轻绳、轻杆、轻弹簧的对比

合集下载

牛顿第二定律瞬时性问题专题(个人整理)

牛顿第二定律瞬时性问题专题(个人整理)
A. 剪断绳的瞬间a=g
B. 剪断绳的瞬间 C. 剪断弹簧的瞬间
D. 剪断弹簧的瞬间
析:剪断绳时a=0,剪断弹簧时a=g/2
• 例2、如图甲两球质量均为m,两根轻绳1和2,突 然迅速剪断1,剪断瞬间A、B的加速度为多少?
变式1:将轻绳2改变成轻质弹簧,如图乙,则情 况又如何?
变式2:如图乙中A、B质量分别为3m和2m,则 剪断线1瞬间,情况又如何?
பைடு நூலகம்
变式1 (2020·福建龙岩市期末质量检查)如图5所示,在倾角为θ=30°
的光滑固定斜面上,物块A、B质量均为m.物块A静止在轻弹簧上端,
物块B用细线与斜面顶端相连,A、B靠在一起,但A、B之间无弹力.
已知重力加速度为g,某时刻将细线剪断,下列说法正确的是
A.细线剪断前,弹簧的弹力为mg
B.细线剪断前,细线的拉力为mg
a
A
B
例3 (多选) 如图4所示,质量均为m的木块A和B用一轻弹簧相连,竖 直放在光滑的水平面上,木块A上放有质量为2m的木块C,三者均处 于静止状态.现将木块C迅速移开,若重力加速度为g,则在木块C移开 的瞬间
√A.弹簧的形变量不改变
B.弹簧的弹力大小为mg
√C.木块A的加速度大小为2g
D.木块B对水平面的压力大小迅速变为2mg
细线剪断瞬间,对 A、B 系统,加速度大小:a=2mgs2inmθ-F=41g,故 D 正确.
变式2 如图6所示,A球质量为B球质量的3倍,光滑固定斜面的倾角 为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆 相连,系统静止时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行, 重力加速度为g,则在突然撤去挡板的瞬间有 A.图甲中A球的加速度大小为gsin θ B.图甲中B球的加速度大小为2gsin θ C.图乙中A、B两球的加速度大小均为gsin θ

浅析轻绳、轻杆和轻弹簧模型的应用

浅析轻绳、轻杆和轻弹簧模型的应用
(2)当 OA 为细绳时,OB 一断开拉力立即为零,OA 的 拉力也随即改变。这时,小球在拉力和重力的作用下,由 静止开始做变速圆周运动(图 2)。因为这时速度为零, 根据牛顿第二定律,有
T-mgcosθ =mv2/l=0 所以,拉力为
T=mgcosθ
请想一想: 这时 OA 的拉力与 OB 断开前的拉力之 比是多少?OB 断开瞬间,小球的运动加速度是 多少?
0 2 -1
分析:在细绳烧断之前,两球受到的平衡力如图所示。 在细绳烧断瞬间间,拉力(T)消失,而弹簧弹力不变, 即

T=2 mg
根据牛顿第二定律,A、B 的加速度分别为 aA=(F-mg)/m=g--方向竖直向上。
aB=mg/m=g--方向竖直向下。
请读者想一想:如果将连接 A、B 球的细绳换成轻 杆或者轻弹簧结果如何?

T= [(ma)2+( mg)2]1/2=m (a2+g2)1/2

拉力与竖直方向的夹角θ 可表示为 θ =tg (a/g). 可以看出:θ 角随加速度 a 的增大而增大。 当 a=0 时:T= mg , θ =0---拉力竖直向上; 当 a=gtgß 时: T= mg(1+tg ß)1 /2= mg/cosθ , θ =ß---拉力沿杆方向; 注意:这个临界加速度,可以利用逆向思维方法。由θ =ß 简捷的得出。 当 a»g 时, T≈ ma,θ ≈90 ――拉力趋于水平方向。 当 a«g 时, T≈ mg,θ ≈0――拉力趋于竖直方向。 请读者想一想:如果小球由一段轻绳或者轻弹簧连接,结果如何? 例 3:如图 4 所示,质量相同的 A、B 两球用细绳相连,然后由轻弹簧竖直悬挂。求 将细绳烧断瞬间,A、B 的加速度是多少?方向如何?

轻绳、轻杆和轻弹簧模型(修)

轻绳、轻杆和轻弹簧模型(修)

轻绳、轻杆和轻弹簧模型的应用一、三个模型的相同点1、“轻”—不计质量,不受重力。

2、在任何情况下,沿绳、杆和弹簧伸缩方向的张力、弹力处处相等。

二、三个模型的不同点1、形变特点轻绳—可以任意弯曲,但不能伸长,即伸长形变不计。

轻杆—不能任意弯曲,不能伸长和缩短,即伸缩形变不计。

轻弹簧—可以伸长,也可以缩短,且伸缩形变不能忽略不计。

2、施力和受力特点轻绳—只能产生和承受沿绳方向的拉力。

轻杆—不仅能产生和承受沿杆方向的拉力和压力,还能产生和承受不沿杆方向的拉力和压力。

轻弹簧—可以产生和承受沿弹簧伸缩方向的拉力和压力。

3、力的变化特点轻绳—张力的产生、变化、或消失不需要时间,具有突变性和瞬时性。

轻杆—拉力和压力的产生、变化或消失不需要时间,具有突变性和瞬时性。

轻弹簧—弹力的产生、变化或消失需要时间,即只能渐变,不具有瞬时性,且在形变保持瞬间,弹力保持不变。

(注意:当弹簧的自由端无重物时,形变消失不需要时间)4、连接体的运动特点轻绳—轻绳平动时,两端的连接体沿绳方向的速度(或速度分量)总是相等,且等于省上各点的平动速度;轻绳转动并拉直时,连接体具有相同的角速度,而线速度与转动半径成正比。

轻杆—轻杆平动时,连接体具有相同的平动的速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比。

轻弹簧—在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大,即弹性势能最大时,两端连接体的速率相等;在弹簧转动时,连接体的转动半径随弹力变化,速度方向不一定垂直于弹力。

5、作功和能量转化特点轻绳—在连接体作匀速率和变速率圆周运动的过程中,绳的拉力都不作功;在绳突然拉直的瞬间,有机械能转化为绳的内能,即机械能不守恒。

轻杆—在连接体作匀速率和变速率圆周运动的过程中,轻杆的法向力对物体不作功,而切向力既可以对物体作正功,也可以对物体作负功,但系统机械能守恒。

轻弹簧—弹力对物体作功,系统机械能守恒;弹力作正功,弹性势能减少,物体动能增加;弹力作负功,弹性势能增加,物体动能减少。

“绳”与“弹簧”模型对比3页

“绳”与“弹簧”模型对比3页

“绳”与“弹簧”模型对比高中物理教学中经常会遇到细绳(轻杆)、弹簧模型,弄清楚两者的异同点,对于分析物体在某一时刻的瞬时加速度有着关键点作用。

一、两类模型的区别1.刚性绳(或杆)一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复的时间,一般题目中的细绳、轻杆或接触面在不加特殊说明时,均可按此模型处理。

其中杆与绳模型中处理问题也有差别,如杆能承受拉力和压力,而轻绳只能承受拉力(不能起支撑作用)。

绳上的拉力只能沿绳,而杆上的作用力可以沿杆,也可以与杆成任意夹角。

2.弹簧(或橡皮绳)此类模型的特点是形变量大,形变恢复需要较长的时间,在剪断的瞬间可认为弹簧来不及恢复原长,因此弹力大小可近似认为保持不变。

二、两种模型的对比例1. 如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大?解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。

此类问题应注意两种模型的建立。

先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。

可知,F2=mg,F1=F2'+mg=2mg。

剪断细线后再分析两个物体的受力示意图,如图3,绳中的弹力F1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图3剪断后m1的加速度大小为2g,方向向下,而m2的加速度为零。

从上述解析过程中,我们不难发现,m1在细线剪断前后受力发生了变化,故其瞬时加速度不同;m2在剪断细线前后,由于弹簧弹力来不及发生变化,所以其瞬时加速度与剪断前相同。

例2如图4所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态。

求解下列问题:⑴现将L2线剪断,求剪断L2瞬间物体的加速度。

⑵若将图4中的细线L1改为长度相同、质量不计的轻弹簧,如图5所示,其他条件不变,求剪断L2瞬间物体的加速度。

轻质绳、轻杆、轻弹簧模型问题剖析

轻质绳、轻杆、轻弹簧模型问题剖析
第2 9卷 总 第 4 8期 l
21 0 1年 第 6期 ( 半 月 ) 上
Vo12 No 41 . 9 . 8 ( 62 1 . 9 S) . O1 2
轻 质 绳 杆 弹 簧 模 型 问 题 剖 析 轻 轻
程 少 华
西 南 大 学 西 南 民族 教 育 与 心 理 研 究 中心 , 庆 市 北 碚 区 4 0 0 重 070
CO S
aca ( ) 当 a= g・ a 0 , N的 方 向 是 沿 斜 rtn 笠 ; : = tn 时 F

杆 的方 向 。
注: 如果 将杆 改为 轻质绳 , 其他条 件 不变 , 则 当小 车水平 向右 以加 速 度 a运 动时 , 球仅 受 重 小
② 同一 轻弹簧 的两端 和中间各点 的张力相 等 ;
③ 既 能 承 受 拉 力 也 能 承 受 压 力 , 的 方 向 力 与 弹簧 的形 变方 向相 反 ; ④ 受力 时 发 生 形 变 的过 程 需 要 一 段 时 间 , 所 以在瞬 时 问题 中弹 簧 的弹力 不 能发 生 突变 , 大 小 和 方 向 均 不 变 ; 是 当 弹 簧 被 剪 断 时 , 力 立 但 弹
解析 未 剪 断 L 之 前 , 小球 受 L 的拉 力
F 、 。 拉 力 F 和 小 球 的 重 力 G共 同 作 用 , 力 。L 的 三
③ 只能产 生 拉力 。 能 产生 压 力 , 其 他 物 与
体相 互作 用 时总是 沿 绳 f方 向 ; ④ 在 瞬 时 问 题 中轻 绳 的拉 力 发 生 突 变 , 不
故 Fl— rgc s u o0
( )轻 杆 模 型 : 2
① 不能伸长或压缩 , 质量和重力可以视为零 ; ② 同~根轻杆 的两端 和中间各点 的张力相 等 ;

怎样区别轻绳、轻杆、轻弹簧

怎样区别轻绳、轻杆、轻弹簧
A、有可能N处于拉伸状态而 处于压缩状态 、有可能 处于拉伸状态而 处于拉伸状态而M处于压缩状态 B、有可能 处于压缩状态而 处于拉伸状态 处于压缩状态而M处于拉伸状态 、有可能N处于压缩状态而 C、有可能 处于不伸不缩状态而 处于拉伸 状 处于不伸不缩状态而M处于拉伸 、有可能N处于不伸不缩状态而 态 D、有可能 处于拉伸状态而 处于不伸不缩状态 处于拉伸状态而M处于不伸不缩状态 、有可能N处于拉伸状态而
一、三种模型的相同点
(1)轻绳、轻杆和轻弹簧的“轻”,指的是质量可 )轻绳、轻杆和轻弹簧的“ 以忽略,重力不计. 以忽略,重力不计 (2)他们对物体的作用力都是弹力,属于接触力、 )他们对物体的作用力都是弹力,属于接触力、 被动力。 被动力。 (3)各处的受力一般认为相同 )各处的受力一般认为相同. (4)都可以连接物体。 )都可以连接物体。
A、由位置A到位置 重力做功为 、由位置 到位置 重力做功为mgh, 到位置B重力做功为 C、由位置A到位置 小球克服弹力做功为 、由位置 到位置 小球克服弹力做功为mgh 到位置B小球克服弹力做功为
1 B、由位置 到位置 重力势能减少 mv2 到位置B重力势能减少 、由位置A到位置 2
1 D、小球到达位置 时弹簧的弹性势能为 时弹簧的弹性势能为mgh、小球到达位置B时弹簧的弹性势能为 2 mv2
(2)轻绳弹力的方向总是指向绳收缩的方向;轻杆弹力 )轻绳弹力的方向总是指向绳收缩的方向; 的方向由运动状态决定; 的方向由运动状态决定;轻弹簧弹力的方向总是沿 弹簧指向反抗形变的方向。 弹簧指向反抗形变的方向。 所示, 例3、如图 所示,小车顶端悬挂 、如图3所示 一个小球,当小车以加速度a做 一个小球,当小车以加速度 做 匀变速运动时, 匀变速运动时,悬线与竖直方 向成某一固定角θ, 向成某一固定角 ,若小球质量 为m,求悬线对小球的拉力。 ,求悬线对小球的拉力。

轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较河南陈超众在力学中有很多的研究对象是通过“轻绳”“轻杆”“轻弹簧”连接的,在实际解题过程中,发现不少同学对这三种模型的特点、区别还不够清楚,容易混淆,造成解题错误。

下面就这三种模型的特点和不同之处及应用进行归纳,希望对大家有所帮助。

一. 三种模型的主要特点1. 轻绳(1)轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。

它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。

(2)轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。

2. 轻杆(l)轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。

(2)轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。

3. 轻弹簧(1)轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。

(2)轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。

二. 三种模型的主要区别1. 静止或匀速直线运动时例1. 如图1所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。

图1解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。

由平衡条件,方向是沿着绳子向上。

可知,绳子对小球的弹力为F mg若将轻绳换成轻弹簧,其结果是一样的。

例2. 如图2所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。

当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。

轻杆模型

轻杆模型

中学阶段常涉及到“轻绳”、“轻杆”和“轻弹簧”模型,这三种模型都是由各种实际情况中的绳、杆和弹簧抽象出来的理想化物理模型。

但它们的成因和特性并不完全相同,由此导致这类模型在实际应用中有很多同学混淆出错,笔者拟对这三种模型的特点及区别应用作一些简单的讨论。

一、三个模型的正确理解1. 轻绳模型轻绳也称细线,它的质量可忽略不计;轻绳是软的;同时它的劲度系数非常大,可认为在受外力作用时它的形变极微小,看作不可伸长;其弹力的主要特征是:①不能承受压力,不能产生侧向力,只能产生沿绳收缩方向的拉力。

②内部张力大小处处相等,且与运动状态无关。

③轻绳的弹力大小可发生突变。

2. 轻杆模型轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数非常大,可认为在受外力作用时形变极微小,看作不可伸长或压缩;其弹力的主要特征是:①轻杆既可产生压力、也可产生拉力,且能产生侧向力(力的方向不一定沿着杆的方向);②轻杆各处受力大小相等,且与运动状态无关;③轻杆的弹力可发生突变。

3. 轻弹簧模型轻弹簧的质量可忽略不计,可以被压缩或拉伸。

其弹力的主要特征是:①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力;②轻弹簧各处受力大小相等,且与弹簧形变的方向相反;③轻弹簧产生的弹力是连续变化的,不能发生突变,只能渐变(除弹簧被剪断外);④在弹性限度内,弹力的大小与弹簧的形变量成正比,即F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量。

二、三种模型的主要区别及应用下面结合例题分析它们的区别及应用:1. 轻绳对物体只能产生沿绳收缩方向的拉力,而轻杆对物体的弹力不一定沿杆的方向。

【例1】如图1所示,轻绳一端系着质量为m的小球,另一端系在固定于小车上一直杆AB的上端;试求当小车以a的加速度水平向左匀加速度直线运动,轻绳对小球作用力的大小和方向?解析:如图2所示,小球受两个力作用:重力mg和绳对小球弹力T。

因为细绳只能被拉伸,则绳的弹力只能是沿绳方向的拉力,设绳与竖直方向的夹角为α。

高中物理 圆周运动中的轻绳、轻杆和轻弹簧

高中物理 圆周运动中的轻绳、轻杆和轻弹簧

圆周运动中的轻绳、轻杆和轻弹簧圆周运动中常涉及到“轻绳”、“轻杆”和“轻弹簧”模型,“轻绳”“轻杆”及“轻弹簧”是由各种实际情况中的绳、杆和弹簧抽象出来的理想物理模型.作为这一类模型,一般情况下,“轻”往往是(相对其他物体来说)指其质量可以忽略,所受重力可以忽略,而绳和杆则往往是其形体在同一直线上,且其长度不发生变化,而弹簧可以伸长也可以被压缩.由此导致这类模型在圆周运动中具有其特有的关系。

一、轻绳对物体只能产生沿绳收缩方向的拉力【例1】如图1所示,一摆长为L的单摆,摆球的质量为m,要使摆球能在竖直平面内做完整的圆周运动,那么摆球在最底点的速度v0至少要多大?解析小球在最高点的受力情况如图1所示,由牛顿第二定律得mg+T=mv2/L,由于m、L一定,所以小球在最高点的速度v越小,此时绳中拉力T就越小,当T=0时,小球具有不脱离轨的最小速度,因此当v0最小时,在最高点有mg=mv2/L,从最底点到最高点,小球机械能守恒,有(1/2)mv02=2mgL+(1/2)mv2,由以上各式联立解得v0的最小值为v0=.【总结】由于轻绳只能有拉力作用,因此只有当v0≥才能使小球做完整的圆周运动.它的这种规律与竖直平面内放置一半径为L的轨道,小球在内轨做完整的圆周运动情况类似.二、轻杆对物体既可以有拉力也可以有支撑力【例2】在例1中,将轻绳换成轻杆,要使摆球能在竖直平面内做完整的圆周运动,在最底点小球的速度v0至少要多大?解析如图2所示,小球在最高点既可以受到轻杆的拉力,又可以受到轻杆的支撑力,所以小球在最高点的合外力最小可以为零.因此,小球在最高点的速度最小且不脱离轨道,此速度可以为零.而小球在最高点的速度值v=则是小球在最高点受到轻杆对它弹力方向变化的临界值.即v<时,轻杆对它有向上的支撑力;v=时,轻杆对它无作用力;v>时,轻杆对它有向下的拉力.从最底点到最高点,由机械能守恒定律得(1/2)mv02=2mgL,解得v0=.【总结】由于轻杆对物体的作用既可以是拉力,又可以是支撑力,则物体在竖直平面内做完整的圆周运动,在最底点的速度只要大于即可.它的这种规律与竖直平面内放置圆管,小球在圆管内做完整的圆周运动相类似.如图3所示.三、轻弹簧对物体既可以有拉力,也可以有支持力,但长度随力的变化而变化例3有原长为L0的轻弹簧,劲度系数为k,一端系一质量为m的物体,另一端固定图1图2图3图4在转盘上的O点,如图4所示.物块随同转盘一起以角速度ω转动,物块与转盘间的最大静摩擦力为fm,求物块在转盘上的位置范围.【解析】由题意知,物块与转盘间有最大静摩擦力fm,当物块转动半径最小时,设为r1,此时弹簧被压缩的量为L0-r1,对物块而言,受有指向圆心的最大静摩擦力fm及弹簧的弹力F,且F=k(L0-r1),则fm-k(L0-r1)=mr1ω2,解得r1=(fm-kL0)/(mω2-k).当物块转动半径最大时,设为r2,此时弹簧的伸长量为(r2-L0),对物块而言,受有指向圆心的弹簧的弹力F及最大静摩擦力fm,且F=k(r2-L0),则k(r2-L0)-fm=mr2ω2,解得r2=(fm+kL0)/(k-mω2).所以物块所处的位置为(fm-kL0)/(mω2-k)≤r≤(fm+kL0)/(k-mω2).由以上分析可看出,在具体问题中,要注意分清轻绳、轻杆和轻弹簧的区别,现列表如下进行比较:类别特性作用力效果作用力方向形体在同一直线上的变化具体体现轻绳只能是拉力只能沿绳方向不变化轻杆既可以是拉力又可以是支撑力沿杆方向不变化轻弹簧既可以是拉力又可以是“推”力沿弹簧方向变化。

轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较轻绳、轻杆、轻弹簧作为中学物理最常见的三种典型的理想化力学模型, 在各类题目中都会出现,有必要将它们的特点归类,供同学们学习时参考。

.轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:(1)轻:即绳(或线)的质量或重力可以视为等于零。

由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;例1.如图1所示,PQ 是固定的水平导轨,两端 小定滑轮,物体A 、B 用轻绳连结,绕过定滑轮, 轮的摩擦,系统处于静止时,a =37°,片53°,10N,A 重20N, A 与水平导轨间摩擦因数=0.2 ,的摩擦力()A •大小为4N ,方向向左B •大小为4N ,方向向右C .大小为2N ,方向向左D .大小为2N解析:要分析A 物体所受摩擦力,必须确定两绳子 的拉力情况。

因为两绳均为轻绳,且滑轮摩擦不计, 绳子两端及其中间各点的张力大小相等,只要对 B 受力分析即可知道绳子拉力大小情况。

如图2所示,B 受重力、两绳拉力F ,、F 2而平衡, 的平衡知识即平行四边形法则可知:F ,=G B S in : =6N , F ,=G B cos 〉=8N 。

再以 A 物体为研 象 ,如图可知,A 物体所受摩擦力为f =F 2 -F^8N -6N =2N ,方向向左。

本题 C 选项符合题意。

(2)软:即绳(或线)只能受拉力,不能承受压力。

由此特点可知:绳(或线)与其他物体的相 互间作用力的方向总是沿着绳子。

注意轻绳“拉紧”和“伸直”的区别:“拉紧”的轻绳,一定而“伸直”的轻绳,还没有发生形变,没有张力。

例2■物体A 质量为m ,用两根轻绳B 、C 连接到墙上,在物体 一个力F ,如图所示,二=60,要使两绳都能伸直,求 小范围。

解析:我们先假设拉力F 较小,则绳C 将松弛,绳B 将有两个 不计滑 若B 重 则A 受因此 物体由力究对 拉紧,因有张力,A 上施加力F 的大图此,拉力F 的最小值F min ,出现在绳C 恰好伸直无弹力,而绳B 张紧时。

轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较一. 三种模型的主要特点1. 轻绳(1)轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。

它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。

(2)轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。

2. 轻杆(l)轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。

(2)轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。

3. 轻弹簧(1)轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。

(2)轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。

二. 三种模型的主要区别1.静止或匀速直线运动时例1.如图1所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。

图1解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。

由平衡条件可知,绳子对小球的弹力为F mg=,方向是沿着绳子向上。

若将轻绳换成轻弹簧,其结果是一样的。

例2.如图2所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。

当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。

图2解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图3所示。

则可知杆对小球的弹力为F mg=,方向与重力的方向相反即竖直向上。

图3注意:在这里杆对小球的作用力方向不是沿着杆的方向。

牛顿第二定律的应用复习讲义

牛顿第二定律的应用复习讲义

第2讲牛顿第二定律的基本应用一、瞬时问题1.牛顿第二定律的表达式为:F合=ma,加速度由物体所受合外力决定,加速度的方向与物体所受合外力的方向一致.当物体所受合外力发生突变时,加速度也随着发生突变,而物体运动的速度不能发生突变.2.轻绳、轻杆和轻弹簧(橡皮条)的区别(1)轻绳和轻杆:剪断轻绳或轻杆断开后,原有的弹力将突变为0.(2)轻弹簧和橡皮条:当轻弹簧和橡皮条两端与其他物体连接时,轻弹簧或橡皮条的弹力不能发生突变.自测1如图1,A、B、C三个小球质量均为m,A、B之间用一根没有弹性的轻质细绳连在一起,B、C之间用轻弹簧拴接,整个系统用细线悬挂在天花板上并且处于静止状态.现将A上面的细线剪断,使A的上端失去拉力,则在剪断细线的瞬间,A、B、C三个小球的加速度分别是(重力加速度为g)()A.1.5g,1.5g,0 B.g,2g,0C.g,g,g D.g,g,0二、超重和失重1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对竖直悬挂物的拉力)等于0的现象称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.4.实重和视重(1)实重:物体实际所受的重力,它与物体的运动状态无关.(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.判断正误(1)超重就是物体所受的重力增大了,失重就是物体所受的重力减小了.()(2)物体做自由落体运动时处于完全失重状态,所以做自由落体运动的物体不受重力作用.()(3)物体具有向上的速度时处于超重状态,物体具有向下的速度时处于失重状态.()三、动力学的两类基本问题1.由物体的受力情况求解运动情况的基本思路先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再由运动学的有关公式求出速度或位移.2.由物体的运动情况求解受力情况的基本思路已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力.3.应用牛顿第二定律解决动力学问题,受力分析和运动分析是关键,加速度是解决此类问题的纽带,分析流程如下:受力情况(F合)F合=ma加速度a运动学公式运动情况(v、x、t)自测2(2019·山东菏泽市第一次模拟)一小物块从倾角为α=30°的足够长的斜面底端以初速度v0=10 m/s沿固定斜面向上运动(如图2所示),已知物块与斜面间的动摩擦因数μ=33,g取10 m/s2,则物块在运动时间t=1.5 s时离斜面底端的距离为()A.3.75 m B.5 m C.6.25 m D.15 m1.两种模型加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.解题思路分析瞬时变化前后物体的受力情况⇒列牛顿第二定律方程⇒求瞬时加速度3.两个易混问题(1)图3甲、乙中小球m1、m2原来均静止,现如果均从图中A处剪断,则剪断绳子瞬间图甲中的轻质弹簧的弹力来不及变化;图乙中的下段绳子的拉力将变为0(2)由(1)的分析可以得出:绳的弹力可以突变而弹簧的弹力不能突变.例1(多选)(2019·广西桂林、梧州、贵港、玉林、崇左、北海市第一次联合调研)如图4所示,质量均为m 的木块A和B用一轻弹簧相连,竖直放在光滑的水平面上,木块A上放有质量为2m的木块C,三者均处于静止状态.现将木块C迅速移开,若重力加速度为g,则在木块C移开的瞬间()A.弹簧的形变量不改变B.弹簧的弹力大小为mgC.木块A的加速度大小为2g D.木块B对水平面的压力大小迅速变为2mg变式1如图5所示,在动摩擦因数μ=0.2的水平面上有一个质量m=1 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,此时小球处于静止状态,且水平面对小球的弹力恰好为零.在剪断轻绳的瞬间(g取10 m/s2),最大静摩擦力等于滑动摩擦力,下列说法正确的是()A.小球受力个数不变B.水平面对小球的弹力仍然为零C.小球将向左运动,且a=8 m/s2D.小球将向左运动,且a=10 m/s2变式2如图6所示,A球质量为B球质量的3倍,光滑固定斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行,重力加速度为g,则在突然撤去挡板的瞬间有()A.图甲中A球的加速度大小为g sin θB.图甲中B球的加速度大小为2g sin θC.图乙中A、B两球的加速度大小均为g sin θD.图乙中轻杆的作用力一定不为零1.对超重和失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变.(2)在完全失重的状态下,一切由重力产生的物理现象都会完全消失.(3)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.2.判断超重和失重的方法从受力的角度判断当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态从加速度的角度判断当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态从速度变化的角度判断①物体向上加速或向下减速时,超重②物体向下加速或向上减速时,失重例2 (2020·湖南衡阳市第一次联考)压敏电阻的阻值随所受压力的增大而减小、某实验小组在升降机水平地面上利用压敏电阻设计了判断升降机运动状态的装置.其工作原理图如图7甲所示,将压敏电阻、定值电阻R 、电流显示器、电源连成电路、在压敏电阻上放置一个绝缘重物,0~t 1时间内升降机停在某一楼层处,t 1时刻升降机开始运动,从电流显示器中得到电路中电流i 随时间t 变化情况如图乙所示,则下列判断不正..确.的是( ) A .t 1~t 2时间内绝缘重物处于超重状态B .t 3~t 4时间内绝缘重物处于失重状态C .升降机开始时可能停在1楼,从t 1时刻开始,经向上加速、匀速、减速,最后停在高楼D .升降机开始时可能停在高楼,从t 1时刻开始,经向下加速、匀速、减速,最后停在1楼变式3 (2019·广东广州市4月综合测试)如图8,跳高运动员起跳后向上运动,越过横杆后开始向下运动,则运动员越过横杆前、后在空中所处的状态分别为( )A .失重、失重B .超重、超重C .失重、超重D .超重、失重变式4 某人在地面上最多可举起50 kg 的物体,若他在竖直向上运动的电梯中最多举起了60 kg 的物体,电梯加速度的大小和方向为(g =10 m/s 2)( )A .2 m/s 2 竖直向上 B.53 m/s 2 竖直向上 C .2 m/s 2 竖直向下 D.53m/s 2 竖直向下1.解题关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁.2.常用方法(1)合成法在物体受力个数较少(2个或3个)时一般采用合成法.(2)正交分解法若物体的受力个数较多(3个或3个以上),则采用正交分解法.类型1 已知物体受力情况,分析物体运动情况例3 (2019·安徽宣城市期末调研测试)如图9,质量为m =1 kg 、大小不计的物块,在水平桌面上向右运动,经过O 点时速度大小为v =4 m/s ,对此物块施加大小为F =6 N 、方向向左的恒力,一段时间后撤去该力,物块刚好能回到O 点,已知物块与桌面间动摩擦因数为μ=0.2,重力加速度g =10 m/s 2,求:(1)此过程中物块到O 点的最远距离;(2)撤去F 时物块到O 点的距离.变式5(2020·山东等级考模拟卷·15)如图10甲所示,在高速公路的连续下坡路段通常会设置避险车道,供发生紧急情况的车辆避险使用,本题中避险车道是主车道旁的一段上坡路面.一辆货车在行驶过程中刹车失灵,以v0=90 km/h的速度驶入避险车道,如图乙所示.设货车进入避险车道后牵引力为零,货车与路面间的动摩擦因数μ=0.30,取重力加速度大小g=10 m/s2.(1)为了防止货车在避险车道上停下后发生溜滑现象,该避险车道上坡路面的倾角θ应该满足什么条件?设最大静摩擦力等于滑动摩擦力,结果用θ的正切值表示.(2)若避险车道路面倾角为15°,求货车在避险车道上行驶的最大距离.(已知sin 15°=0.26,cos 15°=0.97,结果保留两位有效数字.类型2已知物体运动情况,分析物体受力情况例4(2019·安徽安庆市第二次模拟)如图11甲所示,一足够长的粗糙斜面固定在水平地面上,斜面的倾角θ=37°,现有质量m=2.2 kg的物体在水平向左的外力F的作用下由静止开始沿斜面向下运动,经过2 s撤去外力F,物体在0~4 s内运动的速度与时间的关系图线如图乙所示.已知sin 37°=0.6,cos 37°=0.8,取g=10 m/s2,求:(1)物体与斜面间的动摩擦因数和水平外力F的大小;(2)物体在0~4 s内的位移大小.变式6(2019·福建宁德市5月质检)某天,小陈叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,小陈操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53 s,最后再匀减速1 s恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在上升过程的最大速度为1 m/s,高度为56 m.货物质量为2 kg,受到的阻力恒为其重力的0.02倍,重力加速度大小g=10 m/s2.求:(1)无人机匀加速上升的高度;(2)上升过程中,无人机对货物的最大作用力大小.1.(2019·江西赣州市上学期期末)电梯顶上悬挂一根劲度系数是200 N /m 的弹簧,弹簧的原长为20 cm ,在弹簧下端挂一个质量为0.4 kg 的砝码.当电梯运动时,测出弹簧长度变为23 cm ,g 取10 m/s 2,则电梯的运动状态及加速度大小为( )A .匀加速上升,a =2.5 m/s 2B .匀减速上升,a =2.5 m/s 2C .匀加速上升,a =5 m/s 2D .匀减速上升,a =5 m/s 22.(多选)一人乘电梯上楼,在竖直上升过程中加速度a 随时间t 变化的图线如图1所示,以竖直向上为a 的正方向,则人对地板的压力( )A .t =2 s 时最大B .t =2 s 时最小C .t =8.5 s 时最大D .t =8.5 s 时最小3.(2020·广东东莞市调研)为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图2所示.当此车匀减速上坡时,乘客(仅考虑乘客与水平面之间的作用)( )A .处于超重状态B .不受摩擦力的作用C .受到向后(水平向左)的摩擦力作用D .所受合力竖直向上4.(2019·河北衡水中学第一次调研)如图3所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A 小球,同时水平细线一端连着A 球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A 、B 两小球分别连在另一根竖直弹簧两端.开始时A 、B 两球都静止不动,A 、B 两小球的质量相等,重力加速度为g ,若不计弹簧质量,在水平细线被剪断瞬间,A 、B 两球的加速度分别为( )A .a A =aB =gB .a A =2g ,a B =0C .a A =3g ,a B =0D .a A =23g ,a B =05.(2020·吉林“五地六校”合作体联考)如图4所示,质量分别为m 1、m 2的A 、B 两小球分别连在弹簧两端,B 小球用细绳固定在倾角为30°的光滑斜面上,若不计弹簧质量且细绳和弹簧与斜面平行,在细绳被剪断的瞬间,A 、B 两小球的加速度大小分别为( )A .都等于g 2B .0和(m 1+m 2)g 2m 2C.(m 1+m 2)g 2m 2和0 D .0和g 26.(2019·东北三省四市教研联合体模拟)如图5所示,物体A、B由跨过定滑轮且不可伸长的轻绳连接,由静止开始释放,在物体A加速下降的过程中,下列判断正确的是()A.物体A和物体B均处于超重状态B.物体A和物体B均处于失重状态C.物体A处于超重状态,物体B处于失重状态D.物体A处于失重状态,物体B处于超重状态7.(2019·安徽马鞍山市检测)两物块A、B并排放在水平地面上,且两物块接触面为竖直面,现用一水平推力F作用在物块A上,使A、B由静止开始一起向右做匀加速运动,如图6甲所示,在A、B的速度达到6 m/s时,撤去推力F.已知A、B质量分别为m A=1 kg、m B=3 kg,A与水平面间的动摩擦因数为μ=0.3,B 与地面没有摩擦,物块B运动的v-t图象如图乙所示.g取10 m/s2,求:(1)推力F的大小;(2)物块A刚停止运动时,物块A、B之间的距离.8.(2019·河北承德市期末)如图7所示,有一质量为2 kg的物体放在长为1 m的固定斜面顶端,斜面倾角θ=37°,g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)若由静止释放物体,1 s后物体到达斜面底端,则物体到达斜面底端时的速度大小为多少?(2)物体与斜面之间的动摩擦因数为多少?(3)若给物体施加一个竖直方向的恒力,使其由静止释放后沿斜面向下做加速度大小为1.5 m/s2的匀加速直线运动,则该恒力大小为多少?9.(2019·安徽黄山市一模检测)如图8所示,一质量为m的小物块,以v0=15 m/s的速度向右沿水平面运动12.5 m后,冲上倾斜角为37°的斜面,若小物块与水平面及斜面间的动摩擦因数均为0.5,斜面足够长,小物块经过水平面与斜面的连接处时无能量损失.求:(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)(1)小物块在斜面上能达到的最大高度;(2)小物块在斜面上运动的时间.。

6.轻绳、轻杆、弹性绳和轻弹簧的比较 —人教版高一暑假综合易错点、易混淆点突破专题讲义

6.轻绳、轻杆、弹性绳和轻弹簧的比较 —人教版高一暑假综合易错点、易混淆点突破专题讲义

六、轻绳、轻杆、弹性绳和轻弹簧的比较--易错点易、混淆点突破轻绳轻杆弹性绳轻弹簧模型图示质量大小0000受外力作用时形变的种类拉伸形变拉伸形变、压缩形变、弯曲形变拉伸形变拉伸形变、压缩形变受外力作用时形变量大小微小,可忽略微小,可忽略较大,不可忽略较大,不可忽略弹力方向沿着绳,指向绳收缩的方向不一定沿杆,固定杆中可以是任意方向沿着绳,指向绳收缩的方向沿着弹簧,指向弹簧恢复原长的方向作用效果特点只能提供拉力可以提供拉力、支持力只能提供拉力只能提供拉力弹力大小突变特点可以突变可以突变不能突变不能突变(1)轻杆、轻绳、轻弹簧都是忽略质量的理想化模型.(2)分析轻杆上的弹力时必须结合物体的运动状态.(3)讨论轻弹簧上的弹力时应明确弹簧处于伸长还是压缩状态.1.如图所示的四个图中,AB、BC均为轻质杆,各图中杆的A、C端都通过铰链与墙连接,两杆都在B处由铰链连接,且系统均处于静止状态.现用等长的轻绳来代替轻杆,能保持平衡的是()A.图中的AB杆可以用轻绳代替的有甲、乙、丙B.图中的AB杆可以用轻绳代替的有甲、丙、丁C.图中的BC杆可以用轻绳代替的有乙、丙、丁D.图中的BC杆可以用轻绳代替的有甲、乙、丁答案:B解析:选B.如果杆受拉力作用,可以用与之等长的轻绳代替,如果杆受压力作用,则不可用等长的轻绳代替,题图甲、丙、丁中的AB杆均受拉力作用,而甲、乙、丁中的BC杆均受沿杆的压力作用,故A、C、D均错误,B正确.2.小车上固定一根弹性直杆A,杆顶固定一个小球B(如图所示),现让小车从光滑斜面上自由下滑,在下列如图所示的情况中杆发生了不同的形变,其中正确的是()答案:C解析:小车在光滑斜面上自由下滑,则加速度a=g sin θ(θ为斜面的倾角),由牛顿第二定律可知小球所受重力和杆的弹力的合力沿斜面向下,且小球的加速度等于g sin θ,则杆的弹力方向垂直于斜面向上,杆不会发生弯曲或倾斜,C正确.3.如图所示,小车上固定着一根弯成θ角的曲杆,杆的另一端固定一个质量为m的小球.重力加速度为g,关于杆对球的作用力F,下列判断正确的是()A .小车静止时,F =mg cos θ,方向沿杆向上B .小车静止时,F =mg cos θ,方向垂直杆向上C .小车静止时,F =mg ,方向竖直向上D .小车向右以加速度a 运动时,F =mg ,方向竖直向上 答案:C解析:小车静止时,由平衡条件知此时杆对球的作用力方向竖直向上,且大小等于球的重力mg ,故A 、B 错误,C 正确.小车向右以加速度a 运动时,此时弹力F 的方向一定指向右上方,只有这样,才能保证小球在竖直方向上受力平衡,水平方向上具有向右的加速度.设小球所受弹力方向与竖直方向的夹角为α,如图所示,据力的平衡条件和牛顿第二定律得F sin α=ma ,F cos α=mg ,解得F =m g 2+a 2,故D 错误.3. 如图所示,与竖直墙壁成53°角的轻杆一端斜插入墙中并固定,另一端固定一个质量为m 的小球,水平轻质弹簧处于压缩状态,弹力大小为34mg (g 表示重力加速度),则轻杆对小球的弹力大小为( )A .53mgB .35mgC .45mgD .54mg答案:D解析:小球处于静止状态,其合力为零,对小球受力分析,如图所示,由图中几何关系可得F =(mg )2+(34mg )2=54mg ,选项D 正确.4.(2020·重庆市部分区县第一次诊断)如图所示,水平直杆OP 右端固定于竖直墙上的O 点,长为L =2 m 的轻绳一端固定于直杆P 点,另一端固定于墙上O 点正下方的Q 点,OP 长为d =1.2 m ,重为8 N 的钩码用质量不计的光滑挂钩挂在轻绳上且处于静止状态,则轻绳的弹力大小为( )A .10 NB .8 NC .6 ND .5 N 答案:D解析:设挂钩所在处为N 点,延长PN 交墙于M 点,如图所示:同一条绳子拉力相等,根据对称性可知两边的绳子与竖直方向的夹角相等,设为α,则根据几何关系可知∠NQM =∠NMQ =α,故NQ =MN ,即PM 等于绳长; 根据几何关系可得:sin α=PO PM =1.22=0.6,则cos α=0.8,根据平衡条件可得:2F T cos α=G ,解得:F T =5 N ,故D 正确.5.(2019·山东潍坊市二模)如图所示,固定光滑直杆倾角为30°,质量为m 的小环穿过直杆,并通过弹簧悬挂在天花板上,小环静止时,弹簧恰好处于竖直位置,现对小环施加沿杆向上的拉力F ,使环缓慢沿杆滑动,直到弹簧与竖直方向的夹角为60°.整个过程中,弹簧始终处于伸长状态,以下判断正确的是( )A.弹簧的弹力逐渐增大B.弹簧的弹力先减小后增大C.杆对环的弹力逐渐增大D.拉力F先增大后减小答案:B解析:由几何关系可知,弹簧的长度先减小后增大,即伸长量先减小后增大,则弹簧的弹力先减小后增大,选项A错误,B正确;开始时弹簧处于拉伸状态,根据平衡条件可知弹簧的弹力的大小等于环的重力,即F弹=mg,此时杆对环的弹力为零,否则弹簧不会竖直;当弹簧与竖直方向的夹角为60°时,由几何关系可知,此时弹簧的长度等于原来竖直位置时的长度,则此时弹簧弹力的大小也为F弹=mg,根据力的合成可知此时弹簧对小环的弹力与环自身重力的合成沿杆向下,所以此时杆对环的弹力仍为零,故杆对环的弹力不是逐渐增大的,选项C错误;设弹簧与杆之间的夹角为θ,则在环从开始滑到弹簧与杆垂直位置的过程中,由平衡知识:F弹cos θ+F=mg sin 30°,随θ角的增加,F弹cos θ减小,则F增大;在环从弹簧与杆垂直位置到弹簧与竖直方向的夹角为60°的过程中,由平衡知识:F=F弹cos θ+mg sin 30°,随θ角的减小,F弹cos θ增大,则F增大,故F一直增大,选项D错误.6.(2019·安徽蚌埠市第三次质量检测)如图所示,一根绳的两端分别固定在两座山的A、B处,A、B 两点水平距离BD=16 m,竖直距离AD=2 m,A、B间绳长为20 m.重力为120 N的猴子抓住套在绳子上的光滑轻质滑环在AB间滑动,某时刻猴子在最低点C处静止,则此时绳的张力大小为(绳处于拉直状态)()A.75 N B.100 N C.150 N D.200 N答案:B解析:对猴子受力分析如图所示设拉力F T 与水平方向的夹角为θ,由几何关系可得:cos θ=1620=45,解得θ=37°,又由平衡条件得:2F T sin θ=mg ,解得:F T =mg 2sin θ=1202×35N =100 N ,故A 、C 、D 错误,B 正确.7.(2018·淄博模拟)A 、B 是天花板上两点,一根长为l 的轻绳穿过带有光滑孔的球,两端分别系在A 、B 点,如图甲所示;现将长度也为l 的均匀铁链悬挂于A 、B 点,如图乙所示。

轻杆、轻绳、轻弹簧的力学特征

轻杆、轻绳、轻弹簧的力学特征

轻杆、轻绳、轻弹簧的力学特征轻杆、轻绳、轻弹簧都是忽略质量的理想模型,它们的力学特征既有相同又有相异,由不同模型构建的物理情景因而具有不同的性质和规律。

一、力的方向有异1、轻绳提供的作用力只能沿绳并指向绳收缩的方向;2、轻弹簧提供的作用力只能沿弹簧的轴线方向,与弹簧发生形变的方向相反;3、轻杆提供的作用力不一定沿杆的方向,可以是任意方向。

例1、如图1所示,水平轻杆的一端固定在墙上,轻绳与竖直方向的夹角为370,小球的重力为8N ,绳子的拉力为5N ,水平轻弹簧的拉力为6N ,求轻杆对小球的作用力。

解析:小球受四个力作用:重力、绳子的拉力、弹簧的拉力,以及轻杆的作用力,其中只有轻杆的作用力的方向不能确定,如图2所示,重力、弹力、轻绳的拉力三者的合力为:55()F N == 方向与竖直方向成370斜向下,这个力与轻绳的拉力恰好在同直线上。

根据物体平衡的条件,可知轻杆对小球的作用力大小为5N ,方向与竖直方向成370斜向上。

二、力的效果有异1、轻绳只能提供拉力。

2、轻杆、轻弹簧既可以提供拉力,又可以提供推力。

例2、用长为l 的轻绳系一小球在竖直平面内做圆周运动,要使小球能做完整的圆周运动,则小球在最低点的速度v 最小为多少?解析:由轻绳的力学特性可知,要使小球在竖直平面内能做完整的圆周运动,则小球在最高点时有一个临界速度v 0,这个速度对应绳子的张力恰好为零,由重力提供向心力,即有:20mv mg l =,得0v根据机械能守恒定律,易求出小球在最低点时的临界速度为v =即要使小球在竖直平面内能做完整的圆周运动,小球在最低点的速度v必须大例3、在例2中,把轻绳改为轻杆,要使小球在竖直平面内能做完整的圆周运动,则小球在最低点的速度v 最小为多少?解析:由轻杆的力学特征可知,要使小球在竖直平面内能做完整的圆周运动,则只要小球在最高点时的速度稍微大于零即可,这时杆提供支持力。

由机械能守恒定律,易求出小球在最低点的速度为:v =内能做完整的圆周运动,小球在最低点的速度v必须大于。

高考物理 专题2.6 轻绳、轻杆、轻弹簧 “绳上的‘死结’和‘活结’模型” “活动杆”与“固定杆”问题

高考物理 专题2.6 轻绳、轻杆、轻弹簧 “绳上的‘死结’和‘活结’模型” “活动杆”与“固定杆”问题

专题2.6 轻绳、轻杆、轻弹簧“绳上的‘死结’和‘活结’模型”“活动杆”与“固定杆”问题轻杆、轻绳、轻弹簧模型1.三种模型对比型图型特只能发生微小形变张力大小相等方向特点可以是任意方向2.弹簧与橡皮筋的弹力特点(1)弹簧与橡皮筋产生的弹力遵循胡克定律F=kx。

(2)橡皮筋、弹簧的两端及中间各点的弹力大小相等。

(3)弹簧既能受拉力,也能受压力(沿弹簧轴线),而橡皮筋只能受拉力作用。

(4)弹簧和橡皮筋中的弹力均不能突变,但当将弹簧或橡皮筋剪断时,其弹力立即消失。

【典例1】如图所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m 的小球。

下列关于斜杆对小球的作用力F 的判断中,正确的是( )A .小车静止时,F =mg sin θ,方向沿杆向上B .小车静止时,F =mg cos θ,方向垂直于杆向上C .小车向右匀速运动时,一定有F =mg ,方向竖直向上D .小车向右匀加速运动时,一定有F >mg ,方向一定沿杆向上 【思路点拨】解答本题时可按以下思路进行:小球的运动状态―→小球所受的合力―――――――→牛顿第二定律或者平衡条件确定弹力的大小和方向【名师点睛】 轻杆弹力的确定方法杆的弹力与绳的弹力不同,绳的弹力始终沿绳指向绳收缩的方向,但杆的弹力方向不一定沿杆的方向,其大小和方向的判断要根据物体的运动状态来确定,可以理解为“按需提供”,即为了维持物体的状态,由受力平衡或牛顿运动定律求解得到所需弹力的大小和方向,杆就会根据需要提供相应大小和方向的弹力。

一、“活结”与“死结”绳是物体间连接的一种方式,当多个物体用绳连接的时候,其间必然有“结”的出现,根据“结”的形式不同,可以分为“活结”和“死结”两种.“活结”“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线.“死结”“死结”可理解为把绳子分成两段,且不可沿绳子移动的结点。

共点力平衡条件的应用“轻绳”、“轻杆”与“轻弹簧” “活结”与“死结” “活动杆”与“固定杆

共点力平衡条件的应用“轻绳”、“轻杆”与“轻弹簧” “活结”与“死结” “活动杆”与“固定杆

模型3:轻弹簧 轻弹簧的质量可忽略不计,可以被压缩或拉伸。 其弹力的主要特征是: ①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力; ②轻弹簧各处受力大小相等,且与弹簧形变的方向相反; ③轻弹簧产生的弹力是连续变化的,不能发生突变,只能 渐变(除弹簧被剪断外); ④在弹性限度内,弹力的大小与弹簧的形变量成正比,即 F=kΔx,其中k为弹簧的劲度系数,Δx为弹簧的伸长量或缩 短量。
由于杆AB不可转动(即是“固 定杆”),所以杆所受弹力的方向 不一定沿杆AB方向.由于B点处是 滑轮,它只是改变绳中力的方向, 并未改变力的大小,滑轮两侧绳 上的拉力大小均是100 N,夹角为 120°,故滑轮受绳子作用力即是 两拉力的合力。
总结: 1.什么是活结,什么是死结? 2.什么是活动杆,什么是固定杆? 2.它们各有什么特点?
②绳上任何一个横截面两边相互作用的拉力叫做“张 力”,因此轻绳只有两端受力时,任何一个横截面上的张力 大小都等于绳的任意一端所受拉力的大小,即同一轻绳张力 处处相等,且与运动状态无关.
③轻绳的弹力大小可发生突变.
模型2:轻杆 轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数 非常大,可认为在受外力作用时形变极微小,看作不可伸 长或压缩. 其弹力的主要特征是: ①轻杆既可产生压力、也可产生拉力,且能产生侧向 力(力的方向不一定沿着杆的方向); ②轻杆各处受力大小相等,且与运动状态无关; ③轻杆的弹力可发生突变.
分析:
TC mg 50N
TB cos mg
TA A
mg 50
TB cos
62.5N 0.8
TA TB sin 62.5 0.6 37.5N
B TB θ θ O
mg
例2.轻绳AB一段固定于A点,另一端自由。在绳中某处O点 打结系另一轻绳OC,下挂一质量为m的物体。现保持O点的 位置不变,在OB段由水平方向缓慢转到竖直方向的过程中, 拉力F和绳OA的张力变化?

轻绳-轻杆-轻弹簧三种模型的特点及其应用

轻绳-轻杆-轻弹簧三种模型的特点及其应用

轻绳、轻杆、轻弹簧三种模型的特点及其应用在中学物理中,经常会遇到绳、杆、弹簧三种典型的模型,在这里将它们的特点归类,供同学们学习时参考。

一. 三种模型的特点1. 轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:①轻:即绳(或线)的质量或重力可以视为等于零。

由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;②软:即绳(或线)只能受拉力,不能承受压力。

由此特点可知:绳(或线)与其他物体的相互间作用力的方向总是沿着绳子;③不可伸长:即无论绳(或线)所受拉力多大,绳子(或线)的长度不变。

由此特点可知:绳(或线)中的张力可以突变。

2. 轻杆具有以下几个特征:①轻:即轻杆的质量和重力可以视为等于零。

由此特点可知,同一轻杆的两端及其中间各点的张力大小相等;②硬:轻杆既能承受拉力也能承受压力,但其力的方向不一定沿着杆的方向;③轻杆不能伸长或压缩。

3. 轻弹簧中学物理中的轻弹簧,也是理想化的模型。

具有以下几个特征:①轻:即弹簧的质量和重力可以视为等于零。

由此特点可知,向一轻弹簧的两端及其中间各点的张力大小相等;②弹簧既能承受拉力也能承受压力,其方向与弹簧的形变的方向相反;③由于弹簧受力时,要发生形变需要一段时间,所以弹簧的弹力不能发生突变,但当弹簧被剪断时,它所受的弹力立即消失。

二. 三种模型的应用例1. 如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。

此类问题应注意两种模型的建立。

先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。

可知,F mg 2=,F F mg mg 122=+='。

剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。

浅析“轻绳”、“轻杆”和“轻弹簧”

浅析“轻绳”、“轻杆”和“轻弹簧”
中学教 学 参 考
复 习指 津
浅 析“ 绳" “ 轻 、 轻杆 ’ 轻 弹 簧" ’ 和“
广西 百 色凌 云县 中学 (3 1 0 黄宏 标 53 0 )
中学阶段 常 涉及 到 “ 绳” “ 杆” “ 弹 簧” 轻 、轻 和 轻 模 型, 这三种模 型都是 由各种 实际情 况 中的绳 、 杆和 弹簧 抽象出来的理想化物理模型. 但它们 的成因和特性 并不 完全相同 , 由此导致这类模 型在实 际应 用 中有很 多学生 混 淆 出 错 , 者 拟 对 这 三 种 模 型 的特 点 及 区 别 应 用 作 一 笔 些简单的讨论. 下面结合例题分析它们的区别及应用 : 轻 绳对 物 体 只 能 产 生 沿 绳 收 缩 方 向 的 拉 力 , 而 轻杆对物体 的弹 力不一定沿杆的方向 【 1 如 图 1 示 , 绳 一 端 系 着 质 量 为 的小 例 】 所 轻 球 , 一 端 系 在 固定 于小 车 上 一 直 杆 A_的上 端 ; 求 当 另 B 试 小车以加速度 “水平 向左做匀加速 运动时 , 求轻绳 对小 球 作 用 力 的 大 小 和方 向.
与重力 同 向; O 当 ≤
与重 力 反 向 , 选 项 C正 确 , 故 D
ZH ONGX J A UE I OXUE C ANKA O
解 题 方 法与技 巧
利 用 知 识 迁 移 巧 解 电 功 率 计 算

可见轻绳对小球 的作用 力大 小随着 加速 度 n的改
变 而改 变 , 它 的方 向一 定 是 在 绳 子 的 方 向上 . 但
【 2 如 图 3 示 , 车 上 固 例 】 所 小 定一 弯 折 硬 杆 AB C 端 固 定 一 质 C, 量 为 的小 球 , : 问 () 1 当小车向左匀速直线运动时, A B 杆 对小球作用力 的大 小和方 向. C () ( ) 小 车 以 加 速 度 水 平 向 2当 左做匀加速直线运 动时 , C杆对小 B 球作用力 的大小和方 向. 解析 : 以小 球 为研 究 对 象 进行 受 力分 析 , 球 受 两 个 力 作 用 : 力 m 小 重 g

谈轻绳、轻杆和轻弹簧三种理想模型

谈轻绳、轻杆和轻弹簧三种理想模型

龙源期刊网
谈轻绳、轻杆和轻弹簧三种理想模型
作者:毕海涛
来源:《数理化学习·高三版》2013年第09期
在高中物理中,轻绳、轻杆和轻弹簧三种理想化模型是极为常见的,但却并不为学生所熟知.在许多力学问题中,由于对模型特性理解得不准确,出现了学生一听就“通”,教师一讲就“痛”的现象.本文将通过深入分析,对三个模型进行全面的展示.
何为“轻”?顾名思义,质量很小,物理学中视这样的物体m=0.
为何采用“轻”模型?为了突出其产生的弹力特点而忽略其质量引起的其他问题,这体现了《高中物理课程标准》中“了解物质结构、相互作用和运动的一些基本概念和规律”的目标要求.
“轻”模型的共同特点是什么?因为m=0,根据牛顿第二定律,
F合=0,所以“轻”模型在共点力作用下始终处于平衡状态,这有助于问题的进一步探讨.。

轻杆、轻绳、轻弹簧的力学特征

轻杆、轻绳、轻弹簧的力学特征

轻杆、轻绳、轻弹簧的力学特征模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。

它不能产生支持作用。

它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。

它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。

(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。

2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。

(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。

3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。

(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。

案例探究:案例1如图所示,一质量为m的物体系于长度分别为L1、L2的两根细绳OA、OB上,OB一端悬挂在天花板上,与竖直方向夹角为θ,OA水平拉直,物体处于平衡状态,现在将OA剪断,求剪断瞬间物体的加速度,若将绳OB换为长度为L2的弹簧,结果又如何?分析与解答:为研究方便,我们将两种情况对比分析。

(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mg tgθ。

(2)(3)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsinθ,所以a =gsinθ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轻绳、轻杆、轻弹簧的三种模型比较
在力学中有很多的研究对象是通过“轻绳”“轻杆”“轻弹簧”连接的,在实际解题过程中,发现不少同学对这三种模型的特点、区别还不够清楚,容易混淆,造成解题错误。

下面就这三种模型的特点和不同之处及应用进行归纳,希望对大家有所帮助。

一、三种模型的主要特点
1. 轻绳
(1)轻绳模型的建立
轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。

它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。

(2)轻绳模型的特点
①轻绳各处受力相等,且拉力方向沿着绳子;
②轻绳不能伸长;
③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;
④轻绳的弹力会发生突变。

2. 轻杆
(l)轻杆模型的建立
轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。

(2)轻杆模型的特点
①轻杆各处受力相等,其力的方向不一定沿着杆的方向;
②轻杆不能伸长或压缩;
③轻杆受到的弹力的方式有拉力或压力。

3. 轻弹簧
(1)轻弹簧模型的建立
轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。

(2)轻弹簧的特点
①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;
②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;
③弹簧的弹力不会发生突变。

二、三种模型的主要区别
1. 静止或匀速直线运动时
例1. 如图1所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。

图1
解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。

由平衡条件可知,绳子对小球的弹力为F mg
=,方向是沿着绳子向上。

若将轻绳换成轻弹簧,其结果是一样的。

例2. 如图2所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。

当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。

图2
解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图3所示。

则可知杆对小球的弹力为F mg
=,方向与重力的方向相反即竖直向上。

图3
注意:在这里杆对小球的作用力方向不是沿着杆的方向。

2. 匀变速直线运动时
例3. 如图4所示,一质量为m的小球用轻绳悬挂在小车顶部,小车向左以加速度a做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。

图4
解析:以小球为研究对象进行受力分析,如图4所示。

根据小球做匀加速直线运动可得在竖直方向F mg
cosθ=
在水平方向F ma
sinθ=
解之得F m g a
a
g =+=
22,tanθ
轻绳对小球的作用力大小随着加速度的增大而增大,它的方向沿着绳子,与竖直方向的
夹角为θ。

例4. 若将上题中的轻绳换成固定的轻杆,当小车向左以加速度a做匀加速直线运动时,求杆对球的作用力的大小及方向。

解析:如图5,小球受到重力和杆对它的弹力F作用而随小车一起向左做匀加速直线运动。

图5
在竖直方向F mg
cosα=
在水平方向F ma
sinα=
解之得F m g a
a
g
=+=
22,tanα。

由解答可知,轻杆对小球的作用力大小随着加速度的增大而增大,它的方向不一定沿着杆的方向,而是随着加速度大小的变化而变化。

只有a g
=tanθ时,F才沿着杆的方向。

3. 弹力的突变问题
轻绳的弹力会发生突变,而弹簧的弹力不会发生突变。

[来源:学+科+网Z+X+X+K]
例5. 如图6所示,小球在细线OB和水平细线AB的作用下而处于静止状态,则在剪断水平细线的瞬间,小球的加速度多大?方向如何?
图6
解析:在没有剪断之前对小球进行受力如图7所示,由平衡条件可得F
mg
=
cosθ,
F mg
T
=tanθ。

图7
当剪断水平细线AB 时,此时小球由于细线OB 的限制,在沿OB 方向上,小球不可能运动,故小球只能沿着与OB 垂直的方向运动,也就是说小球所受到的重力,此时的作用效果是拉绳和沿垂直绳的方向做加速运动,其受力如图8所示。

由图8可知mg ma sin θ=,则可得a g =sin θ方向垂直于OB 向下。

绳OB 的拉力F mg 'cos =θ,则可知当剪断水平细线AB 时,细线OB 的拉力发生了突变。

图8
例6. 如图9所示,一轻质弹簧和一根细线共同提住一个质量为m 的小球,平衡时细线是水平的,弹簧与竖直方向的夹角是θ,若突然剪断细线,则在剪断的瞬间,弹簧拉力的大小是__________,小球加速度与竖直方向夹角等于_________。

图9
解析:在细线未剪断前,由平衡条件可得
水平细线的拉力F mg T =tan θ 弹簧的拉力
F mg
=cos θ 当剪断细线的瞬时,F T =0,而弹簧形变不能马上改变,故弹簧弹力F 保持原值。

在图
10所示中,
F mg
=cos θ。

所以在剪断细线的瞬时F 和mg 的合力仍等于原F T 的大小,方向水平
=tanθ。

向右。

则可知小球的加速度方向沿水平向右,即与竖直成90︒角,其大小为a g
图10。

相关文档
最新文档