小学奥数:容斥原理之重叠问题(二).专项练习

合集下载

(小学奥数)容斥原理之重叠问题(二)

(小学奥数)容斥原理之重叠问题(二)

1. 瞭解容斥原理二量重疊和三量重疊的內容;2. 掌握容斥原理的在組合計數等各個方面的應用.一、兩量重疊問題 在一些計數問題中,經常遇到有關集合元素個數的計算.求兩個集合並集的元素的個數,不能簡單地把兩個集合的元素個數相加,而要從兩個集合個數之和中減去重複計算的元素個數,即減去交集的元素個數,用式子可表示成:A B A B A B =+-(其中符號“”讀作“並”,相當於中文“和”或者“或”的意思;符號“”讀作“交”,相當於中文“且”的意思.)則稱這一公式為包含與排除原理,簡稱容斥原理.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.包含與排除原理告訴我們,要計算兩個集合A B 、的並集AB 的元素的個數,可分以下兩步進行:第一步:分別計算集合A B 、的元素個數,然後加起來,即先求A B +(意思是把A B 、的一切元素都“包含”進來,加在一起);第二步:從上面的和中減去交集的元素個數,即減去C AB =(意思是“排除”了重複計算的元素個數).二、三量重疊問題A 類、B 類與C 類元素個數的總和A =類元素的個數B +類元素個數C +類元素個數-既是A 類又是B 類的元素個數-既是B 類又是C 類的元素個數-既是A 類又是C 類的元素個數+同時是A 類、B 類、C 類的元素個數.用符號表示為:A B C A B C A B B C A C A B C =++---+.圖示如下:教學目標知識要點7-7-2.容斥原理之重疊問題(二)1.先包含——A B +重疊部分A B 計算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重疊部分A B 減去.在解答有關包含排除問題時,我們常常利用圓圈圖(韋恩圖)來幫助分析思考.模組一、三量重疊問題【例 1】 一棟居民樓裏的住戶每戶都訂了2份不同的報紙。

小学奥数计数之容斥原理练习【三篇】

小学奥数计数之容斥原理练习【三篇】

【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。

以下是为⼤家整理的《⼩学奥数计数之容斥原理练习【三篇】》供您查阅。

【第⼀篇】1.⼀个班有45个⼩学⽣,统计借课外书的情况是:全班学⽣都借有语⽂或数学课外书.借语⽂课外书的有39⼈,借数学课外书的有32⼈.语⽂、数学两种课外书都借的有⼈. 3.在1~100的⾃然数中,是5的倍数或是7的倍数的数有个. 4.某区100个外语教师懂英语或俄语,其中懂英语的75⼈,既懂英语⼜懂俄语的20⼈,那么懂俄语的教师为⼈. 5.六⼀班有学⽣46⼈,其中会骑⾃⾏车的17⼈,会游泳的14⼈,既会骑车⼜会游泳的4⼈,问两样都不会的有⼈. 6.在1⾄10000中不能被5或7整除的数共有个. 7.在1⾄10000之间既不是完全平⽅数,也不是完全⽴⽅数的整数有个. 8.某班共有30名男⽣,其中20⼈参加⾜球队,12⼈参加蓝球队,10⼈参加排球队.已知没⼀个⼈同时参加3个队,且每⼈⾄少参加⼀个队,有6⼈既参加⾜球队⼜参加蓝球队,有2⼈既参加蓝球队⼜参加排球队,那么既参加⾜球队⼜参加排球队的有⼈. 9.分母是1001的最简真分数有个. 10.在100个学⽣中,⾳乐爱好者有56⼈,体育爱好者有75⼈,那么既爱好⾳乐,⼜爱好体育的⼈最少有⼈,最多有⼈.【第⼆篇】[ 例1 ] 洗好的8块⼿帕夹在绳⼦上晾⼲,同⼀个夹⼦夹住相邻的两块⼿帕的两边,这样⼀共要多少个夹⼦? 分析:两块⼿帕有⼀边重叠,⽤3个夹⼦。

三块⼿帕有两边重叠,⽤4个夹⼦,我们发现夹⼦数总⽐⼿帕数多1,因此8块⼿帕就要⽤9个夹⼦。

[ 例2 ] 把图画每两张重叠在⼀起钉在墙上,现在有5张画要多少个图钉呢? 分析:每排两张画要6个图钉,每排三张画要8个图钉,每排四张画要10个图钉。

可以看出,图画每增加⼀张,图钉就要增加2颗,那么5张画要12个图钉。

1.有两块⽊板,⼀块长72厘⽶,另⼀块长56厘⽶,如果把两块⽊板重叠后钉成⼀块⽊板,重叠部分是20厘⽶。

小学奥数:容斥原理之重叠问题(二).专项练习

小学奥数:容斥原理之重叠问题(二).专项练习

1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-U I (其中符号“U ”读作“并”,相当于中文“和”或者“或”的意思;符号“I ”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B U 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =I (意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+U U I I I I I .图示如下:教学目标 知识要点7-7-2.容斥原理之重叠问题(二)1.先包含——A B +重叠部分A B I 计算了2次,多加了1次;2.再排除——A B A B +-I把多加了1次的重叠部分A B I 减去.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.模块一、三量重叠问题【例 1】 一栋居民楼里的住户每户都订了2份不同的报纸。

小学奥数专题-重叠问题(精华版)

小学奥数专题-重叠问题(精华版)

小学奥数专题-重叠问题(精华版)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN小学奥数重叠问题专题日常生活或数学问题中,在把一些数据按照某个标准分类时,常常出现其中的一部分数据同时属于两种或两种以上不同的类别,这样在计算总数时就会出现重复计算的情况,这类问题就叫做重叠问题。

重叠问题中涉及到的容斥原理是奥数的四大原理之一,是奥数重要知识点。

学生学习奥数,一定要掌握容斥原理。

下面小编给大家分享解决重叠的方法。

1. 解答重叠问题要用到数学中一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

2. 解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次。

明确需要要求的是哪一部分,从而找出解答方法。

3. 在数学中,我们经常用平面上封闭曲线的内部代表集合和集合之间的关系。

这种图称为韦恩图(也叫文氏图)。

4. 解答重叠问题的常用方法是:先不考虑重叠的情况,把有重复包含的几个计数部分加起来,再从它们的和中排除重复部分元素的个数,使得计算的结果既无遗漏又不重复。

这个原理叫做包含与排斥原理,也叫容斥原理。

5. 容斥原理1:如果被计数的对象,被分为A、B两大类,则:被计数对象的总个数=A类元素的个数+B类元素的个数-同时属于A类和B类的元素个数。

容斥原理2:如果被计数的对象,被分为A、B、C三大类,则:被计数对象的总个数=A类元素的个数+B类元素的个数+C类元素的个数-同时属于A类和B类元素的个数-同时属于A类和C类元素个数-同时属于B类和C类元素个数+同时属于A类、B类、C类元素个数。

一、重叠问题之长度:(1)拼接(对接)(2)搭接(3)打结题目1:(搭接正问题:求总长度)把两段同样是20厘米长的纸条粘合在一起,形成一段更长的纸条。

中间重叠的部分是6厘米,粘好的纸条长多少厘米?题目2:(搭接反问题一:等长搭接,求原来长度)把两段一样长的纸条粘合在一起,形成一段更长的纸条。

小学奥数7-7-4 容斥原理之数论问题.专项练习及答案解析

小学奥数7-7-4 容斥原理之数论问题.专项练习及答案解析

1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-知识要点教学目标1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.7-7-4 容斥原理之数论问题既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 在1~100的全部自然数中,不是3的倍数也不是5的倍数的数有多少个?A B【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图,用长方形表示1~100的全部自然数,A 圆表示1~100中3的倍数,B 圆表示1~100中5的倍数,长方形内两圆外的部分表示既不是3的倍数也不是5的倍数的数.由1003331÷=可知,1~100中3的倍数有33个;由100520÷=可知,1~100中5的倍数有20个;由10035610÷⨯=()可知,1~100既是3的倍数又是5的倍数的数有6个.由包含排除法,3或5的倍数有:3320647+-=(个).从而不是3的倍数也不是5的倍数的数有1004753-=(个).【答案】53【巩固】 在自然数1100~中,能被3或5中任一个整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1003331÷=,100520÷=,10035610÷⨯=().根据包含排除法,能被3或5中任一个整除的数有3320647+-=(个).【答案】47【巩固】 在前100个自然数中,能被2或3整除的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 如图所示,A 圆内是前100个自然数中所有能被2整除的数,B 圆内是前100个自然数中所有能被3整除的数,C 为前100个自然数中既能被2整除也能被3整除的数.例题精讲 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.前100个自然数中能被2整除的数有:100250÷=(个).由1003331÷=知,前100个自然数中能被3整除的数有:33个.由10023164÷⨯=()知,前100个自然数中既能被2整除也能被3整除的数有16个.所以A 中有50个数,B 中有33个数,C 中有16个数.因为A ,B 都包含C ,根据包含排除法得到,能被2或3整除的数有:50331667+-=(个).【答案】67【例 2】 在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 1~1000之间,5的倍数有10005⎡⎤⎢⎥⎣⎦=200个,7的倍数有10007⎡⎤⎢⎥⎣⎦=142个,因为既是5的倍数,又是7的倍数的数一定是35的倍数,所以这样的数有100035⎡⎤⎢⎥⎣⎦=28个.所以既不能被5除尽,又不能被7除尽的数有1000-200-142+-28=686个.【答案】686【巩固】 求在1至100的自然数中能被3或7整除的数的个数.【考点】容斥原理之数论问题 【难度】2星 【题型】解答【解析】 记 A :1~100中3的倍数,1003331÷=,有33个;B :1~100中7的倍数,1007142÷=,有14个;A B :1~100中3和7的公倍数,即21的倍数,10021416÷=,有4个.依据公式,1~100中3的倍数或7的倍数共有3314443+-=个,则能被3或7整除的数的个数为43个.【答案】43【例 3】 以105为分母的最简真分数共有多少个?它们的和为多少?【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 以105为分母的最简真分数的分子与105互质,105=3×5×7,所以也是求1到105不是3、5、7倍数的数有多少个,3的倍数有35个,5的倍数有21个,7的倍数有15个,15的倍数有7个,21的倍数有5个,35的倍数有3个,105的倍数有1个,所以105以内与105互质的数有105-35-21-15+7+5+3-1=48个,显然如果n与105互质,那么(105-n )与n 互质,所以以105为分母的48个最简真分数可两个两个凑成1,所以它们的和为24.【答案】48个,和24【巩固】 分母是385的最简真分数有多少个?并求这些真分数的和.【考点】容斥原理之数论问题 【难度】4星 【题型】解答【解析】 385=5×7×11,不超过385的正整数中被5整除的数有77个;被7整除的数有55个;被11整除的数有35个;被77整除的数有5个;被35整除的数有11个;被55整除的数有7个;被385整除的数有1个;最简真分数的分子可以有385-77-55-35+5+11+7-1=240.对于某个分数a/385如果是最简真分数的话,那么(385-a )/385也是最简真分数,所以最简真分数可以每两个凑成整数1,所以这些真分数的和为120.【答案】240个,120个【例 4】 在1至2008这2008个自然数中,恰好是3、5、7中两个数的倍数的数共有个.【考点】容斥原理之数论问题 【难度】3星 【题型】填空【关键词】西城实验【解析】 1到2008这2008个自然数中,3和5的倍数有200813315⎡⎤=⎢⎥⎣⎦个,3和7的倍数有20089521⎡⎤=⎢⎥⎣⎦个,5和7的倍数有20085735⎡⎤=⎢⎥⎣⎦个,3、5和7的倍数有200819105⎡⎤=⎢⎥⎣⎦个.所以,恰好是3、5、7中两个数的倍数的共有1331995195719228-+-+-=个.【答案】228个【例 5】 求1到100内有____个数不能被2、3、7中的任何一个整除。

7-7-2 容斥原理之重叠问题(二).学生版

7-7-2 容斥原理之重叠问题(二).学生版

1.了解容斥原理二量重叠和三量重叠的内容; 2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:AB ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.教学目标知识要点7-7-2.容斥原理之重叠问题(二)1.先包含——A B +重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.例题精讲模块一、三量重叠问题【例1】一栋居民楼里的住户每户都订了2份不同的报纸。

重叠问题(容斥原理,包含与排除)

重叠问题(容斥原理,包含与排除)

包含与排除例题1,(1)五年级一班参加体育兴趣小组的有30人,参加文艺兴趣小组的有25人,两项活动都参加的有13人,全班每人至少参加一项活动。

问这个班有多少人?(2)三年级一班参加合唱队的有40人,参加舞蹈队的有20人,既参加合唱队又参加舞蹈队的有14人。

这两队都没有参加的有10人。

请算一算,这个班共有多少人?1,学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。

这个文艺组一共有多少人?2,某班在一次测验中有26人语文获优,有30人数学获优,其中语文、数学双优的有12人,另外还有8人语文、数学均未获优。

这个班共有多少人?3,第一小组的同学们都在做两道数学思考题,做对第一题的有15人,做对第二题的有10人,两题都做对的有7人,两题都做错的有2人。

第一小组共有多少人?例题2,(1)五年级一班有42人,参加体育兴趣小组的有30人,参加文艺兴趣小组的有25人,全班每人至少参加一项活动。

问这个班两项活动都参加的有多少人?(2)一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。

两样都会的有多少人?(3)3,某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?1,五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。

其中语文成绩优秀的有65人,数学优秀的有87人。

语文、数学都优秀的有多少人?2,一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。

问这两种棋都会下的有多少人?3,学校开展课外活动,共有250人参加。

其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。

问这250名同学中,象棋组、乒乓球组都不参加的有多少人?例题3,(1)四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?(2)全班46名同学,仅会打乒乓球的有28人,会打乒乓球又会打羽毛球的有10人,不会打乒乓球又不会打羽毛球的有6人。

小学奥数总复习第七讲《容斥原理》练习

小学奥数总复习第七讲《容斥原理》练习

1、先包含——A +B 重叠部分A ∩B 计算了2次,多加了1次;2、再排除——A +B -A ∩B小学奥数总复习第七讲《容斥原理》练习容斥原理1:两量重叠问题计算公式:A ∪B=A +B-A ∩B说明:A ∪B 读作:“A 并B ”,表示A 、B 情况的总和。

A ∩B 读作:“A 交B ”,表示A 、B 的公共部分。

容斥原理2:三量重叠问题计算公式: A ∪B ∪C= A +B +C -A ∩B -B ∩C -A ∩C -A ∩B ∩C说明:A ∪B ∪读作:“A 并B 并C ”,表示A 、B 、C 情况的总和。

A ∩B ∩C 读作:“A 交B 交C ”,表示A 、B 、C 的公共部分。

1、有两块一样长的木板,各长130厘米,中间钉在一起后成了一块长木板,中间钉在一起的重叠部分时10厘米,长木板的长度是多少?2、把两块一样长的木板钉在一起,钉成一块长35厘米的木板。

中间重叠部分长11厘米。

这两块木板各长多少厘米?3、老师出了两道数学题,在40人中,做对第一题的有31人,做对第二题的有28人,每人至少做对一道,两道题都做对的有几人?4、三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种,已知参加赛跑的有36人,参加跳绳的有38人。

问两项比赛都参加的有几人?5、某班共有42人,参加美术小组的有11人,参加陶艺小组的有15人,有6人两个小组都参加。

这个班既没参加美术小组也没参加陶艺小组的有多少人?6、三(2)班订《数学报》的有32人,订《阅读报》的有30人,两份报纸都订的有10人,全班每人至少订一种报纸,三(1)班有学生多少人?7、校运动会上,四个年级共有118人参加跑步比赛。

其中一、二年级共有70人参加,一、三年级共有65人参加,二、三年级共有59人参加。

问:四年级有多少学生参加跑步比赛?8、某校三年级共有三个班级128名学生,一班和二班共有89人,二班和三班共有87人。

三年级各班有多少名学生?A ∩C A ∩B ∩C B ∩C A ∩B 图中小圆表示A 的个数,中圆表示B 的个数,大圆表示C 的个数 1、先包含——A +B +C 重叠部分A ∩B 、 B ∩C 、 A ∩C 重叠了2次, A ∩B ∩C 重叠了3次。

奥数素养思维强化练习——重叠问题(专项训练)-2024-2025学年六年级数学下册数学人教版

奥数素养思维强化练习——重叠问题(专项训练)-2024-2025学年六年级数学下册数学人教版

奥数素养思维强化练习——重叠问题班级:姓名:学号:一、知识点:1. 含义重叠问题是数学上非常常见的一类数学问题,它要用到数学中的一个非常重要的原理:容斥原理,即当两个(或多个)计数部分有重复包含时,为了不重复计数,应从他们的和中排除重复部分。

2. 解题思路和方法解决重叠问题时,必须从条件入手进行认真的分析,有时还要画图,借助图形进行思考,找出哪些是重叠的和重叠的次数,明确求的是哪一部分,从而找出解答方法。

当两个计数部分重叠时,可从它们的单项和中减去重叠的部分,得出总数。

二、精讲练习★1.二(1)班同学人人参加课外活动,有20人参加英语班,有26人参加电脑班,每人至少参加一项。

其中4人两个班都参加。

二(1)班一共有多少人?★2.成了一块木板。

如果这块钉在起的木板长120厘米,中把两块一样长的木板像如图一样钉在一起,中间重叠部分是16厘米,这两块木板各长多少厘米?★3.101个同学带着矿泉水和水果去春游,其中矿泉水的78人,带水果的有71人,只带矿泉水和只带水果的各有多少人?★★4.冬天来了,一群大雁排成一队飞向南方,有一只穿花衣服的大雁非常漂亮。

从前面数,它排第6,;从后面数它排第3。

一共有多少只大雁?★★5.芳草地小学四年级的64人都会钢琴或画画中的一种,其中有58人学钢琴,43人学画画,问只学钢琴和只学画画的分别各有多少人?★★6.世博澳门馆100万名旅客中,若每人至少懂中文和英语两种语种之一,其中懂中文的有58万人,懂英语的有50万人。

只懂中文和只懂英语的各有多少人?★★7.某校对五年级100名同学进行学习兴趣调查,结果有58人喜欢语文,有38人喜欢数学,有52人喜欢外语。

而且喜欢语文和数学(但不喜欢外语)的有6人,喜欢数学和外语(但不喜欢语文)的有4人,三科都喜欢的有12人,而且每人至少喜欢一科。

问有多少同学只喜欢语文?★★★8.学校乐器队招收了42名新学员,其中会拉小提琴的有25名,会弹电子琴的有22名,两项都不会的有3名。

四上 第十单元 1.重叠问题 2.方阵问题 3.编码(北京课改版 数学百花园)(附答案)

四上  第十单元 1.重叠问题  2.方阵问题  3.编码(北京课改版 数学百花园)(附答案)

第十单元数学百花园模块一重叠问题(容斥原理)能力提升训练【例题1】四(2)班共有42人,其中会打篮球的有21人,会游泳的有17人,两种运动都不会的有10人,两种运动都会的有多少人?【练习1】四(1)班在一次语文、数学测试中,有32人语文获优,有35人数学获优,其中语文、数学都获优的有28人,语文、数学都没有获优的有6人。

四(1)班共有学生多少人?【例题2】红星小学举办绘画展览。

展示栏展出一至六年级的绘画作品,其中有24幅作品不是一年级的,有22幅作品不是二年级的,一、二年级参展的绘画作品共有8幅,三至六年级参展的绘画作品共有多少幅?【练习2】学校科技室里展出每个年级的科技作品,其中有110件不是一年级的,有100件不是二年级的,一、二年级参展的作品共有32件。

三至六年级参展的作品共有多少件?【例题3】把三根长为10厘米的筷子绑在一起,其中绑在一起的部分长1厘米,那么,绑成后的这根筷子长多少厘米?【练习3】把两根同样长的木条钉在一起,钉成一根长47厘米的木条,中间重叠部分(阴影部分)长11厘米(如下图)。

每根木条长多少厘米?47厘米14厘米【例题4】把四根长为40厘米的尺子,绑成一根长为130厘米的长尺子,那么每两根尺子中间的重叠部分长多少厘米?【练习4】把五根长为40厘米的尺子,绑成一根长为160厘米的长尺子,那么每两根尺子中间的重叠部分长多少厘米?【例题5】四(1)班有48人,其中喜欢看《奥特曼》的有32人,喜欢看《喜羊羊与灰太狼》的有38人,有25人两种动画片都喜欢看。

那么:(1)只喜欢看《奥特曼》而不喜欢看《喜羊羊与灰太狼》的有多少人?(2)只喜欢看《喜羊羊与灰太狼》而不喜欢看《奥特曼》的有多少人?(3)有多少人两种动画片都不喜欢看?【练习5】四(1)班同学中喜欢看《喜羊羊与灰太狼》的有32人,喜欢看《成龙历险记》的有25人,两种动画片都喜欢看的有8人,喜不喜欢看的有2人,五(1)班一共有多少人?【例题6】光明小学组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进行,参加围棋比赛的有42人,参加中国象棋比赛的有55人,参加国际象棋比赛的有33人,同时参加了围棋和中国象棋比赛的有18人,同时参加了围棋和国际象棋比赛的有10人,同时参加了中国象棋和国际象棋比赛的有9人,其中三种棋赛都参加的有5人,问参加棋类比赛的共有多少人?【练习6】三(1)班的学生参加活动班(每人至少参加一个),参加作文班的有18人,参加音乐班的有20人,参加奥数班的有24人。

重叠问题练习题有答案

重叠问题练习题有答案

重叠问题练习题有答案在我们的数学学习中,重叠问题常常让同学们感到有些困惑。

但别担心,通过一些练习题的训练,相信大家能够轻松掌握。

下面就让我们一起来看看这些有趣的重叠问题练习题吧!题目 1:三(1)班参加语文兴趣小组的有 25 人,参加数学兴趣小组的有 28 人,两个小组都参加的有 12 人。

问三(1)班参加兴趣小组的一共有多少人?答案:只参加语文兴趣小组的人数为 25 12 = 13 人,只参加数学兴趣小组的人数为 28 12 = 16 人。

所以参加兴趣小组的总人数为 13+ 16 + 12 = 41 人。

题目 2:学校组织了绘画比赛和书法比赛。

参加绘画比赛的有 35 人,参加书法比赛的有 40 人,两项比赛都参加的有 18 人。

请问学校一共有多少人参加了比赛?答案:参加绘画比赛但没参加书法比赛的有 35 18 = 17 人,参加书法比赛但没参加绘画比赛的有 40 18 = 22 人。

所以参加比赛的总人数为 17 + 22 + 18 = 57 人。

题目 3:在一次运动会中,参加跑步比赛的有 45 人,参加跳远比赛的有 38 人,既参加跑步又参加跳远比赛的有 15 人。

问参加这两项比赛的共有多少人?答案:只参加跑步比赛的人数为 45 15 = 30 人,只参加跳远比赛的人数为 38 15 = 23 人。

那么参加这两项比赛的总人数为 30 + 23 +15 = 68 人。

题目 4:某班有 50 名学生,喜欢语文的有 30 人,喜欢数学的有 25 人,两门学科都喜欢的有 10 人。

问两门学科都不喜欢的有多少人?答案:喜欢语文或数学的人数为 30 + 25 10 = 45 人。

所以两门学科都不喜欢的人数为 50 45 = 5 人。

题目 5:一个社区组织了健康体检,参加体检的有 200 人。

其中检查出有高血压的有 80 人,有糖尿病的有 60 人,两种病都有的有 20 人。

问既没有高血压也没有糖尿病的有多少人?答案:只有高血压的人数为 80 20 = 60 人,只有糖尿病的人数为60 20 = 40 人。

小学奥数专题-重叠问题(精华版)

小学奥数专题-重叠问题(精华版)

小学奥数重叠问题专题日常生活或数学问题中,在把一些数据按照某个标准分类时,常常出现其中的一部分数据同时属于两种或两种以上不同的类别,这样在计算总数时就会出现重复计算的情况,这类问题就叫做重叠问题。

重叠问题中涉及到的容斥原理是奥数的四大原理之一,是奥数重要知识点。

学生学习奥数,一定要掌握容斥原理。

下面小编给大家分享解决重叠的方法。

1. 解答重叠问题要用到数学中一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

2. 解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次。

明确需要要求的是哪一部分,从而找出解答方法。

3. 在数学中,我们经常用平面上封闭曲线的部代表集合和集合之间的关系。

这种图称为韦恩图(也叫文氏图)。

4. 解答重叠问题的常用方法是:先不考虑重叠的情况,把有重复包含的几个计数部分加起来,再从它们的和中排除重复部分元素的个数,使得计算的结果既无遗漏又不重复。

这个原理叫做包含与排斥原理,也叫容斥原理。

5. 容斥原理1:如果被计数的对象,被分为A、B两大类,则:被计数对象的总个数=A 类元素的个数+B类元素的个数-同时属于A类和B类的元素个数。

..容斥原理2:如果被计数的对象,被分为A、B、C三大类,则:被计数对象的总个数=A类元素的个数+B类元素的个数+C类元素的个数-同时属于A类和B类元素的个数-同时属于A类和C类元素个数-同时属于B类和C类元素个数+同时属于A类、B类、C类元素个数。

..一、重叠问题之长度:(1)拼接(对接)(2)搭接(3)打结题目1:(搭接正问题:求总长度)把两段同样是20厘米长的纸条粘合在一起,形成一段更长的纸条。

中间重叠的部分是6厘米,粘好的纸条长多少厘米?题目2:(搭接反问题一:等长搭接,求原来长度)把两段一样长的纸条粘合在一起,形成一段更长的纸条。

小学数学六年级奥数《容斥原理(2)》练习题(含答案)

小学数学六年级奥数《容斥原理(2)》练习题(含答案)

小学数学六年级奥数《容斥原理(2)》练习题(含答案)一、填空题1.某校有500名学生报名参加学科竞赛,数学竞赛参加者共312名,作文竞赛参加者共353名,其中这两科都参加的有292名,那么这两科都没有参加的人数为 人.2.某门诊部统计某一天挂号的病人,内科150人,外科92人,其中内、外两科都求诊的18人,这一天共来了 个病人.3.两个正方形的纸片盖在桌面上,位置与尺寸如图所示,则它们盖住 (平方厘米).4.不超过30的正整数中,是3的倍数或4的倍数的数有 个.5.在一次运动会中,甲班参加田赛的有15人,参加径赛的有12人,参加田赛又参加径赛的有7人,没有参加比赛的有21人.那么甲班共有 人.6.在桌面上放置着三个两两重叠的圆纸片(如图),它们的面积都是100(cm 2)并知A 、B 两圆重叠的面积是20(cm 2),A 、C 两圆重叠的面积为45(cm 2),B 、C 两圆重叠面积为31(cm 2),三个圆共同重叠的面积为15(cm 2),求盖住桌子的总面积是平方厘米.7.在一次考试中,某班数学得100分的有17人,语文得100分的有13人,两科都得100分的有7人,那么两科中至少有一科得100分的共有 人.全班45人中两科都不得100分的有 人.8.在1,2,3,…,1000这1000个自然数中,既不是2的倍数,又不是3的倍数的数共有 个.9.小于1000的自然数中,是完全平方数而不是完全立方数的数有 个.10.某校有学生960人,其中有510人订阅“作文报”,有330人订阅“数学报”,有120人订阅“科学爱好者”,全校学生中有270人订阅两种报刊,有58人三种报刊都订,那么这学校中没有订阅任何报刊的有 人.2 AB C二、解答题11.70名学生参加体育比赛,短跑得奖的31人,投掷得奖的36人,弹跳得奖的29人,短跑与投掷二项均得奖的12人,跑、跳、投三项均得奖的有5人,只得弹跳奖的有7人,只得投掷奖的有15人.求(1)只得短跑奖的人数;(2)得二项奖的总人数;(3)一项奖均未得的人数.12.64人订A 、B 、C 三种杂志.订A 种杂志的28人,订B 种杂志的有41人,订C 种杂志的有20人, 订A 、B 两种杂志的有10人,订B 、C 两种杂志的有12人,订A 、C 两种杂志的有12人,问三种杂志都订的有多少人?13.求从1到1994中不能被5整除,也不能被6或7整除的自然数的个数.14.夏日的一天,有十个同学去吃冷饮.向服务员交出需要冷饮的统计,数字如下,有6个人要可可,有5个人要咖啡,有5个人要果汁,有3个人既要可可又要果汁,有一个人既要可可、咖啡又要了果汁.求证其中一定有一个人什么冷饮也没有要.———————————————答 案——————————————————————1. 127从图中可以看出:参加数学、作文竞赛的总人数为312+353-292=373(人) 从而可知这两科都没有参加的人数为500-373=127(人).2. 224从图可以看出,来诊病人总数为150+92-18=224(人).3. 10.75把两个正方形面积加起来得22+32=13,但其中多算了一块阴影部分的面积,这部分面积为 1.52=2.25(平方厘米),故两个正方形盖住的总面积是22+32-1.52=13-2.25=10.75(cm 2)4. 15内科 150人 外科92人18 人不超过30的3的倍数有10330=⎥⎦⎤⎢⎣⎡(个),不超过30的4的倍数有7430=⎥⎦⎤⎢⎣⎡-(个);不超过30的3⨯4=12的倍数有24330=⎥⎦⎤⎢⎣⎡⨯(个),因此不超过30的正整数中是3的倍数,或是4的倍数的数共有10+7-2=15(个).5. 41如图所示,易知总人数为(15+12-7)+21=41(人).6. 219由容斥原理知,盖住桌面的总面积为100+100+100-(20+45+31)+15=219(平方厘米).7. 23;22至少一科得100分的有17+13-7=23(人),两科都不得100分的有45-23=22(人).8. 333在1~1000的自然数中,2的倍数有50021000=⎥⎦⎤⎢⎣⎡(个),3的倍数有33331000=⎥⎦⎤⎢⎣⎡(个),2⨯3=6的倍数共有166321000=⎥⎦⎤⎢⎣⎡⨯(个),故是2或是3的倍数共有500+333-166=667(个),从而既不是2的倍数,又不是3的倍数的数共有1000-667=333(个).9. 28小于1000的自然数中,是完全平方数的有12、22、…,312共31个.其中12=13,82=43,272=93.又是完全立方数,故符合条件的数有31-3=28(个)10. 121由容斥原理知,或订“作文报”或订“数学报”或订“科学爱好者”的总人数为510+330+120-270+58=748(人)故三种报刊都没有订的人数为960-748=212(人).11. (1)如图,用矩形表示参赛的70个学生,而用三个圆表示分别在跑、 跳、投中得奖的人.数学 语文 7 17 13设x 为只得短跑奖的人数,y 为只在短跑和弹跳两项得奖的人数,z 为只在弹跑与投掷两项得奖的人数,u 为只在投掷和短跑两项得奖的人数.则有u =12-5=7(人),z =36-15-12=9(人),y =29-5-7=8(人),x =31-12-8=11(人).即只得短跑奖的有11人.(2)得二次奖的人数为y +z +u =8+9+7=24(人).(3)因至少得一次奖的人数为x +y +z +u +5+7+15=62(人),故一项奖均未得的人数为70-62=8(人).12. 设三种杂志均订的人数为x ,则有28+41+20-10-12-12+x =64,解得x =9,即三种杂志都订的有9人.13. 在1~1994中,能被5整除的个数为39851994=⎥⎦⎤⎢⎣⎡;能被6整除的个数为33261994=⎥⎦⎤⎢⎣⎡;能被7整除的个数为28471994=⎥⎦⎤⎢⎣⎡;能被5⨯6=30整除的个数为66301994=⎥⎦⎤⎢⎣⎡;能被5⨯7=35整除的数为56351994=⎥⎦⎤⎢⎣⎡;能被6⨯7=42整除的个数为47421994=⎥⎦⎤⎢⎣⎡;能被5⨯6⨯7=210整除的个数为92101994=⎥⎦⎤⎢⎣⎡. 根据容斥原理,1~1994中或能被5,或能被6,或能被7整除的数的个数为:(398+332+284)-(66+54+47)+9=854,从而不能被5整除,也不能被6或7整除的自然数的个数为1994-854=1140(个).14. 要了冷饮的总人数为6+5+5-3-2-3+1=9(人),但总人数为10人,故一定有一个人什么冷饮也没有要.AB C x。

重叠问题练习题集锦带答案

重叠问题练习题集锦带答案

重叠问题练习题集锦带答案在数学的世界里,重叠问题常常让同学们感到困惑,但只要我们掌握了方法,就能轻松应对。

下面为大家准备了一些重叠问题的练习题,一起来挑战一下吧!一、基础篇1、学校组织兴趣小组,参加绘画小组的有 25 人,参加书法小组的有 20 人,两个小组都参加的有 8 人。

参加兴趣小组的一共有多少人?答案:参加绘画小组的有 25 人,参加书法小组的有 20 人,但是有8 人两个小组都参加了,这 8 人在计算总人数时被重复计算了一次,所以需要减去一次。

则参加兴趣小组的总人数为 25 + 20 8 = 37(人)2、三(1)班有 45 人,喜欢唱歌的有 28 人,喜欢跳舞的有 20 人,既喜欢唱歌又喜欢跳舞的有 10 人,两种都不喜欢的有多少人?答案:喜欢唱歌的有 28 人,喜欢跳舞的有 20 人,其中既喜欢唱歌又喜欢跳舞的有 10 人,所以喜欢唱歌或者喜欢跳舞的人数为 28 + 20 10 = 38(人)。

班级总人数为 45 人,那么两种都不喜欢的人数为 45 38 = 7(人)3、一次数学测验,做对第一题的有 25 人,做对第二题的有 18 人,两题都做对的有 8 人,至少做对一题的有多少人?答案:做对第一题的有 25 人,做对第二题的有 18 人,两题都做对的有 8 人。

所以至少做对一题的人数为 25 + 18 8 = 35(人)二、提高篇1、某班有 50 名学生,在一次测验中,语文成绩优秀的有 30 人,数学成绩优秀的有 28 人,英语成绩优秀的有 20 人,语文和数学成绩都优秀的有 18 人,语文和英语成绩都优秀的有 12 人,数学和英语成绩都优秀的有 10 人,三科成绩都优秀的有 5 人。

请问:(1)三科成绩都不优秀的有多少人?(2)只有语文成绩优秀的有多少人?答案:(1)语文成绩优秀的有 30 人,数学成绩优秀的有 28 人,英语成绩优秀的有 20 人。

语文和数学成绩都优秀的有 18 人,语文和英语成绩都优秀的有 12 人,数学和英语成绩都优秀的有 10 人,三科成绩都优秀的有 5 人。

小学-重叠问题-中学-容斥原理

小学-重叠问题-中学-容斥原理

重叠问题一、专题简析解答重叠问题要用到数学中的一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次?明确求的是哪一部分,从而找出解答方法。

二、精讲精练【例题1】六一儿童节,学校门口挂了一行彩旗。

小张从前数起,红旗是第8面;从后数起,红旗是第10面。

这行彩旗共多少面?练习1:1.学校组织看文艺演出,冬冬的座位从左数起是第12个,从右数起是第21个。

这一行座位有个。

2.同学们排队去参观展览,无论从前数还是从后起起,李华都排在第8个。

这一排共有个同学。

【例题2】同学们排队做操,每行人数同样多。

小明的位置从左数起是第4个,从右数起是第3个,从前数起是第5个,从后数起是第6个。

做操的同学共有多少个?练习2:1.同学们排队跳舞,每行、每列人数同样多。

小红的位置无论从前数从后数,从左数还是从右数起都是第4个。

跳舞的共有人。

2.三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。

三(4)班共有学生人。

【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。

如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?练习3:1.把两段一样长的纸条粘合在一起,形成一段更长的纸条。

这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?2.把两块一样长的木板钉在一起,钉成一块长35厘米的木板。

中间重合部分长11厘米,这两块木板各长多少厘米?3.两根木棍放在一起,从头到尾共长66厘米,其中一根木棍长48厘米,中间重叠部分长12厘米。

另一根木棍长多少厘米?【例题4】一次数学测试,全班36人中,做对第一道聪明题的有21人,做对第二道聪明题的有18人,每人至少做对一道。

小学奥数专题-重叠问题(精华版)

小学奥数专题-重叠问题(精华版)

小学奥数重叠问题专题日常生活或数学问题中,在把一些数据按照某个标准分类时,常常出现其中的一部分数据同时属于两种或两种以上不同的类别,这样在计算总数时就会出现重复计算的情况,这类问题就叫做重叠问题。

重叠问题中涉及到的容斥原理是奥数的四大原理之一,是奥数重要知识点。

学生学习奥数,一定要掌握容斥原理。

下面小编给大家分享解决重叠的方法。

1. 解答重叠问题要用到数学中一个重要原理——包含与排除原理,即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

2. 解答重叠问题的应用题,必须从条件入手进行认真的分析,有时还要画出图示,借助图形进行思考,找出哪些是重复的,重复了几次。

明确需要要求的是哪一部分,从而找出解答方法。

3. 在数学中,我们经常用平面上封闭曲线的内部代表集合和集合之间的关系。

这种图称为韦恩图(也叫文氏图)。

4. 解答重叠问题的常用方法是:先不考虑重叠的情况,把有重复包含的几个计数部分加起来,再从它们的和中排除重复部分元素的个数,使得计算的结果既无遗漏又不重复。

这个原理叫做包含与排斥原理,也叫容斥原理。

5. 容斥原理1:如果被计数的对象,被分为A、B两大类,则:被计数对象的总个数=A 类元素的个数+B类元素的个数-同时属于A类和B类的元素个数。

容斥原理2:如果被计数的对象,被分为A、B、C三大类,则:被计数对象的总个数=A 类元素的个数+B类元素的个数+C类元素的个数-同时属于A类和B类元素的个数-同时属于A类和C类元素个数-同时属于B类和C类元素个数+同时属于A类、B类、C类元素个数。

一、重叠问题之长度:(1)拼接(对接)(2)搭接(3)打结题目1:(搭接正问题:求总长度)把两段同样是20厘米长的纸条粘合在一起,形成一段更长的纸条。

中间重叠的部分是6厘米,粘好的纸条长多少厘米?题目2:(搭接反问题一:等长搭接,求原来长度)把两段一样长的纸条粘合在一起,形成一段更长的纸条。

这段更长的纸条长30厘米,中间重叠的部分是6厘米,原来两条纸条各长多少厘米?题目3:(搭接反问题一:不等长搭接,求原来长度)两根木棍放在一起,从头到尾共长66厘米,其中一根木棍长48厘米,中间重叠部分长12厘米。

重叠问题练习题答案

重叠问题练习题答案

重叠问题练习题答案重叠问题通常指的是在数学或逻辑问题中,两个或多个集合或事件有共同的部分。

下面是一些重叠问题练习题的答案:1. 练习题:一个班级有50名学生,其中30人参加了数学俱乐部,20人参加了科学俱乐部。

如果两个俱乐部共有的学生数为10人,那么没有参加任何俱乐部的学生有多少人?答案:首先,我们计算两个俱乐部的学生总数:30(数学俱乐部)+ 20(科学俱乐部)- 10(两个俱乐部共有的学生)= 40人。

班级总人数为50人,所以没有参加任何俱乐部的学生数为50 - 40 = 10人。

2. 练习题:在一个社区中,有200户家庭,其中100户有宠物,80户有花园。

如果同时拥有宠物和花园的家庭有40户,那么没有宠物也没有花园的家庭有多少户?答案:首先,我们计算有宠物和花园的家庭总数:100(有宠物)+ 80(有花园)- 40(同时拥有宠物和花园)= 140户。

社区总家庭数为200户,所以没有宠物也没有花园的家庭数为200 - 140 = 60户。

3. 练习题:一个图书馆有1000本书,其中300本是科幻小说,200本是历史书籍。

如果同时属于科幻和历史类别的书籍有50本,那么既不是科幻也不是历史的书籍有多少本?答案:首先,我们计算科幻和历史书籍的总数:300(科幻小说)+ 200(历史书籍)- 50(同时属于科幻和历史的书籍)= 450本。

图书馆总书籍数为1000本,所以既不是科幻也不是历史的书籍数为1000 - 450 = 550本。

4. 练习题:一个学校有500名学生,其中200名学生参加了体育队,150名学生参加了合唱团。

如果同时参加体育队和合唱团的学生有50人,那么没有参加任何团队的学生有多少人?答案:首先,我们计算参加体育队和合唱团的学生总数:200(体育队)+ 150(合唱团)- 50(同时参加两个团队的学生)= 300人。

学校总学生数为500人,所以没有参加任何团队的学生数为500 - 300 = 200人。

五年级奥数重叠问题

五年级奥数重叠问题

重叠问题知识集锦在很多计数问题中,常常要把所要计数的对象分为若干个不重复又不遗漏的类型,使得每类便于计数。

但是实际的问题却往往较为复杂,而且容易混为一团,难以区分,而要准确无误的计算事物的个数就得运用容斥原理,这类问题往往被称为重叠问题,也叫包含于排除问题。

例题集合例1 一个班有学生42人,参加体育代表队的有30人,参加文艺代表队的有25人,并且每个人至少参加了一个队,这个班两队都参加的有几个人?练习1 三年级有200名学生全部都参加了小组活动。

报名参加体育小组的有180人,参加文娱小组的有160人。

问体育和文娱两个小组都参加的有多少人?例2 四年级某个班的同学都参加兴趣小组的活动,已知有28人参加歌唱小组,26人参加美术小组,两个小组都参加的有9人。

该班共有多少人?练习2 某班56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没参加的有25人,那么同时参加语文、数学竞赛的有多少人?例3 有100位旅客,其中10人既不懂英语,又不懂俄语,有75人懂英语,有83人懂俄语。

那么这100位旅客中既懂英语又懂俄语的有多少人?练习3 有40名运动员,其中有25人会摔跤,有20人会击剑,有10人摔跤、击剑都不会。

问既会摔跤又会击剑的运动员有多少名?例4 某公司除6人没有参加业余培训学习外,其余员工都参加了学习。

参加计算机学习的有27人,参加外语学习的有32人,两种科目都参加的有11人。

该公司共有多少名员工?练习4 学校文艺组的成员每人至少会演奏一种乐器。

已知会拉风琴的有24人,会弹电子琴的有17人,其中两种乐器都会演奏的有8人。

这个文艺组一共有多少人?例5 燕燕要制作一架飞机模型,只差下图所示的a的边长,一时求不出来,被难住了。

已知正方形与三角形一部分重叠着,乙三角形面积比甲三角形面积大5平方厘米。

请你帮她算一下(单位:厘米)。

练习5 桌面上放有一张长12厘米、宽8厘米的长方形纸片和一张边长为7厘米的正方形纸片(如图所示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-U I (其中符号“U ”读作“并”,相当于中文“和”或者“或”的意思;符号“I ”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B U 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =I (意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+U U I I I I I .图示如下:教学目标 知识要点7-7-2.容斥原理之重叠问题(二)1.先包含——A B +重叠部分A B I 计算了2次,多加了1次;2.再排除——A B A B +-I把多加了1次的重叠部分A B I 减去.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.模块一、三量重叠问题【例 1】 一栋居民楼里的住户每户都订了2份不同的报纸。

如果该居民楼的住户只订了甲、乙、丙三种报纸,其中甲报30份,乙报34份,丙报40份,那么既订乙报又订丙报的有___________户。

【考点】三量重叠问题 【难度】3星 【题型】填空【关键词】希望杯,4年级,1试【解析】 总共有(30+34+40)÷2=52户居民,订丙和乙的有52-30=22户。

【答案】22户【例 2】 某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34人,手中有黄旗的共有26人,手中有蓝旗的共有18人.其中手中有红、黄、蓝三种小旗的有6人.而手中只有红、黄两种小旗的有9人,手中只有黄、蓝两种小旗的有4人,手中只有红、蓝两种小旗的有3人,那么这个班共有多少人?【考点】三量重叠问题 【难度】3星 【题型】解答CB A【解析】 如图,用A 圆表示手中有红旗的,B 圆表示手中有黄旗的,C 圆表示手中有蓝旗的.如果用手中有红旗的、有黄旗的与有蓝旗的相加,发现手中只有红、黄两种小旗的各重复计算了一次,应减去,手中有三种颜色小旗的重复计算了二次,也应减去,那么,全班人数为:342618943++-++-()() 6250⨯=(人).【答案】50人【巩固】 某班有42人,其中26人爱打篮球,17人爱打排球,19人爱踢足球,9人既爱打篮球又爱踢足球,4人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?【考点】三量重叠问题 【难度】3星 【题型】解答【解析】 由于全班42人没有一个人三种球都不爱好,所以全班至少爱好一种球的有42例题精讲图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B I 、B C I 、C A I 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---I I I 重叠部分A B C I I 重叠了3次,但是在进行A B C ++- A B B C A C --I I I 计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+I I I I I .人.根据包含排除法,4226171994=++-++()(既爱打篮球又爱打排球的人数0+),得到既爱打篮球又爱打排球的人数为:49427-=(人).【答案】7人【例 3】 四年级一班有46名学生参加3项课外活动.其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组也参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人.求参加文艺小组的人数.【考点】三量重叠问题 【难度】3星 【题型】解答【解析】 设参加数学小组的学生组成集合A ,参加语文小组的学生组成集合B ,参加文艺小组的学生组成集合G .三者都参加的学生有z 人.有A B C U U =46,A =24,B =20,C =3.5,A C I =7A B C I I ,B C I =2A B C I I ,A B I =10. 因为A B C A B C A B A C B C A B C =++---+U U I I I I I ,所以46=24+20+7x -10-2x -2x +x ,解得x =3,即三者的都参加的有3人.那么参加文艺小组的有3⨯7=21人.【答案】21人【巩固】 五年级三班学生参加课外兴趣小组,每人至少参加一项.其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人.求这个班的学生人数.【考点】三量重叠问题 【难度】3星 【题型】解答C 语文B 美术A 自然【解析】 设参加自然兴趣小组的人组成集合A ,参加美术兴趣小组的人组成集合日,参加语文兴趣小组的人组成集合C . A =25,B =35,C =27,B C I =12,A B I =8,A C I =9, A B C I I =4.A B C U U =A B C A B A C B C A B C ++---+I I I I I .所以,这个班中至少参加一项活动的人有25+35+27-12-8-9+4=62,而这个班每人至少参加一项.即这个班有62人.【答案】62人【巩固】 光明小学组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进行,参加围棋比赛的有42人,参加中国象棋比赛的有55人,参加国际象棋比赛的有33人,同时参加了围棋和中国象棋比赛的有18人,同时参加了围棋和国际象棋比赛的有10人,同时参加了中国象棋和国际象棋比赛的有9人,其中三种棋赛都参加的有5人,问参加棋类比赛的共有多少人?【考点】三量重叠问题 【难度】3星 【题型】解答【解析】 根据包含排除法,先把参加围棋比赛的42人,参加中国象棋比赛的55人与参加国际象棋比赛的33人加起来,共是425533130++=人.把重复加一遍同时参加围棋和中国象棋的18人,同时参加围棋和国际象棋的10人与同时参加中国象棋和国际象棋的人减去,但是,同时参加了三种棋赛的人被加了次,又被减了次,其实并未计算在内,应当补上,实际上参加棋类比赛的共有:-+++=()(人).130********或者根据学过的公式:A B C A B C A B B C A C A B CU U I I I I I,参加棋类=++---+比赛的总人数为:42553318109598++---+=(人).【答案】98人【例 4】新年联欢会上,共有90人参加了跳舞、合唱、演奏三种节目的演出.如果只参加跳舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多4人;50人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有________人.【考点】三量重叠问题【难度】3星【题型】填空【关键词】西城实验【解析】设只参加合唱的有x人,那么只参加跳舞的人数为3x,由50人没有参加演奏、10人同时参加了跳舞和合唱但没有参加演奏,得到只参加合唱的和只参加跳舞的人数和为501040x=,所以只参加合唱的有10人,那么只+=,得10-=人,即340x x参加跳舞的人数为30人,又由“同时参加三种节目的人比只参加合唱的人少7人”,得到同时参加三项的有3人,所以参加了合唱的人中“同时参加了演奏、合唱但没有参加跳舞的”有:401010317---=人.【答案】17人【巩固】六年级100名同学,每人至少爱好体育、文艺和科学三项中的一项.其中,爱好体育的55人,爱好文艺的56人,爱好科学的51人,三项都爱好的15人,只爱好体育和科学的4人,只爱好体育和文艺的17人.问:有多少人只爱好科学和文艺两项?只爱好体育的有多少人?【考点】三量重叠问题【难度】3星【题型】解答【解析】只是A类和B类的元素个数,有别于容斥原理Ⅱ中的既是A类又是B类的元数个数.依题意,画图如下.设只爱好科学和文艺两项的有x人.由容斥原理,列方程得55565117154151515100()()()x++-+-+-++=即555651174152100++----⨯=x111100-=x---=(人).11x=只爱好体育的有:551715419【答案】11人只爱好科学和文艺,19人只爱好体育。

【例 5】在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了汉堡,6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕.2个人既带了汉堡又带了芝土蛋糕.问:⑴ 三种都带了的有几人?⑵ 只带了一种的有几个?【考点】三量重叠问题【难度】4星【题型】解答ABC【解析】如图,用A圆表示带汉堡的人,B圆表示带鸡腿的人,C圆表示带芝士蛋糕的人.⑴ 根据包含排除法,总人数=(带汉堡的人数+带鸡腿的人数+带芝士蛋糕的人数-)(带汉堡、鸡腿的人数+带汉堡、芝士蛋糕的人数+带鸡腿、芝士蛋糕的人数+)三种都带了的人数,即10664321()()三种都带了的人数,得三种都带了的人数为:-++-+++-=(人).10100⑵ 求只带一种的人数,只需从10人中减去带了两种的人数,即103214-++=()(人).只带了一种的有4人.【答案】(1)0人,(2)4人【巩固】盛夏的一天,有10个同学去冷饮店,向服务员交了一份需要冷饮的统计表:要可乐、雪碧、橙汁的各有5人;可乐、雪碧都要的有3人;可乐、橙汁都要的有2人;雪碧、橙汁都要的有2人;三样都要的只有1人,证明其中一定有1人这三种饮料都没有要.【考点】三量重叠问题【难度】4星【题型】解答【解析】略【答案】根据根据包含排除法,至少要了一种饮料的人数=(要可乐的人数+要雪碧的人数+要橙汁的人数)-(要可乐、雪碧的人数+要可乐、橙汁的人数+要雪碧、橙汁的人数)+三种都要的人数,即至少要了一种饮料的人数为:-=(人),所以其中有1人这三种饮料都没()()(人).109155532219++-+++=有要.【例 6】全班有25个学生,其中17人会骑自行车,13人会游泳,8人会滑冰,这三个运动项目没有人全会,至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀.若全班有6个人数学不及格,那么,⑴ 数学成绩优秀的有几个学生?⑵ 有几个人既会游泳,又会滑冰?【考点】三量重叠问题【难度】4星【题型】解答【解析】⑴ 有6个数学不及格,那么及格的有:25619-=(人),即最多不会超过19人会这三项运动之一.而又因为没人全会这三项运动,那么,最少也会有:17138219()(人)至少会这三项运动之一.于是,至少会三项运动之一的只++÷=能是19人,而这19人又不是优秀,说明全班25人中除了19人外,剩下的6名不及格,所以没有数学成绩优秀的.⑵ 上面分析可知,及格的19人中,每人都会两项运动:会骑车的一定有一部分会游泳,一部分会滑冰;会游泳的人中若不会骑车就一定会滑冰,而会滑冰的人中若不会骑车就一定会游泳,但既会游泳又会滑冰的人一定不会骑自行车.所以,全班有19172-=(人)既会游泳又会滑冰.【答案】(1)0人,(2)2人【巩固】五年级一班共有36人,每人参加一个兴趣小组,共有A、B、C、D、E五个小组,若参加A组的有15人,参加B组的人数仅次于A组,参加C组、D组的人数相同,参加E组的人数最少,只有4人.那么,参加B组的有_______人.【考点】三量重叠问题【难度】4星【题型】填空【解析】参加B,C,D三组的总人数是3615417--=(人),C,D每组至少5人,当C,--=(人).D每组6人时,B组为5人,不符合题意,所以参加B组的有17557【答案】7人【例 7】五一班有28位同学,每人至少参加数学、语文、自然课外小组中的一个.其中仅参加数学与语文小组的人数等于仅参加数学小组的人数,没有同学仅参加语文或仅参加自然小组,恰有6个同学参加数学与自然小组但不参加语文小组,仅参加语文与自然小组的人数是3个小组全参加的人数的5倍,并且知道3个小组全参加的人数是一个不为0的偶数,那么仅参加数学和语文小组的人有多少人?【考点】三量重叠问题【难度】4星【题型】解答【解析】参加3个小组的人数是一个不为0的偶数,如果该数大于或等于4,那么仅参加语文与自然小组的人数则大于等于20,而仅参加数学与自然小组的人有6个,这样至少应有30人,与题意矛盾,所以参加3个小组的人数为2.仅参加语文与自然小组的人数为10,于是仅参加语文与自然、仅参加数学与自然和参加3个小组的人数一共是18人,剩下的10人是仅参加数学与语文以及仅参加数学的.由于这两个人数相等,所以仅参加数学和语文小组的有5人.【答案】5人【例 8】 在一个自助果园里,只摘山莓者两倍于只摘李子者;摘了草莓、山莓和李子的人数比只摘李子的人数多3个;只摘草莓者比摘了山莓和草莓但没有摘李子者多4人;50个人没有摘草莓;11个人摘了山莓和李子但没有摘草莓;总共有60人摘了李子.如果参与采摘水果的总人数是100,你能回答下列问题吗?① 有 人摘了山莓;② 有 人同时摘了三种水果;③ 有 人只摘了山莓;④ 有 人摘了李子和草莓,而没有摘山莓;⑤ 有 人只摘了草莓.草莓李子山莓GF EDC B A【考点】三量重叠问题 【难度】3星 【题型】填空【解析】 如图,根据题意有2A C =3G C -=4B E -=50A D C ++=11D =60C D F G +++=40A B E ++=代入求解:26A =,9B =,13C =,11D =,5E =,20F =,16G =所以①有261151658A D E G +++=+++=(人)摘了山莓;②有16人同时摘了三种水果;③有26人只摘了山莓;④有20人摘了李子和草莓,而没有摘山莓;⑤有9人只摘了草莓.【答案】①有58(人)摘了山莓;②有16人同时摘了三种水果;③有26人只摘了山莓;④有20人摘了李子和草莓,而没有摘山莓;⑤有9人只摘了草莓.【例 9】 某学校派出若干名学生参加体育竞技比赛,比赛一共只有三个项目,已知参加长跑、跳高、标枪三个项目的人数分别为10、15、20人,长跑、跳高、标枪每一项的的参加选手中人中都有五分之一的人还参加了别的比赛项目,求这所学校一共派出多少人参加比赛?科学51人文艺56人17154体育55人x【考点】三量重叠问题 【难度】4星 【题型】解答【解析】 由条件可知,参加长跑的人中有2人参加其它项目,参加跳高的人中有3人参加其它项目,参加标枪的人中有4人还参加别的项目,假设只参加长跑和跳高的人数为x ,只参加长跑和标枪的人数为y ,只参加标枪和跳高的有z 人,三项都参加的有n人.那么有以下方程组:由条件可知,参加长跑的人中有2人参加其它项目,参加跳高的人中有3人参加其它项目,参加标枪的人中有4人还参加别的项目,假设只参加长跑和跳高的人数为x ,只参加长跑和标枪的人数为y ,只参加标枪和跳高的有z 人,三项都参加的有n 人.那么有以下方程组:23 4x y n x z n z y n ++=⎧⎪++=⎨⎪++=⎩ 将3条等式相加则有2(x +y +z )+3n =9,由这个等式可以得到,n 必须是奇数,所以,n 只能是1或3、5、7……,如果n ≥3时x 、y 、z 中会出现负数.所以n =1,这样可以求得x =0,y =1,z =2.由此可得到这个学校一共派出了10+15+20-0-1-2-2×1=40人.将3条等式相加则有2(x +y +z )+3n =9,由这个等式可以得到,n 必须是奇数,所以,n 只能是1或3、5、7……,如果n ≥3时x 、y 、z 中会出现负数.所以n =1,这样可以求得x =0,y =1,z =2.由此可得到这个学校一共派出了10+15+20-0-1-2-2×1=40人.【答案】40人模块二、四个量的重叠问题【例 10】 养牛场有2007头黄牛和水牛,其中母牛1105头,黄牛1506头,公水牛200头,那么母黄牛有 头。

相关文档
最新文档