苏科版九年级数学全册知识点整理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版数学九年级全册知识点梳理

第一章图形与证明(二)

1 等腰三角形的性质定理:

等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。等腰三角形的两底角相等(简称“等边对等角”)。

等腰三角形的判定定理:

如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。

2 直角三角形全等的判定定理:

斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。

角平分线的性质:角平分线上的点到这个角的两边的距离相等。

角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。

直角三角形中,30°的角所对的直角边事斜边的一半。

3 平行四边形的性质与判定:

定义:两组对边分别平行的四边形是平行四边形。

定理1:平行四边形的对边相等。

定理2:平行四边形的对角相等。

定理3:平行四边形的对角线互相平分。

判定——从边:1两组对边分别平行的四边形是平行四边形。

2一组对边平行且相等的四边形是平行四边形。

3两组对边分别相等的四边形是平行四边形。

从角:两组对角分别相等的四边形是平行四边形。

对角线:对角线互相平分的四边形是平行四边形。

矩形的性质与判定:

定义:有一个角的直角的平行四边形是矩形。定理1:矩形的4个角都是直角。

定理2:矩形的对角线相等。

定理:直角三角形斜边上的中线等于斜边的一半。

判定:1有三个角是直角的四边形是矩形。

2对角线相等的平行四边形是矩形。

菱形的性质与判定:

定义:有一组邻边相等的平行四边形是菱形。

定理1:菱形的4边都相等。

定理2:菱形的对角线相互垂直,并且每一条对角线平分一组对角。

判定:1四条边都相等的四边形是菱形。

2对角线互相垂直的平行四边形是菱形。

正方形的性质与判定:

正方形的4个角都是直角,4条边都相等,对角线相等且互相垂直平分,每一条对角线平分一组对角。

正方形即是特殊的矩形,又是特殊的菱形,它具有矩形和菱形的所有性质。

判定:1有一个角是直角的菱形是正方形。

2有一组邻边相等的平行四边形是正方形。

1.4 等腰梯形的性质与判定

定义:两腰相等的梯形叫做等腰梯形。

定理1:等腰梯形同一底上的两底角相等。

定理2:等腰梯形的两条对角线相等。

判定:1在同一底上的两个角相等的梯形是等腰梯形。

2对角线相等的梯形是等腰梯形。

1.5 中位线

三角形的中位线平行于第三边,并且等于第三边的一半。

梯形的中位线平行于两底,并且等于两底的一半。

1 / 1

中点四边形:依次连接一个四边形各边中点所得到的四边形称为中点四边形(中点四边形一定是平行四边形)。

原四边形对角线中点四边形

相等菱形

互相垂直矩形

相等且互相垂直正方形

第二章数据的离散程度

2.1 极差:

一组数据中的最大值与最小值的差叫做极差。计算公式:极差=最大值-最小值。

极差是刻画数据离散程度的一个统计量,可以反映一组数据的变化范围。一般说,极差越小,则说明数据的波动幅度越小。

2.2 方差

各个数据与平均数的差的平均数叫做这组数据的方差,记作S2。

巧用方差公式:

1、基本公式:S2=[(X1-)2+(X2-)2+……+(X n -)2]

2、简化公式:S2=[(X12+X22+……+X n2)-n2]可写成:S 2=(X 12+X 22+……+X n2)-2

3、简化②:S2=[(X’12+X’22+……+X’n2)-n2] 也可写成: S2=(X’12+X’22+……+X’n2)-2

标准差:

方差的算术平方根叫做这组数据的标准差,记作S。

意义:

1、极差、方差和标准差都是用来描述一组数据波动情况的特征,常用来比较两组数据的波动大小,我们通常研究的是这组数据的个数相等、平均数相等或比较接近的情况。

2、方差较大的波动较大,方差较小的波动较小。

3、方差大,标准差就大,方差小,标准差就小。因此标准差同样反映数据的波动大小。注意:对两组数据来说,极差大的那一组不一定方差大,反过来,方差大的极差也不一定大。

第三章二次根式

3.1 二次根式

定义:一般地,式子(a≧0)叫做二次根式,a叫做被开方数。

有意义条件:当a≧0时,有意义;当a≦0时,无意义。

性质:1、≧0(a≧0)2、()2=a(a≧0)

2=∣a∣= a(a≧0)

a(a<0)

3.2 二次根式的乘除法

法则:√a·√b=√ab(a≧0,b≧0)

=√(a≧0,b>0)

化简:①√ab=√a·√b(a≧0,b≧0)

②√=(a≧0,b>0)

③==(a≧0,b >0)

1 / 1

1 / 1

第四章 一元二次方程

4.1 概念:

只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程。

一般形式是aX 2+bX+c=0(a 、b 、c 是常数,a ≠0),其中aX 2称为二次项,a 称为二次项系数,bX 称为一次项,b 称为一次项系数,c 称为常数项。 4.2 解法: 1、直接开平方

2、配方法:先把一元二次方程变形为(X+h )2=k 的形式(其中h,k 都是常数),如果k ≧0,再通过直接开平方法求出方程的解

3、公式法(求根公式):一元二次方程aX 2+bX+c=0 前提:(a ≠0)b 2

-4ac ≧0,记住

求根公式: a

ac

b b x 242-±-=

(注意在找abc 时须先把方程化为一般形式)

4分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)

※根与系数的关系:当b 2

-4ac>0时,方程有两个不等的实数根;

当b 2-4ac=0时,方程有两个相等的实数根; 当b 2-4ac<0时,方程无实数根。反之,也成立。

※如果一元二次方程

2=++c bx ax 的两根分别为x 1、x 2,则有:

a

c x x a

b

x x =

⋅-

=+2121。 ※一元二次方程的根与系数的关系的作用: (1)已知方程的一根,求另一根;

(2)不解方程,求二次方程的根x 1、x 2的对称式的值,

4、因式分解法(重点是十字相乘法) 根的判别式

一元二次方程aX 2+bX+c=0 (a ≠0)的根的情况可由b 2

-4ac 来判定,因此b 2

-4ac 叫做一元二次方程根的判别式。

当b 2

-4ac >0时,方程有两个不相等的实数根 当b 2-4ac=0时,方程有两个相等的实数根 当b 2-4ac <0时,方程没有实数根。

在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x ;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。

※处理问题的过程可以进一步概括为: 解答检验

求解

方程抽象分析问题

→→

第五章 中心对称图形(二)

5.1 圆

定义:圆是定点的距离等于定长的点的集合。其中,定点叫做圆心,定长叫做半径。 与圆有关的概念:

1、连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。

2、圆上任意两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆。大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。

3、定点在圆上的角叫做圆心角。

4、圆心相同,半径不相等的两个圆叫做同心圆。能够互相重合的两个圆叫做等圆。在同圆或等圆中,能够互相重合的弧叫做等弧。 与圆的位置关系:

相关文档
最新文档