八年级数学下册_第一章

合集下载

北师大版八年级下册数学 第一章 三角形的证明 等腰三角形(第4课时)

北师大版八年级下册数学 第一章 三角形的证明  等腰三角形(第4课时)
同理可得△AEF≌△CFD, ∴EF=FD,∴EF=ED=FD, ∴△DEF为等边三角形.
课堂小结
等腰三角形 的拓展
等边三角形 的判定
三条边都相等的三角形是等边三角形 三个角都相等的三角形是等边三角形 有一个角等于60°的等腰三角形是等边三角形
特殊的直角三 角形的性质
在直角三角形中, 如果有一个锐角等于30°,那 么它所对的直角边等于斜边的一半
探究新知
方法总结 选用等边三角形判定方法的技巧 (1)如果已知三边关系,则选用等边三角形定义来判定. (2)若已知三角关系,则选用三角相等的三角形是等边三 角形来判定. (3)若已知是等腰三角形,则选用有一个角是60°的等腰 三角形是等边三角形来判定.
巩固练习
变式训练
在△ABC中,∠A=60°,要使△ABC是等边三角形, 则需添加的一个条件是 AB=AC或∠B=∠C .
证明:∵△ABC为等边三角形, ∴∠BAC=∠ABC=60°,AB=AC=BC, ∴∠EAF=∠EBD=120°, ∵BE=CD,∴BE+AB=BC+CD,即AE=BD,
课堂检测
BE = AF, 在△AEF和△BDE中, ∠EBD =∠EAF, ∴△AEF≌△BDE(SASB),D∴=EFA=EE,D,
证明:∵AD∥BC,∠A=120°,∴∠A+∠ABC=180°. 即∠ABC=180°-∠A=180°-120°=60°, ∴∠ABD=∠DBC=30°. ∴△BDC是直角三角形(∠又BD∵C∠=9C0=°60).°, 又∵CD=4 cm,∴BC=2CD=2×4=8(cm).
课堂检测
拓广探索题
如图:△ABC是等边三角形,点D,E,F分别在BC,AB,CA边延 长线上,且BE=AF=CD. 求证:△DEF是等边三角形.

苏科版八下数学第一章

苏科版八下数学第一章

苏科版八下数学第一章第一章:图形的认识一、图形的概念图形在我们生活中无处不在,从日常生活中的各种物体到数学课本中的各种图形,都能见到图形的存在。

图形是由一条或多条线段组成的形状,根据线段的不同排列方式,可以分成不同的种类,如直线、封闭图形等。

二、图形的分类1. 直线:直线是由无限多个点构成的,延伸方向上不会结束的线段。

直线有无数种不同的形态,如水平直线、垂直直线等。

2. 封闭图形:封闭图形是由若干个线段组成的,形成一个封闭的区域,如三角形、矩形、圆等。

3. 多边形:多边形是指由若干个边和角组成的图形,最常见的多边形有三角形、四边形、五边形等。

4. 圆形:圆形是一个封闭的形状,由一个圆心和一条半径构成,圆形有无限多个点,且所有点到圆心距离相等。

5. 弧形:弧形是圆周上的一部分,由圆心、半径和夹角决定,弧形可以分为圆弧、扇形等。

三、图形的性质1. 直线的性质:直线有方向性,可以上下左右斜向任意延伸,直线上的所有点到另一点的距离相等。

2. 封闭图形的性质:封闭图形的周长是各边的长度之和,面积是图形内部的面积,封闭图形底部和高的关系可以用来计算面积。

3. 多边形的性质:多边形的周长是各边的长度之和,多边形的面积可以通过划分成小三角形、矩形等简单图形,然后计算各个简单图形的面积最后求和得到。

4. 圆形的性质:圆的周长是圆周长,面积是圆的内部面积,圆弧、扇形的问题可以通过角度和半径关系来计算。

综上所述,图形是数学中重要的概念之一,通过对图形的认识和性质的了解,可以更好地应用数学知识解决实际问题。

在学习数学的过程中,要注重对图形的认知和理解,提高解决问题的能力和思维水平。

北师大版八年级下册数学《第一章复习》教学设计

北师大版八年级下册数学《第一章复习》教学设计

北师大版八年级下册数学《第一章复习》教学设计一. 教材分析北师大版八年级下册数学《第一章复习》主要是对八年级上册的知识进行复习,包括实数、不等式、函数、几何等知识点。

本章的目的是使学生对已学的知识有一个全面、深入的理解,并为后续的学习打下坚实的基础。

教材通过大量的例题和练习题,帮助学生巩固知识点,提高解题能力。

二. 学情分析八年级的学生已经学习了实数、不等式、函数、几何等知识点,对数学有了一定的认识和理解。

但是,由于学习时间的推移,部分学生可能对一些知识点的理解和掌握有所遗忘。

因此,在复习过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。

三. 教学目标1.知识与技能:使学生对实数、不等式、函数、几何等知识点有一个全面、深入的理解,提高解题能力。

2.过程与方法:通过复习,培养学生独立思考、合作交流的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自信心。

四. 教学重难点1.实数的性质和运算2.不等式的解法和应用3.函数的性质和图像4.几何图形的性质和计算五. 教学方法采用讲练结合的教学方法,通过讲解、示范、练习、讨论等方式,引导学生主动参与学习,提高学生的学习兴趣和积极性。

六. 教学准备1.教材和教学参考书2.PPT和教学课件3.练习题和测试题4.板书和教学工具七. 教学过程1.导入(5分钟)通过提问的方式,了解学生对已学知识的掌握情况。

然后,教师简要介绍本章的复习内容,激发学生的学习兴趣。

2.呈现(15分钟)教师利用PPT和教学课件,呈现本章的主要知识点,包括实数的性质和运算、不等式的解法和应用、函数的性质和图像、几何图形的性质和计算。

在呈现过程中,教师引导学生积极参与,提出问题和观点。

3.操练(20分钟)教师给出一些练习题,让学生独立完成。

然后,教师选取部分学生的作业进行讲解和示范,引导学生掌握解题方法和技巧。

对于学生的错误,教师要及时指出并给予纠正。

4.巩固(10分钟)教师给出一些测试题,让学生在规定时间内完成。

八年级下册数学第一章

八年级下册数学第一章

八年级下册数学第一章------------------------------------------作者xxxx------------------------------------------日期xxxx八年级下册数学第一章《证明二》章节复习专题一、全等三角形知识整理1、全等三角形的判定公理①:三边的两个三角形全等;公理②:两边及其夹角的两个三角形全等;公理③:的两个三角形全等;推论:的两个三角形全等。

2、全等三角形的性质公理:全等三角形的对应边、对应角。

典例分析例1、(2010年吉林)如图1,在△ABC中,∠ACB=90°,AC=BC,CE⊥BE,CE与AB相交于点F,AD⊥CF,垂足为D,且AD平分∠FAC,请写出图中的两对全等三角形,并选择其中一对加以证明。

FCAEBD例2、已知:如图,D是△ABC中BC边上一点,EB=EC,∠ABE=∠ACE,求证:∠BAE=∠CAE.(两种方法)专题二、等腰三角形知识整理【精品文档】1、等腰三角形的性质:(1)定理:等腰三角形的两个底角,简称“”;(2)推论:等腰三角形的顶角平分线、、互相重合,简称“”;2、等腰三角形的判定:的三角形是等腰三角形,简称“”;3、等边三角形的性质:等边三角形的三个内角,且每个内角都等于。

4、等边三角形的判定:(1)有一个角为60°的是等边三角形;(2)三个角都的三角形是等边三角形。

典例分析例1、已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF△是等腰三角形.例2、如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE 相交于F,若BF=AC,求∠ABC的度数例3、如下图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,交∠BAC的平分线于点D,求证:MD=MA.例4、如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE 和EC的数量及位置关系,并证明你的猜想.【精品文档】【精品文档】图2 图1AB CDOOD CBA例5、如右图,已知△ABC 和△BDE 都是等边三角形,求证:AE =CD .例6、如图,以等腰直角三角形ABC 的斜边AB为边作等边△ABD ,连接DC ,以DC 为边作等边△DCE ,B 、E 在C 、D 的同侧,若AB=2,求BE 的长.例7、如图1、图2,△AOB ,△COD 均是等腰直角三角形,∠AOB =∠COD =90º,(1)在图1中,AC 与BD 相等吗?请说明理由(4分)(2)若△COD 绕点O 顺时针旋转一定角度后,到达图2的位置,请问AC 与BD 还相等吗?为什么?(8分)例8、如图,在△ABC 中,AB=AC 、D 是AB 上一点,E 是AC 延长线上一点,且CE=BD ,连结DE 交BC 于F 。

湘教版八年级数学下册_1.1 直角三角形的性质和判定(Ⅰ)

湘教版八年级数学下册_1.1 直角三角形的性质和判定(Ⅰ)

感悟新知
知1-练
解题秘方:利用直角三角形的性质与判定证明即可 .
证明: ∵∠ ACB=90°,∴∠ A+ ∠ B=90° . ∵∠ ACD= ∠ B,∴∠ A+ ∠ ACD=90° . ∴△ ACD 为直角三角形,且∠ CDA=90° . ∴ CD ⊥ AB.
感悟新知
拓展 满足下列条件的三角形也是直角三角形: (1)在三角形中,两个内 角之和等于第三个内角; (2)在三角形中,两个内角之差等于第三个内角.
知2-讲
感悟新知
特别提醒
知2-讲
◆直角三角形斜边上的中线把直角三角形分成两个
面积相等的等腰三角形.
◆应用这个性质时要注意“直角三角形” 这一前提,
切不可忽略这一前提而在其他任意三角形中生搬
硬套 .
感悟新知
知2-讲
2. 拓展:如果三角形一边上的中线等于这条边的一半,那么 这个三角形是直角三角形 . 数学语言: 如图 1.1-5,在△ ABC 中,
∵ CD=BD=AD=12 AB, ∴∠ ACB=90°,即△ ABC 是直角三角形 .
感悟新知
知2-练
例4 如图 1.1-6, BD, CE 是△ ABC 的两条高, M, N 分别是 BC, DE 的中点 . 求证: MN ⊥ DE.
感悟新知
知2-练
解题秘方:紧扣“N 为 DE 的中点”这一条件和 “MN ⊥ DE”这一结论,建立等腰三 角形“三线合一”模型, 结合直角三 角形斜边上中线的性质求解 .
在 Rt △ CDB 中,∵ M 为斜边 BC 的中点,

DM=
1 2
BC.

Rt

BEC
中,∵
M

北师版八年级数学下册教学课件(BS) 第一章 三角形的证明 第2课时 直角三角形全等的判定

北师版八年级数学下册教学课件(BS) 第一章 三角形的证明 第2课时 直角三角形全等的判定
A
B
C
画图方法视频(点击文字
播放)
画图思路
N
A
B
C
M
C′
(1)先画∠M C′ N=90°
画图思路
N
A
B
C
M
B′
C′
(2)在射线C′M上截取B′C′=BC
画图思路
N
A
A′
B
C
M B′
C′
(3)以点B′为圆心,AB为半径画弧,交射线C′N于A′
画图思路
N
A
A′
B
C
M B′
C′
(4)连接A′B′
思考:通过上面的探究,你能得出什么结论?
(2)当P运动到与C点重合时,AP=AC. 在Rt△ABC与Rt△QPA中, ∵PQ=AB,AP=AC, ∴Rt△QAP≌Rt△BCA(HL), ∴AP=AC=10cm, ∴当AP=5cm或10cm时,△ABC才能和△APQ全等.
【方法总结】判定三角形全等的关键是找对应边和对应角,由于本 题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏 解.
B
A
C
如图,Rt△ABC中,∠C =90°,直角边是_____、_____,A斜C边是
__B__C__.
AB
前面学过的四种判定三角形全等的方法,对直角三角形是否适用?
口答:
A
A′
1.两个直角三角形中,斜边和一个锐 角对应相等,这两个直角三角形全等 吗?为什么?
B
C B′
C′
2.两个直角三角形中,有一条直角边和一锐角对应相等,这两个直角三
BC=B′C′,
∴Rt△ABC ≌ Rt△ A′B′个直角三角形是否全等,不全等的画“×”,

数学八年级下册北师大版第1章 2. 第2课时 斜边、直角边定理

数学八年级下册北师大版第1章  2.  第2课时 斜边、直角边定理

7
7
解:有 3 对,分别是△ABE≌△ACD,△ADO≌△AEO, △DOB≌△EOC;
∵CD⊥AB 于点 D,BE⊥AC 于点 E, ∴∠AEB=∠ADC=90°,
∠ADC=∠AEB 在△ADC 和△AEB 中∠BAC=∠CAB,
AB=AC ∴△ABE≌△ACD(AAS).
8
8
如图,AD 是△ABC 的角平分线,DE⊥AB,垂足为 E, DF⊥AC,垂足为 F,你能找出一对全等的三角形吗?为什么它们 是全等的?
A.HL C.ASA
B.SAS D.AAS
11
11
1.如图,若要用“HL”证明 Rt△ABC≌Rt△ABD,则还需补
充条件( B )
A.∠BAC=∠BAD B.AC=AD 或 BC=BD C.AC=AD 且 BC=BD D.以上都不正确
12
12
2.如图,AD=BC,∠C=∠D=90°,下列结论中不成立的
4
4
【对点练习 1】 下列说法正确的是( C )
A.两边及其中一边的对角分别相等的两个三角形全等 B.三角形的外角等于它的两个内角的和 C.斜边和一条直角边相等的两个直角三角形全等 D.两条直线被第三条直线所截,内错角相等
5
5
学点二 直角三角形全等的综合判定 如图,AB=AC,BE⊥AC 于 E,CF⊥AB 于 F,BE、
是( C )
A.∠DAE=∠CBE B.CE=DE C.△DAE 与△CBE 不一定全等 D.∠1=∠2
13
13
3.下面关于直角三角形全等的判定,不正确的是( C )
A.有一锐角和一边对应相等的两个直角三角形全等 B.有两边对应相等的两个直角三角形全等 C.有两角对应相等,且有一条公共边的两个直角三角形全等 D.有两角和一边对应相等的两个直角三角形全等

湘教版八年级数学下册第一章《 直角三角形的性质和判定(Ι)》公开课课件

湘教版八年级数学下册第一章《 直角三角形的性质和判定(Ι)》公开课课件
图1-8
解 轮船在航行过程中, 如果与A岛的距离始终大于20海里, 则轮船就不会触暗礁.
在图1-8中,过A点作AD⊥OB,垂足为D.
在Rt△AOD中,
AO=30 3海里,∠AOD=30°.
于是AD =
1 2
A
O

= 1230 3
≈ 25.98( 海里 ) .
60°
>20(海里)
所以轮船不会触礁.
30 3
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/7/302021/7/302021/7/302021/7/307/30/2021
• 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年7月30日星期五2021/7/302021/7/302021/7/30
图1-5
证明:因 所为 以C ∠D 1= ∠1 2AA ,B = (等B D 边= 对A 等D ,角)
∠2=∠B .
根据三角形内角和性质,有
∠A+∠B+∠ACB =180°,
即得∠A+∠B+∠1+∠2=180°,
2(∠A+∠B)=180°.
图1-5
所以
∠A+∠B =90°.
根据直角三角形判定定理,所以△ABC是直角三角形.
练习
1.在Rt△ABC中,斜边上的中线CD=2.5cm ,则斜边 AB的长是多少?
解 AB=2CD=2×2.5=5(cm).
2.如图,AB∥CD,∠BAC和∠ACD的平分线相交于H 点,E为AC的中点,EH=2. 那么△AHC是直角三角 形吗?为什么?若是,求出AC的长.

八年级 下册 数学 PPT课件 精品课件 第一章 三角形的证明 直角三角形(一)

八年级 下册 数学 PPT课件 精品课件 第一章 三角形的证明  直角三角形(一)

范例讲解 例2、写出命题“如果两个有理数相等,那么它 们的平方相等”的逆命题,这两个命题都是真命 题吗? 解:其逆命题为“如果两个有理数的平方相等,
那么这两个有理数也相等” 原命题是真命题,而逆命题是假命题 训练题:写出下列命题的逆命题,并判断它们是真 命题还是假命题。 (1)两直线平行,同旁内角相等。 (2)如果a是偶数,b是偶数,那么a+b是偶数。 (3)在直角三角形中,如果一个锐角等于30˚,那 么它所对的直角边等于斜边的一半。 (4)等腰三角形的两腰相等。
∴这个三角形不是直角三角形
∴没有与60m长的南北边线垂直的边线
∴没有一条边线为东西向
ⅳ、观察下面两个命题:
直角三角形两条直角边的平方和等于斜边的 平方。
如果一个三角形两边的平方和等于第三边的 平方,那么这个三角形是直角三角形。
它们的条件和结论之间有什么关系?
合作交流 ⅴ、观察下面三组命题:
如果两个角是对顶角,那么它们相等, 如果两个角相等,那么它们是对顶角; 如果小明患了肺炎,那么他一定发烧, 如果小明发烧,那么他一定患了肺炎;
说出下列命题的逆命题,并判断每对命题的真假:
(1)四边形是多边形; (2)两直线平行,同旁内角互补; (3)如果ab=0,那么a=0 b=0
解:(1)多边形是四边形.原命题是真命题, 而逆命题是假命题.
(2)同旁内角互补,两直线平行. 原命题与逆命题同为真命题.
(3)如果a=0,b=0,那么ab=0. 原命题是假命题,而逆命题
是真命题.
1.(钦州·中考)如图是一张直角三角形的纸片, 两直角边AC=6 cm,BC=8 cm,现将△ABC折叠, 使点B与点A重合,折痕为DE,则BE的长为( ) (A)4 cm (B)5 cm

北师大数学八年级下册第一章-等腰三角形与直角三角形经典讲义

北师大数学八年级下册第一章-等腰三角形与直角三角形经典讲义

第01讲_等腰三角形与直角三角形知识图谱等腰三角形知识精讲一、等腰三角形二、思路点拨等腰三角形边或者周长的计算注意三边关系的隐含条件等腰、角平分线、平行(1)△ABC是等腰三角形,(2)AD∥BC(3)∠1=∠2以上三个结论知二推一(需简单证明)三角形中角的2倍关系三点剖析重难点12B CDA12AB CEDααβββ2αααβ2βα2ββ等腰三角形有两条边相等的三角形叫做等腰三角形性质1.两个底角相等,两条腰相等.2.三线合一:(1)顶角角平分线、(2)底边上的中线、(3)底边上的高(可直接使用)判定如果一个三角形有两个角相等,那么这两个角所对的边也相等三线合一逆定理:一个三角形(1)对角角平分线、(2)该边上的中线、(3)该边上的高有两条互相重合,则是等腰三角形(需简单证明)1.等腰三角形的三线合一及其逆定理2.角平分线、平行线、等腰三角形知二推一 3.等腰三角形与全等三角形综合问题 考点1.等腰三角形的性质和判定2.等腰三角形的三线合一及其逆定理3.角平分线、平行线、等腰三角形知二推一 4.等腰三角形与全等三角形综合问题易错点1.等腰三角形边或者周长的计算问题容易忽略“三角形两边之和大于第三边,两边之差小于第三边”这个隐含的限制条件2.等腰三角形的三线合一及可以直接使用,但是三线合一的逆定理需要证明之后才能用3.角平分线、平行线、等腰三角形知二推一要非常熟练,在使用的时候是需要简单证明的,不可直接得出结论等边对等角例题1、 如图,ABC 中,,,18,12==∠=︒∠=︒AB AC AD DE BAD EDC ,则∠DAE 的度数为( )A.58︒B.52︒C.62︒D.60︒ 【答案】 C【解析】 暂无解析随练1、 如图,等腰三角形ABC 中,AB=AC ,BD 平分∠ABC ,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108° 【答案】 C【解析】 ∵∠A=36°,AB=AC , ∴∠ABC=∠C=72°,∵BD 平分∠ABC ,∴∠ABD=36°, ∴∠1=∠A+∠ABD=72°随练2、 一个等腰三角形的两边长分别为4和9,则这个等腰三角形的周长是________. 【答案】 22【解析】 暂无解析等角对等边例题1、 如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC 交AC 于点D . 求证:AD=BC .【答案】 见解析【解析】 ∵AB=AC ,∠A=36°, ∴∠ABC=C=72°,∵BD 平分∠ABC 交AC 于点D , ∴∠ABD=∠DBC=36°,∠BDC=72°, ∴∠A=∠ABD ,∠BDC=∠C , ∴AD=BD=BC .例题2、 如图,在ABC ∆中,5BC cm =,BP 、CP 分别是ABC ∠和ACB ∠的角平分线,且PD AB ∥,PE AC ∥,则PED ∆的周长是_______cm【答案】 5【解析】 ∵BP 、CP 分别是ABC ∠和ACB ∠的角平分线, ABP PBD ∴∠=∠,ACP PCE ∠=∠.PD AB ∥,PE AC ∥,ABP BPD ∴∠=∠,ACP CPE ∠=∠, PBD BPD ∴∠=∠,PCE CPE ∠=∠,BD PD ∴=,CE PE =, ∴PDE ∆的周长5PD DE PE BD DE EC BC cm =++=++==.随练1、 如图,△ABC 中,AD 是∠BAC 的平分线,DE //AB 交AC 于点E ,若7DE =,5CE =,则AC =( )A.11B.12C.13D.14【答案】 B【解析】 该题考查的是等腰三角形的判定. ∵DE //AB ,∴BAD ADE ∠=∠,又∵BAD DAE ∠=∠ ∴DAE ADE ∠=∠ ∴7AE DE ==∴7512AC AE EC =+=+= ∴该题的答案是B .三线合一例题1、 如图,△ABC 中,AB AC =,100BAC ∠=︒,AD 是BC 边上的中线,且BD BE =,则ADE ∠的度数为( )A.10︒B.20︒C.40︒D.70︒【答案】 B【解析】 该题考查的是三角形的性质. ∵AB AC =, ∴B C ∠=∠, ∵100BAC ∠=︒, ∴40B C ∠=∠=︒,∵AD 是BC 边上的中线, ∴AD BC ⊥, ∴90ADB ∠=︒, ∵BD BE =,∴70BDE BED ∠=∠=︒, ∴20ADE ∠=︒, 故该题答案为B .例题2、 在Rt △ABC 中,90ACB ∠=︒,CD ⊥AB 于D ,∠BAC 的平分线AF 交CD 于E ,交BC 于F ,CM ⊥AF 于M ,求证:EM FM =.【答案】 见解析【解析】 ∵90ACB ∠=︒,CD ⊥AB , ∴90ADC ∠=︒,∴90AED DAE ∠+∠=︒,90CFE CAE ∠+∠=︒, 又∵∠BAC 的平分线AF 交CD 于E , ∴DAE CAE ∠=∠, ∴AED CFE ∠=∠, 又∵AED CEF ∠=∠, ∴CEF CFE ∠=∠, 又∵CM ⊥AF , ∴EM FM =.随练1、 如图,在△ABC 中,54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠,ME AD ⊥于G ,交AB 、AC 及BC 的延长线于E 、M 、F ,则BFE ∠=______________.ABC D E【答案】 9︒【解析】 该题考查的是等腰三角形三线合一. ∵54B ∠=︒,72ACB ∠=︒,AD 平分BAC ∠∴1805472272BAD CAD ︒-︒-︒∠=∠==︒又∵AD ⊥EF 即90AGM ∠=︒∴902763CMF AMG ∠=∠=︒-︒=︒ 又∵△CFM 的外角72ACB ∠=︒∴72639CFM ACB CMF ∠=∠-∠=︒-︒=︒角平分线,平行线,等腰三角形知二推一例题1、 如图,D 为ABC △内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若5AC =,3BC =,则BD 的长为( )A.2B.1C.52D.32【答案】 B【解析】 该题考查的是等腰三角形三线合一逆定理. 延长BD 与AC 交于点E ,∵A ABD ∠=∠, ∴BE AE =, ∵BD CD ⊥, ∴BE CD ⊥, ∵CD 平分ACB ∠, ∴BCD ECD ∠=∠, ∴EBC BEC ∠=∠,MAB CD(第6题)∴△BEC为等腰三角形,∴BC CE=,∵BE CD⊥,∴2BD BE=,∵5BC=,AC=,3∴3CE=,∴532=-=-=,AE AC EC∴2BE=,∴1BD=.所以答案选A例题2、(2013初二上期末怀柔区)如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若△AEF的周长为12,则AB+AC等于____.【答案】12【解析】该题考查的是平行线的性质.∵BO平分CBA∠,CO平分ACB∠,∴OBC OBA∠=∠,∠=∠,OCB OCA∵EF∥BC,∴OBA BOE∠=∠,OCA COF∠=∠,∴BE OE=,=,CF OF∴△AEF的周长AE OE OF AF AE BE CF AF AB AC=+++=+++=+,∵△AEF的周长为12,∴12+=.AB AC例题3、如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状.(只写结果)【答案】(1)见解析;(2)等腰直角三角形.【解析】(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=12∠EAC+12∠BAC=12×180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.随练1、如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【答案】(1)见解析(2)70°(3)△DEF不可能是等腰直角三角形,见解析【解析】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中BD CEB C BE CF=⎧⎪∠=∠⎨⎪=⎩∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B ∴∠DEF=∠B∵AB=AC ,∠A=40°∴∠DEF=∠B=18040702︒︒︒-=(3)解:△DEF 不可能是等腰直角三角形. ∵AB=AC ,∴∠B=∠C ≠90° ∴∠DEF=∠B ≠90°,∴△DEF 不可能是等腰直角三角形等腰三角形与全等三角形综合例题1、 如图,△ABC 中,AB =AC =2,∠B =∠C =40°.点D 在线段BC 上运动(点D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E .(1)当∠BAD =20°时,∠EDC =________°;(2)当DC 等于多少时,△ABD ≌△DCE ?试说明理由;(3)△ADE 能成为等腰三角形吗?若能,请直接写出此时∠BAD 的度数;若不能,请说明理由.【答案】 (1)20(2)当DC =2时,△ABD ≌△DCE ,证明见解析 (3)∠BAD =30°或∠BAD =60°【解析】 (1)∵∠BAD =20°,∠B =40°, ∴∠ADC =60°, ∵∠ADE =40°,∴∠EDC =60°-40°=20°(2)当DC =2时,△ABD ≌△DCE ; 理由:∵∠ADE =40°,∠B =40°,又∵∠ADC =∠B +∠BAD ,∠ADC =∠ADE +∠EDC . ∴∠BAD =∠EDC . 在△ABD 和△DCE 中, B C AB DCBAD EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩. ∴△ABD ≌△DCE (ASA ); (3)当∠BAD =30°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =30°, ∴∠DAE =70°,∴∠AED =180°-40°-70°=70°,∴DA =DE ,这时△ADE 为等腰三角形;当∠BAD =60°时,∵∠B =∠C =40°,∴∠BAC =100°, ∵∠ADE =40°,∠BAD =60°,∠DAE =40°, ∴EA =ED ,这时△ADE 为等腰三角形.例题2、 如图1,在ABC △中,2ACB B ∠=∠,BAC ∠的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线l AO ⊥于H ,分别交直线AB 、AC 、BC 于点N 、E 、M .(1)当直线l 经过点C 时(如图2),证明:BN CD =;(2)当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明; (3)请直接写出BN 、CE 、CD 之间的等量关系.【答案】 (1)见解析(2)2CD CE =(3)当点M 在线段BC 上时,CD BN CE =+;当点M 在BC 的延长线上时,CD BN CE =-;当点M 在CB 的延长线上时,CD CE BN =-【解析】 该题考查的是等腰三角形的三线合一,全等三角形的判定和性质. (1)证明:连接ND . ∵AO 平分∠BAC , ∴12∠=∠, ∵直线l ⊥AO 于H , ∴4590∠=∠=︒, ∴67∠=∠, ∴AN AC =, ∴NH CH =,∴AH 是线段NC 的中垂线, ∴DN DC =, ∴89∠=∠. ∴AND ACB ∠=∠,∵3AND B ∠=∠+∠,2ACB B ∠=∠, ∴3B ∠=∠, ∴BN DN =. ∴BN DC =;(2)如图,当M 是BC 中点时,CE 和CD 之间的等量关系为2CD CE = 证明:过点C 作CN '⊥AO 交AB 于N '.由(1)可得BN CD '=,AN AC '=,AN AC '=. ∴43∠=∠,NN CE '=. 过点C 作CG ∥AB 交直线l 于G . ∴42∠=∠,1B ∠=∠. ∴23∠=∠.ABC M ElNHD O lNH A ABBC CD O O D 图1图2图3∴CG CE =. ∵M 是BC 中点, ∴BM CM =在△BNM 和△CGM 中, 1B BM CMNMB GMC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BNM ≌△CGM .(ASA ) ∴BN CE =.∴2CD BN NN BN CE ''==+=.(3)BN 、CE 、CD 之间的等量关系: 当点M 在线段BC 上时,CD BN CE =+; 当点M 在BC 的延长线上时,CD BN CE =-; 当点M 在CB 的延长线上时,CD CE BN =-.随练1、 如图,已知线段AC ∥y 轴,点B 在第一象限,且AO 平分∠BAC ,AB 交y 轴于G ,连OB 、OC . (1)判断△AOG 的形状,并予以证明;(2)若点B 、C 关于y 轴对称,求证:AO ⊥BO .【答案】 (1)等腰三角形;证明见解析 (2)见解析【解析】 (1)△AOG 是等腰三角形; ∵AC ∥y 轴,∴∠CAO=∠AOG , ∵AO 平分∠BAC , ∴∠CAO=∠GAO , ∴∠GAO=∠AOG , ∴AG=GO ,∴△AOG 是等腰三角形;(2)连接BC 交y 轴于K ,过A 作AN ⊥y 轴于N ,∵AC ∥y 轴,点B 、C 关于y 轴对称, ∴AN=CK=BK ,在△ANG 和△BKG 中,AGN BGK ANG BKG AN BK ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ANG ≌△BKG ,(AAS ) ∴AG=BG , ∵AG=OG ,(1)中已证, ∴AG=OG=BG ,∴∠BOG=∠OBG ,∠OAG=∠AOG ,∵∠OAG+∠AOG+∠BOG+∠OBG=180°, ∴∠AOG+∠BOG=90°, ∴AO ⊥BO .等边三角形知识精讲等边三角形 (1)三条边都相等的三角形 (2)是一种特殊的等腰三角形性质三个内角都等于60︒判定判定1:三个角都相等的三角形是等边三角形判定2:有一个角是60︒的等腰三角形是等边三角形直角三角形性质定理在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半证明:延长BC 至'B 使'CB CB =∴AC 垂直平分'BB ,∴'AB AB =,60B ∠=︒,∴'ABB △是等边三角形,∴'2AB BB BC ==,∴12BC AB =二.思路点拨90°60°60°30°A BCDB'CBA三点剖析一.考点:1.等边三角形的性质与判定;2.直角三角形性质定理;3.等边三角形与全等三角形综合.二.重难点:1.等边三角形是特殊的等腰三角形,具有等腰三角形的所有性质.做题时常作为隐藏条件考察.2.等边三角形的判定用定义判断的不多,一般都是利用有一个角是60︒的等腰三角形是等边三角形来判定,所以在构造全等是要注意同时兼顾边相等,并且可以推导出有一个角为60°.3.等边三角形的性质非常特殊,在证明或计算中要注意边角之间的转化,尤其是含30°角的直角三角形中边的关系.4.在解决建立在等边三角形基础上的全等综合问题时,关键是抓住边相等,角度都是特殊角.三.易错点:在利用直角三角形性质定理的过程中,需要注意两点:一是必须在直角三角形中才能运用,锐角三角形和钝角三角形均不存在上述关系;二是一定要注意是30︒所对的直角边等于斜边的一半.等边三角形的性质例题1、(2013初二上期末怀柔区)如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.若DE=DB,则CE的长为____.【答案】3 2【解析】该题考查的是∵△ABC为等边三角形,D为AC边上的中点,BD为ABC∠的平分线,∴60ABC∠=︒,30DBE∠=︒,又DE DB=,∴30E DBE∠=∠=︒,∴30CDE ACB E∠=∠-∠=︒,即CDE E∠=∠,∴CD CE=;∵等边△ABC的周长为9,∴3AC=,∴1322 CD CE AC===,即32 CE=.例题2、如图,在等边△ABC中,点D为BC边上的点,DE⊥BC交AB于E,DF⊥AC于F,则∠EDF的度数为___________.【答案】60°.【解析】∵△ABC是等边三角形,∴∠A=∠B=60°.∵DE⊥BC交AB于E,DF⊥AC于F,∴∠BDE=∠AFD=90°.∵∠AED是△BDE的外角,∴∠AED=∠B+∠BDE=60°+90°=150°,∴∠EDF=180°﹣∠A﹣∠AED﹣∠AFD=360°﹣60°﹣150°﹣90°=60°.例题3、在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BCB.∥ADE=∥BDCC.∥BDE是等边三角形D.∥ADE的周长是9【答案】B【解析】本题考查的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键.首先由旋转的性质可知∥AED=∥ABC=60°,所以看得AE∥BC,先由∥ABC是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD,BD=BE,故可得出AE+AD=AD+CD=AC=5,由∥EBD=60°,BE=BD即可判断出∥BDE是等边三角形,故DE=BD=4,故∥AED的周长=AE+AD+DE=AC+BD=9,问题得解.∥∥ABC是等边三角形,∥∥ABC=∥C=60°,∥将∥BCD绕点B逆时针旋转60°,得到∥BAE,∥∥EAB=∥C=∥ABC=60°,∥AE∥BC,故选项A正确;∥∥ABC是等边三角形,∥AC=AB=BC=5,∥∥BAE∥BCD逆时针旋旋转60°得出,∥AE=CD,BD=BE,∥EBD=60°,∥AE+AD=AD+CD=AC=5,∥∥EBD=60°,BE=BD,∥∥BDE是等边三角形,故选项C正确;∥DE=BD=4,∥∥AED的周长=AE+AD+DE=AC+BD=9,故选项D正确;而选项B没有条件证明∥ADE=∥BDC,∥结论错误的是B,故选:B.随练1、如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°【答案】A【解析】∵AB∥ED,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE,∴△ADE是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠ADC,在四边形ABCD中,∠BCD=12(360°﹣∠BAD)=12(360°﹣60°)=150°.随练2、如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN 周长的最小值是5cm,则∠AOB的度数是()A.25°B.30°C.35°D.40°【答案】B【解析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=12∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;随练3、 如图,△ABC 是等边三角形,BD 平分∠ABC ,点E 在BC 的延长线上,且CE=1,∠E=30°,则BC=___________.【答案】 2.【解析】 ∵△ABC 是等边三角形, ∴∠ABC=∠ACB=60°,BA=BC , ∵BD 平分∠ABC ,∴∠DBC=∠E=30°,BD ⊥AC , ∴∠BDC=90°, ∴BC=2DC ,∵∠ACB=∠E+∠CDE , ∴∠CDE=∠E=30°, ∴CD=CE=1, ∴BC=2CD=2.等边的判定例题1、 △ABC 中,①若AB =BC =CA ,则△ABC 是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有( ) A.1个 B.2个 C.3个 D.4个 【答案】 D【解析】 ①三边相等的三角形是等边三角形,正确;②属于轴对称图形,且有一个角为60°的三角形是等边三角形,正确; ③有三条对称轴的三角形是等边三角形,正确; ④有两个角是60°的三角形是等边三角形,正确; 则正确的有4个.例题2、 如图所示,AD 是ABC △的中线,60ADC ∠=°,8BC =,把ADC △沿直线AD 折叠后,点C 落在C '位置,则BC '的长为________.【答案】 4【解析】 本题考察的是等边三角形.由题意,60ADC ADC '∠=∠=︒,DC DC DB '==. 180606060BDC '∠=︒-︒-︒=︒,有一个角为60︒的等腰三角形为等边三角形,118422BC BD BC '===⋅=.故本题的答案是4.例题3、 已知:如图,点C 为线段AB 上一点,ACM ∆,CBN ∆都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F .(1)求证:AN BM =;(2)求证:CEF ∆为等边三角形.【答案】 见解析【解析】 (1)ACM ∆,CBN ∆是等边三角形, AC MC ∴=,BC NC =,60ACM NCB ∠=∠=︒,ACM MCN NCB MCN ∴∠+∠=∠+∠,即ACN MCB ∠=∠.在ACN ∆和MCB ∆中,AC MC =,ACN MCB ∠=∠,NC BC =, ACN MCB ∴∆≅∆,AN BM ∴=.(2)ACN MCB ∆≅∆,CAN CMB ∴∠=∠,又18060MCF ACM NCB ∠=︒-∠-∠=︒,MCF ACE ∴∠=∠,在CAE ∆和CMF ∆中,CAE CMF ∠=∠,CA CM =,ACE MCF ∠=∠, CAE CMF ∴∆≅∆,CE CF ∴=,CEF ∴∆为等腰三角形, 又60ECF ∠=︒,CEF ∴∆为等边三角形.随练1、 已知:如图,△AOB 的顶点O 在直线l 上,且AO AB =.(1)画出△AOB 关于直线l 成轴对称的图形△COD ,且使点A 的对称点为点C ; (2)在(1)的条件下,AC 与BD 的位置关系是_________; (3)在(1)、(2)的条件下,联结AD ,如果2ABD ADB ∠=∠,求∠AOC 的度数.【答案】 (1)如图1(2)平行(3)60AOC ∠=︒ 【解析】 该题考查的是轴对称与全等三角形. (1)如图1; (2)平行.AC DB∵AC与BD是对应点的连线,l为对称轴,∴AC l⊥,⊥,BD l∴AC∥BD.(3)如图2,∵由(1)可知,△AOB与△COD关于直线l对称,∴△AOB≌△COD.∴AO AB CO CD===,∵2∠=∠=∠,ABD CDB ADB而ADB DAC∠=∠,∴CDA CAD∠=∠,∴CD CA=,∴CA CO OA==,∴△COA为等边三角形,∴60∠=︒.AOC直角三角形中30°角所对的直角边等于斜边的一边例题1、如图,已知ABC⊥,则下列关系式正确的为()∠=︒,AB AD∆中,AB AC=,30CA.BD CDBD CD= D.4=BD CDBD CD= B.2= C.3【答案】B【解析】该题考查的是特殊的直角三角形.C CAD∠=∠=︒,30∴DAC∆为等腰三角形,∴CD AD=,在Rt BAD∆中,30∠=︒,B∴22==BD AD CD故选B.例题2、如图,30∥交OA于C.若10PC=,则OC=__________,⊥于D,PC OBAOB∠=︒,OP平分AOB∠,PD OBPD=__________.【答案】10;5【解析】该题考查的是角平分线的性质定理和含30°直角三角形的性质.∵OP平分AOB∠,∴AOP BOP ∠=∠, ∵PC OB ∥,∴CPO BOP ∠=∠, ∴CPO AOP ∠=∠, ∴PC OC =, ∵10PC =,∴10OC PC ==,过P 作PE OA ⊥于点E ,∵PD OB ⊥,OP 平分AOB ∠, ∴PD PE =,∵PC OB ∥,30AOB ∠=︒ ∴30ECP AOB ∠=∠=︒在Rt ECP ∆中,152PE PC ==∴5PE PD ==随练1、 如图,ABC △中,90A ∠=︒,30C ∠=︒,BD 是ABC ∠的平分线,12AC =,则BCD △中BC 边上的高是____【答案】 6【解析】 该题考察的是三角形的高. 过A 做BC 的高AE , 在Rt △AEC 中,30C ∠=︒,由在直角三角形中30︒所对直角边等于斜角边的一半得:11=12622AE AC =⨯=.等边三角形与全等三角形综合例题1、 如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D 处,它的一边始终经过点A ,另一边与直线a 交于点E .(1)若D 恰好在BC 的中点上(如图1)求证:△ADE 是等边三角形;ODB P CA E BA DCBA DCE(2)若D 为直线BC 上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.【答案】 见解析【解析】 (1)证明:∵a ∥AB ,且△ABC 为等边三角形, ∴60ACE BAC ABD ∠=∠=∠=︒,AB AC =, ∵BD CD =,∴AD ⊥BC∵60ADE ∠=︒,∴30EDC ∠=︒,∴18090DOC EDC ACB ∠=︒-∠-∠=︒, ∴30DEC DOC ACE ∠=∠-∠=︒,∴EDC DEC ∠=∠,∴EC CD DB ==,∴△ABD ≌△ACE .∴AD AE =,且60ADE ∠=︒, ∴△ADE 是等边三角形;(2)在AC 上取点F ,使CF CD =,连结DF , ∵60ACB ∠=︒,∴△DCF 是等边三角形, ∵60ADF FDE EDC FDE ∠+∠=∠+∠=︒, ∴ADF EDC ∠=∠,∵DAF ADE DEC ACE ∠+∠=∠+∠,∴DAF DEC ∠=∠, ∴△ADF ≌△EDC (AAS ),∴AD ED =, 又∵60ADE ∠=︒,∴△ADE 是等边三角形.例题2、 在等腰直角三角形ABC 中,∠C=90°,AC=BC=10cm ,等腰直角三角形DEF 的顶点D 为AB 的中点.(1)如图(1)所示,DE ⊥AC 于M ,BC ⊥DF 于N ,则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?(2)在(1)的基础上,将三角形DEF 绕着点D 旋转一定的角度,且AC 与DE 相交于M ,BC 与DF 相交于N ,如图(2),则DM 与DN 在数量上有什么关系?两个三角形重叠部分的面积是多少?【答案】 (1)DM=DN ;25cm 2(2)DM=DN ;25cm 2【解析】 (1)连接DC ,∵AC=BC ,D 为AB 的中点,∠ACB=90°,∴CD ⊥AB ,∠ACD=∠BCD=45°,∠A=∠B=45°, ∴∠A=∠DCN ,AD=DC , ∵DM ⊥AC ,DN ⊥BC , ∴∠DMA=∠DNC ,∴△ADM ≌△CDN (AAS ), ∴DM=DN ,则S 重叠=S △DNC +S △DMC =S △DMA +S △DMC =S △ADC =12S △ABC =12×12×10×10=25(cm 2); (2)连接CD ,则CD ⊥AB ,∠A=∠DCB=45°,AD=CD ,∵∠ADM+∠MDC=∠MDC+∠CDF=90°, ∴∠ADM=∠CDN ,∴△AMD ≌△CND (ASA ), ∴DM=DN , 同(1)可得S 重叠=12S △ABC =12×12×10×10=25(cm 2).随练1、 如图,已知∥ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .(1)求证:∥ABE∥∥CAD ;(2)求∥BFD 的度数.【答案】 (1)见解析(2)60° 【解析】(1)证明:∥∥ABC 为等边三角形, ∥∥BAE=∥C=60°,AB=CA , 在∥ABE 和∥CAD 中, AB CA BAE C AE CD =⎧⎪∠=∠⎨⎪=⎩, ∥∥ABE∥∥CAD (SAS ).(2)∥∥BFD=∥ABE+∥BAD , 又∥∥ABE∥∥CAD , ∥∥ABE=∥CAD .∥∥BFD=∥CAD+∥BAD=∥BAC=60°.随练2、 如图,在ABC ∆中,AB AC =,D 是三角形外一点,且60ABD ∠=︒,BD DC AB +=.求证:60ACD ∠=︒.【答案】 见解析 【解析】 延长BD 至E ,使CD DE =,连接AE ,AD ,BD CD AB +=,BE BD DE =+,BE AB ∴=,60ABD ∠=︒,ABE ∴∆是等边三角形,AE AB AC ∴==,60E ∠=︒,在ACD ∆和AED ∆中,AC AE CD DE AD AD =⎧⎪=⎨⎪=⎩,()ACD AED SSS ∴∆≅∆,60ACD E ∴∠=∠=︒.随练3、 已知:90A ∠=︒,AB AC =,BD 平分ABC ∠,CE ⊥BD ,垂足为E .求证:2BD CE =.【答案】 见解析【解析】 本题考查全等三角形的判定与性质. 证明:延长CE 、BA 交于点F . ∵CE ⊥BD 于E ,90BAC ∠=︒, ∴ABD ACF ∠=∠.又∵AB AC =,90BAD CAF ∠=∠=︒, ∴△ABD ≌△ACF (AAS ), ∴BD CF =.∵BD 平分ABC ∠, ∴CBE FBE ∠=∠. 有BE BE =, ∴CE EF =,∴12CE BD =,∴2BD CE =.勾股定理的证明知识精讲一.勾股定理定理如果直角三角形的两直角边长分别为a、b,斜边长为c,那么222a b c+=.举例如图,在Rt ABC△中,A B C∠∠∠、、的对边分别用字母a、b、c来表示,则有:222a b c+=其中,当34a b==,时,则有斜边222223425c a b=+=+=变形22c a b=+,22a c b=-,22b c a=-.二.勾股定理的证明证明方法一:(赵爽弦图)22 2222222214()214()222ABCDS c ab b a c ab b ac ab b a abc b a==⨯+-∴=⨯+-=++-=+正方形证明方法二:(等面积法)()2222222214222ABCDS a b ab ca b ab ab ca b c=+=⨯+∴++=+∴+=正方形cbaCBA cabAFDCBEHG证明方法三:(总统证法)()()222222211222222ABCD a b a b S ab c a ab b ab c a b c ++==⨯+∴++=+∴+=梯形三.易错点:1. 运用勾股定理求直角三角形边长时,注意分清直角边和斜边,采用正确的计算公式。

北师大版八年级数学下册第一章1.2.1直角三角形的性质与判定课件

北师大版八年级数学下册第一章1.2.1直角三角形的性质与判定课件

(3)一个三角形中相等的边所对的角相等; 一个三角形中相等的角所对的边相等. 上面每组中两个命题的条件和结论也有类似的关系吗?
与同伴交流.
1.在两个命题中,如果一个命题的条件和结论分别 是另一个命题的结论和条件,那么这两个命题称 为互逆命题,其中一个命题称为另一个命题的逆 命题.
2.如果一个定理的逆命题经过证明是真命题,那么 它也是一个定理,其中一个定理称为另一个定理 的逆定理,这两个定理称为互逆定理.
证明: 如图(2) ,作Rt △A′B′C′ ,使
∠A′=90° A′B′=AB, A′C′=AC,
则A′B′ 2+A′C′ 2 =B′C′ 2(勾股定理). ∵AB2+AC2=BC2 , ∴BC2 = B′C′ 2. ∴BC = B′C′. ∴△ABC≌ △A′B′C′ (SSS). ∴ ∠A=∠A′=90°(全等三角形的对应角相等). 因此, △ABC是直角三角形.
例3 判断下列命题的真假,写出逆命题,并判断逆命题 的真假: (1)如果两条直线相交,那么它们只有一个交点; (2)如果a>b,那么a2>b2; (3)如果两个数互为相反数,那么它们的和为零; (4)如果ab<0,那么a>0,b<0.
导引:根据题目要求,先判断原命题的真假,再将原命题 的题设和结论部分互换,写出原命题的逆命题,最 后判断逆命题的真假.
AB·CD,
∴AC·BC=AB·CD.又由方法一知AB=15,
∴CD= 9 12 = 36 ,即点C到AB的距离为 3 6 .
15 5
5
新知小结
应用方程思想求线段的长很常见,而用面积法求 线段的长更是简化了计算步骤,使解题过程变得 简明 易懂.
巩固新知
1 在△ABC中,已知∠A=∠B=45°,BC=3, 求AB的长.

八年级下册数学第一章直角三角形全章教案(新湘教版)

八年级下册数学第一章直角三角形全章教案(新湘教版)

八年级数学下教案陈敏第一章直角三角形§1.1直角三角形的性质和判定(Ⅰ)(第1课时)教学目标:1、掌握“直角三角形的两个锐角互余”定理。

2、掌握“有两个锐角互余的三角形是直角三角形”定理。

3、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。

教学过程:一、复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?二、新授(一)直角三角形性质定理1请学生看图形:1、提问:∠A与∠B有何关系?为什么?2、归纳小结:定理1:直角三角形的两个锐角互余。

3、巩固练习:练习1(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。

练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有。

(3)与∠B相等的角有。

(二)直角三角形的判定定理11、提问:“在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”2、利用三角形内角和定理进行推理3、归纳:有两个锐角互余的三角形是直角三角形练习3:若∠A= 600,∠B =300,那么△ABC是三角形。

(三)直角三角形性质定理2归纳:直角三角形斜边上的中线等于斜边的一半。

三、巩固训练:练习4:在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。

练习5:已知:∠ABC=∠ADC=90O,E是AC中点。

求证:(1)ED=EB(2)∠EBD=∠EDB(3)图中有哪些等腰三角形?练习6 已知:在△ABC中,BD、CE分别是边AC、AB上的高,M是BC的中点。

如果连接DE,取DE的中点O,那么MO与DE有什么样的关系存在?四、小结:这节课主要讲了直角三角形的那两条性质定理和一条判定定理?1、2、3、五、课后反思:§1.1直角三角形的性质和判定(Ⅰ)(第2课时)一、教学目标:1、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。

八年级下册数学第一章知识点总结

八年级下册数学第一章知识点总结

八年级下册数学第一章知识点总结数学是一门需要用心学习的学科,而八年级下册数学第一章则是数学学习中最基础的知识点之一。

这一章主要涉及整式的基本知识和运算、多项式的因式分解等内容。

以下是对这些知识点的详细总结。

一、整式的基本知识和运算1、整式整式是指由常数、变量和它们的乘积、积和次数的和构成的一种代数式,例如:2a²b+3ab²+c。

2、同类项同类项指拥有相同变量和次数的项,例如:2a²b和3a²b就是同类项。

3、加法运算对于相同的变量和次数,将系数相加即可,例如:2a²b+3a²b=5a²b4、减法运算减法运算可以转化为加法运算,例如:2a²b-3a²b=2a²b+(-3a²b)=-a²b5、乘法运算可以利用乘法分配律来进行运算,例如:(2a+3)(4a-5)=8a²-10a+12a-15=8a²+2a-156、除法运算由于整式没有除法的定义,因此我们一般将它们转化为分数来进行运算。

二、多项式因式分解1、多项式多项式是指由多个单项式相加或相乘而成的代数式。

例如:3x²+6x+92、因式分解因式分解是将一个多项式表示成若干个单项式的乘积。

例如:3x²+6x+9=3(x²+2x+3)3、试除法试除法是一种将多项式分解的方法,它的步骤是:先找到一个能够整除多项式的单项式,然后将这个单项式除以多项式中的单项式,最后将其余部分继续进行分解。

4、公式法公式法是将多项式运用到一般公式中去,从而达到分解的目的。

例如:完全平方公式就可以用于分解形如 a²-2ab+b²的多项式。

以上就是八年级下册数学第一章的全部知识点。

如果想要更好地掌握这些知识,不仅需要认真学习课本,而且还要多做习题,加深对知识点的理解,从而提高自己的数学水平。

八年级下册数学各章节知识点总结

八年级下册数学各章节知识点总结

八年级下册数学各章节知识点总结第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。

3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,c bc a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,cb c a < 2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地: 如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b; 即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题) 4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为a bx >;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为abx <;5. 不等式应用的探索(利用不等式解决实际问题) 列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定. 3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b) 一元一次不等式解集 图示叙述语言表达⎩⎨⎧>>b x ax x>bba 两大取较大 ⎩⎨⎧<<b x ax x>aba两小取小⎩⎨⎧<>b x ax a<x<bba大小交叉中间找 ⎩⎨⎧><bx ax 无解ba在大小分离没有解(是空集)第二章 分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。

八下数学第一章知识点总结

八下数学第一章知识点总结

八下数学第一章知识点总结In the first chapter of eighth grade mathematics, the key points include numerical computation, prime factorization, and number system conversion.在八年级数学的第一章中,重点包括数字计算、素因数分解和数制转换。

Numerical computation involves addition, subtraction, multiplication, and division of whole numbers, integers, fractions, and decimals. It also includes calculating percentages, ratios, and proportions.数字计算涉及整数、整数、分数和小数的加法、减法、乘法和除法。

它还包括计算百分比、比率和比例。

Prime factorization is the process of breaking down a composite number into its prime factors. This is important for simplifying fractions and finding the greatest common factor of numbers.素因数分解是将合数分解成其素因数的过程。

这对于简化分数和找到数的最大公因数至关重要。

Number system conversion involves understanding and converting between different number systems, such as decimal, binary, octal,and hexadecimal. This is important for computer science and understanding how different systems represent numbers.数制转换涉及理解和转换不同的数制,比如十进制、二进制、八进制和十六进制。

初中数学八年级(下册)第一章第四节 角平分线

初中数学八年级(下册)第一章第四节  角平分线

1.4角平分线一.选择题1.已知:在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=20,且BD:DC=3:2,则点D到AB边的距离为()A.8B.12C.10D.152.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.5D.63.如图,在△ABC中,BD是AC边上的高,AE平分∠CAB,交BD于点E,AB=8,DE =3,则△ABE的面积等于()A.15B.12C.10D.144.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∠CAB和∠ABC的平分线交于点O,OM⊥BC于点M,则OM的长为()A.1B.2C.3D.45.如图,四边形ABCD中,∠A=90°,AD=2,连接BD,BD⊥CD,垂足是D且∠ADB =∠C,点P是边BC上的一动点,则DP的最小值是()A.1B.1.5C.2D.2.56.如图,∠ACD是△ABC的外角,∠BAC=80°,∠ABC和∠ACD的平分线相交于点E,连接AE,则∠CAE的度数是()A.35°B.40°C.50°D.55°7.如图,AE是△ABC的角平分线,AD⊥BC于点D,点F为BC的中点,若∠BAC=104°,∠C=40°.则有下列结论:①∠BAE=52°;②∠DAE=2°;③EF=ED;④S△ABF=S△ABC.其中正确的有()A.1个B.2个C.3个D.4个8.如图,在CD上求一点P,使它到OA、OB的距离相等,则P点是()A.线段CD的中点B.OA与∠CDB的平分线的交点C.OB与∠DCA的平分线的交点D.CD与∠AOB的平分线的交点9.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为()A.25B.5.5C.7.5D.12.510.如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF =BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④二.填空题11.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE=2cm,则△BCD的面积为cm2.12.如图,在△ABC中,CD平分∠BCA,DE⊥BC于点E,且DE=3cm,BC=8cm,AC=4cm,则△ABC的面积是cm2.13.如图,△ABC中,∠C=90°,AD平分∠BAC,若DC=2,则点D到线段AB的距离等于.14.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=12cm,则D到AB的距离为cm.15.如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是.三.解答题16.如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD =DF.(1)求证:CF=EB.(2)若AB=12,AF=8,求CF的长.17.如图,在△ABC中,∠ACB=90°,CD⊥AB,D为垂足,BE平分∠ABC.(1)若∠A=40°,求∠BEC的度数;(2)若DE=2,BC=6,求△BCE的面积.18.如图,在△ABC中,∠BAC=120°,AD,BE分别为△ABC的角平分线,连结DE.求证:点E到DA,DC的距离相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ △ADB≌△ADC
∴ ∠B=∠C
B
D
C
1 .等腰三角形的两个底角相等.
等边对等角:
A
∵AB=AC
∴∠ B=∠C
B
C
2.等腰三角形顶角的平分线,底边上的中
线,底边上的高互相重合.
A
(等腰三角形的三线合一)
3.等腰三角形是轴对称图形, 对称轴就是顶角的平分线 (底边上的中线,底边上的 B D C 高)所在的直线。
1.在△ABC中,AB = AC,∠A = 50°,
则∠B = 65° .
A
2.在△ABC中,AB = AC,∠B= 50°,
则∠A= 80° .
3.等腰三角形一个角为70°,它的另
外两个角为_7_0_°__,4_0_°__或_5_5_°__,55°
B
C
4.等腰三角形一个角为120°,它 的另外两个角为_3_0_°__,3_0°
法,得出与定义,公理、已证定理或已知条件 相矛盾的结果; 3.结论:由矛盾的结果判定假设不正确,从而 肯定命题的结论正确.
反证法是一种重要的数学证明方法.在解决某 些问题时常常会有出人意料的作用.
“原名” 知多少
公理:公认的真命题称为公理(axiom). 证明:除了公理外,其它真命题的正确性都通过推理的方法证实.推 理的过程称为证明. 定理:经过证明的真命题称为定理(theorem). 推论:由一个公理或定理直接推出的定理,叫做这个公理或定理的 推论(corollary).推论可以当作定理使用.
∴a2+b2=c2
大正方形的面积可以表示为 c2 ;
也可以表示为 4•ab/2+(b- a)2
c a
∵ c2= 4•ab/2 +(b-a)2 c2 =2ab+b2-2ab+a2 c2 =a2+b2
c a
c b
∴a2+b2=c2
等(AAS).
❖ 综上所述,直角三角形全等的判定条件可归纳为:
一边及一个锐角对应相等的两个直角三角形全等;
两边对应相等的两个直角三角形全等;
切记!!!
命题:两边及其中一边的对角对应
相等的两个三角形不一定全等.
即(SSA)是一个假冒产品!!!
随堂测试
1、判断 (1)、两个全等形一定能够重合( ) (2)、两个图形全等,所有对应元素都相等( ) (3)、三个角对应相等的两个三角形全等( ) (4)、两个三角形全等,对应顶点所在的角一定是
直角三角形全等的判定方法
❖ 直角三角形全等的判定方法:
定理:斜边和一条直角边对应相等的两个直角三角形全
等(斜边,直角边或HL).
公理:三边对应相等的两个三角形全等(SSS).
公理:两边及其夹角对应相等的两个三角形全等(SAS).
公理:两角及其夹边对应相等的两个三角形全等(ASA).
推论:两角及其中一角的对边对应相等的两个三角形全
2、在△ABC中,已知:AB=AC
①、AB=2,BC=3,则△ABC的周长为 7

②、若有两边长为2、4,则△ABC的周长为 10 ;
③、若有两边长为2、3,则△ABC的周长为

7或8
例1、如图,在△ABC中,AB = AC,点D在 AC上,且BD=BC=AD.
(1)图中共有哪些等腰三角形. (2)求△ABC各内角的度数。
∴ ∠BDA = ∠CDA = 90° 在Rt △BAD与Rt △CAD中
AB = AC
AD = AD
∴ Rt△ADB≌ Rt△ADC B
D
C
∴ ∠B=∠C
已知:在△ABC中,AB=AC,求证∠B=∠C
证明:作AD平分∠BAC
A
∴ ∠BAD = ∠CAD
在△ADB和△ADC中
AB = AC ∠BAD = ∠CAD AD = AD
A EC
达标测试
4、如图△ABD≌ △EBC, AB=3cm,BC=5cm,求DE的长
解: ∵△ABD≌ △EBC ∴AB=EB、BD=BC ∵BD=DE+EB ∴DE=BD-EB
=BC-AB =5-3=2cm
1、什么是全等形、全等三角形、全等三角形的 对应顶点、对应边、对应角?
2、表示三角形全等时应注意什么?
有对顶角的,对顶角是对应角.
在找全等三角形的对应元素时一般有什 么规律?
A
A
B
C E
P
B
D
F
C
D
一对最长的边是对应边,一对最短的边是对应边. 一对最大的角是对应角,一对最小的角是对应角.
规律总结
有公共边的,公共边是对应边. 有公共角的,公共角是对应角. 有对顶角的,对顶角是对应角. 一对最长的边是对应边, 一对最短的边是对应边. 一对最大的角是对应角, 一对最小的角是对应角.
A
练习:如图在△ABC中,AB=AC, 点D、E在BC上,且AD=AE, 求证:BD=CE
B
DF E
C
证明:作BC边上的高AF也是DE边上的高 ∵ AB=AC ∴ BF=CF (三线合一) ∵ AD=AE ∴ DF=EF(三线合一) ∴ BF-CF=CF-EF ∴ BD=CE
1、如图,△ABC是等腰直角三角形,(AB=AC, ∠BAC=90°),AD是底边BC上的高,
3、识别全等三角形的对应边、对应角的关键是正 确识别它们的对应顶点。
2.等腰三角形
生活中你能遇到的等腰三角 形?
什么是等腰三角形?
有两边相等的三角形叫等腰三角形.
等腰三角形中,相等的两边叫做腰,
A
另一边叫做底边。

两腰的夹角叫做顶角。
顶 角

腰和底边的夹角叫做底角。 底角 底角
B
C
底边
已知:在△ABC中,AB=AC,求证∠B=∠C
反证法
在证明时,先假设命题的结论不成立,然后推 导出与定义,公理、已证定理或已知条件相矛 盾的结果,从而证明命题的结论一定成立.这 种证明方法称为反证法(reduction to
a用bs反ur证di法ty证) 明的一般步骤: 1.假设:先假设命题的结论不成立; 2.归谬:从这个假设出发,应用正确的推论方
解: (1) △ABC、△BDC、△ABD
x
(2)设∠A=x
x 2x
2x
例2、如图,在△ABC中,AB=AC,BD=CD, AD的延长线交BC于E.求证:AE⊥BC.
证明:在△ADB和△ADC中
AB AC
BD
CD
AD AD
∴ △ADB≌△ADC
∴ ∠BAD=∠CAD
又∵ AB=AC ∴ AE⊥BC
1.全等三角形
教学目标:
知识与技能: 1,了解全等形及全等三角形 的概念 2,理解全等三角形的性质
3,掌握寻找对应边与对应角 的方法,能运用全等三角形的 性质解决简单的问题。
回忆:举出现实生活中能够完全重合的 图形的例子? 同一张底片洗出的同大小照片是 能够完全重合的;
能够完全重合的两个图形叫做全等图形.
b)
1 2
(a 2
2ab
b2
)
1 2
a2
1 2
b2
ab
c
a
s2
1 2
ab
1 2
ab
1 2
c2
ab
1 2
c2
s1 s2
b
1 2
a2
1 2
b2
ab
ab
1 2
c2
a2 b2 c2
大正方形的面积可以表示为 (a+b)2 ; 也可以表示为 c2 +4•ab/2
c a
b
c a
b
c a
b
c a
b
∵ (a+b)2 = c2 + 4•ab/2 a2+2ab+b2 = c2 +2ab
对应角,对应边所夹的角一定是对应角, 对应角所对的边也是对应边。 ( )
2、如图所示,△ABC≌△DCB,则观察图形一定有下
列关系成立:
⑴ AB = ___,AC = ____;
A
D
⑵∠A = ____,∠ABC = _____,
∠ACB =___.
B
C
3、如图△ ABD ≌ △CDB,若AB=4, AD=5,BD=6,则BC= ,CD= 。
求出∠B 、∠C 、∠BAD 、∠DAC的度数,图中有 哪些相等的线段?
A
A
B D
1题
CB
D
C
2题
2、如图在△ABC中,AB=AD=DC, ∠BAD=26°, 求∠B和∠C
答案:1、∠B=∠C=∠BAD=∠DAC=45° AB=AC BD=CD=AD
2、∠B=77° ∠C=38.5°
知识内容:
性质:
全等图形的特征 全等图形的形状和大小都相同
概念
A
D
B
CE
F
能够完全重合的两个三角形,叫 全等三角形.
记作:△ABC≌△DEF
读作 :△ABC全等于△DEF 。注:对应顶点要在对应的位置
互相重合的顶点叫对应顶点.
. 互相重合的边叫对应边
互相重合的角叫对应角.
全等三角形的性质: 全等三角形对应边相等,对应 角相等。
1)等腰三角形是轴对称图形, 2)等腰三角形的两底角相等(等边对等角) 3)等腰三角形的底边上的中线,底边上的高和顶角平分线、互 相重合(三线合一)
过程方法:
数学思想转 化
其他收获
实验操作——得到图形 实验探究——发现结论 推理论证——证明结论
转化 分类
如图,在高为2米,坡角为30°
的楼梯表面铺毯,地毯长度约为
相关文档
最新文档