苏科版九年级数学全册知识点整理
中考数学苏科版知识点总结
中考数学苏科版知识点总结一、代数1. 代数基础代数运算规则:加法、减法、乘法、除法整式与分式:整式的概念、分式的概念代数式的计算:同类项、合并同类项、分拆因式、化简代数式2. 一元一次方程与不等式一元一次方程的解:解方程的基本步骤、方程的解、检验方程的解一元一次不等式的解:解不等式的基本步骤、不等式的解、解不等式的规律3. 二元一次方程组二元一次方程组的解:解二元一次方程组的基本步骤、二元一次方程组的解、检验方程组的解4. 分式方程分式方程的解:解分式方程的基本步骤、分式方程的解、检验分式方程的解5. 平方根与整式平方根的概念:正数的平方根、负数的平方根、根号的运算规则完全平方公式:完全平方公式的应用、完全平方公式的推导6. 二次函数二次函数的图象:二次函数图象的性质、二次函数的平移二次函数的性质:二次函数的增减性、二次函数的大于零值和小于零值、二次函数的最值二、几何1. 几何基本概念角的概念:角的基本概念、角的种类、角的性质直线和线段的概念:直线和线段的基本概念、平行线及其性质2. 直角三角形直角三角形的性质:直角三角形的特殊角、勾股定理3. 四边形四边形的性质:平行四边形的性质、矩形的性质、菱形的性质、正方形的性质4. 圆圆的性质:圆的基本概念、圆心角、圆周角、弧、弦、冠、相交弦定理5. 圆的应用圆的应用:切线的性质、切线定理、切线长度定理、切线与半径的关系6. 相似三角形相似三角形的性质:相似三角形的判定、相似三角形的性质、相似三角形的应用三、数据统计与概率1. 统计图与统计量统计图的绘制:直方图、折线图、饼图统计量的计算:平均数、中位数、众数2. 概率基本概率模型:随机事件、概率、事件的概率计算概率分布模型:二项分布、正态分布四、解决实际问题的数学方法1. 实际问题的建立数学模型解决实际问题的步骤:问题的建立、数学模型的建立、模型的求解2. 运用函数解决实际问题用函数解决实际问题:函数的概念、函数的应用3. 运用方程组解决实际问题用方程组解决实际问题:方程组的应用、方程组的解法4. 运用不等式解决实际问题用不等式解决实际问题:不等式的应用、不等式的解法5. 运用统计与概率解决实际问题用统计与概率解决实际问题:统计与概率的应用、统计与概率的计算总结:数学是一门科学而又实用的学科,对于学生来说,学好数学是非常重要的。
苏科版初三数学重要知识点
苏科版初三数学重要知识点天才就是勤奋曾经有人这样说过。
如果这话不完全正确,那至少在很大程度上是正确的。
学习,就算是天才,也是需要不断练习与记忆的。
下面是小编给大家整理的一些初三数学的知识点,希望对大家有所帮助。
九年级数学知识点函数的图像与一元二次方程1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k 个单位可得到y=a(x-h)^2+k的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x 的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x?-x?|当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x 为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a 时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax^2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).初三年级数学知识点旋转一.知识框架二.知识概念1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
苏科版九年级数学上册全册知识点归纳
)的方程两边直接开平方而转化为两个一元一次方程的方③化二次项系数为方,即方程两边都加上一次项系数的一半的平方;化原方程为可以用两边开平方来求出方程的解;如果公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二±因式分解的方法:提公因式、公式法、十字相乘法。
.一元二次方程的注意事项:、一个四边形的四个顶点都在同一个圆上,这个四边形叫做圆的内接四边形。
、圆内接四边形的对角互补。
x n,我们把n个数的算术平均数,简称平通常,平均数可以用来表示一组数据的并不总是相同的,有时有些数据比其他的更重要.所以,我们在计算这组数据的平均数时,往往根据其重要程度,分别给每个数据一个”n个数据,个数据的权数,则称为这组数据的加权平均数.将一组数据按从小到大排列,处于中间位置的数(奇数个数时)或中间两个数的平均数(偶数个数时)叫做这组数据的中位数.在生活中可用平均数、众数和中位数这三个特征数来描述一组数据的集中趋势,它们各有不同的侧重点,需联系实际选择。
)如何理解众数是指一组数据中出现次数最多的那个数据,它的大小只与一组一组数据中的部分数据有关,一组数据的众数可能有一个或几个,也可能没有。
.描述一组数据的离散程度可采取许多方法,在统计中常先求这组数据的平均数,再求这组数据与平均数的差的平方和的平均数,用这个平均数来衡量这组数据的波动大小-)-)-)-)(二)通常,一组数据的方差越小,这组数据的离散程度越小,这组数据也就越稳定..标准差:有些情况下,需用到方差的算术平方根,即,一般地,设一个试验的所有可能发生的结果有中的一个结果出现.如果每个结果出现的机会均等,那么我们说这出现的机会都一样,那么我们就称这个试验的结果具有等可能性.表示一次试验所有等可能出现的结果数)树状图它可以帮助我们不重复、不遗漏地列出所有可能出现的结果。
小结:当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不。
苏科版初三数学知识点梳理
苏科版初三数学知识点梳理失败乃成功之母,重复是学习之母。
学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科⽬的学习⽅法都是不断重复学习。
下⾯是⼩编给⼤家整理的⼀些初三数学的知识点,希望对⼤家有所帮助。
九年级上册数学单元知识点第⼀章证明⼀、等腰三⾓形1、定义:有两边相等的三⾓形是等腰三⾓形。
2、性质:1.等腰三⾓形的两个底⾓相等(简写成“等边对等⾓”)2.等腰三⾓形的顶⾓的平分线,底边上的中线,底边上的⾼的重合(“三线合⼀”)3.等腰三⾓形的两底⾓的平分线相等。
(两条腰上的中线相等,两条腰上的⾼相等)4.等腰三⾓形底边上的垂直平分线上的点到两条腰的距离相等。
5.等腰三⾓形的⼀腰上的⾼与底边的夹⾓等于顶⾓的⼀半6.等腰三⾓形底边上任意⼀点到两腰距离之和等于⼀腰上的⾼(可⽤等⾯积法证)7.等腰三⾓形是轴对称图形,只有⼀条对称轴,顶⾓平分线所在的直线是它的对称轴3、判定:在同⼀三⾓形中,有两个⾓相等的三⾓形是等腰三⾓形(简称:等⾓对等边)。
特殊的等腰三⾓形等边三⾓形1、定义:三条边都相等的三⾓形叫做等边三⾓形,⼜叫做正三⾓形。
(注意:若三⾓形三条边都相等则说这个三⾓形为等边三⾓形,⽽⼀般不称这个三⾓形为等腰三⾓形)。
2、性质:⑴等边三⾓形的内⾓都相等,且均为60度。
⑵等边三⾓形每⼀条边上的中线、⾼线和每个⾓的⾓平分线互相重合。
⑶等边三⾓形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、⾼线或所对⾓的平分线所在直线。
3、判定:⑴三边相等的三⾓形是等边三⾓形。
⑵三个内⾓都相等的三⾓形是等边三⾓形。
⑶有⼀个⾓是60度的等腰三⾓形是等边三⾓形。
⑷有两个⾓等于60度的三⾓形是等边三⾓形。
九年级下册数学知识点总结直线与圆的位置关系①直线和圆⽆公共点,称相离。
AB与圆O相离,d>r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。
AB与⊙O相交,d③直线和圆有且只有⼀公共点,称相切,这条直线叫做圆的切线,这个的公共点叫做切点。
苏教版九年级数学知识点整理
苏教版九年级数学知识点整理【数的开方】1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);留意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.2.平方根的性质:(1)正数的平方根是一对相反数;(2)0的平方根还是0;(3)负数没有平方根.3.平方根的表示方法:a的平方根表示为和.留意:可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为.留意:0的算术平方根还是0.5.三个重要非负数:a2≥0,|a|≥0,≥0.留意:非负数之和为0,说明它们都是0.6.两个重要公式:(1);(a≥0)(2).7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).留意:(1)a叫x的立方数;(2)a的立方根表示为;即把a开三次方.8.立方根的性质:(1)正数的立方根是一个正数;(2)0的立方根还是0;(3)负数的立方根是一个负数.9.立方根的特性:.10.无理数:无限不循环小数叫做无理数.留意:?和开方开不尽的数是无理数.11.实数:有理数和无理数统称实数.12.实数的分类:(1)(2).13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应当用无理数表示;假如题目有近似要求,则结果应当用无理数的近似值表示.留意:(1)近似计算时,中间过程要多保存一位;(2)要求记忆:初三数学下册学问点整理1.解直角三角形1.1.锐角三角函数锐角a的正弦、余弦和正切统称∠a的三角函数。
假如∠a是Rt△ABC的一个锐角,则有1.2.锐角三角函数的计算1.3.解直角三角形在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。
2.直线与圆的位置关系2.1.直线与圆的位置关系当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。
九年级数学(苏教版)知识点总结
第一章图形与证明(二)定理等腰三角形的两个底角相等(简称“等边对等角”)定理等腰三角形的顶角平分线、底边上的中线,底边上的高互相重合定理如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”) 证明:两角及其中一角的对边对应相等的两个三角形全等(简写为“AAS ”) 等边三角形的每个内角都等于60o线段垂直平分线上的点到线段两端的距离相等 三个角都相等的三角形是等边三角形到线段两个端点距离相等的点在这条线段的垂直平分线上定理斜边和一条直角边对应相等的两个直角三角形全等。
(简写为“HL ”) 定理角平分线上的点到这个角的两边的距离相等定理角的内部到角的两边距离相等的点,在这个角的平分线上 定理平行四边形的对边相等 定理平行四边形的对角相等 定理平行四边形的对角线互相平分 定理矩形的4个角都是直角 定理矩形的对角线相等定理直角三角形斜边上的中线等于斜边的一半 定理菱形的4条边都相等定理菱形的对角线互相垂直,并且每一条对角线平分一组对角 定理一组对边平行且相等的四边形是平行四边形 定理对角线互相平分的四边形是平行四边形 不是从已知条件出发直接证明命题的结论成立,而是先提出与结论相反的假设,然后由这个“假设”出发推导出了矛盾的结果,从而证明了命题的结论一定成立。
这种证明的方法称为反证法。
证明:两组对边分别相等的四边形是平行四边形。
定理对角线相等的平行四边形是矩形 定理有3个角是直角的四边形是矩形 定理对角线互相垂直的平行四边形是菱形 定理四边都相等的四边形是菱形 证明:有一组邻边相等的矩形是正方形 有一个角是直角的菱形是正方形定理在同一底上的两个角相等的梯形是等腰梯形 定理等腰梯形同一底上的两底角相等 定理等腰梯形的两条对角线相等定理三角形的中位线平行于第三边,并且等于第三边的一半第二章数据的离散程度一组数据中最大值与最小值的差,能反映这组数据的变化范围,我们就把这样的差叫做极差(range )。
九年级上册数学知识点归纳苏科版
九年级上册数学知识点归纳苏科版九年级上册数学知识点归纳苏科版是初中阶段数学学习中的一个重要部分,它包括了多个知识点和概念,如代数、几何、概率等。
在这篇文章中,我们将对九年级上册数学知识点进行归纳和总结,帮助同学们复习和加深理解。
一、代数代数是数学的一个重要分支,它研究的是各种数学运算和数的关系。
九年级上册数学中,代数是一个重要的篇章,它包括了多个知识点。
1.1 一元一次方程一元一次方程是指只含有一个未知数的一次方程,如2x+3=7。
解一元一次方程的常用方法是移项和消元法,通过将未知数移到方程的一边,将常数移到方程的另一边,从而求得未知数的值。
1.2 二元一次方程二元一次方程是指含有两个未知数的一次方程,如3x+2y=8。
解二元一次方程的常用方法是联立方程法,通过将两个方程联立起来求解未知数的值。
1.3 因式分解因式分解是将一个代数式表示为几个乘积的形式,它是代数运算的基础。
在因式分解的过程中,可以运用多种方法,如公因式提取和分组配对法。
二、几何几何是研究空间形状、大小和相对关系的数学分支。
在九年级上册数学中,几何也是一个重要的内容。
2.1 图形的性质图形的性质是指各种几何图形的特点和规律。
如平行四边形的性质是对角线相等且对角线互相平分,正方形的性质是四条边相等且四个角都是直角等等。
2.2 相似和全等相似和全等是指两个或多个图形的形状和大小关系。
相似是指两个图形形状相同但大小不同,全等是指两个图形形状和大小都相同。
2.3 平面与空间的位置关系平面与空间的位置关系研究的是物体在空间中的位置和方向。
如平行、垂直、斜交等。
三、概率概率是数学中研究事件发生可能性的分支。
九年级上册数学中关于概率的内容主要包括以下几个方面。
3.1 概率的基本概念概率的基本概念包括事件、样本空间、随机事件等。
了解这些概念是学习概率的基础。
3.2 概率的计算概率的计算方法有多种,如频率法、几何法以及计数法等。
在实际问题中,我们可以根据实际情况选择合适的计算方法。
初三数学苏教版知识点
初三数学苏教版知识点学习必须与实干相结合。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。
下面是小编给大家整理的一些初三数学的知识点,希望对大家有所帮助。
初三新学期数学知识点苏教版一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
初三数学上册知识点归纳1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
苏教版九年级数学知识点归纳总结
苏教版九年级数学知识点归纳总结九年级下册数学知识点归纳一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:1.定义:对应角相等,对应边成比例的三角形叫做相似三角形。
2.性质:(1)相似三角形的对应角相等;(2)相似三角形的对应线段(边、高、中线、角平分线)成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:(1)两角对应相等,两三角形相似;(2)两边对应成比例,且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
初三数学复习资料因式分解的方法1.十字相乘法(1)把二次项系数和常数项分别分解因数;(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;(3)确定合适的十字图并写出因式分解的结果;(4)检验。
2.提公因式法(1)找出公因式;(2)提公因式并确定另一个因式;①找公因式可按照确定公因式的方法先确定系数再确定字母;②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。
3.待定系数法(1)确定所求问题含待定系数的一般解析式;(2)根据恒等条件,列出一组含待定系数的方程;(3)解方程或消去待定系数,从而使问题得到解决。
苏教版九年级数学上册知识点总结(苏科版)
苏教版九年级数学上册知识点总结(苏科版)知识点总结第一章一元二次方程定义方程是只含有一个未知数的整式方程,并且可以化成ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫做一元二次方程。
2用配方法求解一元二次方程思路:将方程转化为(x+m)2=n的形式,它的一边是一个完全平方式,另一边是一个常数,当n≥0时,两边同时开平方,转化为一元一次方程,便可求出它的根。
我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。
3.用公式法求解一元二次方程对于一元二次方程,当b2-4ac≥0时,它的根是:上面这个公式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法。
对于ax2+bx+c=0(a,b,c为常数,a≠0),当b2-4ac>0时,方程有两个不相等的实数根。
当b2-4ac=0时,方程有两个相等的实数根。
当b2-4ac<0时,方程没有实数根。
4、用因式分解法求解一元二次方程当一元二次方程的一边为,而另一边易于分解成两个一次因式的乘积时,我们就可以将方程分解成两个一元一次方程,这两个一元一次方程的解就是一元二次方程的根,这种解一元二次方程的方法,叫做因式分解法。
5、一元二次方程的根与系数的关系(韦达定理)如果方程ax2+bx+c=0(a,b,c为常数,a≠0)有两个实数根x1,x2,那么x1+x2=-b/a,x1x2=c/a思维导图:知识点归类建立一元二次方程模型知识点一一元二次方程的定义如果一个方程通过移项可以使右边为,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
留意:一元二次方程必需同时满意以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。
一元二次方程的解法一、一元二次方程概念:含有一个未知数,而且未知数的最高次数是2的整式方程叫做一元二次方程。
苏科版九年级数学全册总结
苏科版九年级数学全册总结(2020年秋)§1 一元二次方程1、一元二次方程4解法①直接开方; ②配方法; ③公式法; ④因式分解法。
2、根的判别式注意前提条件:①0≠a ; ②042≥-ac b △>0<=> 有两个不等的实根△=0 <=> 有两个相等的实根 △<0 <=> 无实根3、根与系数的关系基础: a b x x -=+21 ac x x =21 组合技:2122122212)(x x x x x x -+=+ ;21212111x x x x x x +=+ ;…… 两根异号 0<a c,0≥△※ 3个等价命题: 两个正根 00>,>acb a + ,0≥△两根异号 00>,<acb a + ,0≥△4、换元降次已知: 012=-+x x ,求7223-+x x 的值。
)-1(101222x x x x x x 替换用-=∴=-+7)1(272223--+⋅=-+x x x x x5、一元二次方程的应用(1)n 人互送礼物,共送)1(-n n 件礼物; n 人互相握手,共握手2)1(-n n 次。
(2)平均增长率问题:设增长率为x第一年为a , 第二年为)1(x a +,第三年为2)1(x a +。
(3)利润问题:Step1:一般设减少(增加)的钱 Step2:表示变化后的单利润,销售量Step3:根据“总利润 = 单利润 × 数量”列方程§2 圆1、巧用圆的半径相等点A 、D 、G 、M 在半圆O 上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC =a ,EF =b ,NH =c ,则a =b =c2、点与圆的位置关系:①求范围;②求最值。
3、弧、弦、角、之间的关系在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,其中圆心角的度数与它所对的弧的度数相等。
九年级数学苏科版知识点
九年级数学苏科版知识点九年级数学是学生学习中较为重要的一门学科,对于培养学生的逻辑思维和数学能力具有重要作用。
而苏科版数学教材则是中国九年级数学教材中的代表之一,以其系统性、科学性和规范性而备受学校和教师的青睐。
本文将探讨以下几个苏科版九年级数学的重要知识点。
一、代数方程与函数代数方程与函数是数学中的基础概念,也是九年级数学的重要内容。
在代数方程的学习中,我们需要学习如何解一元一次方程、一元二次方程以及一元二次不等式等。
通过对方程解的求解过程的学习,学生可以培养出抽象思维和分析问题的能力。
而在函数的学习中,我们需要了解函数的定义、性质以及函数图像等。
通过函数的学习,学生可以更好地理解数学与实际问题之间的联系。
二、图形与几何图形与几何是九年级数学中另一个重要的领域。
在图形的学习中,我们需要学习平面图形和空间图形的定义、性质以及分类等。
通过对不同图形性质的学习,学生可以培养出观察、分析和推理能力。
而在几何的学习中,我们需要学习平面几何和立体几何的知识。
通过几何的学习,学生可以更好地理解空间关系以及解决实际问题的能力。
三、数据与统计数据与统计在现代社会中起着重要的作用,也是九年级数学的重要内容。
在数据的学习中,我们需要学习如何收集、整理和处理数据。
通过对数据的学习,学生可以培养出观察和分析数据的能力。
而在统计的学习中,我们需要学习统计调查和统计图表等。
通过统计的学习,学生可以更好地分析和解读数据,从而得出有关问题的结论。
四、概率与统计概率与统计是数学中另一个重要的领域,也是九年级数学的重要内容。
在概率的学习中,我们需要学习如何计算事件发生的可能性。
通过概率的学习,学生可以培养出分析和解决问题的能力。
而在统计的学习中,我们需要学习如何收集、整理和分析数据。
通过统计的学习,学生可以更好地理解概率与统计的关系,并将其应用于实际问题的解决。
五、数学思维与解题方法数学思维和解题方法是九年级数学学习中关键的一部分。
江苏数学九年级知识点
江苏数学九年级知识点一、代数与函数1. 直线方程1.1. 一般式方程1.2. 点斜式方程1.3. 斜截式方程1.4. 两点式方程1.5. 截距式方程2. 一次函数2.1. 基本性质2.2. 图像与性质2.3. 函数的表示和应用3. 二次函数3.1. 平移与对称性3.2. 函数的性质和图像3.3. 顶点、轴、判别式3.4. 因式分解与解析式4. 不等式4.1. 不等式的性质和解集4.2. 一次不等式4.3. 一元二次不等式5. 等差数列5.1. 通项与公式5.2. 前n项和和末项5.3. 性质与应用6. 等比数列6.1. 通项与公比6.2. 前n项和与末项6.3. 性质与应用二、几何与图形1. 相似与全等1.1. 相似三角形的判定与性质1.2. 全等三角形的判定与性质1.3. 相似与全等图形的应用2. 平行线与三角形2.1. 平行线的性质与判定2.2. 平行线与三角形的性质3. 平移、旋转、对称3.1. 平移的定义与性质3.2. 旋转的定义与性质3.3. 对称中心与轴4. 空间几何体的计算4.1. 长方体、正方体、棱柱、棱锥的性质与计算4.2. 圆锥、圆柱、球体的性质与计算5. 圆的性质与计算5.1. 弧度与角度的关系5.2. 圆心角与弧长、扇形面积的计算5.3. 切线与割线的性质与计算三、概率与统计1. 实验与事件1.1. 随机事件与必然事件1.2. 事件的组合与运算2. 概率2.1. 赋值概率与几何概率2.2. 概率计算的方法与应用3. 统计与抽样调查3.1. 统计量的计算3.2. 调查与统计分析的应用文章中不出现小节和小标题,按照数学九年级知识点的层次和逻辑顺序进行论述,确保内容准确。
同时,文章整洁美观,语句通顺,流畅阅读。
最新苏科版数学九年级上册知识梳理
苏科版数学九年级上册知识梳理苏科版数学九年级上册知识梳理第一章一元二次方程1.1一元二次方程1、概念:只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程2、一元二次方程的一般形式(1)形如ax2+bx+c=0(a、b、c是常数,a≠0),其中ax2、bx、c分别叫做二次项、一次项和常数项,a、b分别叫做二次项系数、一次项系数(2)特殊的一元二次方程ax2=0(a≠0,b=0,c=0)ax2+c=0(a≠0,b=0,c≠0)ax2+bx=0(a≠0,b≠0,c=0)注意:二次项系数a≠0(3)化一元二次方程为一般形式的方法:整理一元二次方程的常用手段是去分母、去括号、移项、合并同类项等(4)一元二次方程的一般形式的特征:等号的左边是按x的降幂进行排列,右边等于03、根据实际问题列出一元二次方程从实际问题中抽象一元二次方程的一般步骤:(1)审题,认真阅读题目,弄清未知量和已知量之间的关系(2)设出合适的未知数(3)确定相等关系(4)根据等量关系列出方程1.2一元二次方程的解法直接开平方法1、如果一个一元二次方程的左边是一个含有未知数的完全平方式,右边是一个非负数,就可以用直接开平方法求解2、直接开平方法的使用范围和理论依据:(1)直接开平方法适合解形如x2=b和(x-a)2=b的方程,其中b≥0,因为若b<0,方程无解(2)直接开平方法的实质是吧一个一元二次方程降次为两个一元一次方程来求方程的根,因此要注意方程应该有两个根配方法配方法是通过配方将一元二次方程左边化为完全平方的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫做配方法。
配方法是一种重要的数学思想,它以a2±2ab+b2=(a±b)2为依据,其基本步骤为:(1)在方程两边同除以二次项系数a,把二次项系数化为1;(2)把常数项移到等式的右边;(3)方程两边同时加上一次项系数一半的平方;(4)方程左边写成完全平方式,右边化简为常数;(5)利用直接开平方法解方程。
苏科版九年级数学上册全册知识点归纳
苏科版九年级数学上册全册知识点归纳一元二次方程一.一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
二.一元二次方程的解法1.直接开平方法:对形如(x+a)2=b(b≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=±b∴1x=-a+b2x=-a-b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是a acbbx24 2-±-=(b2-4ac≥0)。
步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c的值;②若b2-4ac<0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x +4)中,不能随便约去x +4。
苏科版九年级数学全册知识点整理
苏科版数学九年级全册知识点梳理第一章图形与证明(二)1 等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。
等腰三角形的两底角相等(简称“等边对等角”)。
等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。
2 直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。
角平分线的性质:角平分线上的点到这个角的两边的距离相等。
角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。
直角三角形中,30°的角所对的直角边事斜边的一半。
3 平行四边形的性质与判定:定义:两组对边分别平行的四边形是平行四边形。
定理1:平行四边形的对边相等。
定理2:平行四边形的对角相等。
定理3:平行四边形的对角线互相平分。
判定——从边:1两组对边分别平行的四边形是平行四边形。
2一组对边平行且相等的四边形是平行四边形。
3两组对边分别相等的四边形是平行四边形。
从角:两组对角分别相等的四边形是平行四边形。
对角线:对角线互相平分的四边形是平行四边形。
矩形的性质与判定:定义:有一个角的直角的平行四边形是矩形。
定理1:矩形的4个角都是直角。
定理2:矩形的对角线相等。
定理:直角三角形斜边上的中线等于斜边的一半。
判定:1有三个角是直角的四边形是矩形。
2对角线相等的平行四边形是矩形。
菱形的性质与判定:定义:有一组邻边相等的平行四边形是菱形。
定理1:菱形的4边都相等。
定理2:菱形的对角线相互垂直,并且每一条对角线平分一组对角。
判定:1四条边都相等的四边形是菱形。
2对角线互相垂直的平行四边形是菱形。
正方形的性质与判定:正方形的4个角都是直角,4条边都相等,对角线相等且互相垂直平分,每一条对角线平分一组对角。
正方形即是特殊的矩形,又是特殊的菱形,它具有矩形和菱形的所有性质。
判定:1有一个角是直角的菱形是正方形。
初三年级数学知识点归纳苏科版(Word版)
初三年级数学知识点归纳苏科版(2021最新版)作者:______编写日期:2021年__月__日一.知识框架二.知识概念1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
)2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
3.中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
4.中心对称的性质:关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
本章内容通过让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察,培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习。
【篇二:圆】一.知识框架二.知识概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意意两点的线段叫做弦。
经过圆心的弦叫做直径。
3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
苏教版【数学】九年级全册知识点梳理
第一章一元二次方程一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
三、一元二次方程根的判别式根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即acb 42-=∆四、一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21。
苏教版九年级数学知识点归纳
苏教版九年级数学知识点归纳课堂临时报佛脚,不如课前预习好。
其实任何学科都是一样的,学习任何一门学科,勤奋都是最好的学习方法,没有之一,书山有路勤为径。
下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。
初三数学上册知识点归纳二元一次方程组1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。
2、二元一次方程组的解法(1)代入法由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
(2)因式分解法在二元二次方程组中,至少有一个方程可以分解时,可采用因式分解法通过消元降次来解。
(3)配方法将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
(4)韦达定理法通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
(5)消常数项法当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
1、直接开平方法:用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
(1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)(2)系数化1:将二次项系数化为1(3)移项:将常数项移到等号右侧(4)配方:等号左右两边同时加上一次项系数一半的平方(5)变形:将等号左边的代数式写成完全平方形式(6)开方:左右同时开平方(7)求解:整理即可得到原方程的根九年级下册数学知识点归纳一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
苏科版初三数学知识点归纳
苏科版初三数学知识点归纳【导语】知识可以产生气力,但成绩能放出光荣;有人去体会知识的气力,但更多的人只去观赏成绩的光荣。
以下是作者为您整理的苏科版初三数学知识点归纳,供大家学习参考。
【篇一】三角形的垂心的性质:1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。
2.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心。
例如在△ABC中3.垂心O关于三边的对称点,均在△ABC的外接圆圆上。
4.△ABC中,有六组四点共圆,有三组(每组四个)类似的直角三角形。
5.H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。
6.△ABC,△ABO,△BCO,△ACO的外接圆是等圆。
7.在非直角三角形中,过O的直线交AB、AC所在直线分别于P、Q,则AB/AP?tanB+AC/AQtanC=tanA+tanB+tanC8.三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。
9.设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA.10.锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。
11.锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。
12.西姆松(Simson)定理(西姆松线):从一点向三角形的三边所引垂线的垂足共线的重要条件是该点落在三角形的外接圆上。
13.设H为非直角三角形的垂心,且D、E、F分别为H在BC,CA,AB上的射影,H1,H2,H3分别为△AEF,△BDF,△CDE的垂心,则△DEF≌△H1H2H3.14.三角形垂心H的垂足三角形的三边,分别平行于原三角形外接圆在各顶点的切线。
【篇二】单项式与多项式仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数当一个单项式的系数是1或-1时,“1”通常省略不写一个单项式中,所有字母的指数的和叫做这个单项式的次数如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项1、多项式有有限个单项式的代数和组成的式子,叫做多项式多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版数学九年级全册知识点梳理第一章图形与证明(二)1 等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。
等腰三角形的两底角相等(简称“等边对等角”)。
等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。
2 直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。
角平分线的性质:角平分线上的点到这个角的两边的距离相等。
角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。
直角三角形中,30°的角所对的直角边事斜边的一半。
3 平行四边形的性质与判定:定义:两组对边分别平行的四边形是平行四边形。
定理1:平行四边形的对边相等。
定理2:平行四边形的对角相等。
定理3:平行四边形的对角线互相平分。
判定——从边:1两组对边分别平行的四边形是平行四边形。
2一组对边平行且相等的四边形是平行四边形。
3两组对边分别相等的四边形是平行四边形。
从角:两组对角分别相等的四边形是平行四边形。
对角线:对角线互相平分的四边形是平行四边形。
矩形的性质与判定:定义:有一个角的直角的平行四边形是矩形。
定理1:矩形的4个角都是直角。
定理2:矩形的对角线相等。
定理:直角三角形斜边上的中线等于斜边的一半。
判定:1有三个角是直角的四边形是矩形。
2对角线相等的平行四边形是矩形。
菱形的性质与判定:定义:有一组邻边相等的平行四边形是菱形。
定理1:菱形的4边都相等。
定理2:菱形的对角线相互垂直,并且每一条对角线平分一组对角。
判定:1四条边都相等的四边形是菱形。
2对角线互相垂直的平行四边形是菱形。
正方形的性质与判定:正方形的4个角都是直角,4条边都相等,对角线相等且互相垂直平分,每一条对角线平分一组对角。
正方形即是特殊的矩形,又是特殊的菱形,它具有矩形和菱形的所有性质。
判定:1有一个角是直角的菱形是正方形。
2有一组邻边相等的平行四边形是正方形。
1.4 等腰梯形的性质与判定定义:两腰相等的梯形叫做等腰梯形。
定理1:等腰梯形同一底上的两底角相等。
定理2:等腰梯形的两条对角线相等。
判定:1在同一底上的两个角相等的梯形是等腰梯形。
2对角线相等的梯形是等腰梯形。
1.5 中位线三角形的中位线平行于第三边,并且等于第三边的一半。
梯形的中位线平行于两底,并且等于两底的一半。
1 / 1中点四边形:依次连接一个四边形各边中点所得到的四边形称为中点四边形(中点四边形一定是平行四边形)。
原四边形对角线中点四边形相等菱形互相垂直矩形相等且互相垂直正方形第二章数据的离散程度2.1 极差:一组数据中的最大值与最小值的差叫做极差。
计算公式:极差=最大值-最小值。
极差是刻画数据离散程度的一个统计量,可以反映一组数据的变化范围。
一般说,极差越小,则说明数据的波动幅度越小。
2.2 方差各个数据与平均数的差的平均数叫做这组数据的方差,记作S2。
巧用方差公式:1、基本公式:S2=[(X1-)2+(X2-)2+……+(X n -)2]2、简化公式:S2=[(X12+X22+……+X n2)-n2]可写成:S 2=(X 12+X 22+……+X n2)-23、简化②:S2=[(X’12+X’22+……+X’n2)-n2] 也可写成: S2=(X’12+X’22+……+X’n2)-2标准差:方差的算术平方根叫做这组数据的标准差,记作S。
意义:1、极差、方差和标准差都是用来描述一组数据波动情况的特征,常用来比较两组数据的波动大小,我们通常研究的是这组数据的个数相等、平均数相等或比较接近的情况。
2、方差较大的波动较大,方差较小的波动较小。
3、方差大,标准差就大,方差小,标准差就小。
因此标准差同样反映数据的波动大小。
注意:对两组数据来说,极差大的那一组不一定方差大,反过来,方差大的极差也不一定大。
第三章二次根式3.1 二次根式定义:一般地,式子(a≧0)叫做二次根式,a叫做被开方数。
有意义条件:当a≧0时,有意义;当a≦0时,无意义。
性质:1、≧0(a≧0)2、()2=a(a≧0)2=∣a∣= a(a≧0)a(a<0)3.2 二次根式的乘除法法则:√a·√b=√ab(a≧0,b≧0)=√(a≧0,b>0)化简:①√ab=√a·√b(a≧0,b≧0)②√=(a≧0,b>0)③==(a≧0,b >0)1 / 11 / 1第四章 一元二次方程4.1 概念:只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程。
一般形式是aX 2+bX+c=0(a 、b 、c 是常数,a ≠0),其中aX 2称为二次项,a 称为二次项系数,bX 称为一次项,b 称为一次项系数,c 称为常数项。
4.2 解法: 1、直接开平方2、配方法:先把一元二次方程变形为(X+h )2=k 的形式(其中h,k 都是常数),如果k ≧0,再通过直接开平方法求出方程的解3、公式法(求根公式):一元二次方程aX 2+bX+c=0 前提:(a ≠0)b 2-4ac ≧0,记住求根公式: aacb b x 242-±-=(注意在找abc 时须先把方程化为一般形式)4分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
(主要包括“提公因式”和“十字相乘”)※根与系数的关系:当b 2-4ac>0时,方程有两个不等的实数根;当b 2-4ac=0时,方程有两个相等的实数根; 当b 2-4ac<0时,方程无实数根。
反之,也成立。
※如果一元二次方程2=++c bx ax 的两根分别为x 1、x 2,则有:ac x x abx x =⋅-=+2121。
※一元二次方程的根与系数的关系的作用: (1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根x 1、x 2的对称式的值,4、因式分解法(重点是十字相乘法) 根的判别式一元二次方程aX 2+bX+c=0 (a ≠0)的根的情况可由b 2-4ac 来判定,因此b 2-4ac 叫做一元二次方程根的判别式。
当b 2-4ac >0时,方程有两个不相等的实数根 当b 2-4ac=0时,方程有两个相等的实数根 当b 2-4ac <0时,方程没有实数根。
在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x ;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。
※处理问题的过程可以进一步概括为: 解答检验求解方程抽象分析问题→→第五章 中心对称图形(二)5.1 圆定义:圆是定点的距离等于定长的点的集合。
其中,定点叫做圆心,定长叫做半径。
与圆有关的概念:1、连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。
2、圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫做半圆。
大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。
3、定点在圆上的角叫做圆心角。
4、圆心相同,半径不相等的两个圆叫做同心圆。
能够互相重合的两个圆叫做等圆。
在同圆或等圆中,能够互相重合的弧叫做等弧。
与圆的位置关系:在平面内,点与圆有3中位置关系:点在圆内,点在圆上,点在圆外。
如果设⊙O的半径为r,点P到圆心O的距离为d,那么“点P在圆内←→d<r;点P在圆上←→d=r;点P在圆外←→d>r”5.2 圆的对称性圆是中心对称图形,圆心是对称中心。
圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。
圆心角、弧、弦之间的关系(等对等定理):在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
5.3 圆周角概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角。
定理:同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。
(圆心与圆周角的位置关系分为三种情况:圆心在角的一边上;圆心在角的内部;圆心在角的外部)推论:1、直径(或半圆)所对的圆周角是直角。
2、90°的圆周角对的弦是直径。
5.4 确定圆的条件条件:不在同一条直线上的三个点确定一个圆。
三角形的外接圆:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆。
外接圆的圆心是三角形的三边的垂直平分线的交点,这个点叫做三角形的外心。
这个三角形叫做圆的内接三角形5.5 直线与圆的位置关系1、直线与圆有两个公共点时,叫做直线与圆相交。
(d<r)2、直线与圆有唯一的公共点,叫做直线与圆相切,这条直线叫做圆的切线,这个公共点叫做切点。
(d=r)3、直线与圆没有公共点时,叫做直线与圆相离。
(d>r)直线与圆的位置关系可以用它们的交点的个数来区分,也可以用圆心到直线的距离与半径的大小关系来区分,它们的结果是一致的。
切线的性质与判定:判定:经过半径的外端并且垂直于这条半径的直线式圆的切线。
性质:(圆的切线垂直于过切点的半径)经过圆心且垂直于切线的直接必经过切点。
经过切点且垂直于切线的直线必经过圆心切线与圆只有一个公共点;切线与圆心的距离等于半径;切线垂直于过切点的半径。
内心:与三角形各边都相切的圆叫做三角形的内切圆。
内切圆的圆心叫做三角形的内心,它是三角形的三条角平分线的交点。
这个三角形叫做圆的外切三角形。
5.6 圆与圆的位置关系性质与判定:如果两圆的半径分别为R和r,圆心距为d,那么两圆外离←→d>R+r两圆外切←→d=R+r两圆相交←→R-r<d<R+r(R>r)两圆内切←→d=R-r(R>r)两圆内含←→0≤d<R-r(R>r)连心线的性质:圆是轴对称图形,从上表中可以看出它们都是轴对称图形。
沿O1、O2所在直线(连心线)对折,发现:两圆相切,直线O1O2必过切点;两圆相交,连心线垂直平分它们的公共弦。
5.7 正多边形与圆1 / 11 / 1图 5OBC A BAOBAO正多边形概念:各边相等、各角也相等的多边形叫做正多边形。
性质:正多边形都是对称图形,一个正n 边形共有n 条对称轴,没条对称轴都通过正n 边形的中心。
一个正多边形如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。
如果一个正多边形是中心对称图形,那么它的中心就是对称中心。
边数相同的正多边形相似。
任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。
友情提醒:(1)边数相同的正多边形相似,这是解与正多边形有关问题常用到的知识。
(2)任何三角形都有外接圆和内切圆,但只有正三角形的外接圆和内切圆才是同心圆。
过正多边形任意三个顶点的圆就是这个正多边形的外接圆。
作正多边形:作半径为R 的正n 边形的关键是n 等分圆。
这就要学习两种方法: 用量角器等分圆,可以作任意正多边形,这是近似作法。