(完整版)四年级奥数教程(一)巧算加减法

合集下载

(完整版)四年级奥数速算与巧算.doc

(完整版)四年级奥数速算与巧算.doc

(完整版)四年级奥数速算与巧算.doc四年级奥数知识点:速算与巧算(一 )例1 计算 9+99+999+9999+99999解:在涉及所有数字都是 9 的计算中,常使用凑整法 . 例如将 999 化成 100 0—1 去计算 . 这是小学数学中常用的一种技巧 .9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105.例2 计算 199999+19999+1999+199+19解:此题各数字中,除最高位是1 外,其余都是9,仍使用凑整法 . 不过这里是加 1 凑整.( 如 199+1=200)199999+19999+1999+199+19=(19999+1)+(19999+1)+(1999+1)+(199+1)+(19+1)-5=200000+20000+2000+200+20-5=222220-5=22225.例3 算 (1+3+5+?+1989) - (2+4+6+?+1988)解法 2:先把两个括号内的数分相加,再相减 . 第一个括号内的数相加的果是:从1 到 1989 共有 995 个奇数,凑成 497 个 1990,剩下 995,第二个括号内的数相加的果是:从2 到 1988 共有 994 个偶数,凑成 497 个 1990.1990×497+995—1990×497=995.例 4 算 389+387+383+385+384+386+388解法1:认真观察每个加数,发现它们都和整数390 接近,所以选 390 为基准数 .389+387+383+385+384+386+388=390×7—1—3—7—5—6—4—=2730—28=2702.解法 2:也可以选 380 为基准数,则有389+387+383+385+384+386+388=380×7+9+7+3+5+4+6+8=2660+42=2702.例5 计算 (4942+4943+4938+4939+4941+4943)÷6解:认真观察可知此题关键是求括号中6 个相接近的数之和,故可选4940 为基准数 .(4942+4943+4938+4939+4941+4943)÷6=(4940×6+2+3—2—1+1+3)÷6=(4940×6+6) ÷6( 这里没有把4940×6先算出来,而是运=4940×6÷6+6÷6运用了除法中的巧算方法)=4940+1=4941.例6 计算54+99×99+45解:此题表面上看没有巧妙的算法,但如果把45 和 54 先结合可得 99,就可以运用乘法分配律进行简算了.54+99×99+45=(54+45)+99 ×99=99+99×99=99×(1+99)=99×100=9900.例7 计算9999×2222+3333×3334解:此题如果直接乘,数字较大,容易出错 . 如果将9999 变为3333×3,规律就出现了 .9999×2222+3333×3334=3333×3×2222+3333×3334=3333×6666+3333×3334 =3333×(6666+3334)=3333×10000=33330000.例8 1999+999×999解法 1:1999+999×999 =1000+999+999×999=1000+999×(1+999)=1000+999×1000=1000×(999+1)=1000×1000=1000000.解法 2:1999+999×999 =1999+999×(1000 -1)=1999+999000-999=(1999-999)+999000=1000+999000=1000000.有多少个零 .总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧.四年级奥数知识点:速算与巧算(二 )例1 比较下面两个积的大小:A=987654321×123456789,B=987654322×123456788.分析经审题可知 A的第一个因数的个位数字比 B 的第一个因数的个位数字小1,但A的第二个因数的个位数字比B的第二个因数的个位数字大1. 所以不经计算,凭直接观察不容易知道 A 和 B 哪个大 . 但是无论是对 A或是对 B,直接把两个因数相乘求积又太繁,所以我们开动脑筋,将A和B 先进行恒等变形,再作判断 .解:A=987654321×123456789=987654321×(123456788+1)=987654321×123456788+987654321.B=987654322×123456788=(987654321+1)×123456788=987654321×123456788+123456788.因为 987654321>123456788,所以 A>B.例 2 不用笔算,请你指出下面哪道题得数最大,并说明理由.241×249 242×248 243×247244×246245×245.解:利用乘法分配律,将各式恒等变形之后,再判断.241×249=(240+1) ×(250 —1)=240×250+1×9;242×248=(240+2) ×(250 —2)=240×250+2×8;243×247=(240+ 3) ×(250 —3)= 240 ×250+3×7;244×246=(240+4) ×(250 —4)=240×250+4×6;245×245=(240+5) ×(250 —5)=240×250+5×5.恒等变形以后的各式有相同的部分240 × 250 ,又有不同的部分1×9,2×8,3×7,4 ×6,5×5,由此很容易看出245×245 的积最大 .一般说来,将一个整数拆成两部分 ( 或两个整数 ) ,两部分的差值越小时,这两部分的乘积越大 .如: 10=1+9=2+8=3+7=4+6=5+5则5×5=25 积最大 .例3 求 1966 、 1976 、 1986 、 1996 、 2006 五个数的总和 .解:五个数中,后一个数都比前一个数大10,可看出1986 是这五个数的平均值,故其总和为:1986×5=9930.例 4 2 、4、6、8、10、12?是偶数,如果五个偶数的和是320,求它中最小的一个 .解:五个偶数的中一个数320÷5=64,因相偶数相差2,故五个偶数依次是60、62、64、66、68,其中最小的是 60.以上两,可以概括巧用中数的算方法. 三个自然数,中一个数首末两数的平均; 五个自然数,中的数也有似的性——它是五个自然数的平均 . 如果用字母表示更明,五个数可以作:x-2 、x—1、x、x+1、x+2. 如此推,于奇数个自然数,最中的数是所有些自然数的平均 .如:于 2n+1 个自然数可以表示:x—n,x—n+1,x-n+2 ,?,x —1, x , x+1 ,? x+n— 1,x+n,其中 x 是 2n+1 个自然数的平均 .巧用中数的算方法,可一步推广,看下面例 .例 5 将 1~1001 各数按下面格式排列:一个正方形框出九个数,要使九个数之和等于:①1986,② 2529,③ 1989,能否到 ?如果不到,明理由.解:仔细观察,方框中的九个数里,最中间的一个是这九个数的平均值,即中数 . 又因横行相邻两数相差 1,是 3 个连续自然数,竖列 3 个数中,上下两数相差 7. 框中的九个数之和应是 9 的倍数 .①1986 不是 9 的倍数,故不行 ;②2529÷9=281,是9 的倍数,但是281÷7=40×7+1,这说明281 在题中数表的最左一列,显然它不能做中数,也不行 ;③1989÷9=221,是9 的倍数,且221÷7=31×7+4,这就是说221 在数表中第四列,它可做中数 . 这样可求出所框九数之和为 1989 是办得到的,且最大的数是229,最小的数是 213.这个例题是所谓的“月历卡”上的数字问题的推广. 同学们,小小的月历卡上还有那么多有趣的问题呢! 所以平时要注意观察,认真思考,积累巧算经验.四年级奥数习题:速算与巧算(一 )1.算 899998+89998+8998+898+882.算 799999+79999+7999+799+793.算(1988+1986+1984+?+6+4+2)-(1+3+5+ ?+1983+1985+1987)4.算 1—2+3—4+5—6+?+1991— 1992+19935. 1 点敲 1 下,2 点敲 2 下,3 点敲 3 下,依次推 . 从 1 点到 1 2 点 12 个小内共敲了多少下 ?6.求出从 1~25 的全体自然数之和 .7.算1000+999—998—997+996+995—994—993+?+108+107— 106—105+104+103—102—1018.算 92+94+89+93+95+88+94+96+879.算(125 ×99+125)× 1610.算3×999+3+99×8+8+2×9+2+911.算999999×7805312. 两个 10 位数 1111111111和 9999999999 的乘中,有几个数字是奇数?解答1.利用凑整法解 . 899998+89998+8998+898+88=(899998+2)+(89998+2)+(8998+2)+(898+2)(88+2)-10=900000+90000+9000+900+90-10=999980.2.利用凑整法解 .799999+79999+7999+799+79=800000+80000+8000+800+80-5=888875.3.(1988+1986+1984+?+6+4+2)-(1+3+5+?+1983+1985+1987) =1988+1986+1984+?+6+4+2-1-3- 5?-1983-1985-1987=(1988-1987)+(1986- 1985)+?+(6 -5)+(4-3)+(2-1)=994.4.1-2+3 —4+5- 6+?+1991-1992+1993=1+(3-2)+(5- 4)+?+(1991 -1990)+(1 993-1992)=1+1×996 =997.5.1+2+3+4+5+6+7+8+9+10+11+12=13×6=78(下 ).6.1+2+3+?+24+25=(1+25)+(2+24)+(3+23)+ ?+(11+15)+(12+14)+13 =26×12+13=325.7.解法1:1000+999—998—997+996+995—994-993+?+108+107—106—10 5+104+103—102—101=(1000+999—998—997)+(996+995 —994- 993)+?+(108+ 107—106—105)+(104+103 —102—101)解法 2 :原式 =(1000—998)+(999 —997)+(104 —102)+(103—101)=2 × 450=900.解法3 :原式=1000+(999—998—997+996)+(995 —994 -993+992)+?+(107— 106—105+104)+(103—102—101+100)-100 =1000—100 =900.9.(125 ×99+125)×16=125×(99+1) ×16= 125 ×100×8×2=125×8×100×2=200000.10.3 ×999+3+99×8+8+2×9+2+9= 3 ×(999+1)+8 ×(99+1)+2 ×(9+1)+9=3×1000+8×100+2×10+9=3829.11.999999×78053=(1000000—1) ×78053=78053000000—78053=78052921947.12.1111111111×9999999999=1111111111×(10000000000—1)=11111111110000000000—1111111111=11111111108888888889.这个积有 10 个数字是奇数 .四年级奥数习题:速算与巧算(二 )1.右图的 30 个方格中,最上面的一横行和最左面的一竖列的数已经填好,其余每个格子中的数等于同一横行最左边的数与同一竖列最上面的数之和 ( 如方格中a=14+17=31). 右图填满后,这 30 个数的总和是多少 ?2.有两个算式:①98765×98769,②98766× 98768,请先不要计算出结果,用最简单的方法很快比较出哪个得数大,大多少?3.比较568×764 和567×765 哪个积大 ?4.在下面四个算式中,最大的得数是多少 ?① 1992 ×1999+1999 ② 1993 ×1998+1998③ 1994 ×1997+1997 ④ 1995 ×1996+19965.五个连续奇数的和是 85,求其中最大和最小的数 .6.45 是从小到大五个整数之和,这些整数相邻两数之差是3,请你写出这五个数 .7. 把从 1 到 100 的自然数如下表那样排列 . 在这个数表里,把长的方面 3 个数,宽的方面 2 个数,一共 6 个数用长方形框围起来,这6 个数的和为 81,在数表的别的地方,如上面一样地框起来的6 个数的和为429,问此时长方形框子里最大的数是多少 ?习题解答1. 先按图意将方格填好,再仔细观察,找出格中数字的规律进行巧算.解法 1:先算每一横行中的偶数之和:(12+14+16+18)×6=360.再算每一竖列中的奇数之和:(11+13+15+17+19)× 5=37 5最后算 30 个数的总和 =10+360+375=745.解法 2:把每格的数算出填好 .先算出 10+11+12+13+14+15+16+17+18+19=145,再算其余格中的数 . 经观察可以列出下式:(23+37)+(25+35) × 2+(27+33) ×3+(29+31) × 4=60 ×(1+ 2+ 3+4)=600最后算总和:总和 =145+600=745.2.①98765 ×98769= 98765 ×(98768+ 1)= 98765 × 98768+98765.② 98766 × 98768=(98765+1) × 98768 =98765 × 98768+ 98768.所以②比①大 3.3. 同上题解法相同:568×764>567×765.4.根据“若保持和不变,则两个数的差越小,积越大”,则1996×1996=3 984016 是最大的得数 .5.85 ÷5=17 为中数,则五个数是: 13、15、17、19、21 最大的是 21,最小的数是 13.6.45 ÷5=9 为中数,则这五个数是:3,6,9,12,15.7.观察已框出的六个数, 10 是上面一行的中间数, 17 是下面一行的中间数,10+17=27是上、下两行中间数之和. 这个中间数之和可以用81÷3=27 求得 .利用框中六个数的这种特点,求方框中的最大数.429÷3=143(143+7) ÷2=75 75+1=76最大数是 76.。

教案:奥数-第1讲加减法的巧算

教案:奥数-第1讲加减法的巧算

第1讲加减法的巧算(一)森林王国的歌舞比赛进行得既紧张又激烈。

选手们为争夺冠军,都在舞台上发挥着自己的最好水平。

台下的工作人员小熊和小白兔正在统计着最后的得分。

由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。

观众的情绪也影响着两位分数统计者。

只见分数一到小白兔手中,就像变魔术般地得出了答案。

等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。

小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。

于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。

你可以试一试。

”小熊照着小白兔说的去做,果然既快又对。

这下小熊明白了,掌握了速算的技巧,在工作和生活中的作用很大。

它不仅可以节省运算时间,更主要的是提高了我们的工作效率。

我们在进行速算时,要根据题目的具体情况灵活运用有关定律和法则,选择合理的方法。

下面介绍在整数加减法运算中常用的几种速算方法。

【基础再现】在进行加减运算时,为了又快又准确,除了要熟练地掌握计算法则外,还需要掌握一些巧算方法。

加减法的巧算主要是“凑整”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和。

这种“化零为整”的思想是加减法巧算的基础.加法具有以下两个运算律:(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。

即a+b=b+a 一般地,多个数相加,任意改变相加的次序,其和不变。

(2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者,先把后两个相加,再与第一个数相加,它们的和不变。

四年级奥数教程第1讲:巧算加减法

四年级奥数教程第1讲:巧算加减法

四年级奥数教程第1讲:巧算加减法例1计算:(1)2014+92-14;(2)823-92+177解(1)2014+92-14=2014-14+92=2000+92=2092;(2)823-92+177=823+177-92=1000-92=908(1)题运用了性质:a+b-c=a-c+b;(2)(2)题运用了性a-b+c=a+c-b例2计算(1)999+999×999(2)9+99+999+9999分析(1)题可逆用乘法对加法的分配律;(2)题可采取“添1凑整”的方法解(1)999+999×999=999×1+99×999=999×(1+999)=999×1000=999000(2)9+99+999+99910-1+100-1+100-1+10000-1=10+100+1000+10000-4=11110-4=11106 (1)题运用了性质:a×b+a×c=a×(b+c)【例3】计算:(1)528-(196+328)(2)1308-(308-49)解(1)528-(196+328=528-196-328=528-328-196=200-196=4(2)1308-(308-49)=1308-308+49 =1000+49=1049运用了性质:a-(b+c)=a-b-c=a-c-b;性质:a-(b-c)=a-b+c【例4】计算(1)(4256+125+875)-256(2)847-578+398-222解(1)(4256+125+875)-256=(4256-256)+(125+875)=4000+1000=5000;(2)847-578+398-222=847+398-578-222=847+400-2-(578+222)=1245-800=445例5】计算(1)701+697+703+704+696;(2)72+6+75+63+69解(1)701+697+703+704+696=700×5+(1+3+4)-(3+4)=3500+8-7=3501:(2)72+66+75+63+69=69×5+3-3+6-6+0=695×5=345【例6】计算:100+99-98-97+96+95-94-93+…+8+7-6-5+4+3-2-1原式=(100-98)+(99-97)+(96-94)+(95-93) +…:+(8-6)+(7-5)+(4-2)+(3-1)=2×50=100说明也可以依序把四个数结合为一组,得到100+99-98-97=96+95-94-93=…,=4+3-2-1=4即可将原式结合成25组,每组值均为4,结果等于4×25=100计算下列各题:(1)937+115-37+85;(2)999+99+9+3.计算下列各题(1)9.7+9.8+9.9+10.1+10.2+10.3;(2)100-99+98-97+96-95+…+4-3+2-1.找规律计算:1×5+4=9=3×3,2×6+4=4×43×7+4=25=5×54×8+4=36=6×6......10×( )+4=()=()×()(提示:四个算式中的规律是等式左边第二个因数比第一个因数大4得10×14+4=144=12×12)计算:2325+7418+7675-2318解=2325+7675+7418-2318=10000+5100=15100计算:1000+999-998-97+996+995-994-993+..... 108+107-106-105+104+103-102-101提示:=(1000-998)+(999-997)+(996-994)......(103-101)=2×450=900计算:1+2+3+…+99+100+99+…+3+2+1 提示:(1+99)+(2+98)+(3+97)......+(98+2)+(99+1)=100×100=10000某篮球队在今年上半年共进行了10场比赛,每场比赛的得分是128,115,137,109,116,130,126,120,115,12 4那么今年上半年平均每场比赛得多少分?提示:选基准数为120,则累计差=8-5+17-11-4+10+6-5+4=20平均每场比赛得120+20÷2=122分已知:1²+2²+3²+.....9²+10²=385,求1×2+2×3+3×4+4×5+,…+10×11=提示:=1×(1+1)+2×(2+1)+3×(3+1)......10×(10+1)=1²+1+2²+2+3²+3+4²+4.....+10²+10=(1²+2²+3²+4²......10²)+(1+2+3+4+5 (10)=385+11×5=440348-69+652=348+652-69=1000-69=931解:572+159+28=572+28+159=600+59=759827-129-271=827-(129+271)=827-400 =427348+69-48=348-48+69=300+ 69=369例2 计算。

四年级奥数详解答案_第1讲_速算与巧算

四年级奥数详解答案_第1讲_速算与巧算

四年级奥数详解答案_第1讲_速算与巧算四年级奥数详解答案第1讲速算与巧算(一)第一讲速算与巧算(一)一、知识概要1.同级运算性质a+b-c=a-c+b a÷b×c=a×c÷b2.去(添)括号性质a+(b-c)= a+b-c a×(b÷c)= a×b÷ca-(b-c) = a-b+c a÷(b×c)=a÷c÷ca-(b+c) = a-b-c a÷(b÷c)=a÷c×c这就是:在同一级运算中,如果括号前面是“+”或“×”,那么去(添)括号后,括号里的运算就不要变号;如果括号前面是“-”或“÷”,那么,去(添)括号后,括号里的运算就要变号。

3.乘除的分配性质(a+b)×c=ac+bc (a+b)÷c=+4.数列性质S=(an+a1)×n÷2 其中n=(an-a1)÷d+1S表示等差数列前n项的和,an表示末项,a1表示前项,n表示项数,d表示公差。

5.数的分解转化与组合如:85+3或10-2或2×4,或16÷2……1234+2341+3412+4124=1111+2222+3333+4444二、典型例题精讲例 1. (2002-1)+(2001-2)+2000-3)+…+(1003-1000)+(1002-1001)解:原式=2001+1999+1997+…+3+1 (等差数列)=(2001+1)×1001÷2 【运用n=(an-a1)÷d+1; S=(an+a1)×n ÷2】=2002÷2×1001 【运用a×c÷b = a÷b×c】=1001×1001=1002001例2.分析. 9×9+19=100 (数的组合规律)99×99+199=10000999×999+1999=1000000解:原式=例3. 477 477 477 477÷159 159 159 159解:原式=(159159159159×3)÷159159159159 (数的分解转化) =159159159159÷159159159159×3 (运用a×b÷c=a÷c×b)=1×3=3三、历届竞赛试题选讲例4. (第二届北大少年数学邀请赛第一试试题)(123456+234561+345612+456123+56123+612345)÷6解:原式=(111111×1+111111×2+111111×3+111111×4+111111×5+11 1111×6)÷6 =111111×(1+2+3+4+5+6)÷6 (数的分解、分配律) =111111×21÷6=111111×7×3÷6 (数的分解)=777777÷6×3=777777÷(6÷3) 【运用a÷b×c=a÷(b÷c)】=777777÷2=388888.5例5. (1999年铜川市…学数学知识竞赛试题)5×19.99+16×1.999+0.34×199.9解:原式=50×1.999+16×1.999+34×1.999 (数的组合规律)=(50+16+34)×1.999 (分配律)=100×1.999=199.9例6. (天津市1998~1999学年度…学数学学科竞赛决赛试题)1+3+5+7+…+29-2-4-6-…-28解:原式=1+(3-2)+(5-4)=(7-6)+…+(29-28) 【运用a+b-c= a+(b-c)】=1+=15解法二:原式=【(29+1)×15÷2】-【(28+2)×14÷2】【运用S=(an+a1)×n ÷2】=225-210=15四、练习巩固与拓展1.100+99-98+97-96+…+3-2+12.2772+28+34965÷353.(1×6×9+2×12×18+3×18×27+…+100×600×900)÷(1×2×3 +2×4×6+3×6×9+…+100×200×300)4.6273+9999×9999+37265.(1000+123+234)×(123+234+345)-(1000+123+234+345)×(123+234)6.379000÷125÷87.0.125×0.25×0.5×648.7.5×46.7+17.9×2.59.6.6×78.5+7.85×3410.(199.2+19.92+1.992+0.1992)÷0.111111.1999+199+19+912.99999÷5+9999÷5+999÷5+99÷5+9÷513.9999×4444÷666614.(1998+1999+1995+1991+1992)÷515.1111111111×9999999999第一讲<练习巩固与拓展>答案1.原式=100+(99-98)+(97-96)+…+(3-2)+1 =100+ = 1502. 原式=(2800-28)÷28+(35000-35)÷35 =2800÷28-28÷28+35000÷35-35÷35=100-1+1000-1 =10983. 原式=【(1×6×9)×(13+23+33+…1003)】÷【(1×2×3)×(13+23+33+…1003)】=(1×6×9)÷(1×2×3)×(13+23+…1003)÷(13+23+…1003) = 9×1=94. 原式=9999+(6273+3726)×9999=9999+9999×9999 =9999×(1+9999) =999900005. 原式= 1000×(123+234+345)+(123+234)×(123+234+345)-1000×(123+234)-(123+234+345×(123+234)=1000×(123+234+345-123-234)=3450006. 原式=379000÷(125×8) = 379000÷1000=3797. 原式=(0.125×8)×(0.25×4)×(0.5×2) =1×1×1×1=18. 原式=7.5×(28.8+17.9)+17.9×2.5=7.5×28+17.9×(7.5+2.5)=216+179=3959. 原式=78.5×(6.6+3.4)=78510. 原式=(200+20+2+0.2-0.8888) ÷0.1111=222.2÷0.1111-0.8888÷0.1111=2000-8 =199211. 原式=(1999+1)+(199+1)+(19+1)+(9+1)-4 =222612. 原式=(99999+9999+999+99+9)÷5 = (100000+10000+1000+100+10-5)÷5=(111110-5)÷5 = 111110÷5-5÷5 =22222-1 =2222113. 原式=9×1111×4×1111÷(6×1111)=9×1111×4×1111÷6÷1111=9×4÷6×1111 =6×1111 =666614. 原式=1995×5÷5 (1995为中项,S=中项×n)=199515. 原式=1111111111×(10000000000-1)=11111111110000000000-1111111111 =11111111108888888889。

四年级奥数教程

四年级奥数教程

四年级奥数教程一、四则运算与简便计算。

1. 加法交换律和结合律。

- 加法交换律:a + b=b + a。

例如:3+5 = 5+3=8。

- 加法结合律:(a + b)+c=a+(b + c)。

比如计算(2+3)+5,根据加法结合律可先算3 + 5 = 8,再算2+8 = 10,也可以先算2+3 = 5,再算5+5 = 10。

2. 乘法交换律、结合律和分配律。

- 乘法交换律:a× b = b× a。

例如2×3=3×2 = 6。

- 乘法结合律:(a× b)× c=a×(b× c)。

如(2×3)×4 = 2×(3×4)=24。

- 乘法分配律:a×(b + c)=a× b+a× c。

例如2×(3 + 4)=2×3+2×4 = 6 + 8=14。

- 在四则混合运算中,利用这些运算定律可以简便计算。

例如:- 34+25+66=(34+66)+25 = 100+25 = 125(加法交换律和结合律)- 25×12=25×(4×3)=(25×4)×3 = 100×3 = 300(乘法结合律)- 12×(10 + 5)=12×10+12×5 = 120 + 60 = 180(乘法分配律)二、数字规律。

1. 数列规律。

- 等差数列:相邻两项的差相等。

例如:1,3,5,7,9·s,相邻两项的差都是2。

其通项公式为a_n=a_1+(n - 1)d(a_1为首项,d为公差,n为项数)。

- 等比数列:相邻两项的比值相等。

如1,2,4,8,16·s,相邻两项的比值为2。

通项公式为a_n=a_1q^n - 1(a_1为首项,q为公比,n为项数)。

四年级奥数第一讲_速算与巧算含答案

四年级奥数第一讲_速算与巧算含答案

四年级奥数第⼀讲_速算与巧算含答案第⼀讲速算与巧算⼀、知识点:1. 要认真观察算式中数的特点,算式中运算符号的特点。

2. 掌握基本的运算定律:乘法交换律、乘法结合律、乘法分配律。

3. 掌握速算与巧算的⽅法:如等差数列求知、凑整、拆数等等。

⼆、典例剖析:例(1) 19199199919999199999++++分析:运⽤凑整法来解⼗分⽅便,也不容易出错误。

解:原式()()()() =(201)+2001+20001+200001+2000001 -----=20+200+2000+20000+2000005 =2222205 =222215--练⼀练:898998999899998999998+++++=例(2)10099989796321+-+-++-+分析:暂不看头尾两个数,就会发现中间都是先加后减,并且加数与减数相差1,所以就算这题可以先把中间部分分组凑成若⼲个1,再与其余部分进⾏计算。

解:原式100(9998)(9796)(32)1=+-+-++-+100491=++150=练⼀练:989796959493929190894321+--++--++---++例(3) 1111111111?分析:111,1111121,11111112321?=?=?= 解:1111111111123454321?=练⼀练:2222222222?可以探索⼀下11×11,11×12,…11×19,11×21…11×29…例(4) 1234314243212413+++分析:数字1、2、3、4,在个位、⼗位、百位、千位上均各出现⼀次。

解:原式1111222233334444=+++ 1111(1234)=?+++ 111110=? 11110=练⼀练:5678967895789568956795678++++例(5) 339340341342343344345++++++分析:这七个数均差1,且个数为7个,所以中间数就是七个数的中位数。

四年级奥数教程第1讲:巧算加减法

四年级奥数教程第1讲:巧算加减法

四年级奥数教程第1讲:巧算加减法四年级奥数教程第1讲:巧算加减法例1计算:(1)2014+92-14;(2)823-92+177解(1)2014+92-14=2014-14+92=2000+92=2092;(2)823-92+177=823+177-92=1000-92=908(1)题运用了性质:a+b-c=a-c+b;(2)(2)题运用了性a-b+c=a+c-b例2计算(1)999+999×999(2)9+99+999+9999分析(1)题可逆用乘法对加法的分配律;(2)题可采取“添1凑整”的方法解(1)999+999×999 =999×1+99×999=999×(1+999)=999×1000=999000(2)9+99+999+99910-1+100-1+100-1+10000-1=10+100+1000+10000-4=11110-4=11106 (1)题运用了性质:a×b+a×c=a×(b+c)【例3】计算:(1)528-(196+328)(2)1308-(308-49)解(1)528-(196+328=528-196-328=528-328-196=200-196=4(2)1308-(308-49)=1308-308+49 =1000+49=1049运用了性质:a-(b+c)=a-b-c=a-c-b; 性质:a-(b-c)=a-b+c【例4】计算(1)(4256+125+875)-256(2)847-578+398-222解(1)(4256+125+875)-256=(4256-256)+(125+875)=4000+1000=5000;(2)847-578+398-222=847+398-578-222=847+400-2-(578+222)=1245-800=445例5】计算(1)701+697+703+704+696;(2)72+6+75+63+69解(1)701+697+703+704+696=700×5+(1+3+4)-(3+4)=3500+8-7=3501:(2)72+66+75+63+69=69×5+3-3+6-6+0=695×5=345【例6】计算:100+99-98-97+96+95-94-93+…+8+7-6-5+4+3-2-1原式=(100-98)+(99-97)+(96-94)+(95-93) +…:+(8-6)+(7-5)+(4-2)+(3-1)=2×50=100说明也可以依序把四个数结合为一组,得到100+99-98-97=96+95-94-93=…,=4+3-2-1=4即可将原式结合成25组,每组值均为4,结果等于4×25=100计算下列各题:(1)937+115-37+85;(2)999+99+9+3.计算下列各题(1)9.7+9.8+9.9+10.1+10.2+10.3;(2)100-99+98-97+96-95+…+4-3+2-1.找规律计算:1×5+4=9=3×3,2×6+4=4×43×7+4=25=5×54×8+4=36=6×6......10×( )+4=()=()×()(提示:四个算式中的规律是等式左边第二个因数比第一个因数大4得10×14+4=144=12×12)计算:2325+7418+7675-2318解=2325+7675+7418-2318=10000+5100=15100计算:1000+999-998-97+996+995-994-993+..... 108+107-106-105+104+103-102-101提示:=(1000-998)+(999-997)+(996-994) (103)101)=2×450=900计算:1+2+3+…+99+100+99+…+3+2+1 提示:(1+99)+(2+98)+(3+97)......+(98+2)+(99+1)=100×100=10000某篮球队在今年上半年共进行了10场比赛,每场比赛的得分是128,115,137,109,116,130,126,120,115,12 4那么今年上半年平均每场比赛得多少分?提示:选基准数为120,则累计差=8-5+17-11-4+10+6-5+4=20平均每场比赛得120+20÷2=122分已知:12+22+32+.....92+102=385,求1×2+2×3+3×4+4×5+,…+10×11=提示:=1×(1+1)+2×(2+1)+3×(3+1)......10×(10+1)=12+1+22+2+32+3+42+4.....+102+10=(12+22+32+42......102)+(1+2+3+4+5 (10)=385+11×5=440348-69+652=348+652-69=1000-69=931 解:572+159+28=572+28+159=600+59=759827-129-271=827-(129+271)=827-400 =427348+69-48=348-48+69=300+ 69=369例2 计算。

四年级奥数——速算与巧算(加减乘除)

四年级奥数——速算与巧算(加减乘除)

四年级奥数春季班速算与巧算计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

例1所用的方法叫做加法的基准数法。

这种方法适用于加数较多,而且所有的加数相差不大的情况。

作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。

由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。

在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。

同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。

例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。

求平均每块麦田的产量。

完整版)四年级奥数速算与巧算

完整版)四年级奥数速算与巧算

完整版)四年级奥数速算与巧算用了基准数的特性,直接求解)4940+14941.四年级奥数知识点:速算与巧算(一)例1:计算9+99+999+9999+.解法:在所有数字都是9的计算中,常使用凑整法。

例如,将999化成100-1去计算,这是小学数学中常用的一种技巧。

9+99+999+9999+10-1)+(100-1)+(1000-1)+(-1)+(-1)10+100+1000++-5-5.例2:计算++1999+199+19.解法:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法。

不过这里是加1凑整(如199+1=200)。

++1999+199+19+1)+(+1)+(1999+1)+(199+1)+(19+1)-5++2000+200+20-5-5.例3:计算(1+3+5+…+1989)-(2+4+6+…+1988)。

解法:先把两个括号内的数分别相加,再相减。

第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995;第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.1990×497+995-1990×497=995.例4:计算389+387+383+385+384+386+388.解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数。

389+387+383+385+384+386+388390×7-1-3-7-5-6-42730-282702.解法2:也可以选380为基准数,则有:389+387+383+385+384+386+388380×7+9+7+3+5+4+6+82660+422702.例5:计算(4942+4943+4938+4939+4941+4943)÷6.解法:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数。

四年级奥数:巧算加减法(学生版)

四年级奥数:巧算加减法(学生版)

课题巧算加减法在千姿百态的数学计算中,巧算是其最为艳丽的一朵奇葩,要想算得又快又准,关键在于掌握运算技巧,了解题目的特点,善于运用运用运算定律和性质(包括正用、逆用、连用)。

实际计算时要敏于观察、善于思考,选用合理、灵活的计算方法,使计算简便易行,即巧算。

教学目标1、熟练掌握加减法运算法定律及性质2、善于运用运算定律和性质(包括正用、逆用、连用)。

教学重难点重点:加法运算律难点:把加法运算律沿用到加减法混合运算中,尤其在含有括号的题目中。

教学过程一、复习引入1、填空a +b = ___ + ___ (a + b) +c = ___ + (___ + ___)2、下面哪些算式运用了加法运算律?分别运用了哪些运算定律?76 + 18 = 18 + 7631 + 67 + 19 =31 + 19 + 6756 + 72 + 28 = 56 + (72 + 28)三、讲授新课例1、按四则运算运算法则计算下列各题(1)、823 + 92 - 23 (2)、823 - 23 + 92从这个例题中我们发现,我们调换了加法跟减法的顺序,但是结果完全一样,这就说明这种调换不改变运算本质,是恒等的,是可行的,而我们再对比计算过程,不难发现,(2)的运算量要远小于(1),那么我们称(2)是(1)的简便计算. 我们把此题用字母进行一般化:a +b -c = a - c + b练1、计算下题,你能得出什么结论吗?(1) 823 - 92 + 177 (2) 823 + 177 - 92解:结论:___________________________________________.由上述4个题目我们得到两个很重要的结论,这对今后的计算很有帮助. 例2、计算(1)、999 + 1999 × 999 (2)、9 + 99 + 999 + 9999分析(1)题可逆用乘法分配律;(2)题可采取“添1凑整”的方法.说明(1)题运用了性质:a × b + a × c = a × (b + c).随堂练习1计算下列各题(1)937 + 115 - 37 + 85 (2)995 + 996 + 997 + 998 + 999例3计算(1) 528 - (196 + 328)(2)1308 - (308 - 49)我们得到如下结论: a - (b - c) = a - b + c我们不妨用如下题目来验证一下这个结论1956 - (956 - 347) 1956 - 956 + 347解:由上述两题我们又得到两个结论,一个是以前学习过的,一个是今天所学:a - (b + c) = a - b -c = a - c - ba - (b - c) = a - b + c请注意区分。

最新四年级奥数教程(完美修复版本)

最新四年级奥数教程(完美修复版本)

小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

小学四年级奥数教程-速算与巧算(一)

小学四年级奥数教程-速算与巧算(一)

速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

例1所用的方法叫做加法的基准数法。

这种方法适用于加数较多,而且所有的加数相差不大的情况。

作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。

由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。

在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。

同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。

例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。

求平均每块麦田的产量。

四年级奥数1加减巧算

四年级奥数1加减巧算

志存高远务实求索课题:加减巧算授课日期:2011-9-3 教师:教师电话:班级:四年级数学(1)班学生姓名:励志名言:在我们人生的大道上,肯定会遇到许许多多的困难。

但我们是不是都知道,在前进的道路上,搬开别人脚下的绊脚石,有时恰恰是为自己铺路?第一讲加减巧算在进行加减巧算时,为了达到运算迅速又准确的目的,出了要熟练的掌握计算法则,还需要掌握一些巧算的方法。

加、减法的巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看做整十、整百、整千的数进行计算,最后将多加的减去,少加的加上,多减的加上,少减的减去。

难题点拨1★下列两题,看谁算得又对又快。

1. 726+4952. 986+797★拓展:迅速计算出下面两道题得结果。

1. 1267-6982. 3454-1896★想一想、做一做。

1.用简便方法计算下面各题。

2104+1898 3295+2162 1527+796495+899 8+98+998+398 1995+6371563-795 3211-2093 864-5972312-1494 1106-698 821-399★难题点拨2你能很快算出下面两道题得结果吗?1. 1865+5072. 753+908★拓展:1. 914-607 2. 2105-1808★想一想、做一做。

1. 用简便方法计算下面各题。

1579+606 1185+ 1209 704+929602+1399 12+103+1004+7014 11+111+11111240-509 841-369 1005-709705-308 4101-2095 3121-405-1216★难题点拨31. 486+327+514+2232. 722-364+1783. 936+487-736★想一想、做一做。

计算下面各题。

59+173+284+227+41+16 193+261+439+17184+306+176+116+24 38+192+72+128 754-309+156 1182-793+118 572-291+128 815+326-415 796+519-696 907+2156-707★难题点拨41. 462+(338-179)2. 829-(76+229)3. 753-(315-247)★拓展:1. 725-623+523 2. 416-182-218★想一想、做一做。

(完整word)四年级加减法速算巧算

(完整word)四年级加减法速算巧算

计算是数学的基础,在计算中,我们要巧妙利用数的某些特点进行速算与巧算,在解题的过程中,掌握其中的规律,做到灵活应用运算定律,这一讲,我们学习加、减法的巧算方法,主要根据加、减法的运算定律和运算性质,通过适当的技巧、方法,使计算简便化。

主要运算定律及性质:1、加法的交换律:A+B=B+A2、加法结合律:(A+B)+C=A+(B+C)3、加减法运算性质:A-B-C=A-(B+C)A+B-C=A-C+B=A+(B-C)3、在加法、减法和加减混合运算中,常常利用改变运算顺序或添加括号的方法进行巧算。

4、加减法的速算与巧算常用到的方法还有以下两种:①借数凑数法巧算;②利用平均数进行巧算。

一、综合运用加减法混合运算中可交换的性质例1、计算(1)937+115-37+85原式=(937-37)+(115+85)=900+200=1100(2)1897+689+103原式=(1897+103)+689=2000+689=2689(3)564-(387-136)原式=564-387+136=564+136随堂小练:计算下列各题(1)937+115 - 37+85(2)995+996+997+998+999二、选择“基准数”例1、计算701+697+703+704+696原式=700×5+(1-3+3+4-4)=3500+1=3501例2、计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成1000—1去计算.这是小学数学中常用的一种技巧。

原式=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105例3、计算701+697+703+704+696分析(1)这几个数都接近700,选择700作为基准数,计算的时候,找到每个数与700的差,大于700的部分作为加数,小于700的部分作为减数,用700与项数的积再加、减这些“相差数”就是所求的结果。

四年级奥数加减法的巧算

四年级奥数加减法的巧算

第一讲加、减法的计算及巧算四年级目标链接:计算是数学的基础,在计算中,我们要巧妙利用数的某些特点进行速算与巧算,在解题的过程中,掌握其中的规律,做到灵活应用运算定律,这一讲,我们学习加、减法的巧算方法,主要根据加、减法的运算定律和运算性质,通过适当的技巧、方法,使计算简便化。

主要运算定律及性质:1、加法的交换律:A+B=B+A2、加法结合律:(A+B)+C=A+(B+C)3、减法运算性质:A-B-C=A-(B+C)问题探索:能力展示:1、口算(考察学生计算速度)214+154 201+351 521-350 356-253 5840+22 2548-340 24+752 254+300 2510-123 87478+3362、计算(考察计算能力)365.84+57.5 21040-2546 302010-36095+3451例1、计算:①32+243+36+668+57+64 ②645+268-31+555-168-69例2、计算:(1)874-362-138 (2)874-362-162(3)874-(374+138)(4)874-(362-126)例3、计算:(1)232+239+237+235+236+233 (2)1+2+3+4+………+49+50例4、计算:112+111-110-109+108+107-106-105+104+103-102-101+100+99-98-97能力展示:1、347+362+453+3382、2345+6789+7655+32113、9979+994+1274、1371-289-3715、846-163+11546、1643+296+72+4357+1187、48+326+52-17+274 8、1756-(756+498)9、368+(134-68)10、2663-874-1126+337拓展练习1、534+467-334-267+1112、1839-(56-161)3、15873-346-873-6544、2380-(167+380)-3335、208+573-136+182-64-736、127+125+126+123+129+1227、112+111-110-109+108+107-106-105+104+103-102-101+100+99-98-97。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题巧算加减法在千姿百态的数学计算中,巧算是其最为艳丽的一朵奇葩,要想算得又快又准,关键在于掌握运算技巧,了解题目的特点,善于运用运用运算定律和性质(包括正用、逆用、连用)。

实际计算时要敏于观察、善于思考,选用合理、灵活的计算方法,使计算简便易行,即巧算。

教学目标1、熟练掌握加减法运算法定律及性质2、善于运用运算定律和性质(包括正用、逆用、连用)。

教学重难点重点:加法运算律难点:把加法运算律沿用到加减法混合运算中,尤其在含有括号的题目中。

教学过程一、高斯计数的典故高斯出生在一个贫穷的家庭。

他八岁时进入乡村小学读书。

教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。

而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。

这一天正是数学教师情绪低落的一天。

同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天抓这些学生处罚了。

“你们今天替我算从1加2加3一直到100的和。

谁算不出来就罚他不能回家吃午饭。

”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。

教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。

有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。

还不到半个小时,小高斯拿起了他的石板走上前去。

“老师,答案是不是这样?”老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。

”他想不可能这么快就会有答案了。

可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。

”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数的方法。

高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。

他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。

在他的鼓励下,高斯以后便在数学上作了一些重要的研究。

长大后,高斯成为了德国最杰出的科学家、天文学家、数学家。

数学家们则称呼他为“数学王子”。

高斯计数的公式+=++nΛn+n++)124(31÷2二、复习引入1、填空a +b = ___ + ___ (a + b) +c = ___ + (___ + ___)2、下面哪些算式运用了加法运算律?分别运用了哪些运算定律?76 + 18 = 18 + 7637 + 45 = 35 + 4731 + 67 + 19 =31 + 19 + 6756 + 72 + 28 = 56 + (72 + 28)24 + 42 + 76 + 58 = (24 + 76) + (42 + 58)三、讲授新课刚刚我们就四年级下册中讲述的加法运算律进行了回顾,我们今天的课题是巧算加减法,那么我们可以预见,我们这些刚复习的运算规律在我们马上的学习中肯定会用到,值得思考的是,我们刚刚讲的全是加法的运算律,那到了加减混合运算时我们该如何灵活应用,这讲师我们这节课的重点。

我们先做一道例题例1、按四则运算运算法则计算下列各题(1)、823 + 92 - 23 (2)、823 - 23 + 92 解:(1)原式 = 915 - 23= 892(2)、原式 = 800 + 92=892从这个例题中我们发现,我们调换了加法跟减法的顺序,但是结果完全一样,这就说明这种调换不改变运算本质,是恒等的,是可行的,而我们再对比计算过程,不难发现,(2)的运算量要远小于(1),那么我们称(2)是(1)的简便计算,我们把例(1)进行改写:解:原式 = 823 - 23 + 92= 800 + 92= 892我们把此题用字母进行一般化:a +b -c = a - c + b练1、计算下题,你能得出什么结论吗?(1) 823 - 92 + 177(2) 823 + 177 - 92解:结论:___________________________________________.由上述4个题目我们得到两个很重要的结论,这对今后的计算很有帮助.例2、计算(1)、999 + 999 × 999(2)、9 + 99 + 999 + 9999分析(1)题可逆用乘法分配律;(2)题可采取“添1凑整”的方法.解:(1) 999 + 999 × 999= 999 × 1 + 999 × 999= 999 ×(1 + 999)= 999 × 1000= 999 000(2)9 + 99 + 999 + 9999= 10 - 1 + 100 - 1 + 1000 - 1 + 10000 - 1= 10 + 100 + 1000 + 10000= 11 110 - 4= 11 106说明(1)题运用了性质:a × b + a × c = a × (b + c).随堂练习1计算下列各题(1)937 + 115 - 37 + 85(2)995 + 996 + 997 + 998 + 999例3计算(1) 528 - (196 + 328)(2) 1308 - (308 - 49)分析加减简便运算的基本思路是“凑整”,即将能通过加减运算后得到整十、整百、整千……的数,先运用性质计算它们的结果.例(1)用的方法是我们课本上已经学习过的,528 - (196 + 328)= 528 - 196 - 328= 528 - 328 - 196= 200 - 196= 4;(3)涉及到一个去括号的问题,我们可以先按法则计算,即先算括号,得:1308 - (308 - 49)= 1308 - 259= 1049我们再看这样一个题1308 - 308 + 49= 1000 + 49= 1049发现上两题结果一样,而题中除了括号及符号两题出现数字均相同,也就是他们也满足某种恒等变换,仔细观察,就是去括号的方法,我们得到如下结论:a - (b - c) = a - b + c我们不妨用如下题目来验证一下这个结论1956 - (956 - 347) 1956 - 956 + 347解:由上述两题我们又得到两个结论,一个是以前学习过的,一个是今天所学:a - (b + c) = a - b -c = a - c - ba - (b - c) = a - b + c请注意区分。

例4 有了上述的结论,加上我们平时的数学计算功底,相信你能很快解出下面两题哦。

(1)(4256 + 125 +857) - 256(2)847 - 578 + 389 - 222解:随堂练习2 计算下列各题(1)354 + (646 - 198)(2)3842 - 1576 -433 - 842解:例5计算(1)701 + 697 + 703 + 704 + 696(2)72 + 66 + 75 + 63 + 69分析(1)这几个数都接近700,选择700作为基准数,计算的时候,找到每个数与700的差,大于700的部分作为加数,小于700的部分作为减数,用700与项数的积再加、减这些“相差数”就是所求的结果。

(2)选取这几个数的中间数69为基准数,先用69乘以项数,再口算出各数与69的差,通过加减相抵,就能很快求和。

解:(1) 701 + 697 + 703 + 704 + 696= 700×5 + (1 + 3 + 4)-(3 + 4)= 3500 + 8 - 7= 3501(2) 72 + 66 + 75 + 63 + 69= 69×5 + 3 - 3 + 6 - 6 + 0= 69×5= 345说明若干个比较接近的数相加,可以从这些数中选择一个数作为计算的基础,这个数叫做“基准数”.(2)中的“基准数”若选成为70,求和更方便,你想试试吗?例6计算--++-++--+Λ-100--+++5643199729798896959394分析这是一道多个数进行加、减运算的综合题,加减项数弓有100项,若要化简计算,可通过前后次序的交换,把两个数结合为一组,共可结合50组,每组值均为2。

解:+-+--100(-++原式+-=Λ98-+-+-+957()68())54()13()293(9799()()9496)502⨯=100=说明 也可以依序把四个数结合为一组,得到:41234567893949596979899100=--+=--+=--+=--+即可以将原式结合成25组,每组值均为4,结果等于4×25 = 100。

随堂练习3 计算下列各题(1)9.7 + 9.8 + 9.9 + 10.1 + 10.2 + 10.3(2)2000 + 1999 - 1998 - 1997 + 1996 + 1995 - 1994 - 1993 + … + 8 + 7 - 6 - 5 + 4 + 3 - 2 - 1。

相关文档
最新文档