场强的计算(无限长直线)
电场强度的八种求解方法(无答案)
3kq A. 3l2
3kq B. l2
3kq C. l2
2 3kq D. l2
3.2.4 对称法
利用空间上对称分布的电荷形成的电场具有对称性的特点,使复杂电场的叠加计算问题大为简化.
3 例如:如上图所示,均匀带电的4球壳在 O 点产生的场强,等效为弧 BC 产生的场强,弧 BC 产生的场强方向,又等效 为弧的中点 M 在 O 点产生的场强方向. 题6 如图所示,一半径为 R 的圆盘上均匀分布着电荷量为 Q 的电荷,在垂直于圆盘且过圆心 c 的轴线上有 a、b、d 三个点, a 和 b、b 和 c、c 和 d 间的距离均为 R,在 a 点有一电荷量为 q(q>0)的固定点电荷.已知 b 点处的场强为零,则 d 点处 场强的大小为(k 为静电力常量)( )
A.平行于 AC 边
B.平行于 AB 边
C.垂直于 AB 边指向 C
D.垂直于 AB 边指向 AB
2. 如图所示,真空中 O 点有一点电荷,在它产生的电场中有 a、b 两点,a 点的场强大小为 Ea,方向与 ab 连线成 60°⻆,
b 点的场强大小为 Eb,方向与 ab 连线成 30°⻆.关于 a、b 两点场强大小 Ea、Eb 的关系,以下结论正确的是( )
比较项目
等量异种点电荷
等量同种点电荷
电场线的分布图
连线中点 O 处的场强 连线上的场强大小 (从左到右)
沿中垂线由 O 点向外 场强大小
关于 O 点对称的 A 与 A′,B 与 B′的场强
连线上 O 点场强最小,指向负电荷一方 沿连线先变小,再变大 O 点最大,向外逐渐变小 等大同向
为零 沿连线先变小,再变大 O 点最小,向外先变大后变小
4q A.k h2
电场强度的几种计算方法
电场强度的几种求法一.公式法1.qF E =是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用。
2.2r k Q E =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。
3.dU E =是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。
二.对称叠加法当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。
例:如图,带电量为+q 的点电荷与均匀带电。
例:如图,带电量为+q 的点电荷与均匀带电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳一分为二,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称。
已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为r qk =ϕ。
假设左侧部分在M 点的电场强度为E 1,电势为1ϕ;右侧部分在M 点的电场强度为E 2,电势为2ϕ;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4,下列说法中正确的是( )A .若左右两部分的表面积相等,有E 1>E 2,1ϕ>2ϕB .若左右两部分的表面积相等,有E 1<E 2,1ϕ<2ϕC .只有左右两部分的表面积相等,才有E 1>E 2,E 3=E 4D .不论左右两部分的表面积是否相等,总有E 1>E 2,E 3=E 4答案:D例:ab 是长为L 的均匀带电细杆,P1、P2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E 1,在P2处的场强大小为E2。
大学物理常用公式(电场磁场 热力学)
第四章 电 场一、常见带电体的场强、电势分布2)均匀带电球面(球面半径 )的电场:3)无限长均匀带电直线(电荷线密度为): E = ,方向:垂直于带电直线。
2r( rR ) 4)无限长均匀带电圆柱面(电荷线密度为):E =2r (rR )5)无限大均匀带电平面(电荷面密度为)的电场: E =/20 ,方向:垂直于平面。
二、静电场定理 1、高斯定理:e = ÑE v dS v = q 静电场是有源场。
Sq 指高斯面内所包含电量的代数和;E 指高斯面上各处的电场强度,由高斯面内外的全 部电荷产生; Ñ E vdS v 指通过高斯面的电通量,由高斯面内的电荷决定。
2、环路定理: Ñ E v dl v =0 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统: E v = E v i ;连续电荷系统: E v = dE v i =12、利用高斯定理求场强 四、求电势的两种方法n1、利用电势叠加原理求电势 分离电荷系统:U =U i ;连续电荷系统: U = dU i =1电势零点v v 2、利用电势的定义求电势 U =电势零点Edl五、应用vv b点电荷受力: F = qE电势差: U ab =U a -U b = b EdraE =1 qU =q4r 24r1)点电荷:E =0 (rR ) q2 (rR ) 4r 2U =q (r R ) 4r q (r R ) 4Ra 点电势能:W a = qU a由 a 到 b 电场力做功等于电势能增量的负值 A ab = -W = -(W b -W a )六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为 0,导体是一个等势体。
2)、导体表面的场强处处垂直于导体表面。
E v ⊥表面。
导体表面是等势面。
2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。
电场强度的计算
6. 2. 5电场强度的计算在本知识点中,我们将给大家介绍使用迭加原理计算场强的方法。
重点是微积分的使用。
使用微积分计算场强的步骤大致有:1、建立坐标系:目的是便于表示场强的方向和选择积分的变量;2、选取元电荷:即对连续带电体进行微分;3、写出元电荷在考察点的场强大小;4、分析元电荷在考察点场强的方向:目的是为写分量做准备;5、写出元电荷在考察点场强的各个分量:目的是为对各个分量积分做准备;6、分别对各个分量积分,并在积分过程中选择恰当的积分变量和统一变量。
【例1】求电偶极子中垂线上任意一点的电场强度。
电偶极子的电场【解】如上图所示。
设电偶极子的电量分别为+ q和-q,用l表示从负电荷指向正电荷的矢量。
设中垂线上任意一点P相对于+ q和-q的位置矢量分别为r +和r -,而r + =r -。
+ q和-q在P点处产生的场强以r表示电偶极子中心到P点距离,则在距离电偶极子甚远时,即r >> l时,取一级近似有P点的总场强为十口一二4sr%r式中p = q l是电偶极子的电矩,这样上述结果又可以写成此结果表明,电偶极子在其中垂线上距电偶极子中心较远处各点电场强度与电偶极子的电矩成正比,与该点离电偶极子中心的距的三次方成反比,方向与电矩的方向相反。
【例2】试求一均匀带电直线外任意一点处的场强。
设直线长为L (见下图),电荷线密度(即单位长度上的电荷)为'(设“对)设直线外场点P到直线的垂直距离为代,P点与带电直线的上下端点的连线与垂线的夹角分别为日1和苗。
【解】均匀带电直线可以理解为实际问题中一根带电直棒的抽象模型,如果我们仅限于考虑离棒的距离比棒的截面尺寸大得多的地方的电场,则该带电直棒就可以看作一条带电直线。
P点处的场强可以通过微积分来求解。
在带电直线上任取一长为逾的元电荷,其电量幽=,仲。
以P点到带电直线的垂足O为原点,取如图所示坐标轴6 ,学。
元电荷d q 在P点的场强d E沿两个轴方向的分量分别为和拓)。
电磁学习题课lesson16
dfe dt
Ñò òò v v
H × dl
l
= Is
=
S
æ ç è
v j传导
+
v dD dt
ö ÷ ø
×
v dS
10
作业1分析
作业二: 1、如图所示,两个同心的均匀带电球面,内球面半径为 R1,带电量 Q1,外球面半径为 R2,带电量为 Q2。设无穷远处为电势零点。 求: (1) 空间各处电场强度的分布;
答:是等势体 如果把导体一分为二,两部分的电势不相等
14
3、当一个带电导体达到静电平衡时,表面曲率较大处电荷密度较大,故
其表面附近的场强较大。
( ×)
孤立导体达到静电平衡表面场强大小为 E = s e0
作业2平行板电容器,两极板面积均为 S,板间距离为 d( d远 小于极板线度),在两极板间平行地插入一面积也是S、厚度为 t(< d) 的金属片。 试求: (l)电容C等于多少? (2)金属片放在两极板间的位置对电容值有无影响?
20
3、一宽b=2.0cm,厚d=1.0mm的铜片,放在B=3.0T的磁场中,磁场垂 直通过铜片,如果铜片载有电流100A,已知铜片中自由电子的密度 是 n=8.4´1028m-3 求此时产生的霍耳电势差的大小是多少?
作业五:
UH
= RH
BI d
=1 nq
BI d
=
8.4
´1028
3´100 ´1.6 ´10-19
2、以下说法正确的是( A ) (A) 在电势不变的区域内,电场强度一定为零 (B) 在电势为零处,场强一定为零 (C) 场强为零处,电势一定为零 (D) 在均匀电场中,各点电势相等
13
3、在均匀电场中,各点的( B )
电场强度的八种求解方法
3kq A. 3l2
3kq B. l2
3kq C. l2
2 3kq D. l2
3.2.4 对称法
利用空间上对称分布的电荷形成的电场具有对称性的特点,使复杂电场的叠加计算问题大为简化.
3 例如:如上图所示,均匀带电的4球壳在 O 点产生的场强,等效为弧 BC 产生的场强,弧 BC 产生的场强方向,又等效 为弧的中点 M 在 O 点产生的场强方向. 题6 如图所示,一半径为 R 的圆盘上均匀分布着电荷量为 Q 的电荷,在垂直于圆盘且过圆心 c 的轴线上有 a、b、d 三个点, a 和 b、b 和 c、c 和 d 间的距离均为 R,在 a 点有一电荷量为 q(q>0)的固定点电荷.已知 b 点处的场强为零,则 d 点处 场强的大小为(k 为静电力常量)( )
1. 等值代换法是根据两个量之间具有的数值上的相等关系,通过计算一个量的数值从而间接求出另一个量的解题方法. 2. 等值代换法是解答物理题的重要方法之一.像求物体给接触面的正压力往往借助于牛顿第三定律求这一力的反作用力,
就是采用了等值代换法. 3. 求感应电荷的电场,要用到静电平衡状态的特点——导体内部场强处处为零.导体内的任一点,外部电场在该点的场
第2⻚
高中物理题型归类分析
题4 如图所示,xOy 平面是无穷大导体的表面,该导体充满 z<0 的空间,z>0 的空间为真空.将电荷量为 q 的点电荷置于 z 轴上 z=h 处,则在 xOy 平面上会产生感应电荷.空间任意一点处的电场皆是由点电荷 q 和导体表面上的感应电荷共同 h 激发的.已知静电平衡时导体内部场强处处为零,则在 z 轴上 z=2处的场强大小为(k 为静电力常量)( )
3.1.2 三个计算公式
公式
适用条件
说明
大学物理 静电场总结
5. 电势定义:
a
Wpa q0
ur r E dl
a
静电场力作的功与电势差、电势能之间的关系:
b ur r
Aab qE dl q(a b ) (Wpb Wpa ) a
6. 电势分布的典型结论
1) 点电荷: q 4 0r
2) 均匀带电圆环轴线上:
4 0
q R2 x2
3) 均匀带电球面的电势分布:
1)平行板电容器 C 0S
d
2) 电容器的串并联:
串联 1 1 1 1
C C1 C2
Cn
并联 C C1 C2 Cn
4. 电场能量
电容器的静电能: W Q2
2C
电场能量密度:
w
1 2
0E2
各向同性的电介质:
电介质 电位移
D ε0E P
D ε0εr E εE
Gauss定理
2. 静电平衡时导体上的电荷分布 1) 实心导体: 电荷只分布在表面,导体内部没有净电荷.
2) 空腔导体: • 腔内无电荷 电荷分布在外表面,内表面无电荷. •:腔内有电荷: 腔体内表面所带的电量和腔内带电体所带 的电量等量异号。 • 接地空腔导体 外表面不带电, 静电屏蔽 :
3. 电容 C Q
q
4
q
0R
L L rR L L rR
40r
4) 无限长均匀带电直线: ln rB 20 r
(B 0)
7. 电势的计算 叠加法 定义法
第6章 静电场中的导体与电介质
1. 导体的静电平衡条件:
电场描述: ⑴ 导体内部任意一点的场强为零。 ⑵ 导体表面处的场强方向与该处表面垂直.
电势描述: 导体是一等势体,表面是一等势面.
电场强度——精选推荐
电场强度1.电场强度电场强度是从力的角度描述电场的物理量,其定义式为 qF E =式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。
借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为22r Q k q r Qq k q F E ===式中r 为该点到场源电荷的距离,Q 为场源电荷的电量。
2.场强的叠加原理在若干场源电荷所激发的电场中任一点的总场强,等于每个场源电荷单独存在时在该点所激发的场强的矢量和。
原则上讲,有库仑定律和叠加原理就可解决静电学中的全部问题。
3.电通量、高斯定理、(1)磁通量是指穿过某一截面的磁感应线的总条数,其大小为θsin BS =Φ,其中θ为截面与磁感线的夹角。
与此相似,电通量是指穿过某一截面的电场线的条数,其大小为θϕsin ES =, θ为截面与电场线的夹角。
高斯定量:在任意场源所激发的电场中,对任一闭合曲面的总通量可以表示为∑=i q k πϕ4(41πε=k )Nm C /1085.82120-⨯=ε为真空介电常数 式中k 是静电常量,∑iq 为闭合曲面所围的所有电荷电量的代数和。
由于高中缺少高等数学知识,因此选取的高斯面即闭合曲面,往往和电场线垂直或平行,这样便于电通量的计算。
(2)利用高斯定理求几种常见带电体的场强①无限长均匀带电直线的电场一无限长直线均匀带电,电荷线密度为η,如图所示。
考察点P 到直线的距离为r 。
由于带电直线无限长且均匀带电,因此直线周围的电场在竖直方向分量为零,即径向分布,且关于直线对称。
取以长直线为主轴,半径为r ,长为l 的圆柱面为高斯面,如图,上下表面与电场平行,侧面与电场垂直,因此电通量lηπππϕ⋅==⋅⨯=∑kl q k l r E i 442r k E η2=②无限大均匀带电平面的电场根据无限大均匀带电平面的对称性,可以判定整个带电平面上的电荷产生的电场的场强与带电平面垂直并指向两侧,在离平面等距离的各点场强应相等。
电场强度的几种计算方法
电场强度的几种求法一. 公式法1.qFE =是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用 2.2rk QE =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。
3.dUE =是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。
二.对称叠加法当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。
例:如图,带电量为+q 的点电荷与均匀带电。
例:如图,带电量为+q 的点电荷与均匀带电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大?例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳一分为二,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称。
已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为rqk=ϕ。
假设左侧部分在M 点的电场强度为E 1,电势为1ϕ;右侧部分在M 点的电场强度为E 2,电势为2ϕ;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4,下列说法中正确的是( ) A .若左右两部分的表面积相等,有E 1>E 2,1ϕ>2ϕ B .若左右两部分的表面积相等,有E 1<E 2,1ϕ<2ϕC .只有左右两部分的表面积相等,才有E 1>E 2,E 3=E 4D .不论左右两部分的表面积是否相等,总有E 1>E 2,E 3=E 4 答案:D例:ab 是长为L 的均匀带电细杆,P1、P2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E 1,在P2处的场强大小为E2。
求解电场强度13种方法(附例题)
求解电场强度方法分类赏析一.必会的基本方法:1.运用电场强度定义式求解例1.质量为m 、电荷量为q 的质点,在静电力作用下以恒定速率v 沿圆弧从A 点运动到B 点,,其速度方向改变的角度为θ(弧度),AB 弧长为s ,求AB 弧中点的场强E 。
【解析】:质点在静电力作用下做匀速圆周运动,则其所需的向心力由位于圆心处的点电荷产生电场力提供。
由牛顿第二定律可得电场力F = F 向 = m r v 2。
由几何关系有r = θs ,所以F = m s v θ2,根据电场强度的定义有 E = qF = qs mv θ2。
方向沿半径方向,指向由场源电荷的电性来决定。
2.运用电场强度与电场差关系和等分法求解例2(2012安徽卷).如图1-1所示,在平面直角坐标系中,有方向平行于坐标平面的匀强电场,其中坐标原点O 处的电势为0V ,点A 处的电势为6V ,点B 处的电势为3V ,则电场强度的大小为AA .200/V mB .2003/V mC . 100/V mD .1003/V m(1)在匀强电场中两点间的电势差U = Ed ,d 为两点沿电场强度方向的距离。
在一些非强电场中可以通过取微元或等效的方法来进行求解。
(2若已知匀强电场三点电势,则利用“等分法”找出等势点,画出等势面,确定电场线,再由匀强电场的大小与电势差的关系求解。
3.运用“电场叠加原理”求解例3(2010海南).如右图2, M 、N 和P 是以MN 为直径的半圈弧上的三点,O 点为半圆60°NO M弧的圆心,60MOP ∠=︒.电荷量相等、符号相反的两个点电荷分别置于M 、N 两点,这时O 点电场强度的大小为1E ;若将N 点处的点电荷移至P则O 点的场场强大小变为2E ,1E 与2E 之比为BA .1:2B .2:1C .2:3D .4:3二.必备的特殊方法:4.运用平衡转化法求解例4.一金属球原来不带电,现沿球的直径的延长线放置一均匀带电的细杆MN ,如图3所示。
求解电场强度13种方法(附例题)
求解电场强度方法分类赏析之答禄夫天创作一.必会的基本方法:1.运用电场强度定义式求解例1.质量为m 、电荷量为q 的质点,在静电力作用下以恒定速率v 沿圆弧从A 点运动到B 点,,其速度方向改变的角度为θ(弧度),AB 弧长为s ,求AB 弧中点的场强E 。
【解析】:质点在静电力作用下做匀速圆周运动,则其所需的向心力由位于圆心处的点电荷发生电场力提供。
由牛顿第二定律可得电场力F =F 向=m r v 2。
由几何关系有r = θs ,所以F = m s v θ2,根据电场强度的定义有 E = q F =qs mv θ2。
方向沿半径方向,指向由场源电荷的电性来决定。
2.运用电场强度与电场差关系和等分法求解例2(2012安徽卷).如图1-1所示,在平面直角坐标系中,有方向平行于坐标平面的匀强电场,其中坐标原点O 处的电势为0V ,点A 处的电势为6V ,点B 处的电势为3V ,则电场强度的大小为AA .200/V mB ./mC .100/V mD ./m(1)在匀强电场中两点间的电势差U = Ed ,d 为两点沿电场强度方向的距离。
在一些非强电场中可以通过取微元或等效的方法来进行求解。
(2若已知匀强电场三点电势,则利用“等分法”找出等势点,画出等势面,确定电场线,再由匀强电场的大小与电势差的关系求解。
3.运用“电场叠加原理”求解例3(2010海南).如右图2, M 、N 和P 是以MN 为直径的半圈弧上的三点,O 点为半圆弧的圆心,60MOP ∠=︒.电荷量相等、符号相反的两个点电荷分别置于M 、N 两点,这时O 点电场强度的大小为1E ;若将N 点处的点电荷移至P则O 点的场场强大小变成2E ,1E 与2E 之比为BA .1:2B .2:1C .2:3D .4:3二.必备的特殊方法:4.运用平衡转化法求解例4.一金属球原来不带电,现沿球的直径的延长线放置一均匀带电的细杆MN ,如图3所示。
金属球上感应电荷发生的电场在球内直径上a 、b 、c 三点的场强大小分别为E a 、E b 、E c ,三者相比( )A .E a 最大B .E b 最大C .E c 最大D .E a = E b = E c【解析】:导体处于静电平衡时,其内部的电场强度处处为零,故在球内任意点,感应电荷所发生的电场强度应与带电细杆MN 在该点发生的电场强度大小相等,方向相反。
求解电场强度13种方法(附例题)
求解电场强度方法分类赏析一.必会的基本方法:1.运用电场强度定义式求解例1.质量为m 、电荷量为q 的质点,在静电力作用下以恒定速率v 沿圆弧从A 点运动到B 点,,其速度方向改变的角度为θ(弧度),AB 弧长为s ,求AB 弧中点的场强E 。
【解析】:质点在静电力作用下做匀速圆周运动,则其所需的向心力由位于圆心处的点电荷产生电场力提供。
由牛顿第二定律可得电场力F = F 向 = m r v 2。
由几何关系有r = θs ,所以F = m sv θ2,根据电场强度的定义有 E = q F = qs mv θ2。
方向沿半径方向,指向由场源电荷的电性来决定。
2.运用电场强度与电场差关系和等分法求解例2(2012安徽卷).如图1-1所示,在平面直角坐标系中,有方向平行于坐标平面的匀强电场,其中坐标原点O 处的电势为0V ,点A 处的电势为6V ,点B 处的电势为3V ,则电场强度的大小为AA .200/V m B./mC . 100/V m D./m(1)在匀强电场中两点间的电势差U = Ed ,d 为两点沿电场强度方向的距离。
在一些非强电场中可以通过取微元或等效的方法来进行求解。
(2若已知匀强电场三点电势,则利用“等分法”找出等势点,画出等势面,确定电场线,再由匀强电场的大小与电势差的关系求解。
3.运用“电场叠加原理”求解例3(2010海南).如右图2, M 、N 和P 是以MN 为直径的半圈弧上的三点,O 点为半圆弧的圆心,60MOP ∠=︒.电荷量相等、符号相反的两个点电荷分别置于M 、N 两点,这时O 点电场强度的大小为1E ;若将N 点处的点电荷移至P则O 点的场场强大小变为2E ,1E 与2E 之比为BA .1:2B .2:1 C.2 D.4:二.必备的特殊方法:4.运用平衡转化法求解例4.一金属球原来不带电,现沿球的直径的延长线放置N图2一均匀带电的细杆MN ,如图3所示。
金属球上感应电荷产生的电场在球内直径上a 、b 、c 三点的场强大小分别为E a 、E b 、E c ,三者相比( )A .E a 最大B .E b 最大C .E c 最大D .E a = E b = E c【解析】:导体处于静电平衡时,其内部的电场强度处处为零,故在球内任意点,感应电荷所产生的电场强度应与带电细杆MN 在该点产生的电场强度大小相等,方向相反。
电场强度计算的六种方法
电场强度计算的六种方法方法1利用合成法求电场强度空间中的电场通常会是多个场源产生的电场的叠加,电场强度可以应用平行四边形定则进行矢量计算,这是高考常考的考点。
虽然电场强度的定义式为E=Fq,但公式E=kQr2反映了某点场强与场源电荷的特性及该点到场源电荷的距离的关系,体现了电场的来源与本质,高考常围绕此公式出题。
【典例1】如图所示,M、N为真空中两根完全相同的均匀带正电绝缘棒,所带电荷量相同,且平行正对放置,两棒中点分别为O1、O2,a、b、c、d、e为O1O2连线上的六等分点,a点处有一带正电的固定点电荷.已知c处和d处的场强大小均为E0,方向相反,则b处的场强大小为()A. E0B.C.D.【跟踪短训】1.如图在半径为R的圆周上均匀分布着六个不同的点电荷,则圆心O处的场强大小和方向为A. ;由O指向FB. ;由O指向FC. ;由O指向CD. ;由O指向C2.在真空中有两个点电荷Q1=+3.0×10-8 C和Q2=-3.0×10-8 C,它们相距0.1 m,A点与两个点电荷的距离均为0.1 m。
试求A点的场强。
方法2利用补偿法求电场强度【典例1】均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场。
如图所示,在半球面AB上均匀分布正电荷,总电荷量为q,球面半径为R,CD为通过半球顶点与球心O的轴线,在轴线上有M、N两点,OM=ON=2R。
已知M点的场强大小为E,则N点的场强大小为()A.kq2R2-E B.kq4R2C.kq4R2-E D.kq4R2+E【跟踪短训】1.均匀带电的球体在球外空间产生的电场等效于电荷集中于球心处产生的电场。
如图所示,在半球体上均匀分布正电荷,总电荷量为q,球半径为R,MN为通过半球顶点与球心O的轴线,在轴线上有A、B 两点,A、B关于O点对称,AB=4R。
已知A点的场强大小为E,则B点的场强大小为A. B.C. D.2.已知均匀带电圆盘在圆外平面内产生的电场与一个位于圆心的、等电量的同种点电荷产生的电场相同。
几种典型带电体的场强和电势公式
几种电荷分布所产生场强和电势1、均匀分布球面电荷(球面半径为R ,带电量为q )电场强度矢量:⎪⎩⎪⎨⎧<=>=)(球面内,即。
)(球面外,即R r r E R r r r q r E 0)( , 41)( 3επ 电势分布为:()()⎪⎪⎩⎪⎪⎨⎧==(球内)。
(球外), 41 41 0 0R qr U r q r U επεπ 2、均匀分布球体电荷(球体半径为R,带电量为q )电场强度矢量:⎪⎪⎩⎪⎪⎨⎧>=<=)(球体外,即。
)(球体内,即,R r r r q r E R r R r q r E 41)( 41)( 3030επεπ 电势分布为:()()()⎪⎪⎩⎪⎪⎨⎧<-=>=即球内)(。
即球外)(, 3 81 41 3220 0R r R r R q r U R r r q r U επεπ 3、均匀分布无限大平面电荷(电荷面密度为σ)电场强度矢量:离无关。
)(平板两侧的场强与距 ) (2)(0i x E ±=εσ电势分布为:其中假设0r 处为零电势参考点。
若选取原点(即带电平面)为零电势参考点。
即00=U 。
那么其余处电势表达式为:()()⎪⎪⎩⎪⎪⎨⎧≤=≥-=0 2 0 2 00x x x U x x x U εσεσ 4、均匀分布无限长圆柱柱面电荷(圆柱面半径为R ,单位长度带电量为λ。
)电场强度矢量 ⎪⎩⎪⎨⎧<=>=,即在柱面内)(。
即在柱面外)(,R r r E R r r r r E 0)( , 2 )( 2επλ 电势分布为:()()⎪⎪⎩⎪⎪⎨⎧<=>=即柱体内)(。
即柱体外)( ln 2 , ln 2 00R r R r r U R r r r r U a a επλεπλ其中假设a r 处为零电势参考点。
且a r 处位于圆柱柱面外部。
(即a r >R )。
若选取带电圆柱柱面处为零电势参考点。
场强的物理意义是什么
场强的物理意义是什么场强的物理意义是什么场强一般指电场强度,电场中某点的场强方向规定为放在该点的正电荷受到的静电力方向。
下面是店铺给大家整理的场强的物理意义简介,希望能帮到大家!场强的物理意义电场强度是用来表示电场的强弱和方向的物理量。
实验表明,在电场中某一点,试探点电荷(正电荷)在该点所受电场力与其所带电荷的比值是一个与试探点电荷无关的量。
于是以试探点电荷(正电荷)在该点所受电场力的方向为电场方向,以前述比值为大小的矢量定义为该点的电场强度,常用E表示。
按照定义,电场中某一点的电场强度的方向可用试探点电荷(正电荷)在该点所受电场力的电场方向来确定;电场强弱可由试探电荷所受的力与试探点电荷带电量的比值确定。
试探点电荷应该满足两个条件;(1)它的线度必须小到可以被看作点电荷,以便确定场中每点的性质;(2)它的电量要足够小,使得由于它的置入不引起原有电场的重新分布或对有源电场的影响可忽略不计。
电场强度的单位V/m伏特/米或N/C牛顿/库仑(这两个单位实际上相等)。
常用的单位还有V/cm伏特/厘米。
场强的定义是放入电场中某点的电荷所受静电力F跟它的电荷量比值,定义式E=F/q ,适用于一切电场;其中F为电场对试探电荷的作用力,q为试探电荷的电荷量。
单位N/C。
定量的实验证明,在电场的同一点,电场力的大小与试探电荷的电荷量的比值是恒定的,跟试探电荷的电荷量无关。
它只与产生电场的电荷及试探电荷在电场中的具体位置有关,即比值反映电场自身的特性(此处用了比值定义法),因此我们用这一比值来表示电场强度,简称场强,通常用E表示。
场强的方向电场中某点的场强方向规定为放在该点的正电荷受到的静电力方向。
对于真空中静止点电荷q所建立的电场,可以由库仑定律得出。
式中r是电荷q至观察点(或q')的距离;r是由q指向该观察点的单位矢量,它标明了E的方向静电场或库仑电场是无旋场,可以引入标量电势φ,而电场强度矢量与电位标量间的关系为负梯度关系E=-▽γφ时变磁场产生的电场称为感应电场,是有旋场。
无限长直导线的电场强度公式
无限长直导线的电场强度公式
无限长直导线的电场强度公式:E=λ/[2πεr]
一带电均匀的导体棒长为2L,线密度为λ,其线外一点P距导线中心点o的距离为r则p电的场强为
由于具有对称性所以P点的竖直方向上的场强为0,水平方向的场强不为0且等于合场强
在导体棒上取一微元dz,则dq=λdz ,由场强公式可知
dE=dq/(4πεR^2) R^2=z^2+r^2 进一步整理可得
dE=dq/[4πε(z^2+r^2)] ,将其分解为竖直与水平方向则
dEx=cosα*dE=cosα*dq/[4πε(z^2+r^2)]
dEy=sinα*dE=sinα*dq/[4πε(z^2+r^2)]
sinα=z/(z^2+r^2 )^(1/2)
cosα=r/(z^2+r^2 )^(1/2)则
dEx=λL/[2πεr((z^2+r^2 )^(1/2)]
dEy=0, 所以P点的场强为E=λL/[2πεr((L^2+r^2 )^(1/2)]
当L趋近于时这时的场强为E=λ/[2πεr]
所以无限长导线的场强公式为E=λ/[2πεr]
2.高斯定理求无限长直导线的场强
取如上图的圆柱状高斯面底面半径为r ;高为L,由高斯定理E*S*cosα=/ε可知
E*S侧面*cosα+E*S上*cosα+E*S下*cosα=q/ε
又因为E*S上*cosα=E*S下*cosα=0
所以E*S侧面*cosα=q/ε,又因为S侧面=2πrL 所以E=λ/[2πεr]。
连续带电体的电场强度公式
连续带电体的电场强度公式电场是物理学中的重要概念之一,它描述了电荷之间相互作用的力场。
而连续带电体则是指由无限多个离散电荷构成的物体。
在研究连续带电体的电场强度时,我们可以借助电场强度公式来进行计算和分析。
连续带电体的电场强度公式是由高斯定律推导得出的。
高斯定律是电磁学中的基本定律之一,描述了电场通过一个闭合曲面的总通量与该曲面内的电荷量之间的关系。
对于一个连续带电体,我们可以将其看作由许多微小电荷元素组成的,每一个微小电荷元素都可以看作是一个点电荷。
根据高斯定律,通过一个闭合曲面的电场通量等于该曲面内的电荷量除以真空介电常数。
电场强度的方向与电荷元素的正负有关,符合库仑定律。
对于正电荷元素,电场强度的方向指向远离电荷元素的方向;对于负电荷元素,电场强度的方向指向靠近电荷元素的方向。
在计算连续带电体的电场强度时,我们可以将连续带电体分割成许多微小电荷元素,然后分别计算每个微小电荷元素对某一点的电场强度,再将所有微小电荷元素的电场强度矢量相加,得到该点的总电场强度。
具体地说,对于一个连续带电体上的微小电荷元素dq,其对某一点P的电场强度可以表示为:dE = k * dq / r^2其中,dE表示微小电荷元素dq对点P的电场强度矢量,k表示库仑常数,r表示微小电荷元素dq与点P之间的距离。
然后,我们将所有微小电荷元素dq对点P的电场强度矢量相加,得到点P的总电场强度E:E = ΣdE = Σ(k * dq / r^2)其中,Σ表示对所有微小电荷元素dq进行求和。
通过这个公式,我们可以计算出连续带电体上任意一点的电场强度。
需要注意的是,在实际计算中,由于连续带电体的电荷分布通常是复杂的,因此需要采用积分的方法来进行计算。
总的来说,连续带电体的电场强度公式是通过高斯定律推导得出的,它描述了连续带电体上任意一点的电场强度与该点距离连续带电体上各个微小电荷元素的关系。
通过这个公式,我们可以计算和分析连续带电体的电场强度,从而更深入地理解电场的性质和行为。