磷化膜的组成及成膜机理(新)
磷化、脱脂原理和经验配方
磷化是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。
磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。
1 基本原理磷化过程包括化学与电化学反应。
不同磷化体系、不同其材的磷化反应机理比较复杂。
虽然科学家在这方面已做过大量的研究,但至今未完全弄清楚。
在很早以前,曾以一个化学反应方程式简单表述磷化成膜机理:8Fe+5Me(H2PO4)2+8H2O+H3PO4Me2Fe(PO4)2•4H2O(膜)+Me3(PO4)•4H2O(膜)+7FeHPO4(沉渣)+8H2↑Me为Mn、Zn 等,Machu等认为,钢铁在含有磷酸及磷酸二氢盐的高温溶液中浸泡,将形成以磷酸盐沉淀物组成的晶粒状磷化膜,并产生磷酸一氢铁沉渣和氢气。
这个机理解释比较粗糙,不能完整地解释成膜过程。
随着对磷化研究逐步深入,当今,各学者比较赞同的观点是磷化成膜过程主要是由如下4个步聚组成:①酸的浸蚀使基体金属表面H+浓度降低Fe –2e→ Fe2+2H2++2e→2[H] (1)H2②促进剂(氧化剂)加速[O]+[H] → [R]+H2OFe2++[O] → Fe3++[R]式中[O]为促进剂(氧化剂),[R]为还原产物,由于促进剂氧化掉第一步反应所产生的氢原子,加快了反应(1)的速度,进一步导致金属表面H+浓度急剧下降。
同时也将溶液中的Fe2+氧化成为Fe3+。
③磷酸根的多级离解H3PO4+H2PO4-+H+ +HPO42-+2H+ +PO43-+3H-(3)由于金属表面的H+浓度急剧下降,导致磷酸根各级离解平衡向右移动,最终为PO43-。
④磷酸盐沉淀结晶成为磷化膜当金属表面离解出的PO43-与溶液中(金属界面)的金属离子(如Zn2+、Mn2+、Ca2+、Fe2+)达到溶度积常数K sp时,就会形成磷酸盐沉淀Zn2++Fe2++PO43-+H2O→Zn2Fe(PO4)2•4H2O↓ (4)3Zn2++2PO43-+4H2O=Zn3(PO4)2•4H2O↓ (5)磷酸盐沉淀与水分子一起形成磷化晶核,晶核继续长大成为磷化晶粒,无数个晶粒紧密堆集形而上学成磷化膜。
磷化钝化膜形成原理
磷化钝化膜形成原理在金属表面处理中,磷化和钝化是两种常用的工艺,它们能够增强金属的耐腐蚀性。
磷化是通过化学反应在金属表面形成磷酸盐的转化膜,而钝化则是通过化学反应使金属表面形成一层氧化膜,从而增强金属的耐腐蚀性。
磷化是一种化学反应过程,通常在金属表面形成一层磷酸盐的转化膜。
磷化膜的形成原理可以概括为以下几个步骤:1.表面处理:首先需要对金属表面进行除锈、除油等预处理,以确保金属表面的清洁度和粗糙度,从而增加磷化膜与金属表面的附着力。
2.酸洗:将金属浸入酸洗液中,通过酸洗液与金属表面的反应,去除金属表面的氧化物和杂质,使金属表面呈现出活性状态。
3.磷化:将酸洗后的金属浸入磷化液中,磷化液中的磷酸根离子会与金属表面发生反应,形成磷酸盐的转化膜。
这个转化膜具有多孔性,能够吸附更多的颜料和涂层,从而增强金属的耐腐蚀性和装饰性。
钝化的过程与磷化类似,它也是通过化学反应在金属表面形成一层氧化膜。
与磷化不同的是,钝化使用的化学试剂通常是强氧化剂,如浓硫酸、浓硝酸等。
这些强氧化剂能够迅速将金属表面氧化,形成一层致密的氧化膜。
钝化膜的形成原理可以概括为以下几个步骤:1.表面处理:同样需要对金属表面进行除锈、除油等预处理,以提高钝化膜与金属表面的附着力。
2.酸洗:将金属浸入酸洗液中,去除金属表面的氧化物和杂质,使金属表面呈现出活性状态。
3.钝化:将酸洗后的金属浸入钝化液中,钝化液中的强氧化剂会迅速将金属表面氧化,形成一层致密的氧化膜。
这个氧化膜能够阻挡腐蚀介质对金属的侵蚀,从而提高金属的耐腐蚀性。
通过磷化和钝化处理,金属表面的耐腐蚀性能得到了显著提高。
同时,这两种处理方法还可以增强金属的装饰性能,使其具有更美观的外观。
在实际应用中,应根据不同的需求选择合适的处理方法。
总的来说,磷化、钝化都是通过化学反应在金属表面形成一层保护膜,从而提高金属的耐腐蚀性。
虽然它们的化学反应机理和所用试剂有所不同,但它们的表面处理和反应过程是相似的。
磷化成膜机理
磷化成膜机理1、化学转化过程所用的磷化液都是由磷酸、碱金属或重金属的磷酸二氢盐及氧化性促进剂组成的酸性溶液。
因此,整个磷化过程都包括含有基体金属的溶解反应、难溶磷酸盐结晶沉积的成膜过程及氧化性促进剂的去极化作用。
①基体金属的溶解磷化液的PH 值一般都在2~5.5之间,呈酸性。
因此当金属和此酸性溶液接触时,必然发生由局部阳极和局部阴极反应组成的金属溶解过程:局部阳极 Me Me 2++2e 局部阴极 2H ++2e H 2↑ ②成膜反应由于局部阴极区域H +被还原而消耗,酸度下降,使得在第一阶段形成的可溶性二价金属磷酸二氢盐离解成溶解度较小的磷酸一氢盐:Me (H 2PO 4)2 MeHPO 4+H 3PO 4只要PH 上升到一定程度,则主要离解成不溶性二价金属磷酸盐。
此离解则比较迅速:Me (H 2PO 4)2 MeHPO 4+4H 3PO 4同时 MeHPO 4 Me 3(PO 4)2+H 3PO 4难溶的Me 3(PO 4)2在金属表面的阴极区域沉积析出。
当整个阴极区域都被沉积物覆盖时,成膜反应结束,从而在金属表面形成完整的磷化膜覆盖。
由于成膜反应的可溶性二价金属磷酸二氢盐可以是金属溶解生成的,也可以是溶液中原有的配方组成。
除磷酸铁盐膜外,其他所有的磷化膜的成膜物质都是添加配方中的原料。
难溶性磷酸盐的溶积度如表:氧化性促进剂的去极化作用和对金属溶解的促进金属溶解时产生的氢气易吸附于阴极的金属表面,从而阻碍水解产生的二价金属磷酸盐在阴极区域的沉积,不能形成磷化膜。
水解产物则于溶液中析出成为渣,即浪费成膜原料,也使渣量大大增加。
这样在工艺方面将造成困难,对膜的性能也不能保证,因为孔隙率很大。
氧化剂的去极化作用是将还原形成的初生态氢氧化成水;2[H]+[O] H2O与去极化作用密切相关的是促进剂对金属溶解的促进。
它是通过促进剂对H2的氧化和沉积作用,导致阳极电流密度增加而提高溶解速率,即提高可溶性二价金属磷酸二氢盐的生成速率。
磷化成膜机理研究
磷化成膜机理研究磷化成膜机理研究磷化成膜机理比较复杂,至今尚没有统一完整的理论,不同的磷化体系,不同材质的磷化,反应原理不同。
首先,磷化剂在水溶液中发生电离,随温度的升高,离解度增大。
在一定的温度下处于平衡状态。
当金属与磷化液接触时,钢铁受游离酸的侵蚀而发生反应,产生的氢气被溶液中的氧化剂氧化成水,同时部分 Fe2离子也被溶液中的氧化剂氧化成 Fe3Fe3与 PO43-生成FePO4 成为残渣,部分 Fe2参与成膜反应。
这些反应都是发生在金属表面。
由于反应的发生,反应的平衡被打破,平衡向右移动,同时,反应的发生加速了溶液的电离,电离出越来越多的 Zn2和 PO43-使得金属表面附近的 Zn2、PO43-和 Fe2的浓度过饱和,当大于 Zn3PO4 2 或 Zn2FePO4 2 的溶度积时,不溶性的磷酸正盐就沉积在溶液与金属的界面上,由此形成磷化膜。
在生成磷化膜的同时,由于消耗掉 Zn2及 PO43-使得反应平衡继续右移,这样,从 ZnH2PO4 2 中又电离出 2 3-H 、Zn PO4 等离子,溶液又处于新的平衡中。
可以看出,磷化液就是一种缓冲溶液,在生产中,它一直处于一种动态平衡状态中,金属表面的活性点增多,即晶核增多,有利于磷化膜的结晶,这也是表面调整的理论基础。
实际的磷化反应比上面描述的过程复杂得多,因为磷化液中有不同的氧化剂、催化剂、络合剂、促进剂等,还有许多副反应发生,因而就会有沉渣及絮状物的产生,需要定期对槽液进行调整、过滤、沉淀。
磷化成膜机理初探金属溶解反应导致局部阴极区域界面液的酸度下降,从而形成过饱和溶液,在 pH4,5 时,出现磷化液中磷酸盐的起始沉淀点PIP,出现起始沉淀点的 pHZn2比值的升高而提高。
最先形成的不完善的磷酸铁、氧化铁值随溶液中PO43-,混合物组成的钝化膜,也可作为供磷化膜增长的晶核。
由金属表面结构来看,表面存在着供磷化膜生产的―活性中心‖,该活性中心具有一定的能级、数量和表面分布,活性中心的能级决定晶核生成的难易程度,活性中心的数量和表面分布影响到晶核的数量和分布,从而影响磷化膜的粗细和致密性,晶核生成速率随活性中心数量而增加,但主要的制约因素还是活性中心的能级。
磷化处理技术+配方
磷化处理技术+配方用于钢材的表面处理磷化处理技术(1)所谓磷化处理是指金属表面与含磷酸二氢盐的酸性溶液接触,发生化学反应而在金属表面生成稳定的不溶性的无机化合物膜层的一种表面的化学处理方法。
所形成的膜称为磷化膜。
它的成膜机理为:(以锌系为例)a)金属的溶解过程当金属浸入磷化液中时,先与磷化液中的磷酸作用,生成一代磷酸铁,并有大量的氢气析出。
其化学反应为;Fe+2H3PO4=Fe (H2PO4)2+H2 ↑ (1)上式表明,磷化开始时,仅有金属的溶解,而无膜生成。
b)促进剂的加速上步反应释放出的氢气被吸附在金属工件表面上,进而阻止磷化膜的形成。
因此加入氧化型促进剂以去除氢气。
其化学反应式为:3Zn(H2PO4)2+Fe+2NaNO2=Zn3(PO4)2+2FePO4+N2↑+2NaH 2PO4+4H2O (2)上式是以亚硝酸钠为促进剂的作用机理。
c)水解反应与磷酸的三级离解磷化槽液中基本成分是一种或多种重金属的酸式磷酸盐,其分子式Me(H2PO4)2,这些酸式磷酸盐溶于水,在一定浓度及PH值下发生水解泛音法,产生游离磷酸:Me(H2PO4)2=MeHPO4+H3PO4 ( 3 ) 3MeHPO4=Me3(PO4)2+H3PO4 ( 4 ) H3PO3=H2PO4-+H+=HPO42-+2H+=PO43-+3H+ ( 5 )由于金属工件表面的氢离子浓度急剧下降,导致磷酸根各级离解平衡向右移动,最终成为磷酸根。
d)磷化膜的形成当金属表面离解出的三价磷酸根与磷化槽液中的(工件表面)的金属离子(如用于钢材的表面处理锌离子、钙离子、锰离子、二价铁离子)达到饱和时,即结晶沉积在金属工件表面上,晶粒持续增长,直至在金属工件表面上生成连续的不溶于水的黏结牢固的磷化膜。
2Zn2++Fe2++2PO43-+4H2O→Zn2Fe (PO4)2 4H2O↓ ( 6 ) 3Zn2++2PO42-+4H2O=Zn3 (PO4)2 4H2O ↓ ( 7 )金属工件溶解出的二价铁离子一部分作为磷化膜的组成部分被消耗掉,而残留在磷化槽液中的二价铁离子,则氧化成三价铁离子,发生(2)式的化学反应,形成的磷化沉渣其主要成分是磷酸亚铁,也有少量的Me3(PO4)2。
磷化膜组成与性质
磷化膜组成及性质分类磷化液主要成份膜组成膜外观单位面积膜重/ g/m2锌系 Zn(H2PO4)2 磷酸锌和磷酸锌铁浅灰→深灰 1-60锌钙系 Zn(H2PO4)2和 Ca (H2PO4)2 磷酸锌钙和磷酸锌铁浅灰→深灰 1-15锰系 Mn(H2PO4)2 和Fe(H2PO4)2 磷酸锰铁灰→深灰 1-60锰锌系 Mn(H2PO4)2 和Zn(H2PO4)2 磷酸锌、磷酸锰、磷酸铁混合物灰→深灰 1-60铁系 Fe(H2PO4)2 磷酸铁深灰色 5-102.磷化膜组成磷化膜为闪烁有光,均匀细致,灰色多孔且附着力强的结晶,结晶大部分为磷酸锌,小部分为磷酸氢铁。
锌铁比例取决于溶液成分、磷化时间和温度。
3、性质(1)耐蚀性在大气、矿物油、植物油、苯、甲苯中均有很好的耐蚀性,但在碱、酸、水蒸气中耐蚀性较差。
在200-300℃时仍具有一定的耐蚀性,当温度达到450℃时膜层的耐蚀性显著下降。
(2)特殊性质如增加附着力,润滑性,减摩耐磨作用。
磷化工艺流程预脱脂→脱脂→除锈→水洗→(表调)→磷化→水洗→磷化后处理(如电泳或粉末涂装)影响因素1、温度温度愈高,磷化层愈厚,结晶愈粗大。
温度愈低,磷化层愈薄,结晶愈细。
但温度不宜过高,否则Fe2+ 易被氧化成Fe3+,加大沉淀物量,溶液不稳定。
2、游离酸度游离酸度指游离的磷酸。
其作用是促使铁的溶解,已形成较多的晶核,使膜结晶致密。
游离酸度过高,则与铁作用加快,会大量析出氢,令界面层磷酸盐不易饱和,导致晶核形成困难,膜层结构疏松,多孔,耐蚀性下降,令磷化时间延长。
游离酸度过低,磷化膜变薄,甚至无膜。
3、总酸度总酸度指磷酸盐、硝酸盐和酸的总和。
总酸度一般以控制在规定范围上限为好,有利于加速磷化反应,使膜层晶粒细,磷化过程中,总酸度不断下降,反映缓慢。
总酸度过高,膜层变薄,可加水稀释。
总酸度过低,膜层疏松粗糙。
4、PH值锰系磷化液一般控制在2-3之间,当PH﹥3时,共件表面易生成粉末。
磷化表面处理
汽车涂装工艺
涂装前表面处理工艺 表面处理是防锈涂装的重要工序之一。工程机械防锈涂装质量在很大程度上取决于表面处理的方式好坏。
据英国帝国化学公司介绍 , 涂层寿命受 3 方面因素制约 : 表面处理 , 占 60%; 涂装施工 , 占 25%; 涂料本身质量 , 占 15% 。 工程机械行业 , 不同零部件的表面处理方式。 机械清理可有效去除工件上的铁锈、焊渣、氧化皮 , 消除焊 接应力 , 增加防锈涂膜与金属基体的结合力 , 从而大大提高工程机械零部件的防锈质量。机械清理标准要求达到 的Sa2 . 5 级。表面粗糙度要达到防锈涂层厚度的 1 /3 。喷、抛丸所用钢丸要达到 GB6484 要求。 薄板冲压件的表 面处理称一般用化学表面处理。
磷化表面处理
汽车涂装工艺
汽车涂装工艺,一般可分为两大部分:一是涂装前金属的表面处理,也叫前处理技术;二是涂装的施工工艺。 表面处理主要包括清除工件表面的油污、尘土、锈蚀、以及进行修补作业时旧涂料层的清除等,以改善工件的 表面状态。包括根据各种具体情况对工件表面进行机械加工和化学处理,如磷化、氧化和钝化处理。
磷化后处理
为了提高磷化膜的防护能力,磷化后应对磷化膜进行填充和封闭处理。填充处理的工艺是: 重铬酸钾 30~50 g/L 碳酸钠 2~4 g/L 温度 90~98 ℃ 时间 5~10 min
填充后,可以根据需要在锭子油、防锈油或润滑油中进行封闭。如需涂漆,应在钝化处理干燥后进行, 工序间隔不超过24小时。
汽车涂装-磷化处理 涂装前锌盐磷化处理中添加Ni和Mn。添加Ni能使磷化膜结晶细化,提高附着力,提高耐腐蚀性能。
谢谢大家!
磷化处理
四 影响磷化的因素 1 游离酸度 游离酸度是指溶液中磷酸二氢盐水解后产生游离磷酸的浓度。游离酸度过高时,氢气析出量大,晶核生 成困难,膜的晶粒粗大,疏松多孔,耐蚀性差;反之,生成的磷化膜较薄,甚至得不到磷化膜。游离酸度 高时,可加氧化锌或氧化锰调整;当低时,可加磷酸二氢锰铁盐,磷酸二氢锌或磷酸来调整。 2 总酸度 总酸度来源于磷酸盐,硝酸盐和酸的总和。总酸度高时磷化反应快,获得的膜层晶粒细致,但膜层较薄, 耐蚀性降低;总酸度低时,磷化速度慢,膜层厚且粗糙。总酸度高时可加水稀释,低时可加磷酸二氢锰铁 盐,磷酸二氢锌或硝酸锌,硝酸锰来调整。
关于磷化工序的浅解
关于钢丝〔盘条〕磷化的浅解1.0磷化的目的和基本原理:1.1钢丝表面涂着物的特性:钢丝的加工和使用,要求材料在保存或加工过程和加工结束后的一定时间段内,材料表面不产生锈蚀或表面涂着物不产生潮解;在加工过程中得到低的摩擦系数。
钢丝因再加工和使用的需要,钢丝表面选择的涂着物有:涂石灰、涂硼砂或其类似物、电镀金属、磷化等。
电镀金属仅是在一些特殊产品的要求而使用。
涂石灰是早期钢丝生产工艺中广泛使用的方式,它成本低;但是这种方式在再加工时产生粉尘有害健康且不适应高速拉拔。
涂硼砂是适用于高速拉拔且成本低廉的方式。
虽然它易于潮解,但对涂后的中间品有适当的管理措施是可以避免的。
且特别在涂后直接拉拔的工艺是被广泛选用。
目前国外虽开始限制使用硼砂产品,因此出现其类似物。
但是这种涂层只适用于中间产品的表面而不适用于最终产品的表面;因为它抗锈蚀能力差,但强于石灰涂层。
磷化的涂着层具有一定的抗锈蚀能力,和具有一定的电抗;在后加工过程中得到低的摩擦系数。
好的磷化膜本身具有很好的塑性,在变形中能够很好地保持其连续性;同时,它不仅能和皂——硬脂酸钠,发生反应产生更有利于润滑的金属皂类,而且其表面又可以很好地附着皂液和润滑剂;这有利减小变形摩擦因数、减少模具磨损。
1.2 磷化膜的形成和特性:1.2.1 磷化技术的机理:磷化处理过程是化学与电化学反应过程,主要是由下述步骤组成:a.酸的浸蚀使基体金属表面 H+ 离子浓度降低。
当金属表面与酸性磷化液接触时,钢丝表面被溶解,使金属与溶液中酸反应产生氢,从而使界面的 PH 值上升,以致磷酸锌〔以锌系为例〕沉积于钢丝表面。
由于亚铁在溶液中的存在,不论因酸后的带入还是在槽内反应产生,磷酸铁锌也同时沉积于钢丝表面。
其总反应方程如下:5Zn(H2P04)2+Fe(H2P04)2+8H20--+ Zn 3(P04)2。
4H20+ Zn 2Fe(P04)2。
4H20+ 8 H3P04磷酸盐沉淀的副反应将形成磷化沉渣,即亚铁离子被氧化后同磷酸反应生成磷酸铁在溶液中沉淀:Fe³¯+ P04³¯==FeP04但是在这钢丝表面的二种磷膜沉积物有不同的特性;称前者Zn 3(P04)2。
磷化
磷化磷化是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。
磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。
磷化处理工艺应用于工业己有90多年的历史。
磷化是常用的前处理技术,原理上应属于化学转换膜处理,主要应用于钢铁表面磷化,有色金属(如铝、锌)件也可应用磷化。
一、磷化原理1、磷化工件(钢铁或铝、锌件)浸入磷化液(某些酸式磷酸盐为主的溶液),在表面沉积形成一层不溶于水的结晶型磷酸盐转换膜的过程,称之为磷化。
2、磷化原理钢铁件浸入磷化液(由Fe(H2PO4)2Mn(H2PO4)2Zn(H2PO4)2组成的酸性稀水溶液,PH值为1-3,溶液相对密度为1.05-1.10)中,磷化膜的生成反应如下:吸热3Zn(H2PO4)2Zn3(PO4)2↓+4H3PO4或吸热吸热3Mn(H2PO4)2Mn3(PO4)2↓+4H3PO4吸热钢铁工件是钢铁合金,在磷酸作用下,Fe和FeC3形成无数原电池,在阳极区,铁开始熔解为Fe2+,同时放出电子。
Fe+2H3PO4Fe(H2PO4)2+H2↑FeFe2++2e-在钢铁工件表面附近的溶液中Fe2+不断增加,当Fe2+与H PO42-,PO43-浓度大于磷酸盐的溶度积时,产生沉淀,在工件表面形成磷化膜:Fe(H2PO4)2FeHPO4↓+H3PO4Fe+Fe(H2PO4)22FeHPO4↓+H2↑3FeHPO4Fe3(PO4)2↓+H3PO4Fe+2FeHPO4Fe3(PO4)2↓+H2↑阴极区放出大量的氢:2H++2e-H2↑O2+2H20+4e-4OH-总反应式:吸热3Zn(H2PO4)2Zn3(PO4)2↓+4H3PO4吸热吸热Fe+3Zn(H2PO4)2Zn3(PO4)2↓+2FeHPO4↓+3H3PO4+2H2↑放热二、磷化分类1、按磷化处理温度分类(1)高温型80—90℃处理时间为10-20分钟,形成磷化膜厚达10-30g/m2,溶液游离酸度与总酸度的比值为1:(7-8)优点:膜抗蚀力强,结合力好。
汽车生产涂装车间前处理磷化工艺全
汽车生产涂装车间前处理磷化工艺磷化所谓磷化处理是指金属表面与含磷酸二氢盐的酸性溶液接触,发生化学反应而在金属表面生成稳定的不溶性的无机化合物膜层的一种表面化学处理方法,所生成的膜称为磷化膜。
具有微孔结构,在通常大气条件下比较稳定,具有一定的防锈能力,用作漆膜的底层,可以显著地提高涂层的附着力和耐蚀性能。
磷化膜作为电泳涂漆之底层,在汽车行业中得到几乎百分之百的应用。
磷化处理分类磷化处理有很多分类方法,工业上较通用的有如下几种:(1) .根据组成磷化液的磷酸盐分类,有磷酸锌系、磷酸镒系、磷酸铁系。
此外,还有在磷酸锌盐中加钙的锌钙系,在磷酸锌系中加银、加镒的所谓〃三元体系〃磷化等。
(2) .根据磷化温度分类,有高温磷化(80。
C以上)、中温磷化(50~70℃)和低温磷化(40。
C以下)。
(3) .按磷化施工方法分类,有喷淋式磷化、浸渍式磷化、喷浸结合式磷化、涂刷型磷化。
(3).按磷化膜的质量分类,有重量型(7.5g∕m2以上)、中量型(4.3g∕m2〜7.5g∕m2)、轻量型(1.1g∕m2~4.3g∕m2)和特轻量型(0.3g∕m2〜1.1g∕m2)o磷酸锌系,磷酸锌钙系,磷酸铁系磷化膜适用于涂装底层,其中以磷酸锌系磷化膜应用最为广泛。
磷酸镒系磷化膜,主要用于满足润滑性和耐磨性的要求。
磷化膜的组成和成膜机理磷化膜的组成钢铁在不同磷化液中形成的膜层的组成如表所示。
钢铁磷化膜的组成及外观类型溶液主要成分膜层主要成分膜层外观锌磷酸Zn2+,磷酸锌浅灰,深灰,黑灰色系锌系磷酸Zn2+,磷酸锌钙锌钙Ca2+,系磷酸Zn2+,磷酸锌镒锌锦Mn2+,系磷酸锦系Mn2+,磷酸锌浅灰,深灰,黑灰色磷酸铁系Fe2+,磷酸铁深灰色Me①,磷酸铁及铁的氧化物膜层为(0.1~1)g∕m2时呈彩虹色,大于1g∕m2时呈深灰色13.2.2磷化膜成膜的机理比如我们锌系磷化为例来说明磷化膜成膜机理,磷酸锌系处理溶液,通常含有磷酸、磷酸二氢锌、氧化剂和促进剂等成分,其磷化基本反应如下:Fe+2H3PO4——>Fe(H2PO4)2+2H+(基体)(磷化液)2H++02——>H20(氧化剂)Fe(H2PO4)2+02——»FeP04+H3PO4+H20(氧化剂)(沉淀)当铁与磷化液接触时,铁不断溶解,H3PO4不断消耗,并放出氢,这时铁与磷化液接触的界面处的酸度下降,PH值上升,处理液中成分发生下列反应:3Zn(H2PO4)2+4H2O——>Zn3(PO4)2∙4H20+4H3PO4(磷化液)(膜的成分)Fe+2Zn(H2PO4)2+4H2O+02——>Z∩2Fe(PO4)2∙4H20+2H3PO4+H20 (磷化液)(膜的成分)生成的不溶于水的Zn3(PO4)2∙4H20及Zn2Fe(PO4)2∙4H20覆盖在金属表面上即形成了磷化膜。
实验19 钢铁的磷化处理
实验17 钢铁的磷化处理一. 实验目的;1.掌握钢铁磷化的基本原理。
2.了解磷化处理溶液的配制方法及磷化处理的实验操作。
2.了解磷化处理的应用意义。
二.实验原理:钢铁零件在含有锰,铁,锌的磷酸溶液中,进行化学处理,其表面生成一层难溶于水的磷酸盐保护膜的方法叫磷化处理,亦称磷酸盐处理。
磷化膜的外观,由于试件材料不同及磷化处理的条件不同可由暗灰到黑灰色。
磷化膜的主要成分由磷酸盐Me3(PO4)2或磷酸氢盐(MeHPO4)的晶体组成。
氧化膜在通常大气条件下较稳定,与钢的氧化处理相比,其耐蚀性较高,约高2 ~10倍。
磷化处理之后,进行重铬酸盐填充,浸油涂漆处理,能进一步提高耐蚀性。
磷化处理有高温(90~98℃),中温(50~70℃)和常温(15~30℃)三种处理方法。
常用的磷化方法有浸渍法和喷淋法。
不管采用哪种方法进行磷化处理,其溶液都含有三种主要成分:1.H3PO4(游离态),以维持溶液pH值。
2.Me(H2PO4)2,Me= Mn、Zn,等3.催化剂(即氧化剂)NO3—,ClO3—,H2O2等。
钢铁进行磷化处理时,大致有如下反应历程:锰、锌系磷酸盐膜化学反应机理在97~99℃下加热1h,在Mn(H2PO4)2溶液中发生如下的电离反应:Mn(H2PO4)2→MnHPO4↓+H3PO4在反应平衡后,溶液中存在一定数量的磷酸分子、不溶性的MnHPO4及未电离的Mn(H2PO4)2分子。
当把Fe浸入此溶液之中,则发生以下化学反应:H3PO4 + Fe = Fe(H2PO4)2+ H2Fe(H2PO4)2 = FeHPO4 + H3PO4由于H2的析出,溶液的pH值升高,因此,Mn(H2PO4)2的电离反应会继续进行,反应向生成难溶磷酸盐的方向移动。
这些不溶性的仲磷酸锰MnHPO4大部分沉淀在工件的表面上,少部分可能从溶液中沉淀成泥浆,大部分还是在金属表面沉积成为磷化膜层。
因为它们就是在反应部位生成的,所以与基体表面结合得很牢固。
磷化的基本原理及分类
磷化的基本原理及分类磷化是一种化学与电化学反应形成磷酸盐化学转化膜的过程,所形成的磷酸盐转化膜称之为磷化膜。
磷化的目的主要是:给基体金属提供保护,在一定程度上防止金属被腐蚀;用于涂漆前打底,提高漆膜层的附着力与防腐蚀能力;在金属冷加工工艺中起减摩润滑使用。
1 基本原理磷化过程包括化学与电化学反应。
不同磷化体系、不同其材的磷化反应机理比较复杂。
虽然科学家在这方面已做过大量的研究,但至今未完全弄清楚。
在很早以前,曾以一个化学反应方程式简单表述磷化成膜机理:8Fe+5Me(H2PO4)2+8H2O+H3PO4=Me2Fe(PO4)2•4H2O(膜)+Me3(PO4)•4H2(膜)+7FeHPO4(沉渣)+8H2↑Me为Mn、Zn 等,Machu等认为,钢铁在含有磷酸及磷酸二氢盐的高温溶液中浸泡,将形成以磷酸盐沉淀物组成的晶粒状磷化膜,并产生磷酸一氢铁沉渣和氢气。
这个机理解释比较粗糙,不能完整地解释成膜过程。
随着对磷化研究逐步深入,当今,各学者比较赞同的观点是磷化成膜过程主要是由如下4个步聚组成:①酸的浸蚀使基体金属表面H+浓度降低Fe –2e→Fe2+2H2++2e→2 (1)H2②促进剂(氧化剂)加速+ →+H2OFe2++ →Fe3++式中为促进剂(氧化剂),为还原产物,由于促进剂氧化掉第一步反应所产生的氢原子,加快了反应(1)的速度,进一步导致金属表面H+浓度急剧下降。
同时也将溶液中的Fe2+氧化成为Fe3+。
③磷酸根的多级离解H3PO4 H2PO4-+H+ HPO42-+2H+ PO43-+3H-(3)由于金属表面的H+浓度急剧下降,导致磷酸根各级离解平衡向右移动,最终为PO43-。
④磷酸盐沉淀结晶成为磷化膜当金属表面离解出的PO43-与溶液中(金属界面)的金属离子(如Zn2+、Mn2+、Ca2+、Fe2+)达到溶度积常数Ksp时,就会形成磷酸盐沉淀Zn2++Fe2++PO43-+H2O→Zn2Fe(PO4)2•4H2O↓(4)3Zn2++2PO43-+4H2O=Zn3(PO4)2•4H2O↓(5)磷酸盐沉淀与水分子一起形成磷化晶核,晶核继续长大成为磷化晶粒,无数个晶粒紧密堆集形而上学成磷化膜。
磷化与钝化处理的区别
磷化处理和钝化处理的区别点击次数:711时间:2009-11-10磷化处理:磷化是金属材料防腐蚀的重要方法之一,其目的在于给基体金属提供防腐蚀保护、用于喷漆前打底、提高覆膜层的附着力与防腐蚀能力及在金属加工中起减摩润滑作用等。
按用途可分为三类:1、涂装性磷化2、冷挤压润滑磷化3、装饰性磷化。
按所用的磷酸盐分类有:磷酸锌系、磷酸锌钙系、磷酸铁系、磷酸锌锰系、磷酸锰系。
根据磷化的温度分类有:高温(80 ℃以上)磷化、中温(50~70 ℃)磷化、低温磷化(40 ℃左右)和常温磷化(10~30 ℃)。
一、磷化成膜机理磷化主要有以下过程:(1)金属的溶解过程即金属与磷化液中的游离酸发生反应:M+H3PO4 = M(H2PO4)2+H2↑(2)促进剂的加速过程为:M(H2PO4)2+Fe+[O]→M3(PO4)2+FePO由于氧化剂的氧化作用,加速了不溶性盐的逐步沉积,使金属基体与槽液隔离,会限制甚至停止酸蚀的进行。
(3)磷酸及盐的水解磷化液的基本成分是一种或多种重金属的酸式磷酸盐, 其分子式为Me(H2PO4)2,这些酸式磷酸盐溶于水,在一定浓度及pH值下发生水解,产生游离磷酸:Me(H2PO4)2=MeHPO4+H3PO43MeHPO4=Me3(PO4)2+H3PO4H3PO4=H2PO4-+H+= HPO2-4 + 2H+ =PO3-4 + 3H+由于金属工件表面的H+浓度急剧下降,导致磷酸根各级离解平衡向右移动,最终成为磷酸根。
(4 ) 磷化膜的形成当金属表面离解出的PO3-4与磷化槽液中的金属离子Zn2+、Mn2+、Fe2+达到饱和时,即结晶沉积在金属工件表面,晶粒持续增长,直到在金属工件表面生成连续不溶于水的牢固的磷化膜:3M2 + + 2PO3 -4 + 4H2O = M3 ( PO4 ) 2·4H2O ↓2 M2 + + Fe2 + + 2PO3 -4 + 4H2O= M2 Fe ( PO4 ) 2· 4H2O金属工件溶解出的Fe2+一部分作为磷化膜的组成部分被消耗掉,而残留在磷化槽液中的Fe2+则氧化成Fe3+,生成FePO4沉淀,即磷化沉渣的主要成分之一。
磷化液基本原理、种类介绍及配方参考
磷化液基本原理、种类介绍及配方参考导读:本文详细介绍了磷化液简介,基本原理,分类,参考配方等,本文中的配方数据经过修改,如需更详细资料,可咨询我们的技术工程师。
一、磷化液的简介磷化是金属与磷酸或酸性磷酸盐反应形成磷酸盐保护膜的化学反应过程。
磷化反应是一种典型的局部多相反应,本质上属于电化学反应。
当金属浸入到含有磷酸盐的溶液中,在其表面形成许多微腐蚀电池,发生轻微浸蚀。
在溶液-金属界面处,酸浓度降低,所形成金属磷酸盐化学转化膜称之为磷化膜。
磷化主要用于金属材料的防腐蚀,给机体金属提供腐蚀保护,用于喷漆前打底,提高覆膜层的附着力和防腐蚀能力以及在金属加工中起到减磨润滑作用。
磷化膜的外观是均匀致密的,主要呈现浅灰、深灰、灰黑等色;其结构主要呈现斜方晶体、圆柱形晶体、四方面心晶体、混合晶体以及无定型结晶等形态。
磷化膜具有多孔性,极大地提高了金属的表面积,从而在很大程度上提高了金属表面与涂层之间的附着力,但是磷化膜的耐热性、耐酸碱性、导热性和导电性等性能都较差。
磷化液一般由磷化开槽剂(磷化建浴剂)、磷化补充剂、磷化调整剂、磷化促进剂几部分组成,其中开槽剂和补充剂为主要组成成分:开槽剂是首次建槽使用,补充剂是建槽之后的补充使用;磷化调整剂是调节磷化液的总酸和游离酸,以达到合适的酸比;磷化促进剂是一种氧化剂,主要去极化作用,促进磷化的反应速度。
磷化工艺操作简单,成本低廉,经过磷化处理的工件,原来的物理机械性能如强度、硬度等保持不变,而被处理的金属表面,由于形成均匀致密的磷化膜,其金属表面的性能大大提高。
因此金属的磷化处理工艺在工业上得到了广泛应用,尤其是在金属表面涂装领域。
禾川化学技术团队具有丰富的分析研发经验,引进国外配方破译技术,专业从事磷化液产品的技术开发,经过多年的技术积累,可以运用尖端的科学仪器、完善的标准图谱库、强大原材料库,彻底解决表面处理企业生产研发过程中遇到的难题,利用其八大服务优势,最终实现企业产品性能改进及新产品研发。
钢铁的化学氧化处理和磷化处理
7.2 钢铁的化学氧化处理和磷化处理7.2.1、钢的氧化处理钢的氧化处理(又称发蓝或发黑):钢铁在含有氧化剂的溶液中进行处理,使其表面生成一层均匀的蓝黑到黑色膜层的过程。
根据处理温度的高低,钢铁的化学氧化可分为高温化学氧化法和常温化学氧化法。
这两种方法所用处理液成分不同,膜的组成不同,成膜机理也不同。
1.钢铁高温化学氧化(碱性化学氧化)<1>化学反应机理:高温化学氧化是传统的发黑方法,一般是在强碱溶液里添加氧化剂(如硝酸钠和亚硝酸钠),在140ºc左右的温度下处理15~90分钟,生成以F e3O4为主要成分的氧化膜,膜厚一般为0.5~1.5微米,最厚可达2.5微米。
氧化膜具有较好的吸附性。
将氧化膜浸油或做其他后处理,其耐蚀性能可大大提高。
由于氧化膜很薄,对零件尺寸和精度几乎没有影响,因此在精密仪器、光学仪器、武器及机器制造业中得到广泛应用。
其化学反应机理为:3F e+N a N O2+5N a O H-->3N a2F e O2+H2O+N H36N a2F e O2+N a N O2+5H2O-->3N a2F e2O4+7N a O H+N H3N a2F e O2+N a2F e2O4+2H2O-->F e3O4+4N a O H在钢铁表面附近生成的F e3O4,其在浓碱性溶液中的溶解度极小,很快就从溶液中结晶析出,并在钢铁表面形成晶核,而后晶核逐渐长大形成一层连续致密的黑色氧化膜。
在生成F e3O4的同时,部分铁酸钠可能发生水解而生成氧化铁的水合物N a2F e2O4+(m+1)H2O-->F e2O3·m H2O+2N a O H含水氧化铁在较高温度下失去部分水而形成红色沉淀物附在氧化膜表面,成为红色挂灰,或称“红霜”,这是钢铁氧化过程中常见的故障,应尽量避免。
<2>钢铁高温氧化工艺:钢铁高温氧化工艺见表7-1。
2.钢铁常温化学氧化(酸性化学氧化)<1>钢铁常温发黑机理:钢铁常温化学氧化是80年代以来迅速发展的新技术,与碱性高温氧化工艺相比,这种新工艺具有氧化速度快,膜层抗蚀性好,节能、高效,成本低,操作简单,环境污染小等优点。
钢铁常温彩色磷化工艺与成膜机理
钢铁常温彩色磷化工艺与成膜机理一、概述钢铁是一种常见的金属材料,在工业生产和日常生活中都有广泛的应用。
为了提高钢铁的耐腐蚀性和美观性,常温彩色磷化工艺应运而生。
本文将探讨钢铁常温彩色磷化工艺及其成膜机理。
二、常温彩色磷化工艺概述常温彩色磷化是一种在常温下进行的表面处理工艺,通过在钢铁表面形成一层磷化膜,提高了钢铁的耐腐蚀性和机械性能。
与传统的热磷化工艺相比,常温彩色磷化具有环保、节能、成本低等优点,逐渐受到广泛关注和应用。
三、常温彩色磷化过程1. 清洗要对钢铁表面进行清洗,以去除表面的油污和杂质,保证后续处理的顺利进行。
2. 预处理在清洗后,需要进行预处理,通常是采用酸洗或碱洗的方式,去除表面的氧化铁层,为后续的磷化提供更好的条件。
3. 磷化将经过清洗和预处理的钢铁件浸入含有磷酸盐的磷酸盐磷化液中,经过一定时间的处理,形成磷化膜。
4. 彩色处理经过磷化的钢铁件需要进行彩色处理,通常是在染色液中进行处理,不同的染色液可以形成不同的颜色。
彩色处理不仅提高了钢铁的美观性,也能进一步增强其耐腐蚀性。
5. 封孔需要对彩色处理后的钢铁进行封孔处理,以增强磷化膜的密封性和耐腐蚀性。
四、磷化膜的成膜机理1. 化学反应磷化膜的形成主要是通过磷酸盐磷化液中的化学物质与钢铁表面发生化学反应,生成磷化膜。
2. 微观结构磷化膜是由磷化物、氢氧化物和碳酸盐等多种物质组成的复合物,具有较为复杂的微观结构。
磷化膜的形成和组成直接影响其性能和应用。
3. 彩色效应通过对磷化膜进行彩色处理,可以形成不同颜色的磷化膜,这是由于染色液中的染色剂与磷化膜的微观结构之间的相互作用所致。
五、磷化膜的性能1. 耐腐蚀性磷化膜具有良好的耐腐蚀性,能够有效地保护钢铁表面不受环境气氛的侵蚀。
2. 机械性能磷化膜具有一定的硬度和耐磨性,可以提高钢铁表面的机械性能。
3. 色泽经过彩色处理后的磷化膜具有丰富的色彩,可以满足不同客户对钢铁表面颜色的需求。
六、常温彩色磷化在工业中的应用常温彩色磷化工艺在汽车制造、建筑、家居用品等领域都有着广泛的应用。
磷化膜金相
磷化膜金相磷化膜是一种表面处理技术,通过在金属表面形成一层磷化膜,起到保护金属、提高金属的耐腐蚀性、增强金属与涂层的附着力等作用。
在金属加工、制造业等领域具有广泛的应用。
本文将介绍磷化膜金相的分析方法及其应用,以期为相关领域提供参考。
一、磷化膜的定义与作用磷化膜是指在金属表面通过磷化反应形成的一层化合物膜。
其主要成分为磷酸盐和金属盐,具有以下作用:1.提高金属的耐腐蚀性:磷化膜能有效隔绝金属表面与外部环境的接触,降低金属的腐蚀速率。
2.增强金属与涂层的附着力:磷化膜具有良好的附着力,可提高金属表面涂层的耐久性和稳定性。
3.便于金属加工:磷化膜降低了金属表面的摩擦系数,使金属在加工过程中不易磨损。
二、金相分析方法金相分析是一种通过对金属组织结构进行观察和分析,以评价金属性能和质量的方法。
在磷化膜金相分析中,常用的方法有:1.光学显微镜观察:通过光学显微镜观察磷化膜的形态、厚度和均匀性,评价其质量。
2.扫描电子显微镜(SEM)观察:SEM能对磷化膜表面形貌进行高倍观察,分析其成分和结构。
3.X射线衍射(XRD)分析:XRD用于分析磷化膜的晶体结构和相组成。
三、磷化膜金相的分析步骤1.取样:从磷化处理的金属制品上切取适当大小的试样。
2.制备金相试样:采用金相切割机将试样切割成薄片,并抛光至镜面。
3.侵蚀:将抛光后的试样放入侵蚀液中,去除磷化膜表面的氧化物等杂质。
4.清洗:用去离子水冲洗侵蚀后的试样,去除残留的侵蚀液。
5.干燥:将清洗后的试样放入干燥器中,去除水分。
6.观察分析:采用光学显微镜、SEM和XRD等设备对磷化膜进行观察和分析。
四、磷化膜金相的应用领域磷化膜金相分析技术在以下领域具有广泛应用:1.金属加工行业:用于评价磷化处理效果,优化磷化工艺。
2.航空航天、汽车制造等领域:对高性能金属材料进行磷化处理,提高其耐腐蚀性和涂层附着力。
3.科研与教育:用于研究磷化膜的形成机理、性能与应用。
五、总结与展望磷化膜金相分析技术有助于评价磷化膜的质量和性能,为金属表面处理领域提供了有力支持。
关于磷化处理原理
金属磷化处理在各类制造业中对钢、镀锌钢、锌和铝等金属作磷化处理是表面处理中的重要步骤。
在油漆前的金属表面预处理中作磷化处理的目的是为了增强材料的抗腐蚀能力、帮助冷成形、改善部件在滑动接触时的摩擦性能。
本文将用实例来加以说明。
磷酸锌是一种在金属基材上生成的晶型转化膜,这种膜是利用了那些先让溶于酸的金属离子起反应然後经水稀释而成的磷化液来处理生成的。
传统的电镀法是利用电流在金属上生成镀膜,磷化则是让金属与磷化液接触发生酸蚀反应而生成磷化膜的。
硝酸和磷酸是常用的用于溶解金属的无机矿物酸。
依照工艺要求可以在磷化液中添加锌、镍和锰等金属离子。
为了得到特殊的效果,也可加一些其它金属离子,磷化液中加镍能提高材料的抗腐力 加快磷化反应。
近年来所发展的无镍工艺的效果已经也可在各方面与含镍工艺相竞争。
在磷化液中加入促进剂可以提高磷化反应速度、消除氢气的影响和控制磷化渣的生成。
促进剂可以是单一的物质、也可以为取得最佳效果而将几种物质混合一起使用。
可以选用的促进剂有亚硝酸盐/硝酸盐、氯酸盐、溴酸盐、过氧化物和一些有机物(如:硝基苯磺酸钠)。
在对热浸镀锌板或铝板作磷化处理时还常添加游离或络合的氟化物。
图1是使用不同的磷化工艺所生成的各种磷酸盐晶体。
一,磷化反应机理:1. 酸蚀反应金属表面与磷化液发生的第一个反应是将某些金属从表面溶解下来的酸蚀反应。
不同的磷化液对钢的酸蚀速度约1-3 g/m2;作厚膜磷化时,酸蚀反应速度还要求高许多。
酸蚀反应对形成涂膜是非常重要的,因为它既可净化金属表面、又能提高漆膜的附著力。
在酸蚀反应发生时,由于金属表面的溶解,所以紧靠表面的磷化液中的游离酸被消耗,金属离子进入磷化液,所溶入的金属离子类型与所处理的基材有关。
在磷化液中添加氧化促进剂可减少酸蚀反应时所生成的氢气:钢表面: Fe + 2H+1 + 2Ox →Fe+2 + 2HOx镀锌钢表面: Zn + 2H+1 + 2Ox →Zn+2 + 2HOx铝表面: Al + 3H+1 + 3Ox →Al+3 + 3HOx2. 磷化反应:在磷化液中所发生的第二个反应是磷化。
磷化成膜机理
磷化成膜机理1、化学转化过程所用的磷化液都是由磷酸、碱金属或重金属的磷酸二氢盐及氧化性促进剂组成的酸性溶液。
因此,整个磷化过程都包括含有基体金属的溶解反应、难溶磷酸盐结晶沉积的成膜过程及氧化性促进剂的去极化作用。
基体金属的溶解磷化液的PH 值一般都在2~之间,呈酸性。
因此当金属和此酸性溶液接触时,必然发生由局部阳极和局部阴极反应组成的金属溶解过程:局部阳极 Me Me 2++2e 局部阴极 2H ++2e H 2↑成膜反应由于局部阴极区域H +被还原而消耗,酸度下降,使得在第一阶段形成的可溶性二价金属磷酸二氢盐离解成溶解度较小的磷酸一氢盐:Me (H 2PO 4)2 MeHPO 4+H 3PO 4只要PH 上升到一定程度,则主要离解成不溶性二价金属磷酸盐。
此离解则比较迅速: Me (H 2PO 4)2 MeHPO 4+4H 3PO 4同时 MeHPO 4 Me 3(PO 4)2+H 3PO 4难溶的Me 3(PO 4)2在金属表面的阴极区域沉积析出。
当整个阴极区域都被沉积物覆盖时,成膜反应结束,从而在金属表面形成完整的磷化膜覆盖。
由于成膜反应的可溶性二价金属磷酸二氢盐可以是金属溶解生成的,也可以是溶液中原有的配方组成。
除磷酸铁盐膜外,其他所有的磷化膜的成膜物质都是添加配方中的原料。
难溶性磷酸盐的溶积度如表:氧化性促进剂的去极化作用和对金属溶解的促进金属溶解时产生的氢气易吸附于阴极的金属表面,从而阻碍水解产生的二价金属磷酸盐在阴极区域的沉积,不能形成磷化膜。
水解产物则于溶液中析出成为渣,即浪费成膜原料,也使渣量大大增加。
这样在工艺方面将造成困难,对膜的性能也不能保证,因为孔隙率很大。
氧化剂的去极化作用是将还原形成的初生态氢氧化成水;2[H]+[O] H 2O与去极化作用密切相关的是促进剂对金属溶解的促进。
它是通过促进剂对H 2的氧化和沉积作用,导致阳极电流密度增加而提高溶解速率,即提高可溶性二价金属磷酸二氢盐的生成速率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磷化膜的组成和成膜机理
深圳雷邦磷化液工程部编辑
磷化膜的形成过程是一种人工诱导及控制的腐蚀过程,阳极不断有金属溶解,阴极不断有氢气析出,晶粒不断生成且继续成长,直到生成连续的不溶于水的磷化膜。
磷化膜的形成,成倍地提高了分层的耐蚀性能和耐水性能,是公认的涂层的良好基底。
目前在薄板金属件的涂漆,100%倾向于先采用磷化处理,铸件在涂漆前也采用了磷化处理。
一、磷化膜的特性
(1)多孔性磷化膜具有多孔性的主要原因是磷化膜通常由许多大小相差悬殊的结晶
(6)绝缘性能磷化膜是非金属涂层,是电的不良导体,它能使金属工件表面由优良导体转变为不良导体。
二、磷化膜的组成
表2列出了相应的磷酸二氢盐为主要成分的溶液进行处理可获得的磷酸盐转化膜。
这些膜主要用于铁金属、铝、锌、镉及其合金上,而且由于以下原因膜的单位面积质量和表观密度不同。
①磷化件的材质及表面状态;
②早期的机械或化学处理方式;
③所采用的磷化工艺。
表2磷酸盐转化膜的主要类型及特征
3Me2+ + 2H2PO4=== 4H+ + Me3(PO4)2↓
将上述两个反应式结合起来,磷化过程的总反应方程式如下:
4Fe+3Me2+ + 6H2PO4- + 6NO2 ===
4FePO4↓+ Me2 (PO4 ) 2 + 6 H2O + 6NO ↑
(磷化膜)
实际的磷化反应远较上述复杂,因为有一些副反应生成。
磷化淤渣的主要成分是FePO4,但其中也有少量的Me3 (PO4)2。
磷化膜的主要成分是Me2 (PO4 ) 2、H2O,但也有磷酸铁与黑色的氧化铁。
在铁盐磷化过程中,由于所采用的酸式碱金属磷酸盐都是水溶性的,不能存在于磷化膜中。
碱金属的磷酸二氢盐溶液在氧化剂的存在下,例如空气中的氧,与钢铁表面产生下列反应。
4Fe + 4NaH2 PO4 + 3O2 === 2FePO4 + Fe2O3 + 2Na2HPO4 + 3H2O。