60 30-v
吗?
问题3 这些解法有什么共同特点?
总结:
这些解法的共同特点是先去分母,将分式方程转化
为整式方程,再解整式方程.
思考:
(1)如何把分式方程转化为整式方程呢? (2)怎样去分母? (3)在方程两边乘以什么样的式子才能把每一个分母
解:移项、合并,得 50x =sv.
解得
x=
sv 50
.
检验:由于v,s 都是正数,当x
=
sv
时x(x+v)≠0,
所以,x
=
sv 50
50 是原分式方程的解,且符合题意.
sv
答:提速前列车的平均速度为 50 km/h.
探究列分式方程解实际问题的步骤
上面例题中,出现了用一些字母表示已知数据的形 式,这在分析问题寻找规律时经常出现.例2中列出的 方程是以x 为未知数的分式方程,其中v,s是已知常数,
思考: (1)这个问题中的已知量有哪些?未知量是什么? (2)你想怎样解决这个问题?关键是什么?
表达问题时,用字母不仅可以表示未知数(量), 也可以表示已知数(量).
探究列分式方程解实际问题的步骤
例2 某次列车平均提速v km/h.用相同的时间, 列车提速前行驶s km,提速后比提速前多行驶50 km, 提速前列车的平均速度为多少?
八年级 上册
15.3 分式方程 (第2课时)
课件说明
• 本课是在学生已经学习了分式方程的概念并能够 解简单的分式方程的基础上,进一步巩固可化为 一元一次方程的分式方程的解法,归纳出解分式 方程的一般步骤,能够列分式方程解决简单的实 际问题.

最新人教版八年级下册数学精品课件16.3分式方程2

最新人教版八年级下册数学精品课件16.3分式方程2
s s 50 x xv
方程两边同乘x(x+v) , 得 s(x+v) =x(s+50)
去括号, 得
sx+sv =xs+50x
移项、合并,得 解得
50x
x
=

ssvv
检sv验是:原由分于式都方是程正的数解,。x
sv 50
时x(x+v)5≠00

50
答:提速前列车的平均速度为
sv 千米/时。
最新人教版数学精品课5件0设
最新人教版数学精品课件设
一项工程,需要在规定日期内完成, 如果甲队独做,恰好如期完成,如果乙队 独做,就要超过规定3天,现在由甲、乙两 队合作2天,剩下的由乙队独做,也刚好在 规定日期内完成, 问规定日期是几天?
解:设规定日期为x天,根据题意列方程
2 x 1. x x3
x=1
检验:x=1时,6x≠0,x=1是原方程的解。
由以上可知,若乙队单独工作一个月可以完 成全部任务,对比甲队1个月完成任务的,可知 乙队施工速度快。
答:乙队的速度快。
最新人教版数学精品课件设
例2. 从2004年5月起某列车平均提速v千米/时,
用相同的时间,列车提速前行驶s千米,提速
后比提速前多行驶50千米,提速前列车的平均 速度解:为根多据少行?驶时间的等量关系,得
2. 某工人师傅先后两次加工零件各1500个,当第二 次加工时,他革新了工具,改进了操作方法,结 果比第一次少用了18个小时.已知他第二次加工效 率是第一次的2.5倍,求他第二次加工时每小时加 工多少零件?
最新人教版数学精品课件设
最新人教版数学精品课件设
解:设乙队单独施工完成总工程需x个月,

《分式方程》分式PPT优秀课件

《分式方程》分式PPT优秀课件

90 60 30 v 30 v
v6
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
思考 某次列车平均提速v km/h.用相同的时间,列车提速前行驶 s km,提速后比提速前多行驶50 km,提速前列车的平均
速度为多少? 路程= 速度·时间
路程
提速前 s
提速后 s+50
表达问题时,用字 母不仅可以表示未 知数(量) ,也可以 表示已知数(量).
找相等关系.
1
1
3
6
甲队施工1个月的工程量+甲队施工半个月的工程量
+乙队施工半个月的工程量=总工程量(记为1).
1 2x
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
典型例题
两个工程队共同参与一项筑路工程,甲队单独施工1个月完成
总工程的 1 ,这时增加了乙队,两队又共同工作了半个月,总 3
15.3 分式方程
学习目标
1.会列分式方程解决实际问题;
分 式
2.能根据题意找出正确的等量关系,列出分式方程并求解,会根据实

际意义验证结果是否合理;
程 的
3.通过分式方程的应用学习,培养学生的数学应用意识,提高分析问

题解决问题的能力;

4.通过解决实际问题,使学生感受到数学知识能够解决生活中的问题,
提升学生对数学的热爱.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
回顾
一艘轮船在静水中的最大航速为30 km/h,它以最大航速 沿江顺流航行90 km所用的时间,与以最大航速逆流航行 60 km所用的时间相等,则江水的流速为多少?
V顺水= V船速+ V水速 V逆水= V船速 – V水速 路程= 速度·时间 S= v·t

分式方程ppt课件

分式方程ppt课件
0时,分式方程无实根。
适用于分子、分母均为二次多项式的分 式方程。
因式分解法
将分式方程的分子或分母进行因式分解,从而简化方程。 因式分解法可以方便地找到分式方程的解,特别是当分子或分母含有公因式时。
适用于分子、分母均可因式分解的分式方程。
03
分式方程应用举例
工程问题
工作总量 = 工作时间 × 工作 效率
工作时间 = 工作总量 ÷ 工作 效率
工作效率 = 工作总量 ÷ 工作 时间
举例:一项工程,甲单独做需 要20天完成,乙单独做需要30 天完成。如果两人合作,需要 多少天完成?
行程问题
速度 = 路程 ÷ 时间
举例:甲、乙两地相距360千米,一辆汽车从甲地开 往乙地,每小时行驶60千米。问这辆汽车需要多少小
方程的解。
04
对于第三个练习题,找到公共分母$x^2-1$,两边乘 以公共分母,得到整式方程$(x+1)(x-1)-4=x^2-1$, 解得$x=3$,经检验$x=3$是原方程的解。
THANKS
感谢观看
分式方程ppt课件
目 录
• 分式方程基本概念 • 分式方程解法 • 分式方程应用举例 • 分式方程与实际问题结合 • 分式方程求解技巧与注意事项 • 分式方程练习题与答案解析
01
分式方程基本概念
分式方程定义
分式方程是指分母里含有未知数 的有理方程。
分式方程是方程中的一种,且分 母里含有未知数的(有理)方程
之几?
经济问题
利润 = 售价 - 进价
利润率 = 利润 ÷ 进 价 × 100%
售价 = 进价 × (1 + 利润率)
进价 = 售价 ÷ (1 + 利润率)

人教版八年级数学《分式方程的应用》课件

人教版八年级数学《分式方程的应用》课件
2024/1/25
分式方程的定义
分母中含有未知数的方程叫做分 式方程。
分式方程的重要性
分式方程是初中数学的重要内容 之一,它不仅是学生后续学习的 基础,而且在解决实际问题中有 着广泛的应用。
4
教学目标与要求
01
知识与技能
掌握分式方程的基本解法,理 解分式方程的应用背景,能够 运用分式方程解决简单的实际
2024/1/25
错题二
某果园有100棵橙子树,每一棵树平均结600个橙子。现准备多种一些橙子树以提高产 量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。根据经验
估计,每多种一棵树,平均每棵树就会少结5个橙子。
24
错题剖析及纠正方法
(1) 增种多少棵橙子树,可以使果园橙子 的总产量达到60375个?
的解决方案。
构造新模型
02
根据问题的特点,构造新的数学模型或方程,使问题更容易解
决。
转化与化归
03
将复杂问题转化为简单问题,或将陌生问题转化为熟悉问题,
利用已知方法求解。
18
05
巩固练习与提高训练
2024/1/25
19
基础练习题选讲
01
题目一:某工厂生产A、B两种 配套产品,其中每天生产x吨A 产品,需生产x+2吨B产品。已 知生产A产品的成本与产量的 平方成正比。经测算,生产1 吨A产品需要4万元,而B产品 的成本为每吨8万元。求生产A 、B两种配套产品的平均成本
02
解析
首先观察方程,发现最简公分 母是 x-2。然后去分母,将方 程转化为整式方程 x+1-3=x-2 。解得 x=2,经检验,x=2 是
原方程的解。
2024/1/25

分式方程优质课ppt课件

分式方程优质课ppt课件

④结论 :确定分式方程的解.
精选ppt课件
24
首页 上页 下页 返回
1、你学到了哪些知识? 要注意什么问题?
2、在学习的过程 中 你有什么体会?
精选ppt课件
25
首页 上页 下页 返回
作业
课本《黄冈经典教程练与测》 16.3分式方程
精选ppt课件
26
首页 上页 下页 返回
精选ppt课件
27
首页 上页 下页 返回
所以,x=4是原方程的根.
精选ppt课件
9
首页 上页 下页 返回
探究分式方程的解法
2、归 纳 上述解分式方程的过程,实质上是将
方程的两边乘以同一个整式,约去分母, 把分式方程转化为整式方程来解.所乘的 整式通常取方程中出现的各分式的最简公 分母.
请动手做一做:
12 解方程:
x 1 x 1 2 精选ppt课件
7
首页 上页 下页 返回
探究分式方程的解法
1、思 考 : 怎样解分式方程呢?
100 60 v20 20v
1)、回顾一下一元一次方程时是怎么去分母 的,从中能否得到一点启发?
2)有没有办法可以去掉分式方程的分母把它 转化为整式方程呢?
精选ppt课件
8
首页 上页 下页 返回
温故知新 例题讲解
x 1 x
17
首页 上页 下页 返回
3、解分式方程一般需要哪几个步骤?
①去分母,化为整式方程:
⑴把各分母分解因式;
⑵找出各分母的最简公分母;
⑶方程两边各项乘以最简公分母;
②解整式方程. ③检验.
必须检验
把未知数的值代入最简公分母,看结果是不 是零,若结果不是0,说明此根是原方程的根; 若结果是0,说明此根是原方程的增根,必须 舍去

人教版初中数学八年级下册《分式与分式方程》课件.ppt

人教版初中数学八年级下册《分式与分式方程》课件.ppt

三、矫正补偿
x2 4 1. 若分式 x2 x 2 有意义,
则x应满足( B )
A、x≠-1 B、x ≠-1且x ≠2 C、x≠2 D、x ≠-1或x ≠2
x2 4 2、 若分式 x2 x 2
值为0,则x应满足( B )
A、x=2 B、x =-2
C、x 2 D、x =-1或x =2
3. 若 1 1 1 ,则 y x x y xy x y
2.分式的混和运算应注意运算的顺序,同时要 掌握通分、约分等法则,灵活运用分式的基本 性质,注意因式分解、符号变换和运算的技巧, 尤其在通分及变号这两个方面极易出错,要小心 谨慎!
祝同学们学习进步!
a2
的值。
a4 a2 1
7. 计算
m m
3
m
6 2
9
m
2
3
8、先化简,再求值:
3a a 1
a
a 1

a2 1,其中a a
2.
9、在我市某一城市美化工程招标时,有 甲乙两个工程队投标,经测算:甲队 单 独完成这项工程需60天,若由甲队先做 20天,剩下的工程由甲、乙合作24天可 完成。求乙队单独完成这项工程需要多 少天?
一、知识回顾
❖ 1、下列各式是分式的是( D )
1
a
6
1
❖ ❖
A2、. 当2 x_≠_-_5_B_._3_时,C分. 式
x
Da 2 有意义。
x5
❖ 3、当x__=__-_2__时,分式 x2 4 的值为零
x2
❖ 4、下列分式是最简分式的是(D)

A.
2a2 ab
a
6xy
B. 3a
x2 1

《分式方程》分式PPT课件 (共18张PPT)

《分式方程》分式PPT课件 (共18张PPT)
X(x―3)
X2-1=0
时,
3 x2 3、分式 2( x 3)与 x 2 3x 的最简公分母 是 2X(x―3) .
解分式方程
例1 解分式方程
x11 x1 2
分式方程
解: 方程的两边同乘以最简公分母2(x+1), 转 ● ● ● ● ● 化 x 1 1 得 2(x+1) · x1 2 · 2(x+1) 整式方程 ① 化简,得整式方程 2(x-1)=x+1
增根的定义
增根:在去分母,将分式方程转化为整 式方程的过程中出现的不适合于原方 · · · · · · 程的根. · · · 使分母值为零的根 产生的原因:分式方程两边同乘以一个 零因式后,所得的根是整式方程的根, · · · · 而不是分式方程的根. · · · ·
练 x(x 2) 解 : 方程两边同乘以最简公分母 , 一 2+ x -6=0 或x(x+1)-6=0 x 化简 , 得 . 练① ② 解得 x1= -3 , x2= 2 . ③ 检验:把x1= -3,代入最简公分母,
概 念 观察下列方程: 一元一次方程
1、2(x-1)=x+1;
一元二次方程
x2+x-20=0;
x+2y=1…
整式方程: 方程两边都是整式的方程.
1 x 1 1 1 1 x 1 5 x 9 x 0 ; ; 1 ; 2、 y 2 x 1 x 1 2 x 1 x 1 x 1
· · · · · · · · · x(x-2)=-3(-3-2)= 15 ≠0; 把x2= 2 ,代入最简公分母,
x 1 6 0 (填空)1、解方程: x 2 2 x 2 x
7
x(x-2)= 2(2-2) =0

数学课件新人教版八年级下分式方程的解法21页PPT

数学课件新人教版八年级下分式方程的解法21页PPT

6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
数学课件新人教版八年级下分式方程 的解法

6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。Байду номын сангаас

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
列得方程:
60 小时. 逆流航行60千米所用时间为______ 20 v 100 60
20 v

20 v
分式方程:分母含有未知数的方程.

找一找:



① ③
);
1. 下列方程中属于分式方程的有(
属于一元分式方程的有( ① 2 x 1 3x 1 x
① ). ② x 1 y 1 2x 1 3 4
解分式方程

得 (x-1)2 =5x+9 +1·(x+1)(x-1)
② 解整式方程,得 x = -1
x2-2x+1=5x+9+x2-1 ③ 检验:把x = -1 代入原方程 -7x=7 结果使原方程的最简公分母x2-1=0 ,分式 x=-1
无意义,因此x = -1不是原方程的根.
∴ 原方程无解 .
增根

4 3 7 ③ x y
x2 +2x-1=0
各分母的 最简公分 怎样才能解这个方程呢?说说你的想法 . 母 两边同乘以 (20 v)(20 v) 得:
100 60 20 v 20 v
这个是什么?
100(20 v) 60(20 v)
解得: v=5
检验:将v=5代入原方程,左边=4=右边,因些 v=5是分式方程的解.
解方程
(1)
3 x-1 =
4 x
随 堂 练 习
x 5 (2) + =4 2x-3 3-2x 思考题:
x-3 解关于x的方程 x-1 (A)-2 (B)-1
=
m 产生增根,则常数m的值等于( x-1 (C ) 1 (D) 2
)
练习:
1、分式方程 1 2x 1 的最简公分母是 X-1 .
x 1 2、如果 1 3 1 x 有增根,那么增根为 X=2 . x 2 2 x
增根与验根
• 在上面的方程中,x=-1不是原方程的根, 因为它使得原分式方程的分母为零,我 们你它为原方程的 增根. • 产生增根的原因是,我们在方程的两边 同乘了一个可能使分母为零的整式. • 因此解分式方程可能产生增根,所以解 分式方程 必须检验.
一. 通过例题的讲解和练习的操作,你 能总结出解分式方程的一般步骤吗?
16.3 分式方程(一)
情景问题:
一艘轮船在静水中的最大航速为20千米/时,它沿江 最大航速顺流航行100千米所用时间,与以最大航速逆 流航行60千米所用时间相等,江水的水流速度为多少? 设江水的水流速度为v千米/时, 分析: (20+v)千米/时, 轮船顺流航行的速度为_____ (20-v) 逆流航行的速度为_____ 千米/时, 100 顺流航行100千米所用时间为______小时, 20 v
解一元一次方程的一般步骤是什么?
解分式方程
• 解: • 在方程两边都乘以最简公分母(x+1)(x-1)得, • x+1=2 • 解这个整式方程,得x=1.
把x=1代入原分式方程检验,结果x=1使分式方程式
的分母的值为0 ,这两个分式没有意义, 因此x=1不是原分式方程的根。
x 1 5x 9 +1 x 1 x2 1 解 方程两边同乘以最简公分母(x+1)(x-1),
分式方程 去 分 母 整式方程
解整式方程
检验
解下列程:
3 x (1) 1 ( x 1)(x 2) x 1

3 2 ( 2) x x 3
想一想
2
解分式方程容易犯的错误主要有:
• (1)去分母时,原方程的整式部 分漏乘. • (2)约去分母后,分子是多项式 时, 要注意添括号. • (3)增根不舍掉. • (4)……
1 =4 的解是x= 1 ,则a= 2 . 3、关于x的方程 ax x
4、若分式方程
-1 a= . 分析: 原分式方程去分母,两边同乘以(x2 -4), 得 a(x+2)+4=0 ① 把x=2代入整式方程①, 得 4a+4=0, a=-1 ∴ a=-1时,x=2是原方程的增根.
a 4 0 有增根x=2,则 x 2 x2 4
解分式方程的一般步骤: (1)在方程的两边都乘以最简公分母,化成 整式 ____________ 方程;
整式 (2)解这个____________ 方程;
这个整式 方程的根代入 (3)检验:把__________ 不为零 最简公分母中 如果值_________, ____________. 就 为零 是原方程的根;如果值__________, 就是 舍去 增根.应当__________.
相关文档
最新文档