高中数学向量法解立体几何总结

合集下载

纵观立体几何考题感悟向量方法解题

纵观立体几何考题感悟向量方法解题

纵观立体几何考题感悟向量方法解题在高中数学学习中,立体几何一直是学生们非常头疼的一个部分。

立体几何的主要难点是空间的复杂性,加上几何思维本来就不易理解,许多学生解题困难。

但是,通过向量方法解题是一种很好的解决立体几何问题的方法。

本文将通过纵观立体几何考题,分享一些关于向量方法解题的经验与感悟。

一、向量的基本概念及运算向量的表示法是用箭头表示。

箭头的长度代表向量的大小,箭头的方向代表向量的方向。

一个向量可以被表示为一个由有序数对$(x,y)$所确定的点A和另一个由有序数对$(x',y')$所确定的点B之间的向量$\vec{AB}$。

向量也可以表示为箭头的坐标,即$\vec{AB}=\begin{pmatrix}x'-x\\y'-y\end{pmatrix}$。

向量的大小表示为$|\vec{AB}|=\sqrt{(x'-x)^2+(y'-y)^2}$。

向量的运算有向量加法和向量数乘。

向量加法的定义是:$\vec{a}+\vec{b}=\begin{pmatrix}a_1+b_1\\a_2+b_2\\a_3+b_3\e nd{pmatrix}$。

其中,$\vec{a}=(a_1,a_2,a_3)$,$\vec{b}=(b_1,b_2,b_3)$。

向量数乘的定义是:$\lambda\vec{a}=(\lambda a_1,\lambda a_2,\lambda a_3)$。

其中,$\lambda$是一个实数。

二、应用向量方法求解空间几何问题1.立体几何基本概念首先,我们需要掌握一些立体几何的基本概念,比如平面、线段、角等。

此外,还需要了解空间中的直线、平面、空间角、平行线等概念。

了解这些概念是建立解题基础的必要条件。

2.向量表达式的转化在解题中,我们可以通过向量的基本运算将问题转化为向量的加、减、数乘问题。

因此,我们需要能够将向量从一个表达式转化为另一个表达式,并灵活地运用向量的加、减、数乘运算法则来求解问题。

用向量法解五类立体几何题的思路

用向量法解五类立体几何题的思路

思路探寻立体几何问题的命题形式很多,常见的有求平面外一点到平面的距离,求两条异面直线之间的距离,求直线与平面所成的角,求二面角,证明面面平行、垂直等.有时采用常规方法求解立体几何问题比较复杂,甚至很难获得问题的答案,此时不妨运用向量法,将立体几何问题转化为向量运算问题,通过简单的计算即可解题.向量法是指给线段赋予方向,给各个点赋予坐标,通过向量运算求得问题的答案.下面结合实例探讨一下如何运用向量法求解五类立体几何问题.一、求平面外一点到平面的距离如图1,若点P 为平面α外的任意一点,要求P 到平面α的距离,需先求得向量OP 以及平面α的法向量n .那么法向量n 方向上的正射影长h =|| OP sin <OP ,n >=|| OP ∙n||n ,即为P 到平面α的距离.运用向量法求平面外一点到平面的距离,主要是运用向量数量积的几何意义:一个向量与其在另一个向量方向上的投影的乘积.图1图2例1.在正方体ABCO -A 1B 1C 1O 1中,M 、N 是B 1C 1和C 1O 1的中点,正方体的棱长是1,求A 1与平面OBMN 之间的距离.解:以O 为原点,建立如图2所示的空间直角坐标系,可得 OB =(1,1,0), O N =(0,12,1), OA 1=(1,0,1),设平面OBMN 的法向量是n =(x ,y ,z ),则{n ∙ O B =0,n ∙ ON =0,即ìíîïïx +y =0,12y +z =0,令x =1,y =-1,z =12,则n =(1,-1,12),则A 1到平面OBMN 的距离h =|| OA 1∙n||n =1.由于无法确定点A 1到平面OBMN 的射影,所以根据法向量与射影的关系,运用向量法求解.运用向量法求平面外一点到平面的距离,关键是要根据线面垂直的判定定理求得平面的法向量.在求法向量时,往往要先设出法向量n ;然后在平面内找到两条直线a 、b ,并求得其方向向量a 、b ;再建立方程组{n ∙a =0,n ∙b=0,通过解方程组求得法向量n 的坐标.二、求空间中两条异面直线之间的距离求两条异面直线之间的距离,需运用转化思想,把两条异面直线之间的距离转化为平面外一点到平面的距离.在求两条异面直线之间的距离时,需先求出两条异面直线的方向向量a 、b,并求得两个向量所在平面的法向量n ,那么两条异面直线之间的距离为h =||a ∙n ||n .例2.如图3,正方体ABCO -A 1B 1C 1O 1的棱长为1,求异面直线OA 1和AC 之间的距离.解:以O 为原点,建立如图3所示的空间直角坐标系,可得 AC =(-1,1,0), O 1A =(1,0,-1), AA 1=(0,0,1)设n =(x ,y ,z )为平面A 1C 1O 的法向量,建立方程组得ìíîn ∙ AC =0,n∙O 1A =0,即{-x +y =0,x -z =0,图346思路探寻令x=1,可得法向量n =(1则异面直线OA1和AC.定两条异面直线的公垂线,繁琐.的方向向量及其法向量,求得异面直线之间的距离,果.三、求直线与平面所成的角如图4所示,设直线OP用向量法求直线OP与平面αα的法向量n 和直线OP的数量积公式求得|cos< OP,n >OP与平面α所成角的正弦值为意的是,直线OP与平面α图4例3.如图5,正方体ABCOA1B1的中点为M,试求直线AM的正弦值.解:以O为原点,建立如图5则AB=(0,1,0),AO1=(-1设n =(x,y,z)为平面ABC1O则ìíîn ∙AB=0,n ∙AO1=0,即{y=0,-x+z=0令x=1,可得n =()1,0,1,设AM与面ABC1O1则sinθ=|| AM∙n|| AM∙||n ,即直线AM与平面ABC1O1α-的平面1,.)为平面往往要先求得两个平47探索探索与与研研究究面的法向量,α、β的法向量n α∥ n β,则平面α的法向量 n α⊥ n β,则平面α⊥例5.正方体ABCO -A 1B 1C 1O M 分别是A 1C 1、A 1O 、B 1A 上的任意一点,求证:平面B 1MC ∥平面A 1EF .证明:以O 为原点,建立如图8所示的空间直角坐标系,由题意可得A 1C 1=()-1,1,0,B 1C =()-1,0,-1,A 1O =()-1,0,-1,B 1A =()0,-1,-1,设 A 1E =λ A 1C 1, A 1F =μ A 1ν∈R ,且均不为0),设平面A 1EF 的法向量为n 1则ìíî n 1∙A 1E =0,n 1∙ A 1F =0,可得ìíî n 1∙λ A 1 n 1∙μ A 1则ìíî n 1∙A 1C 1=0, n 1∙ A 1O =0,则{-x +y =0x +z =01EF 的法向量为n 1=(1,1,-1),n 2,ìíî n 2∙ν B 1A =0,n 2∙ B 1C =0,{-y -z =0,-x -z =0,1MC 的法向量n 2=(-1,1,-1),n 1∥ n 2,B 1MC .需熟悉向垂直关系,⊥ n 2; n 1=λ n 2⇔ n 1∥ n 2.需注意以(2)熟练运用(3)明确向量与线段、坐标甘肃省武威铁路中学)求数列前n 项和问题具有较强的综合性,侧重考查等差和等比数列的通项公式、定义、性质以及前n 项和公式.常见的命题形式有:(1)根据数列的递推关系式求数列的前n 项和;(2)根据数列的通项公式求数列的前n 项和;(3)根据一个数列的前n 项和求另一个相关联数列的前n 项和.解答数列求和问题的常用方法有分组求和法、错位相减法、裂项相消法、并项求和法、倒序相加法.下面结合实例,谈一谈这几种途径的特点以及应用技巧.一、分组求和分组求和法是指将数列中的各项分为几组,分别进行求和.在解题时,要先仔细研究数列的通项公式,将其合理地拆分为几个等差、等比、常数数列通项公式的和、差;再将数列划分为多个组,分别根据等差、等比数列的前n 项和公式求得每一组数列的和.例1.已知S n 为数列{}a n 的前n 项和,4a n =3S n +1.48。

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。

设向量为a=(a1,a2,a3)则其在x轴、y轴、z轴上的投影分别为a1、a2、a3即a=(a1,a2,a3)2)空间向量的模长:向量的模长是指其长度,即a|=√(a1²+a2²+a3²)3)向量的单位向量:一个向量的单位向量是指其方向相同、模长为1的向量。

设向量a的模长为a|则其单位向量为a/|a|4)向量的方向角:向量在空间直角坐标系中与三个坐标轴的夹角分别称为其方向角。

设向量a=(a1,a2,a3)则其方向角为α=cos⁻¹(a1/|a|)、β=cos⁻¹(a2/|a|)、γ=cos⁻¹(a3/|a|)5)向量的方向余弦:向量在空间直角坐标系中与三个坐标轴的夹角的余弦值分别称为其方向余弦。

设向量a=(a1,a2,a3)则其方向余弦为cosα=a1/|a|、cosβ=a2/|a|、cosγ=a3/|a|一、知识要点1.空间向量的概念:在空间中,向量是具有大小和方向的量。

向量通常用有向线段表示,同向等长的有向线段表示同一或相等的向量。

向量具有平移不变性。

2.空间向量的运算:空间向量的加法、减法和数乘运算与平面向量运算相同。

运算法则包括三角形法则、平行四边形法则和平行六面体法则。

3.共线向量:如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量。

共线向量定理指出,空间任意两个向量a、b(b≠0),a//b存在实数λ,使a=λb。

4.共面向量:能平移到同一平面内的向量叫做共面向量。

5.空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p有唯一的有序实数组x、y、z,使p=xa+yb+zc。

若三向量a、b、c不共面,则{a,b,c}叫做空间的一个基底,a、b、c叫做基向量。

6.空间向量的直角坐标系:在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。

向量法解立体几何公式总结

向量法解立体几何公式总结

农村自建房墙体开裂了怎么办?这几个方法看了不后悔无论是城市的楼房还是农村的房子,在居住时间久了之后,墙体都会不可避免地出现裂缝。

墙体开裂的原因有很多种,不同程度的开裂处理方法也是不一样的。

下面小编就给大家说说农村自建房墙体开裂的原因和处理方法,不清楚的快来看看吧。

一、农村自建房墙体开裂的原因1、地基沉降不均匀农村的房子建好后,地基会随着时间的推移发生沉降,不均匀的沉降就会让墙体出现裂缝。

通常因为地基的沉降所造成的裂缝呈横向分布,轻微的可以看到墙体明线开裂,严重的可能会使房屋倒塌,非常危险。

2、楼面的配筋不符合标准在农村都是自己建房,即使是找专业的施工队伍,也不一定能够保证工程的质量达标。

如果建房时,楼面的配筋工作不符合标准,也会引起日后墙体出现裂缝。

3、建房材料不合格在建房时所使用的材料一定要保证质量,如果使用的是劣质的材料(例如劣质水泥),那么墙体本身的牢固性就会很差,当然会出现开裂的现象。

4、施工人员不专业在农村建房一般不是自己建就是找施工队,但施工队不一定都是专业的。

无论是材料的配比还是施工的细节,非专业的人员都无法做到完全符合标准。

因此房子的墙体很可能存在质量方面的问题,在日后难免出现开裂。

二、农村自建房墙体开裂如何处理1、轻微的裂缝这种裂缝多受温度的影响,因为热胀冷缩引发的。

这种轻微的裂缝不影响房子的稳固性和安全性,只是破坏整体的美观。

所以我们可以在开裂处贴一些壁纸,来遮挡裂缝。

2、局部裂缝这一类的裂缝多是由于施工材料或者施工方法不合格造成的,虽然不会有大的危险,但还是及时处理比较好。

我们可以使用压力灌浆法将水泥灌入裂缝内进行修补,等晾干之后,再粉刷一层腻子粉就可以了。

3、深层裂缝地基的不均匀沉降会造成墙体出现横向的深层次裂缝,这种裂缝对于房子的稳固性影响非常大,一定要及时处理。

我们同样可以将水泥灌入裂缝中,待其完全干燥后重新刷一层腻子粉,之后要检查修补的情况。

三、如何避免自建房墙体开裂1、建房时所使用的材料以及建房的程序方法一定要符合标准,千万不能为了贪小便宜使用劣质的原料。

高中数学空间向量与立体几何知识点归纳总结

高中数学空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。

(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示.同向等长的有向线段表示同一或相等的向量 (2)向量具有平移不变性 2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)运算律:⑴加法交换律:a b b a⑵加法结合律:(a b ) c a (b c)⑶数乘分配律:(a b )a b运算法则:三角形法则、平行四边形法则、平行六面体法则3. 共线向量。

(1) 如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a 平行于b ,记作a//b 。

(2) 共线向量定理:空间任意两个向量 a 、b ( b 丰0 ), a//b 存在实数入,使a =A b 。

(3) 三点共线:A 、B 、C 三点共线<=>ABACi i■.1<=> OC xOA yOB (其中( y 1)—*■一a (4)与a共线的单位向量为 —a4. 共面向量(1) 定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2) 共面向量定理:如果两个向量 a,b 不共线,p 与向量a,b 共面的条件是存在实数 x, y 使uOw A go购Bgorarap xa yba- r b r b rb •7d3a d 3a3a2aR(3)四点共面:若A 、B 、c 、P 四点共面<=> AP xAB yAC<=>OP xOA yOB zOC (其中 x y z 1)r ,r r r5. 空间向量基本定理:如果三个向量 a,b,C 不共面,那么对空间任一向量 P ,存在一个唯一的有r i r r 1 r r 1 r若三向量a,b,c 不共面,我们把{a,b,c }叫做空间的一个基底,a,b,c 叫做基向量,空间任意 三个不共面的向量都可以构成空间的一个基底。

高中数学用空间向量解立体几何问题方法归纳

高中数学用空间向量解立体几何问题方法归纳

高中数学用空间向量解立体几何问题方法归纳IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】用空间向量解立体几何题型与方法平行垂直问题基础知识直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4)(1)线面平行:l ∥αa ⊥ua ·u =0a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥αa ∥ua =k u a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥βu ∥vu =k v a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥βu ⊥vu ·v =0a 3a 4+b 3b 4+c 3c 4=0例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ; (2)求证:平面PAD ⊥平面PDC .[证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎪⎫0,1,12,EF =⎝ ⎛⎭⎪⎪⎫-12,0,0,PB =(1,0,-1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),DC =(1,0,0),AB =(1,0,0).(1)因为EF =-12AB ,所以EF ∥AB ,即EF ∥AB .又AB 平面PAB ,EF 平面PAB ,所以EF ∥平面PAB .(2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC =(0,2,0)·(1,0,0)=0,所以AP ⊥DC ,AD ⊥DC ,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP 平面PAD ,AD 平面PAD ,所以DC ⊥平面PAD .因为DC 平面PDC ,所以平面PAD ⊥平面PDC .使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直.例2、在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点. 求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD . 又BA ∩BD =B ,因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎪⎫a 2,1,4,F (0,1,4),则EG =⎝ ⎛⎭⎪⎪⎫a 2,1,1,EF =(0,1,1),1B D ·EG =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF . 又EG ∩EF =E ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD . 利用空间向量求空间角基础知识(1)向量法求异面直线所成的角:若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=|a ·b ||a ||b |.(2)向量法求线面所成的角:求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n ·a ||n ||a |. (3)向量法求二面角:求出二面角α-l -β的两个半平面α与β的法向量n 1,n 2,若二面角α-l -β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|;若二面角α-l -β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-|n 1·n 2||n 1||n 2|.例1、如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.[解] (1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以1A B =(2,0,-4),1C D =(1,-1,-4).因为cos 〈1A B ,1C D 〉=1A B ·1C D | 1A B ||1C D |=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD =(1,1,0),1AC =(0,2,4),所以n 1·AD =0,n 1·1AC =0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0).设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.例2、如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.[解] (1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C 平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0).则BC =(1,0,3),1BB =1AA =(-1,3,0),1A C =(0,-3,3).设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧n ·BC =0,n ·1BB =0.即⎩⎨⎧x +3z =0,-x +3y =0.可取n =(3,1,-1).故cosn ,1A C=n ·1A C|n ||1A C |=-105.所以A 1C 与平面BB 1C 1C 所成角的正弦值为105.(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论. (2)求空间角应注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|. ②两平面的法向量的夹角不一定是所求的二面角,有可能两法向量夹角的补角为所求.例3、如图,在四棱锥S -ABCD 中,AB ⊥AD ,AB ∥CD ,CD =3AB =3,平面SAD ⊥平面ABCD ,E 是线段AD 上一点,AE =ED =3,SE ⊥AD .(1)证明:平面SBE ⊥平面SEC ;(2)若SE =1,求直线CE 与平面SBC 所成角的正弦值.解:(1)证明:∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SE 平面SAD ,SE ⊥AD ,∴SE ⊥平面ABCD . ∵BE 平面ABCD ,∴SE ⊥BE . ∵AB ⊥AD ,AB∥CD ,CD =3AB =3,AE =ED =3,∴∠AEB =30°,∠CED =60°. ∴∠BEC =90°,即BE ⊥CE . 又SE ∩CE =E ,∴BE ⊥平面SEC . ∵BE 平面SBE , ∴平面SBE ⊥平面SEC .(2)由(1)知,直线ES ,EB ,EC 两两垂直.如图,以E 为原点,EB 为x 轴,EC 为y 轴,ES 为z 轴,建立空间直角坐标系.则E (0,0,0),C (0,23,0),S (0,0,1),B (2,0,0),所以CE =(0,-23,0),CB =(2,-23,0),CS =(0,-23,1).设平面SBC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CB =0,n ·CS =0.即⎩⎪⎨⎪⎧2x -23y =0,-23y +z =0.令y =1,得x =3,z =23,则平面SBC 的一个法向量为n =(3,1,23).设直线CE 与平面SBC 所成角的大小为θ,则sin θ=|n ·CE |n |·|CE ||=14,故直线CE 与平面SBC 所成角的正弦值为14.例4、如图是多面体ABC -A 1B 1C 1和它的三视图.(1)线段CC 1上是否存在一点E ,使BE ⊥平面A 1CC 1若不存在,请说明理由,若存在,请找出并证明;(2)求平面C 1A 1C 与平面A 1CA 夹角的余弦值.解:(1)由题意知AA 1,AB ,AC 两两垂直,建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (-2,0,0),C (0,-2,0),C 1(-1,-1,2),则1CC =(-1,1,2),11A C =(-1,-1,0),1A C =(0,-2,-2).设E (x ,y ,z ),则CE =(x ,y +2,z ),1EC =(-1-x ,-1-y,2-z ).设CE =λ1EC (λ>0),则⎩⎪⎨⎪⎧x =-λ-λx ,y +2=-λ-λy ,z =2λ-λz ,则E ⎝ ⎛⎭⎪⎪⎫-λ1+λ,-2-λ1+λ,2λ1+λ, BE =⎝ ⎛⎭⎪⎪⎫2+λ1+λ,-2-λ1+λ,2λ1+λ. 由⎩⎪⎨⎪⎧BE ·11A C =0,BE ·1A C =0,得⎩⎪⎨⎪⎧-2+λ1+λ+2+λ1+λ=0,-2-λ1+λ+2λ1+λ=0,解得λ=2,所以线段CC 1上存在一点E ,CE =21EC ,使BE ⊥平面A 1CC 1.(2)设平面C 1A 1C 的法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧m ·11A C =0,m ·1A C =0,得⎩⎪⎨⎪⎧-x -y =0,-2y -2z =0,取x =1,则y =-1,z =1.故m =(1,-1,1),而平面A 1CA 的一个法向量为n =(1,0,0),则cos 〈m ,n 〉=m ·n |m ||n |=13=33,故平面C 1A 1C 与平面A 1CA 夹角的余弦值为33.利用空间向量解决探索性问题例1、如图1,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B (如图2).(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE 如果存在,求出BP BC的值;如果不存在,请说明理由.[解] (1)在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB .又AB 平面DEF ,EF 平面DEF ,∴AB ∥平面DEF .(2)以点D 为坐标原点,以直线DB ,DC ,DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),DF =(1,3,0),DE =(0,3,1),DA =(0,0,2).平面CDF 的法向量为DA =(0,0,2).设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧DF ·n =0, DE ·n =0,即⎩⎪⎨⎪⎧x +3y =0,3y +z =0,取n =(3,-3,3),cos 〈DA ,n 〉=DA ·n| DA ||n |=217,所以二面角E -DF -C 的余弦值为217.(3)存在.设P (s ,t,0),有AP =(s ,t ,-2),则AP ·DE =3t -2=0,∴t =233,又BP =(s -2,t,0),PC =(-s,23-t,0),∵BP ∥PC ,∴(s -2)(23-t )=-st ,∴3s +t =23. 把t =233代入上式得s =43,∴BP =13BC , ∴在线段BC 上存在点P ,使AP ⊥DE . 此时,BP BC =13.1空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.2解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.例2、.如图所示,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=BC =2AC =2.(1)若D 为AA 1中点,求证:平面B 1CD ⊥平面B 1C 1D ;(2)在AA 1上是否存在一点D ,使得二面角B 1-CD -C 1的大小为60°解:(1)证明:如图所示,以点C 为原点,CA ,CB ,CC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),D (1,0,1),即11C B =(0,2,0),1DC =(-1,0,1),CD =(1,0,1).由11C B ·CD =(0,2,0)·(1,0,1)=0+0+0=0,得11C B ⊥CD ,即C 1B 1⊥CD . 由1DC ·CD =(-1,0,1)·(1,0,1)=-1+0+1=0,得1DC ⊥CD ,即DC 1⊥CD . 又DC 1∩C 1B 1=C 1,∴CD ⊥平面B 1C 1D .又CD 平面B 1CD ,∴平面B 1CD ⊥平面B 1C 1D .(2)存在.当AD =22AA 1时,二面角B 1-CD -C 1的大小为60°.理由如下:设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB =(0,2,2), 设平面B 1CD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·1CB =0m ·CD =0⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得m =(a,1,-1).又∵CB =(0,2,0)为平面C 1CD 的一个法向量,则cos 60°=|m ·CB ||m |·|CB |=1a 2+2=12,解得a =2(负值舍去),故AD =2=22AA 1.∴在AA 1上存在一点D 满足题意.空间直角坐标系建立的创新问题空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量解决立体几何问题.解决的关键环节之一就是建立空间直角坐标系,因而建立空间直角坐标系问题成为近几年试题新的命题点.一、经典例题领悟好例1、如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,BC =CD =2,AC =4, ∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB .(1)求PA 的长;(2)求二面角B -AF -D 的正弦值. (1)学审题——审条件之审视图形由条件知AC ⊥BD ――→建系DB ,AC 分别为x ,y 轴―→写出A ,B ,C ,D 坐标――――――――→PA ⊥面ABCD 设P 坐标――→PF =CF 可得F 坐标――→AF ⊥PBAF ·PB =0―→得P 坐标并求PA长.(2)学审题 由(1)―→AD ,AF ,AB 的坐标―――――――――――――――――――→向量n 1,n 2分别为平面FAD 、平面FAB 的法向量n 1·AD =0且n 1·AF =0―→求得n 1·n 2―→求得夹角余弦.[解] (1)如图,连接BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB ,OC ,AP 的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1.而AC=4,得AO =AC -OC =3.又OD =CD sin π3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因PA ⊥底面ABCD ,可设P (0,-3,z ).由F 为PC 边中点,知F ⎝ ⎛⎭⎪⎪⎫0,-1,z 2.又AF =⎝ ⎛⎭⎪⎪⎫0,2,z 2,PB =(3,3,-z ),AF ⊥PB ,故AF ·PB =0,即6-z 22=0,z =23(舍去-23),所以|PA |=23.(2)由(1)知AD =(-3,3,0),AB =(3,3,0),AF =(0,2,3).设平面FAD 的法向量为n 1=(x 1,y 1,z 1),平面FAB 的法向量为n 2=(x 2,y 2,z 2),由n 1·AD =0,n 1·AF =0,得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2).由n 2·AB =0,n 2·AF =0,得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2).从而法向量n1,n2的夹角的余弦值为cos〈n1,n2〉=n1·n2|n1|·|n2|=18.故二面角B-AF-D的正弦值为37 8.建立空间直角坐标系的基本思想是寻找其中的线线垂直关系本题利用AC⊥BD,若图中存在交于一点的三条直线两两垂直,则以该点为原点建立空间直角坐标系.在没有明显的垂直关系时,要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系,注意建立的空间直角坐标系是右手系,正确确定坐标轴的名称.例2、如图,在空间几何体中,平面ACD⊥平面ABC,AB=BC=CA=DA=DC=BE=与平面ABC所成的角为60°,且点E在平面ABC内的射影落在∠ABC的平分线上.(1)求证:DE∥平面ABC;(2)求二面角E-BC-A的余弦值.解:证明:(1)易知△ABC,△ACD都是边长为2的等边三角形,取AC的中点O,连接BO,DO,则BO⊥AC,DO⊥AC. ∵平面ACD⊥平面ABC,∴DO⊥平面ABC. 作EF⊥平面ABC,则EF∥DO. 根据题意,点F落在BO上,∴∠EBF=60°,易求得EF=DO=3,∴四边形DEFO是平行四边形,DE∥OF.∵DE平面ABC,OF平面ABC,∴DE∥平面ABC.(2)建立如图所示的空间直角坐标系O-xyz,可求得平面ABC的一个法向量为n1=(0,0,1).可得C (-1,0,0),B (0,3,0),E (0,3-1,3),则CB =(1,3,0),BE=(0,-1,3).设平面BCE 的法向量为n 2=(x ,y ,z ),则可得n 2·CB =0,n 2·BE =0, 即(x ,y ,z )·(1,3,0)=0,(x ,y ,z )·(0,-1,3)=0,可取n 2=(-3,3,1).故cos 〈n 1,n 2〉=n 1·n 1|n 1|·|n 2|=1313. 又由图知,所求二面角的平面角是锐角,故二面角E -BC -A 的余弦值为1313.专题训练1.如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB ∥A 1B 1,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD =(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD |1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33.(2)证明:∵1BB =(-a ,-a ,a ),BC =(-2a,0,0),1FB =(0,a ,a ), ∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC =0.∴FB 1⊥BB 1,FB 1⊥BC .∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.2.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ; (2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求 BD BC 1的值.解:(1)证明:因为四边形AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC .(2)由(1)知AA 1⊥AC ,AA 1⊥AB . 由题知AB =3,BC =5,AC =4,所以AB ⊥AC .如图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),1A B =(0,3,-4),11A C =(4,0,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·1A B =0,n ·11A C =0.即⎩⎪⎨⎪⎧3y -4z =0,4x =0.令z =3,则x =0,y =4,所以n =(0,4,3).同理可得,平面B 1BC 1的一个法向量为m =(3,4,0).所以cos 〈 n ,m 〉=n ·m|n ||m |=1625. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625.(3)证明:设D (x ,y ,z )是直线BC 1上一点,且BD =λ1BC . 所以(x ,y -3,z )=λ(4,-3,4).解得x =4λ,y =3-3λ,z =4λ. 所以AD =(4λ,3-3λ,4λ).由AD ·1A B =0,即9-25λ=0,解得λ=925. 因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B .此时,BDBC 1=λ=925. 3.如图(1),四边形ABCD 中,E 是BC 的中点,DB =2,DC =1,BC =5,AB =AD = 2.将图(1)沿直线BD 折起,使得二面角A -BD -C 为60°,如图(2).(1)求证:AE ⊥平面BDC ;(2)求直线AC 与平面ABD 所成角的余弦值.解:(1)证明:取BD 的中点F ,连接EF ,AF ,则AF =1,EF =12,∠AFE =60°.由余弦定理知AE =12+⎝ ⎛⎭⎪⎪⎫122-2×1×12cos 60°=32. ∵AE 2+EF 2=AF 2,∴AE ⊥EF .∵AB =AD ,F 为BD 中点.∴BD ⊥AF . 又BD =2,DC =1,BC =5,∴BD 2+DC 2=BC 2,即BD ⊥CD .又E 为BC 中点,EF ∥CD ,∴BD ⊥EF .又EF ∩AF =F , ∴BD ⊥平面AEF .又BD ⊥AE ,∵BD ∩EF =F ,∴AE ⊥平面BDC . (2)以E 为原点建立如图所示的空间直角坐标系,则A ⎝ ⎛⎭⎪⎪⎫0,0,32, C ⎝ ⎛⎭⎪⎪⎫-1,12,0,B ⎝ ⎛⎭⎪⎪⎫1,-12,0,D ⎝ ⎛⎭⎪⎪⎫-1,-12,0,DB =(2,0,0),DA =⎝ ⎛⎭⎪⎪⎫1,12,32,AC =⎝ ⎛⎭⎪⎪⎫-1,12,-32. 设平面ABD 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·DB =0n ·DA =0得⎩⎪⎨⎪⎧2x =0,x +12y +32z =0,取z =3,则y =-3,又∵n =(0,-3,3). ∴cos 〈n ,AC 〉=n ·AC|n ||AC |=-64.故直线AC 与平面ABD 所成角的余弦值为104.4.如图所示,在矩形ABCD 中,AB =35,AD =6,BD 是对角线,过点A 作AE ⊥BD ,垂足为O ,交CD 于E ,以AE 为折痕将△ADE 向上折起,使点D 到点P 的位置,且PB =41.(1)求证:PO ⊥平面ABCE ; (2)求二面角E -AP -B 的余弦值. 解:(1)证明:由已知得AB =35,AD =6,∴BD =9. 在矩形ABCD 中,∵AE⊥BD ,∴Rt △AOD ∽Rt △BAD ,∴DO AD =AD BD,∴DO =4,∴BO =5.在△POB 中,PB =41,PO =4,BO =5,∴PO 2+BO 2=PB 2,∴PO ⊥OB .又PO ⊥AE ,AE ∩OB =O ,∴PO ⊥平面ABCE . (2)∵BO =5,∴AO =AB 2-OB 2=2 5.以O 为原点,建立如图所示的空间直角坐标系,则P (0,0,4),A (25,0,0),B (0,5,0),PA =(25,0,-4),PB =(0,5,-4).设n 1=(x ,y ,z )为平面APB 的法向量.则⎩⎪⎨⎪⎧n 1·PA =0,n 1·PB =0,即⎩⎪⎨⎪⎧25x -4z =0,5y -4z =0.取x=25得n1=(25,4,5).又n2=(0,1,0)为平面AEP的一个法向量,∴cos〈n1,n2〉=n1·n2|n1|·|n2|=461×1=46161,故二面角E-AP-B的余弦值为461 61.5.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=2,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.(1)求直线PB与平面POC所成角的余弦值;(2)求B点到平面PCD的距离;(3)线段PD上是否存在一点Q,使得二面角Q-AC-D的余弦值为63若存在,求出PQQD的值;若不存在,请说明理由.解:(1)在△PAD中,PA=PD,O为AD中点,所以PO⊥AD.又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,所以PO⊥平面ABCD.又在直角梯形ABCD中,连接OC,易得OC⊥AD,所以以O为坐标原点,OC,OD,OP所在直线分别为x,y,z轴建立空间直角坐标系,则P(0,0,1),A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),∴PB=(1,-1,-1),易证OA⊥平面POC,∴OA=(0,-1,0)是平面POC的法向量,cos 〈PB ,OA 〉=PB ·OA| PB ||OA |=33. ∴直线PB 与平面POC 所成角的余弦值为63.(2) PD =(0,1,-1),CP =(-1,0,1).设平面PDC 的一个法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧u ·CP =-x +z =0,u ·PD =y -z =0,取z =1,得u =(1,1,1).∴B 点到平面PCD 的距离为d =|BP ·u ||u |=33. (3)假设存在一点Q ,则设PQ =λPD (0<λ<1).∵PD =(0,1,-1), ∴PQ =(0,λ,-λ)=OQ -OP ,∴OQ =(0,λ,1-λ),∴Q (0,λ,1-λ). 设平面CAQ 的一个法向量为m =(x ,y ,z ),又AC =(1,1,0),AQ =(0,λ+1,1-λ),则⎩⎪⎨⎪⎧m ·AC =x +y =0,m ·AQ =λ+1y +1-λz =0.取z =λ+1,得m =(1-λ,λ-1,λ+1),又平面CAD 的一个法向量为n =(0,0,1),二面角Q -AC -D 的余弦值为63,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=63,得3λ2-10λ+3=0,解得λ=13或λ=3(舍),所以存在点Q ,且PQQD =12.6.如图,在四棱锥S -ABCD 中,底面ABCD 是直角梯形,侧棱SA ⊥底面ABCD ,AB 垂直于AD 和BC ,SA =AB =BC =2,AD =是棱SB 的中点.(1)求证:AM ∥平面SCD ;(2)求平面SCD 与平面SAB 所成二面角的余弦值;(3)设点N 是直线CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值.解:(1)以点A 为原点建立如图所示的空间直角坐标系,则A (0,0,0),B (0,2,0),C (2,2,0),D (1,0,0),S (0,0,2),M (0,1,1).所以AM =(0,1,1),SD =(1,0,-2),CD =(-1,-2,0).设平面SCD 的法向量是n =(x ,y ,z ), 则⎩⎪⎨⎪⎧SD ·n =0,CD ·n =0,即⎩⎪⎨⎪⎧x -2z =0,-x -2y =0.令z =1,则x =2,y =-1,于是n =(2,-1,1).∵AM ·n =0,∴AM ⊥n .又AM 平面SCD , ∴AM ∥平面SCD .(2)易知平面SAB 的一个法向量为n 1=(1,0,0).设平面SCD 与平面SAB 所成的二面角为φ,则|cos φ|=⎪⎪⎪⎪⎪⎪⎪⎪n 1·n |n 1|·|n |=⎪⎪⎪⎪⎪⎪⎪⎪1,0,0·2,-1,11·6=⎪⎪⎪⎪⎪⎪⎪⎪21·6=63,即cos φ=63. ∴平面SCD 与平面SAB 所成二面角的余弦值为63.(3)设N (x,2x -2,0)(x ∈[1,2]),则MN =(x,2x -3,-1).又平面SAB 的一个法向量为n 1=(1,0,0), ∴sin θ=⎪⎪⎪⎪⎪⎪⎪⎪x ,2x -3,-1·1,0,0x 2+2x -32+-12·1=⎪⎪⎪⎪⎪⎪⎪⎪x5x 2-12x +10=⎪⎪⎪⎪⎪⎪⎪⎪15-12·1x +10·1x 2=110⎝ ⎛⎭⎪⎪⎫1x 2-12⎝ ⎛⎭⎪⎪⎫1x +5=110⎝ ⎛⎭⎪⎪⎫1x -352+75.当1x =35,即x =53时,(sin θ)max =357. 7、如图,四边形ABEF 和四边形ABCD 均是直角梯形,∠FAB =∠DAB =90°,AF =AB =BC =2,AD =1,FA ⊥CD .(1)证明:在平面BCE 上,一定存在过点C 的直线l 与直线DF 平行; (2)求二面角F -CD -A 的余弦值.解:(1)证明:由已知得,BE ∥AF ,BC ∥AD ,BE ∩BC =B ,AD ∩AF =A , ∴平面BCE ∥平面ADF . 设平面DFC ∩平面BCE =l ,则l 过点C . ∵平面BCE ∥平面ADF ,平面DFC ∩平面BCE =l , 平面DFC ∩平面ADF =DF .∴DF ∥l ,即在平面BCE 上一定存在过点C 的直线l ,使得DF ∥l . (2)∵FA ⊥AB ,FA ⊥CD ,AB 与CD 相交,∴FA ⊥平面ABCD .故以A 为原点,AD ,AB ,AF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图.由已知得,D (1,0,0),C (2,2,0),F (0,0,2),∴DF =(-1,0,2),DC =(1,2,0).设平面DFC 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DF =0,n ·DC =0⎩⎪⎨⎪⎧x =2z ,x =-2y ,不妨设z =1.则n =(2,-1,1),不妨设平面ABCD 的一个法向量为m =(0,0,1). ∴cos 〈m ,n 〉=m ·n |m ||n |=16=66,由于二面角F -CD -A 为锐角,∴二面角F -CD -A 的余弦值为66.8、.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,四边形ABCD 是菱形,AC =2,BD =23,E 是PB 上任意一点.(1)求证:AC ⊥DE ;(2)已知二面角A -PB -D 的余弦值为155,若E 为PB 的中点,求EC 与平面PAB 所成角的正弦值.解:(1)证明:∵PD ⊥平面ABCD ,AC 平面ABCD ,∴PD ⊥AC , ∵四边形ABCD 是菱形,∴BD ⊥AC ,又BD ∩PD =D ,∴AC ⊥平面PBD , ∵DE 平面PBD ,∴AC ⊥DE .(2)在△PDB 中,EO ∥PD ,∴EO ⊥平面ABCD ,分别以OA ,OB ,OE 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,设PD =t ,则A (1,0,0),B (0,3,0),C (-1,0,0),E ⎝ ⎛⎭⎪⎪⎫0,0,t 2,P (0,-3,t ),AB =(-1,3,0),AP =(-1,-3,t ).由(1)知,平面PBD 的一个法向量为n 1=(1,0,0),设平面PAB 的法向量为n 2=(x ,y ,z ),则根据⎩⎪⎨⎪⎧n 2·AB =0,n 2·AP =0得⎩⎪⎨⎪⎧-x +3y =0,-x -3y +tz =0,令y =1,得n 2=⎝⎛⎭⎪⎪⎫3,1,23t . ∵二面角A -PB -D 的余弦值为155,则|cos 〈n 1,n 2〉|=155,即34+12t 2=155,解得t =23或t =-23(舍去),∴P (0,-3,23).设EC 与平面PAB 所成的角为θ,∵EC =(-1,0,-3),n 2=(3,1,1),则sin θ=|cos 〈EC ,n 2〉|=232×5=155,∴EC 与平面PAB 所成角的正弦值为155.9、如图1,A ,D 分别是矩形A 1BCD 1上的点,AB =2AA 1=2AD =2,DC =2DD 1,把四边形A 1ADD 1沿AD 折叠,使其与平面ABCD 垂直,如图2所示,连接A 1B ,D 1C 得几何体ABA 1-DCD 1.(1)当点E 在棱AB 上移动时,证明:D 1E ⊥A 1D ;(2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6若存在,求出AE的长;若不存在,请说明理由.解:(1)证明,如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,则D (0,0,0),A (1,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1).设E (1,t,0),则1D E =(1,t ,-1),1A D =(-1,0,-1),∴1D E ·1A D =1×(-1)+t ×0+(-1)×(-1)=0, ∴D 1E ⊥A 1D .(2)假设存在符合条件的点E .设平面D 1EC 的法向量为n =(x ,y ,z ),由(1)知EC =(-1,2-t,0), 则⎩⎪⎨⎪⎧n ·EC =0,n ·1D E =0得⎩⎪⎨⎪⎧-x +2-ty =0,x +ty -z =0,令y =12,则x =1-12t ,z =1,∴n =⎝ ⎛⎭⎪⎪⎫1-12t ,12,1是平面D 1EC 的一个法向量,显然平面ECD 的一个法向量为1DD =(0,0,1), 则cos 〈n ,1DD 〉=|n ·1DD ||n ||1DD |=1⎝ ⎛⎭⎪⎪⎫1-12t 2+14+1=cos π6,解得t =2-33(0≤t ≤2).故存在点E ,当AE =2-33时,二面角D 1-EC -D 的平面角为π6.。

高中数学必修2--空间向量与立体几何知识点归纳总结

高中数学必修2--空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。

(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a共线的单位向量为a ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

(完整版)用空间向量解立体几何问题方法归纳

(完整版)用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法平行垂直问题基础知识直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4) (1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .[证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12,EF =⎝ ⎛⎭⎪⎫-12,0,0,PB =(1,0,-1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),DC =(1,0,0),AB =(1,0,0).(1)因为EF =-12AB ,所以EF ∥AB ,即EF ∥AB . 又AB ⊂平面P AB ,EF ⊄平面P AB ,所以EF ∥平面P AB .(2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC =(0,2,0)·(1,0,0)=0,所以AP ⊥DC ,AD ⊥DC ,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ⊂平面P AD ,AD ⊂平面P AD ,所以DC ⊥平面P AD .因为DC ⊂平面PDC , 所以平面P AD ⊥平面PDC .使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直.例2、在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点. 求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD . 又BA ∩BD =B ,因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4),则EG =⎝ ⎛⎭⎪⎫a 2,1,1,EF =(0,1,1), 1B D ·EG =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF . 又EG ∩EF =E ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD . 利用空间向量求空间角基础知识(1)向量法求异面直线所成的角:若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=|a·b ||a ||b |. (2)向量法求线面所成的角:求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n·a ||n ||a |.(3)向量法求二面角:求出二面角α-l -β的两个半平面α与β的法向量n 1,n 2,若二面角α-l -β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|;若二面角α-l -β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-|n 1·n 2||n 1||n 2|.例1、如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.[解] (1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以1A B=(2,0,-4),1C D =(1,-1,-4).因为cos 〈1A B ,1C D 〉=1A B ·1C D| 1A B ||1C D |=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010. (2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD =(1,1,0),1AC =(0,2,4),所以n 1·AD =0,n 1·1AC =0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0).设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.例2、如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. [解] (1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz . 由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0).则BC =(1,0,3),1BB =1AA =(-1,3,0),1A C =(0,-3,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧n ·BC =0,n ·1BB =0.即⎩⎪⎨⎪⎧x +3z =0,-x +3y =0. 可取n =(3,1,-1).故cosn ,1A C=n ·1A C|n ||1A C |=-105.所以A 1C 与平面BB 1C 1C 所成角的正弦值为105.(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论. (2)求空间角应注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|. ②两平面的法向量的夹角不一定是所求的二面角,有可能两法向量夹角的补角为所求. 例3、如图,在四棱锥S -ABCD 中,AB ⊥AD ,AB ∥CD ,CD =3AB =3,平面SAD ⊥平面ABCD ,E 是线段AD 上一点,AE =ED =3,SE ⊥AD . (1)证明:平面SBE ⊥平面SEC ;(2)若SE =1,求直线CE 与平面SBC 所成角的正弦值.解:(1)证明:∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SE ⊂平面SAD ,SE ⊥AD ,∴SE ⊥平面ABCD . ∵BE ⊂平面ABCD ,∴SE ⊥BE . ∵AB ⊥AD ,AB ∥CD , CD =3AB =3,AE =ED =3,∴∠AEB =30°,∠CED =60°. ∴∠BEC =90°, 即BE ⊥CE . 又SE ∩CE =E ,∴BE ⊥平面SEC . ∵BE ⊂平面SBE , ∴平面SBE ⊥平面SEC .(2)由(1)知,直线ES ,EB ,EC 两两垂直.如图,以E 为原点,EB 为x 轴,EC 为y 轴,ES 为z 轴,建立空间直角坐标系.则E (0,0,0),C (0,23,0),S (0,0,1),B (2,0,0),所以CE =(0,-23,0),CB =(2,-23,0),CS =(0,-23,1).设平面SBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·CB =0,n ·CS =0.即⎩⎪⎨⎪⎧2x -23y =0,-23y +z =0.令y =1,得x =3,z =23, 则平面SBC 的一个法向量为n =(3,1,23). 设直线CE 与平面SBC 所成角的大小为θ,则sin θ=|n ·CE |n |·|CE ||=14,故直线CE 与平面SBC 所成角的正弦值为14. 例4、如图是多面体ABC -A 1B 1C 1和它的三视图.(1)线段CC 1上是否存在一点E ,使BE ⊥平面A 1CC 1?若不存在,请说明理由,若存在,请找出并证明;(2)求平面C 1A 1C 与平面A 1CA 夹角的余弦值.解:(1)由题意知AA 1,AB ,AC 两两垂直,建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),B (-2,0,0),C (0,-2,0),C 1(-1,-1,2),则1CC =(-1,1,2),11A C =(-1,-1,0),1A C =(0,-2,-2).设E (x ,y ,z ),则CE =(x ,y +2,z ),1EC =(-1-x ,-1-y,2-z ).设CE =λ1EC (λ>0), 则⎩⎪⎨⎪⎧x =-λ-λx ,y +2=-λ-λy ,z =2λ-λz ,则E ⎝⎛⎭⎪⎪⎫-λ1+λ,-2-λ1+λ,2λ1+λ, BE =⎝ ⎛⎭⎪⎪⎫2+λ1+λ,-2-λ1+λ,2λ1+λ.由⎩⎪⎨⎪⎧BE ·11A C =0, BE ·1A C =0,得⎩⎪⎨⎪⎧-2+λ1+λ+2+λ1+λ=0,-2-λ1+λ+2λ1+λ=0,解得λ=2,所以线段CC 1上存在一点E ,CE =21EC ,使BE ⊥平面A 1CC 1.(2)设平面C 1A 1C 的法向量为m =(x ,y ,z ),则由⎩⎪⎨⎪⎧ m ·11A C =0,m ·1A C =0,得⎩⎪⎨⎪⎧-x -y =0,-2y -2z =0,取x =1,则y =-1,z =1.故m =(1,-1,1),而平面A 1CA 的一个法向量为n =(1,0,0), 则cos 〈m ,n 〉=m ·n |m ||n |=13=33,故平面C 1A 1C 与平面A 1CA 夹角的余弦值为33.利用空间向量解决探索性问题例1、如图1,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B (如图2).(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BPBC 的值;如果不存在,请说明理由.[解] (1)在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB .又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .(2)以点D 为坐标原点,以直线DB ,DC ,DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),DF =(1,3,0),DE =(0,3,1),DA =(0,0,2).平面CDF 的法向量为DA =(0,0,2).设平面EDF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ DF ·n =0, DE ·n =0,即⎩⎪⎨⎪⎧x +3y =0,3y +z =0,取n =(3,-3,3), cos 〈DA ,n 〉=DA ·n | DA ||n |=217,所以二面角E -DF -C 的余弦值为217.(3)存在.设P (s ,t,0),有AP =(s ,t ,-2),则AP ·DE =3t -2=0,∴t =233, 又BP =(s -2,t,0),PC =(-s,23-t,0),∵BP ∥PC ,∴(s -2)(23-t )=-st , ∴3s +t =2 3. 把t =233代入上式得s =43,∴BP =13BC , ∴在线段BC 上存在点P ,使AP ⊥DE . 此时,BP BC =13.(1)空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.(2)解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.例2、.如图所示,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AA 1=BC =2AC =2.(1)若D 为AA 1中点,求证:平面B 1CD ⊥平面B 1C 1D ;(2)在AA 1上是否存在一点D ,使得二面角B 1-CD -C 1的大小为60°?解:(1)证明:如图所示,以点C 为原点,CA ,CB ,CC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),D (1,0,1), 即11C B =(0,2,0),1DC =(-1,0,1),CD =(1,0,1).由11C B ·CD =(0,2,0)·(1,0,1)=0+0+0=0,得11C B ⊥CD ,即C 1B 1⊥CD . 由1DC ·CD =(-1,0,1)·(1,0,1)=-1+0+1=0,得1DC ⊥CD ,即DC 1⊥CD .又DC 1∩C 1B 1=C 1,∴CD ⊥平面B 1C 1D .又CD ⊂平面B 1CD ,∴平面B 1CD ⊥平面B 1C 1D .(2)存在.当AD =22AA 1时,二面角B 1-CD -C 1的大小为60°.理由如下: 设AD =a ,则D 点坐标为(1,0,a ),CD =(1,0,a ),1CB =(0,2,2),设平面B 1CD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·1CB =0m ·CD =0⇒⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得m =(a,1,-1).又∵CB =(0,2,0)为平面C 1CD 的一个法向量,则cos 60°=|m ·CB ||m |·|CB |=1a 2+2=12, 解得a =2(负值舍去),故AD =2=22AA 1.∴在AA 1上存在一点D 满足题意. 空间直角坐标系建立的创新问题空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量解决立体几何问题.解决的关键环节之一就是建立空间直角坐标系,因而建立空间直角坐标系问题成为近几年试题新的命题点.一、经典例题领悟好例1、如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4, ∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB . (1)求P A 的长;(2)求二面角B -AF -D 的正弦值. (1)学审题——审条件之审视图形由条件知AC ⊥BD ――→建系 DB ,AC 分别为x ,y 轴―→写出A ,B ,C ,D 坐标――――――――→P A ⊥面ABCD设P 坐标――→PF =CF 可得F 坐标――→AF ⊥PB AF ·PB =0―→得P 坐标并求P A 长. (2)学审题 由(1)―→AD ,AF ,AB 的坐标―――――――――――――――――――→向量n 1,n 2分别为平面F AD 、平面F AB 的法向量n 1·AD =0且n 1·AF =0―→求得n 1·n 2―→求得夹角余弦.[解] (1)如图,连接BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB ,OC ,AP 的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1.而AC =4,得AO =AC -OC =3.又OD =CD sin π3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0).因P A ⊥底面ABCD ,可设P (0,-3,z ).由F 为PC 边中点,知F ⎝ ⎛⎭⎪⎫0,-1,z 2.又AF =⎝ ⎛⎭⎪⎫0,2,z 2,PB =(3,3,-z ),AF ⊥PB ,故AF ·PB =0,即6-z 22=0,z =23(舍去-23),所以|PA |=2 3.(2)由(1)知AD =(-3,3,0),AB =(3,3,0),AF =(0,2,3).设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2),由n 1·AD =0,n 1·AF =0,得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2). 由n 2·AB =0,n 2·AF =0,得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2). 从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为378.建立空间直角坐标系的基本思想是寻找其中的线线垂直关系(本题利用AC ⊥BD ),若图中存在交于一点的三条直线两两垂直,则以该点为原点建立空间直角坐标系.在没有明显的垂直关系时,要通过其他已知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系,注意建立的空间直角坐标系是右手系,正确确定坐标轴的名称.例2、如图,在空间几何体中,平面ACD ⊥平面ABC ,AB =BC =CA =DA =DC =BE =2.BE 与平面ABC 所成的角为60°,且点E 在平面ABC 内的射影落在∠ABC 的平分线上.(1)求证:DE ∥平面ABC ; (2)求二面角E -BC -A 的余弦值.解:证明:(1)易知△ABC ,△ACD 都是边长为2的等边三角形,取AC 的中点O ,连接BO ,DO ,则BO ⊥AC ,DO ⊥AC . ∵平面ACD ⊥平面ABC , ∴DO ⊥平面ABC . 作EF ⊥平面ABC ,则EF ∥DO . 根据题意,点F 落在BO 上, ∴∠EBF =60°, 易求得EF =DO =3,∴四边形DEFO 是平行四边形,DE ∥OF . ∵DE ⊄平面ABC ,OF ⊂平面ABC ,∴DE ∥平面ABC .(2)建立如图所示的空间直角坐标系O -xyz ,可求得平面ABC 的一个法向量为n 1=(0,0,1). 可得C (-1,0,0),B (0,3,0),E (0,3-1,3),则CB =(1,3,0),BE =(0,-1,3).设平面BCE 的法向量为n 2=(x ,y ,z ),则可得n 2·CB =0,n 2·BE =0,即(x ,y ,z )·(1,3,0)=0,(x ,y ,z )·(0,-1,3)=0,可取n 2=(-3,3,1). 故cos 〈n 1,n 2〉=n 1·n 1|n 1|·|n 2|=1313. 又由图知,所求二面角的平面角是锐角,故二面角E -BC -A 的余弦值为1313.专题训练1.如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB ∥A 1B 1,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1.解:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (2a,0,0),B (2a,2a,0),C (0,2a,0),D 1(0,0,a ),F (a,0,0),B 1(a ,a ,a ),C 1(0,a ,a ).(1)∵1AB =(-a ,a ,a ),1DD =(0,0,a ),∴cos 〈1AB ,1DD 〉=1AB ·1DD |1AB |·|1DD |=33,所以异面直线AB 1与DD 1所成角的余弦值为33.(2)证明:∵1BB =(-a ,-a ,a ),BC =(-2a,0,0),1FB =(0,a ,a ), ∴⎩⎪⎨⎪⎧1FB ·1BB =0, 1FB ·BC =0.∴FB 1⊥BB 1,FB 1⊥BC . ∵BB 1∩BC =B ,∴FB 1⊥平面BCC 1B 1.2.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C , AB =3,BC =5.(1)求证:AA 1⊥平面ABC ; (2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求 BDBC 1的值.。

向量方法解立体几何

向量方法解立体几何

用向量方法求空间角和距离求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量,则两异面直线所成的角α=arccos ||||||a b a b 求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量,则斜线l 与平面α所成的角α=arcsin ||||||l n l n求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos ||||a b a b 法二、设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二 面角l αβ--的平面角α=1212arccos ||||n n n n 求空间距离问题构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求.(1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ== 法二、设AO α⊥于O,利用AO α⊥和点O 在α内的向量表示,可确定点O 的位置,从而求出||AO .(2)求异面直线的距离法一、找平面β使b β⊂且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离.法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别为异面直线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离|||||cos |||AB n d AB n θ==(此方法移植于点面距离的求法). 例题:如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角;(II )求1BC 和面EFBD 所成的角;(III )求1B 到面EFBD 的距离例题:如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形B B A A '' 是矩形,。

空间向量解决立体几何问题

空间向量解决立体几何问题

❖ ∴ 30.
❖ (3)二面角
❖ 设n1 、n2分别是二面角两个半平面α、β的 法向量,由几何知识可知,二面角α-L-β的大 小与法向量n1 、n2夹角相等(选取法向量竖 坐标z同号时相等)或互补(选取法向量竖坐 标z异号时互补),于是求二面角的大小可转 化为求两个平面法向量的夹角,这样可避免 了二面角的平面角的作图麻烦.
rr
rr
l a // u a u
r r rr
u v u gv 0
rr
1、设 a , b 分别是直线 l 1 , l 2 的方向向量,根据下列条 件判断直线 l 1 , l 2 的位置关系。
r
r
( 1 ) a ( 2 , 1 , 2 ) ,b ( 6 , 3 , 6 )

解之得 2 x z 0
2y 0
x 1 z
2
y 0
❖ 取z=2得n1=(-1,0,2)
❖ 同理可得平面A1FD的法向量为n2=(2,0,1)
❖ ∵n1 ·n2 = -2+0+2=0
❖ ∴面AED⊥面A1FD
2.求空间中的角
❖ (1)两异面直线的夹角 ❖ 利用向量法求两异面直线所成的夹角,不用再
y
0
取z =1
B1 1
AA
xB
C1 1
y
OD C
得平面OA1D1的法向量的坐标n=(2,0,1).
解:以A为原点建立空间直角坐标系O-xyz(如图),设 平面OA1D1的法向量的法向量为n=(x,y,z), 则
O由(OuuA1ur1 ,=(1,-1,0)-1,,A21)(,0,OuuDu0ur1 ,=(2)-1,,D1,1(20),2,2)
b
a、b的距离. B

空间向量与立体几何的知识点总结

空间向量与立体几何的知识点总结

空间向量与立体几何空间向量及其线性运算知识点一空间向量的概念1.定义:在空间,具有大小和方向的量叫做空间向量.2.长度或模:向量的大小.3.表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作AB,其模记为|a|或|AB|.4.几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a长度相等而方向相反的向量,称为a的相反向量,记为 -a共线向量(平行向量)如果表示若干空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量.规定:对于任意向量a,都有0∥a相等向量方向相同且模相等的向量称为相等向量注意:空间中的任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量.知识点二空间向量的线性运算空间向量的线性运算加法a+b=OA+AB=OB减法a-b=OA-OC=CA数乘当λ>0时,λa=λOA=PQ;当λ<0时,λa=λOA=MN;当λ=0时,λa=0运算律交换律:a+b=b+a;结合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.共线向量与共面向量知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线l 的方向向量. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA 所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .推论:1.已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系AC y AB x OA OP ++=,则点P 与点A ,B ,C 共面。

向量方法解立体几何

向量方法解立体几何

用向量方法求空间角和距离空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量,则两异面直线所成的角α=arccos ||||||a b a b 求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量,则斜线l 与平面α所成的角α=arcsin ||||||l n l n 求二面角 二面角l αβ--的平面角α=1212arccos||||n n n n 求点面距离 设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ==例题:如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角;(II )求1BC 和面EFBD 所成的角;(III )求1B 到面EFBD 的距离例题:如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形B B A A '' 是矩形,。

平面平面ABCD B B A A ⊥''(Ⅰ)若A A '=1,求直线AB 到面'DAC 的距离.(II )试问:当A A '的长度为多少时二面角A C A D -'-大小为?60 D A CB P例题:如图,正三棱柱111ABC A B C -的所有棱长均为2,P是侧棱1AA上任意一点. (Ⅰ)求证: 直线1B P 不可能与平面11ACC A 垂直;(II )当11BC B P ⊥时,求二面角11C B P C --的大小. 例题:如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面,且PD AD a ==,问平面PBA 与平面PBC 能否垂直?试说明理由.(不垂直)例题:如图,在直三棱柱111ABC A B C -中,90A ︒∠=,1,,O O G 分别为111,,BC BC AA 的中点,且12AB AC AA ===.(1)求1O 到面11ACB 的距离;(22) (2)求BC 到面11GBC 的距离.(263)空间向量与立体几何例题:已知A ,B ,C 三点不共线,O 是平面外任意一点,若有OC OB OA OP λ++=3251确定的点与A ,B ,C 三点共面,则λ=______.(152因为13251=++λ) 例题:直三棱柱ABC -A 1B 1C 1的底面△ABC 中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1,A 1A 的中点。

高中数学知识点总结大全空间向量与立体几何

高中数学知识点总结大全空间向量与立体几何

高中数学知识点总结空间向量与立体几何一、考点概要:1、空间向量及其运算〔1〕空间向量的根本知识:①定义:空间向量的定义和平面向量一样,那些具有大小和方向的量叫做向量,并且仍用有向线段表示空间向量,且方向相同、长度相等的有向线段表示相同向量或相等的向量。

②空间向量根本定理:ⅰ定理:如果三个向量不共面,那么对于空间任一向量,存在唯一的有序实数组x、y、z,使。

且把叫做空间的一个基底,都叫基向量。

ⅱ正交基底:如果空间一个基底的三个基向量是两两相互垂直,那么这个基底叫正交基底。

ⅲ单位正交基底:当一个正交基底的三个基向量都是单位向量时,称为单位正交基底,通常用表示。

ⅳ空间四点共面:设O、A、B、C是不共面的四点,那么对空间中任意一点P,都存在唯一的有序实数组x、y、z,使。

③共线向量〔平行向量〕:ⅰ定义:如果表示空间向量的有向线段所在的直线互相平行或重合,那么这些向量叫做共线向量或平行向量,记作。

ⅱ规定:零向量与任意向量共线;ⅲ共线向量定理:对空间任意两个向量平行的充要条件是:存在实数λ,使。

④共面向量:ⅰ定义:一般地,能平移到同一平面内的向量叫做共面向量;空间的任意两个向量都是共面向量。

ⅱ向量与平面平行:如果直线OA平行于平面或在α内,那么说向量平行于平面α,记作。

平行于同一平面的向量,也是共面向量。

ⅲ共面向量定理:如果两个向量、不共线,那么向量与向量、共面的充要条件是:存在实数对x、y,使。

ⅳ空间的三个向量共面的条件:当、、都是非零向量时,共面向量定理实际上也是、、所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内。

ⅴ共面向量定理的推论:空间一点P在平面MAB内的充要条件是:存在有序实数对x、y,使得,或对于空间任意一定点O,有。

⑤空间两向量的夹角:两个非零向量、,在空间任取一点O,作,〔两个向量的起点一定要相同〕,那么叫做向量与的夹角,记作,且。

⑥两个向量的数量积:ⅰ定义:空间两个非零向量、,那么叫做向量、的数量积,记作,即:。

空间向量与立体几何知识点

空间向量与立体几何知识点

空间向量与立体几何知识点TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-立体几何空间向量知识点总结知识网络:知识点拨:1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广.2、当a 、b 为非零向量时.0a b a b ⋅=⇔⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题.3、公式cos ,a ba b a b⋅<>=⋅是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值范围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等.4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题.5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行证明两条直线平行,只需证明两条直线的方向向量是共线向量.(2)线线垂直证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ⋅=⇔⊥. (3)线面平行用向量证明线面平行的方法主要有:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线方向向量是共线向量;③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量.(4)线面垂直用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.(5)面面平行①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题.(6)面面垂直①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题.6、运用空间向量求空间角(1)求两异面直线所成角利用公式cos,a ba ba b⋅<>=⋅,但务必注意两异面直线所成角θ的范围是0,2π⎛⎤⎥⎝⎦,故实质上应有:cos cos,a bθ=<>.(2)求线面角求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.(3)求二面角用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离.(1)点与点的距离点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模.(2)点与面的距离点面距离的求解步骤是:①求出该平面的一个法向量;②求出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离.备考建议:1、空间向量的引入,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,应体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力.2、灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.3、在解决立体几何中有关平行、垂直、夹角、距离等问题时,直线的方向向量与平面的法向量有着举足轻重的地位和作用,它的特点是用代数方法解决立体几何问题,无需进行繁、难的几何作图和推理论证,起着从抽象到具体、化难为易的作用.因此,应熟练掌握平面法向量的求法和用法.4、加强运算能力的培养,提高运算的速度和准确性.第一讲空间向量及运算一、空间向量的有关概念1、空间向量的定义在空间中,既有大小又有方向的量叫做空间向量.注意空间向量和数量的区别.数量是只有大小而没有方向的量.2、空间向量的表示方法空间向量与平面向量一样,也可以用有向线段来表示,用有向线段的长度表示向量的大小,用有向线段的方向表示向量的方向.若向量a 对应的有向线段的起点是A ,终点是B ,则向量a 可以记为AB ,其模长为a或AB.3、零向量长度为零的向量称为零向量,记为0.零向量的方向不确定,是任意的.由于零向量的这一特殊性,在解题中一定要看清题目中所指向量是“零向量”还是“非零向量”.4、单位向量模长为1的向量叫做单位向量.单位向量是一种常用的、重要的空间向量,在以后的学习中还要经常用到. 5、相等向量 长度相等且方向相同的空间向量叫做相等向量.若向量a 与向量b 相等,记为a =b .零向量与零向量相等,任意两个相等的非零向量都可以用空间中的同一条有向线段来表示,并且与有向线段的起点无关. 6、相反向量长度相等但方向相反的两个向量叫做相反向量.a 的相反向量记为-a 二、共面向量 1、定义平行于同一平面的向量叫做共面向量. 2、共面向量定理若两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对x 、y,使得p =xa yb +。

用空间向量解立体几何问题方法归纳

用空间向量解立体几何问题方法归纳

1.如图,在三棱柱ABC ­A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求二面角A 1­BC 1­B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BD BC 1的值.解:(1)证明:因为四边形AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC .(2)由(1)知AA 1⊥AC ,AA 1⊥AB .由题知AB =3,BC =5,AC =4,所以AB ⊥AC .如图,以A 为原点建立空间直角坐标系A ­xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),1A B =(0,3,-4),11A C =(4,0,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),n ·B =0,n ·11A C =0.3y -4z =0,4x =0.令z =3,则x =0,y =4,所以n =(0,4,3).同理可得,平面B 1BC 1的一个法向量为m =(3,4,0).所以cos 〈n ,m 〉=n ·m |n ||m |=1625.由题知二面角A 1­BC 1­B 1为锐角,所以二面角A 1­BC 1­B 1的余弦值为1625.(3)证明:设D (x ,y ,z )是直线BC 1上一点,且BD =λ1BC .所以(x ,y -3,z )=λ(4,-3,4).解得x =4λ,y =3-3λ,z =4λ.所以AD =(4λ,3-3λ,4λ).由AD ·1A B =0,即9-25λ=0,解得λ=925.因为925∈[0,1],所以在线段BC 1上存在点D ,使得AD ⊥A 1B .此时,BD BC 1=λ=925.2.如图(1),四边形ABCD 中,E 是BC 的中点,DB =2,DC =1,BC =5,AB =AD =2.将图(1)沿直线BD 折起,使得二面角A ­BD ­C 为60°,如图(2).(1)求证:AE ⊥平面BDC ;(2)求直线AC 与平面ABD 所成角的余弦值.解:(1)证明:取BD 的中点F ,连接EF ,AF ,则AF =1,EF =12,∠AFE =60°.由余弦定理知AE =12+122-2×1×12cos 60°32.∵AE 2+EF 2=AF 2,∴AE ⊥EF .∵AB =AD ,F 为BD 中点.∴BD ⊥AF .又BD =2,DC =1,BC =5,∴BD 2+DC 2=BC 2,即BD ⊥CD .又E 为BC 中点,EF ∥CD ,∴BD ⊥EF .又EF ∩AF =F ,∴BD ⊥平面AEF .又BD ⊥AE ,∵BD ∩EF =F ,∴AE ⊥平面BDC .(2)以E 为原点建立如图所示的空间直角坐标系,则0,0,32C -1,12,01,-12,0,D -1,-12,0DB =(2,0,0),DA 1,12,32AC =-1,12,-32.设平面ABD 的法向量为n =(x ,y ,z ),n ·DB =0n ·DA =02x =0,x +12y +32z =0,取z =3,则y =-3,又∵n =(0,-3,3).∴cos 〈n ,AC 〉=n ·|n ||AC |=-64.故直线AC 与平面ABD 所成角的余弦值为104.3.如图,在四棱锥P ­ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PD =2,PA⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 中点.(1)求直线PB 与平面POC 所成角的余弦值;(2)求B 点到平面PCD 的距离;解:(1)在△PAD 中,PA =PD ,O 为AD 中点,所以PO ⊥AD .又侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD .又在直角梯形ABCD 中,连接OC ,易得OC ⊥AD ,所以以O 为坐标原点,OC ,OD ,OP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),∴PB =(1,-1,-1),易证OA ⊥平面POC ,∴OA =(0,-1,0)是平面POC 的法向量,cos 〈PB ,OA 〉=·|PB ||OA |=33.∴直线PB 与平面POC 所成角的余弦值为63.(2)PD =(0,1,-1),CP =(-1,0,1).设平面PDC 的一个法向量为u =(x ,y ,z ),u ·CP =-x +z =0,u ·PD =y -z =0,取z =1,得u =(1,1,1).∴B 点到平面PCD 的距离为d =|BP ·u ||u |=33.4、.如图,在四棱锥P ­ABCD 中,PD ⊥平面ABCD ,四边形ABCD 是菱形,AC =2,BD =23,E 是PB 上任意一点.(1)求证:AC ⊥DE ;(2)已知二面角A ­PB ­D 的余弦值为155,若E 为PB 的中点,求EC 与平面PAB 所成角的正弦值.解:(1)证明:∵PD ⊥平面ABCD ,AC ⊂平面ABCD ,∴PD ⊥AC ,∵四边形ABCD 是菱形,∴BD ⊥AC ,又BD ∩PD =D ,∴AC ⊥平面PBD ,∵DE ⊂平面PBD ,∴AC ⊥DE .(2)在△PDB 中,EO ∥PD ,∴EO ⊥平面ABCD ,分别以OA ,OB ,OE 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,设PD =t ,则A (1,0,0),B (0,3,0),C (-1,0,0)E0,0,t 2P (0,-3,t ),AB =(-1,3,0),AP =(-1,-3,t ).由(1)知,平面PBD 的一个法向量为n 1=(1,0,0),设平面PAB 的法向量为n 2=(x ,y ,z ),则n 2·AB =0,n 2·AP =0-x +3y =0,-x -3y +tz =0,令y =1,得n 2=31,23t ∵二面角A ­PB ­D 的余弦值为155,则|cos 〈n 1,n 2〉|=155,即34+12t 2=155,解得t =23或t =-23(舍去),∴P (0,-3,23).设EC 与平面PAB 所成的角为θ,∵EC =(-1,0,-3),n 2=(3,1,1),则sin θ=|cos 〈EC ,n 2〉|=232×5=155,∴EC 与平面PAB 所成角的正弦值为155.。

高三数学复习(文科)立体几何知识点、方法总结

高三数学复习(文科)立体几何知识点、方法总结

立体几何知识点整理(文科)一.直线和平面的三种位置关系:1. 线面平行符号表示:2. 线面相交符号表示:3. 线在面内符号表示:二.平行关系:1.线线平行:方法一:用线面平行实现。

mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。

mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。

若αα⊥⊥ml,,则ml//。

方法四:用向量方法:若向量l和向量m共线且l、m不重合,则ml//。

2.线面平行:方法一:用线线平行实现。

ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。

αββα////ll⇒⎭⎬⎫⊂方法三:用平面法向量实现。

若n为平面α的一个法向量,ln⊥且α⊄l,则α//l。

3.面面平行:方法一:用线线平行实现。

βααβ//',','//'//⇒⎪⎪⎭⎪⎪⎬⎫⊂⊂且相交且相交mlmlmmll方法二:用线面平行实现。

βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。

αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥lABACAABACABlACl,方法二:用面面垂直实现。

llαββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。

βαβα⊥⇒⎭⎬⎫⊂⊥l l方法二:计算所成二面角为直角。

3. 线线垂直:方法一:用线面垂直实现。

m l m l ⊥⇒⎭⎬⎫⊂⊥αα方法二:三垂线定理及其逆定理。

PO l OA l PA l αα⊥⎫⎪⊥⇒⊥⎬⎪⊂⎭方法三:用向量方法:若向量l 和向量m 的数量积为0,则m l ⊥。

三.夹角问题。

(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理)余弦定理:abcb a 2cos 222-+=θ(计算结果可能是其补角)方法二:向量法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量法解立体几何
1、直线的方向向量和平面的法向量
⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量.
⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作
n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量.
⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.
②设平面α的法向量为(,,)n x y z =.
③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==.
④根据法向量定义建立方程组0
n a n b ⎧⋅=⎪⎨⋅=⎪⎩.
⑤解方程组,取其中一组解,即得平面α的法向量.
2、用向量方法判定空间中的平行关系
⑴线线平行。

设直线12,l l 的方向向量分别是a b 、
,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.⑵线面平行。

设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥
α,只需证明a u ⊥,即0a u ⋅=.
⑶面面平行。

若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=.
3、用向量方法判定空间的垂直关系⑴线线垂直。

设直线12,l l 的方向向量分别是a b 、
,则要证明12l l ⊥,只需证明a b ⊥,即0a b ⋅=.⑵线面垂直
①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=.
②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、
,若
,.0
a m l a n α⎧⋅=⎪⊥⎨
⋅=⎪⎩则 ⑶面面垂直。

若平面α的法向量为u ,平面β的法向量为v ,要证αβ⊥,只需证u v ⊥,即证0u v ⋅=.
4、利用向量求空间角 ⑴求异面直线所成的角
已知,a b 为两异面直线,A ,C 与B ,D 分别是,a b 上的任意两点,,a b 所成的角为θ,则cos .AC BD AC BD
θ⋅=
⑵求直线和平面所成的角
求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角的余角.即有:cos s .in a u a u
ϕθ⋅==
⑶求二面角
二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角.
如图:
求法:设二面角l αβ--的两个半平面的法向量分别为m n 、
,再设m n 、的夹角为ϕ,二面角l αβ--的平面角为θ,则二面角θ为m n 、
的夹角ϕ或其补角.πϕ- 根据具体图形确定θ是锐角或是钝角: 如果θ是锐角,则cos cos m n m n
θϕ⋅==
,即arccos
m n m n
θ⋅=;
如果θ是钝角,则cos cos m n
m n
θϕ⋅=-=-,即arccos m n m n θ⎛⎫
⋅ ⎪=-
⎪⎝⎭
. 5、利用法向量求空间距离
⑴点Q 到直线l 距离
若Q 为直线l 外的一点,P 在直线l 上,a 为直线l 的方向向量,b =PQ ,则点Q 到直线l
O
A
B
O
A
B
l
距离为 221
(||||)()|
h a b a b a =-⋅ ⑵点A 到平面α的距离
若点P 为平面α外一点,点M 为平面α内任一点,平面α的法向量为n ,则P 到平面α的距离就等于MP 在法向量n 方向上的投影的绝对值.
即cos ,d MP n MP
=n MP MP n MP
⋅=⋅
n MP n
⋅=
⑶直线a 与平面α之间的距离
当一条直线和一个平面平行时,直线上的各点到平面的距离相等。

由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离。

即.n MP d n
⋅=
⑷两平行平面,αβ之间的距离
利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离。


.n MP d n
⋅=
⑸异面直线间的距离
设向量n 与两异面直线,a b 都垂直,,,M a P b ∈∈则两异面直线,a b 间的距离d 就是MP 在向量n 方向上投影的绝对值。

即.n MP d n
⋅=。

相关文档
最新文档