2020届高考数学艺体生专题讲义《第一节、集合》

合集下载

艺术生高考数学专题讲义:考点1 集合的概念与运算

艺术生高考数学专题讲义:考点1 集合的概念与运算

考点一集合的概念与运算知识梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N+(或N*)Z Q R(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.2.集合间的基本关系关系自然语言符号语言V enn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A B(或B A)集合相等集合A,B中元素完全相同或集合A,B互为子集A=B3.全集与补集(1)如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U表示;(2) 对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.4.集合的运算 集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }(1)子集个数公式:若有限集A 中有n 个元素,则A 的子集个数为2n 个,非空子集个数为2n -1个,真子集有2n -1个.(2) A ∩B =A ⇔A ⊆B ,A ∪B =B ⇔A ⊆B .(3)(∁U A )∩(∁U B )=∁U (A ∪B ),(∁U A )∪(∁U B )=∁U (A ∩B ) .典例剖析题型一 集合的基本概念例1 已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是变式训练 已知集合A ={0,1,2},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则集合B 中有________个元素.例2 设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.变式训练 已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.题型二 集合间的基本关系例3 集合A ={-1,0,1},A 的子集中,含有元素0的子集共有 个 例4 设,若,则a 的取值范围是 .变式训练 已知集合()2{|540},,,A x x x B a A B =−+≤=−∞⊆,则a 的取值范围是 .题型三 集合的基本运算例5 已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________.变式训练 已知集合A ={x |x 2-x -2≤0},集合B 为整数集,则A ∩B 等于________.例6 已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B ) =________.变式训练 已知集合A ={x |x 2-2x >0},B ={x |-<x <},则A ∪B =________.例7集合{1,2,3,,10}U =,则U 的元素两两互素的三元子集个数有__________个.当堂练习1. 已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()UA B =________.2.若集合M ={-1,0,1},N ={0,1,2},则M ∩N 等于________. 3.已知{菱形},{正方形},{平行四边形},则之间的关系为_______4.已知集合A ={(x ,y )|-1≤x ≤1,0≤y <2,x 、y ∈Z },用列举法可以表示集合A 为________. 5.设集合M ={0,1,2},N ={x |x 2-3x +2≤0},则M ∩N = .2023年集合作业一.选择题(共21小题) 1.(2022•新高考Ⅰ)若集合M ={x |<4},N ={x |3x ≥1},则M ∩N =( )A .{x |0≤x <2}B .{x |≤x <2}C .{x |3≤x <16}D .{x |≤x <16}2.(2021•新高考Ⅰ)设集合A ={x |﹣2<x <4},B ={2,3,4,5},则A ∩B =( ) A .{2,3,4}B .{3,4}C .{2,3}D .{2}3.(2020•新课标Ⅰ)已知集合A ={x |x 2﹣3x ﹣4<0},B ={﹣4,1,3,5},则A ∩B =( ) A .{﹣4,1}B .{1,5}C .{3,5}D .{1,3}4.(2020•新课标Ⅰ)设集合A ={x |x 2﹣4≤0},B ={x |2x +a ≤0},且A ∩B ={x |﹣2≤x ≤1},则a =( ) A .﹣4B .﹣2C .2D .45.(2019•新课标Ⅰ)已知集合U ={1,2,3,4,5,6,7},A ={2,3,4,5},B ={2,3,6,7},则B ∩(∁U A )=( ) A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}6.(2019•新课标Ⅰ)已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3}B.{x|﹣4<x<﹣2}C.{x|﹣2<x<2}D.{x|2<x<3} 7.(2018•新课标Ⅰ)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2}B.{1,2}C.{0}D.{﹣2,﹣1,0,1,2}8.(2018•新课标Ⅰ)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}9.(2017•新课标Ⅰ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅10.(2017•新课标Ⅰ)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R 11.(2016•新课标Ⅰ)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7} 12.(2016•新课标Ⅰ)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)13.(2015•广东)若集合M={﹣1,1},N={﹣2,1,0},则M∩N=()A.{0.﹣1}B.{0}C.{1}D.{﹣1,1} 14.(2015•广东)若集合M={x|(x+4)(x+1)=0},N={x|(x﹣4)(x﹣1)=0},则M∩N=()A.{1,4}B.{﹣1,﹣4}C.{0}D.∅15.(2014•广东)已知集合M={﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2}C.{﹣1,0,2}D.{﹣1,0,1} 16.(2014•广东)已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2}B.{2,3}C.{3,4}D.{3,5} 17.(2013•广东)设集合M={x|x2+2x=0,x∈R},N={x|x2﹣2x=0,x∈R},则M∪N=()A.{0}B.{0,2}C.{﹣2,0}D.{﹣2,0,2} 18.(2012•广东)设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M=()A.U B.{1,3,5}C.{3,5,6}D.{2,4,6} 19.(2012•广东)设集合U={1,2,3,4,5,6},M={1,3,5},则∁U M=()A.{2,4,6}B.{1,3,5}C.{1,2,4}D.U 20.(2009•广东)已知全集U=R,集合M={x|﹣2≤x﹣1≤2}和N={x|x=2k﹣1,k=1,2,…}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有()A.3个B.2个C.1个D.无穷多个21.(2000•广东)已知集合A={1,2,3,4},那么A的真子集的个数是()A.15B.16C.3D.4二.填空题(共1小题)22.设S={r1,r2,…,r n}⊆{1,2,3,…,50},且S中任意两数之和不能被7整除,则n 的最大值为.三.解答题(共1小题)23.(2022秋•番禺区校级期末)设集合A={x|3x﹣2>1},B={x|2m≤x≤m+3}.(1)当m=﹣1时,求A∩B,A∪B.(2)若B⊆A,求m的取值范围.。

2020高考数学艺体生文化课第一章集合、逻辑联结词、复数、程序框图测试第2节命题及简要逻辑课件

2020高考数学艺体生文化课第一章集合、逻辑联结词、复数、程序框图测试第2节命题及简要逻辑课件

12.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根,则 下列命题为真命题的是( )
A.p∧﹁q B.﹁p∧q C.﹁p∧﹁q D.p∧q
【答案】 A 【解析】 因为命题p为真命题,命题q为假命题,所以A选项正确.
13.(2015浙江)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是( ) A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0 D.∃n0∈N*,f(n0)∉N*或f(n0)>n0
给出了四个命题:
①p∨q
②¬p∨q ③p∧¬q ④¬p∧¬q
这四个命题中,所有真命题的编号是( )
A.①③
B.①②
C.②③
D.③④
【答案】 D 【解析】 写全称命题的否定时,要把量词∀改为∃,并且否定结论, 注意把“且”改为“或”.
14.已知命题p:“∃x0∈R,使得x02+2ax0+1<0成立”为真命题,则实 数a满足 ( )
A.[-1,1)
B.(-∞,-1)∪(1,+∞)
C.(1,+∞)
D.(-∞,-1)
【答案】 B 【解析】 “∃x0∈R, x02+2ax0+1<0”是真命题, 即不等式x2+2ax+1<0有解,
∴Δ=(2a)2-4>0,得a2>1,即a>1或a<-1.
15.已知命题“x R, x2 5x 15 a 0”的否定为假命题,则实
2
数a的取值范围是
.
【答案】(5 , ) 6

2020新课标高考艺术生数学复习教师用书:第一章第1节 集 合 Word版含解析

2020新课标高考艺术生数学复习教师用书:第一章第1节 集 合 Word版含解析

第1节 集 合最新考纲核心素养 考情聚焦1.通过实例,了解集合的含义,理解元素与集合的属于关系.2.针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.3.在具体情境中,了解全集与空集的含义.4.理解集合之间包含与相等的含义,能识别给定集合的子集.5.理解两个集合的并集与交集的含义,能求两个集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,能求给定子集的补集.7.能使用Venn 图表达集合的基本关系与基本运算,体会图形对理解抽象概念的作用1.集合的基本概念,形成直观想象和提升数学运算的素养.2.集合间的基本关系,提升逻辑推理和数学运算的素养.3.集合的基本运算,形成直观想象,提升逻辑推理和发展数学运算的素养集合的概念及运算的考查以集合的运算为主,其中交、并、补集的运算以及两集合包含关系的考查是高考的热点;题型多以选择题或填空题的形式出现,一般难度不大,属低档题型,通常与函数、方程、不等式等知识结合,也常出现新情景设置题,考查考生函数与方程、转化与化归、数形结合等数学思想的运用以及对新情景设置题的阅读理解能力1.集合的基本概念(1)集合元素的性质:确定性、无序性、互异性. (2)元素与集合的关系①属于,记为∈;②不属于,记为∉. (3)常见数集的记法集合 自然数集正整数集 整数集 有理数集实数集符号NN *(或N +)ZQR(4)集合的表示方法:①列举法;②描述法;③图示法. 2.集合间的基本关系 关系自然语言符号语言Venn 图A B或B A{x|x∈A,且x∈1.A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.2.若集合A中含有n个元素,则它的子集个数为2n,真子集个数为2n-1,非空真子集个数为2n-2.[思考辨析]判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.(1)∅={0}.()(2)空集是任何集合的子集,两元素集合是三元素集合的子集.()(3)a在集合A中,可用符号表示为a⊆A.()(4)N⊆N*⊆Z.()(5)若A={x|y=x2},B={(x,y)|y=x2},则A∩B={x|x∈R}.()答案:(1)×(2)×(3)×(4)×(5)×[小题查验]1.若集合A={x∈N|x≤10},a=22,则下列结论正确的是()A .{a }⊆AB .a ⊆AC .{a }∈AD .a ∉A解析:D [由题意知A ={0,1,2,3},由a =22,知a ∉A .] 2.(2018·全国Ⅰ卷)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2}解析:B [A ={x |x 2-x -2>0}={x |x <-1或x >2}, ∴∁R A ={x |-1≤x ≤2},故选B.]3.(2017·全国Ⅲ卷)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:B [由题意可得:圆x 2+y 2=1与直线y =x 相交于两点⎝⎛⎭⎫22,22,⎝⎛⎭⎫-22,-22,所以A ∩B 中有两个元素.故选B.]4.(2019·全国Ⅲ卷)已知集合A ={-1,0,1,2},B ={x |x 2≤1},则A ∩B =( )A .{-1,0,1}B .{0,1}C .{-1,1}D .{0,1,2} 解析:A [本题考查了集合交集的求法,是基础题.由题意得,B ={x |-1≤x ≤1},则A ∩B ={-1,0,1}.故选A.]5.(人教A 版教材习题改编)已知全集U ={1,2,3,4,5,6,7},A ={2,4,5},B ={1,3,5,7},则A ∩(∁U B )=___________________________.答案:{2,4}考点一 集合的基本概念(自主练透)[题组集训]1.(2018·全国Ⅱ卷)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4解析:A [∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z ,∴x =-1,0,1, 当x =-1时,y =-1,0,1; 当x =0时,y =-1,0,1; 当x =1时,y =-1,0,1; 所以共有9个,选A.]2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( )A.92B.98 C .0D .0或98解析:D [若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的取值为0或98.]3.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 解析:因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去.当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.答案:-324.已知集合M ={1,m },N ={n ,log 2n },若M =N ,则(m -n ) 2019=________.解析:由M =N 知⎩⎪⎨⎪⎧ n =1,log 2n =m 或⎩⎪⎨⎪⎧n =m ,log 2n =1, ∴⎩⎪⎨⎪⎧ m =0,n =1或⎩⎪⎨⎪⎧m =2,n =2.∴(m -n )2019=-1或0. 答案:-1或01.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.考点二 集合间的基本关系(师生共研)[典例] (1)已知集合A ={x |ax =1}, B ={x |x 2-1=0},若A ⊆B ,则a 的取值构成的集合是( )A .{-1}B .{1}C .{-1,1}D .{-1,0,1}(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________________________________________________________________________.[解析] (1)由题意,得B ={-1,1}, 因为A ⊆B ,所以当A =∅时,a =0;当A ={-1}时,a =-1;当A ={1}时,a =1. 又A 中至多有一个元素,所以a 的取值构成的集合是{-1,0,1}.故选D. (2)当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-22m -1≤7m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4. [答案] (1)D (2){m | m ≤4} [互动探究]本例(1)中若A ={x |ax >1(a ≠0)},B ={x |x 2-1>0},其他条件不变,则a 的取值范围是________.解析:由题意,得B ={x |x >1,或x <-1},对于集合A ,①当a >0时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪x >1a . 因为A ⊆B ,所以1a≥1.又a >0,所以0<a ≤1.②当a <0时,A =⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a. 因为A ⊆B ,所以1a ≤-1,又a <0,所以-1≤a <0,综上所述,0<a ≤1,或-1≤a <0.答案:[-1,0)∪(0,1]由集合的关系求参数的关键点由两集合的关系求参数,其关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且常要对参数进行讨论,注意区间端点的取舍.提醒:解决两个集合的包含关系时,要注意空集的情况.[跟踪训练]1.若集合A={x|ax2+ax+1=0}的子集只有两个,则实数a=________.解析:∵集合A的子集只有两个,∴A中只有一个元素,即方程ax2+ax+1=0只有一个根.当a=0时方程无解.当a≠0时,Δ=a2-4a=0,∴a=4.故a=4.答案:42.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.解析:由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a).由于A⊆B,如图所示,则a>4,即c=4.答案:4考点三集合的基本运算(多维探究)[命题角度1]求交集、并集1.(2019·全国Ⅱ卷)设集合A={x|x>-1},B={x|x<2},则A∩B=()A.(-1,+∞)B.(-∞,2)C.(-1,2) D.∅解析:C[A={x|x>-1},B={x|x<2},∴A∩B=(-1,2).]2.(2017·全国Ⅰ卷)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅解析:A[A={x|x<1},B={x|3x<1}={x|x<0},所以A∩B={x|x<0},A∪B={x|x<1}.] [命题角度2]集合的交、并、补的综合运算3.(2019·全国Ⅰ卷)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A =()A.{1,6} B.{1,7}C.{6,7} D.{1,6,7}解析:C[∵∁U A={1,6,7},∴B∩∁U A={6,7}.]4.(2019·长春市模拟)已知集合A={x|x2-x+4>x+12},B={x|2x-1<8},则A∩(∁R B)=()A.{x|x≥4} B.{x|x>4}C.{x|x≥-2} D.{x|x<-2或x≥4}解析:B[由题意易得,A={x|x<-2或x>4},B={x|x<4},则A∩(∁R B)={x|x>4}.故选B.][命题角度3]利用集合的基本运算求参数的取值(范围)5.(2017·全国Ⅱ卷)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=() A.{1,-3} B.{1,0}C.{1,3} D.{1,5}解析:C[由题意知x=1是方程x2-4x+m=0的解,代入解得m=3,所以x2-4x+3=0,解得x=1或x=3,从而B={1,3}.]6.已知集合A={x|x≤a},B={x|1≤x≤2},且A∪(∁R B)=R,则实数a的取值范围是________.解析:∁R B={x|x<1,或x>2},要使A∪(∁R B)=R,则a≥2.答案:[2,+∞)解集合运算问题应注意以下三点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键.(2)对集合化简.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和韦恩(Venn)图.提醒:Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.1.(2018·全国Ⅱ卷)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5} D.{1,2,3,4,5,7}解析:C[A={1,3,5,7},B={2,3,4,5},∴A∩B={3,5},故选C.]2.(2019·全国Ⅰ卷)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=() A.{x|-4<x<3} B.{x|-4<x<-2}C .{x |-2<x <2}D .{x |2<x <3}解析:C [∵x 2-x -6<0,∴-2<x <3, 即N ={x |-2<x <3},∴M ∩N ={x |-2<x <2},故选C.]3.如图所示,I 为全集,M 、P 、S 是I 的三个子集,则阴影部分所表示的集合是( )A .(M ∩P )∩SB .(M ∩P )∪SC .(M ∩P )∩(∁I S )D .(M ∩P )∪(∁I S )解析:C [图中的阴影部分是M ∩P 的子集,不属于集合S ,属于集合S 的补集的子集,即是∁I S 的子集,则阴影部分所表示的集合是(M ∩P )∩(∁I S ).故选C.]4.(2019·漳州模拟)满足{2 018}⊆A{2 018,2 019,2 020}的集合A 的个数为( )A .1B .2C .3D .4解析:C [满足{2 018}⊆A {2 018,2 019,2 020}的集合A 可得:A ={2 018},{2 018,2 019},{2 018,2 020}.因此满足的集合A 的个数为3.]5.已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ) A .(-∞,-1] B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)解析:C [因为P ∪M =P ,所以M ⊆P ,即a ∈P , 得a 2≤1,解得-1≤a ≤1,所以a 的取值范围是[-1,1].]6.已知集合A ={y |y =x 2-1},B ={x |y =lg(x -2x 2)},则∁R (A ∩B )=( ) A.⎣⎡⎭⎫0,12 B .(-∞,0)∪⎣⎡⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D .(-∞,0]∪⎣⎡⎭⎫12,+∞ 解析:D [A ={y |y =x 2-1}=[0,+∞),B ={x |y =lg(x -2x 2)}=⎝⎛⎭⎫0,12, 所以A ∩B =⎝⎛⎭⎫0,12,所以∁R (A ∩B )=(-∞,0]∪⎣⎡⎭⎫12,+∞.] 7.(2019·合肥模拟)已知A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R |12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B.⎣⎡⎦⎤12,1C.⎣⎡⎭⎫23,+∞ D .(1,+∞)解析:A [因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.] 8.(2019·石家庄模拟)函数y =x -2与y =ln(1-x )的定义域分别为M ,N ,则M ∪N =( )A .(1,2]B .[1,2]C .(-∞,1]∪[2,+∞)D .(-∞,1)∪[2,+∞)解析:D [使x -2有意义的实数x 应满足x -2≥0,∴x ≥2,∴M =[2,+∞),y =ln(1-x )中x 应满足1-x >0,∴x <1,∴N =(-∞,1),所以M ∪N =(-∞,1)∪[2,+∞),故选D.]9.已知集合A ={(x ,y )|x ,y ∈R ,x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,y =4x 2-1},则A ∩B 的元素个数是________.解析:集合A 是以原点为圆心,半径等于1的圆周上的点的集合,集合B 是抛物线y =4x 2-1上的点的集合,观察图象可知,抛物线与圆有3个交点,因此A ∩B 中含有3个元素.答案:310.已知集合A ={x |4≤2x ≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________. 解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]11.对于集合M 、N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ).设A ={y |y =3x ,x ∈R },B ={y |y =-(x -1)2+2,x ∈R },则A ⊕B =________________.解析:由题意得A ={y |y =3x ,x ∈R }={y |y >0},B ={y |y =-(x -1)2+2,x ∈R }={y |y ≤2},故A -B ={y |y >2},B -A ={y |y ≤0},所以A ⊕B ={y |y ≤0,或y >2}.答案:(-∞,0]∪(2,+∞)12.(2019·淮南一模)若A ={x |ax 2-ax +1≤0,x ∈R }=∅,则a 的取值范围是________. 解析:∵A ={x |ax 2-ax +1≤0,x ∈R }=∅,∴a =0或⎩⎪⎨⎪⎧a >0Δ=(-a )2-4a <0,解得0≤a <4.∴a 的取值范围是[0,4).答案:[0,4)。

2020版高考数学第1部分 主题1 集合、复数、平面向量教案 理

2020版高考数学第1部分 主题1 集合、复数、平面向量教案 理

主题1 集合、复数、平面向量1.集合解决集合问题应注意4点(1)在化简集合时易忽视元素的特定范围(如集合中x∈N,x∈Z等)致误,如T1.(2)对于用描述法表示的集合,一定要抓住集合的代表元素.如{x|y=lg x}表示函数的定义域;{y|y=lg x}表示函数的值域;{(x,y)|y=lg x}表示函数图象上的点集,如T4。

(3)空集是任何集合的子集.由条件A⊆B,A∩B=A,A∪B =B求解集合A时,易忽略A=的情况.如T3。

(4)进行集合运算时,注重数形结合在集合示例中的应用,列举法常借助Venn图解题,描述法常借助数轴来运算,求解时要特别注意端点值,如T2.1.(2019·吉林市普通中学三调)已知集合A={-1,1},B={x|x2+x-2<0,x∈Z},则A∪B=( )A.{-1}B.{-1,1}C.{-1,0,1}D.{-1,0,1,2}C[由题意知B={x|-2<x<1,x∈Z}={-1,0},所以A∪B={-1,0,1},故选C.]2.(2019·全国卷Ⅰ)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=()A.{x|-4<x<3} B.{x|-4<x<-2}C.{x|-2<x<2} D.{x|2<x<3}C[∵N={x|-2<x<3},M={x|-4<x<2},∴M∩N={x|-2<x<2},故选C.]3.(2019·攀枝花市第二次统考)集合A={-1,2},B={x|ax -2=0},若A∪B=A,则由实数a组成的集合为() A.{-2} B.{1}C.{-2,1} D.{-2,1,0}D[因为A∪B=A,所以B⊆A,又因为集合A={-1,2},∴B =或B={-1}或B={2},由B={x|ax-2=0}可知a=0,1,-2.故选D。

]4.已知集合A={x|y=ln(1-2x)},B={x|e x〉1},则( )A.A∪B={x|x>0}B.A∩B=错误!C.A∩R B=错误!D.(R A)∪B=RB[∵A={x|y=ln(1-2x)}=错误!,B={x|e x〉1}={x|x〉0},∴A∩B=错误!,故选B.]2.复数解决复数问题应注意3点(1)复数z=a+b i(a,b∈R)是纯虚数⇔a=0且b≠0,复数的实部为a,虚部为b. 如T2。

2020届高考数学一轮复习讲义 第1章 1.1 集合的概念及运算

2020届高考数学一轮复习讲义 第1章  1.1 集合的概念及运算

§1.1集合的概念及运算最新考纲考情考向分析1.了解集合的含义,体会元素与集合的属于关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在具体情境中,了解全集与空集的含义.5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算. 集合的交、并、补运算及两集合间的包含关系是考查的重点,在集合的运算中经常与不等式、函数相结合,解题时常用到数轴和韦恩(Venn)图.考查学生的数形结合思想和计算推理能力.题型以选择题为主,低档难度.1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N+(或N*)Z Q R2.集合间的基本关系关系自然语言符号语言Venn图子集集合A中任意一个元素都是集合B的元素(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集如果集合A是集合B的子集,并且集合B中至少有一个元素不属于AA B(或B A)集合相等如果集合A中的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素A=B3.集合的基本运算运算自然语言符号语言Venn图交集由属于集合A又属于集合B的所有元素构成的集合A∩B={x|x∈A且x∈B}并集对于给定的两个集合A,B,由两个集合的所有元素构成的集合A∪B={x|x∈A或x∈B}补集如果给定集合A是全集U的一个子集,由全集U中不属于集合A的所有元素组成的集合∁U A={x|x∈U且x∉A}概念方法微思考1.若一个集合A有n个元素,则集合A有几个子集,几个真子集.提示2n,2n-1.2.从A∩B=A,A∪B=A可以得到集合A,B有什么关系?提示A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)任何一个集合都至少有两个子集.( × )(2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( × ) (3)若{x 2,1}={0,1},则x =0,1.( × ) (4){x |x ≤1}={t |t ≤1}.( √ ) (5)若A ∩B =A ∩C ,则B =C .( × ) 题组二 教材改编2.若集合A ={x ∈N |x ≤ 2 020},a =22,则下列结论正确的是( ) A .{a }⊆A B .a ⊆A C .{a }∈A D .a ∉A答案 D3.已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为______. 答案 2解析 集合A 表示以(0,0)为圆心,1为半径的单位圆上的点,集合B 表示直线y =x 上的点,圆x 2+y 2=1与直线y =x 相交于两点⎝⎛⎭⎫22,22,⎝⎛⎭⎫-22,-22,则A ∩B 中有两个元素. 题组三 易错自纠4.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m 等于( ) A .0或 3 B .0或3 C .1或 3 D .1或3或0 答案 B解析 A ={1,3,m },B ={1,m },A ∪B =A ,故B ⊆A ,所以m =3或m =m ,即m =3或m =0或m =1,其中m =1不符合题意,所以m =0或m =3,故选B. 5.已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则(∁R A )∪B =______________. 答案 {x |x ≤1或x >2}解析 由已知可得集合A ={x |1<x <3}, 又因为B ={x |2<x <4},∁R A ={x |x ≤1或x ≥3}, 所以(∁R A )∪B ={x |x ≤1或x >2}.6.若集合A ={x ∈R |ax 2-4x +2=0}中只有一个元素,则a =________. 答案 0或2解析 若a =0,则A =⎩⎨⎧⎭⎬⎫12,符合题意;若a ≠0,则由题意得Δ=16-8a =0,解得a =2.综上,a 的值为0或2.题型一 集合的含义1.设集合A ={x ∈Z ||x |≤2},B ={y |y =x 2+1,x ∈A },则B 中的元素有( ) A .5个 B .4个 C .3个 D .无数个答案 C解析 依题意有A ={-2,-1,0,1,2},代入y =x 2+1得到B ={1,2,5},故B 中有3个元素.2.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A .2B .3C .4D .5 答案 C 解析 因为32-x∈Z ,所以2-x 的取值有-3,-1,1,3,又因为x ∈Z ,所以x 的值分别为5,3,1,-1,故集合A 中的元素个数为4.3.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 答案 -32解析 由题意得m +2=3或2m 2+m =3, 则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意; 当m =-32时,m +2=12,而2m 2+m =3,故m =-32.思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.(2)如果是根据已知列方程求参数值,一定要将参数值代入集合中检验是否满足元素的互异性.题型二 集合间的基本关系例1 (1)集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =n 2+1,n ∈Z ,N =⎩⎨⎧⎭⎬⎫y ⎪⎪y =m +12,m ∈Z ,则两集合M ,N 的关系为( ) A .M ∩N =∅ B .M =N C .M ⊆N D .N ⊆M答案 D解析 由题意,对于集合M ,当n 为偶数时,设n =2k (k ∈Z ),则x =k +1(k ∈Z ),当n 为奇数时,设n =2k +1(k ∈Z ),则x =k +1+12(k ∈Z ),∴N ⊆M ,故选D.(2)已知集合A ={x |x 2-2 019x +2 018<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是____________. 答案 [2 018,+∞)解析 由x 2-2 019x +2 018<0,解得1<x <2 018, 故A ={x |1<x <2 018}.又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2 018.引申探究本例(2)中,若将集合B 改为{x |x ≥a },其他条件不变,则实数a 的取值范围是____________. 答案 (-∞,1]解析 A ={x |1<x <2 018},B ={x |x ≥a },A ⊆B ,如图所示,可得a ≤1.思维升华 (1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.跟踪训练1 (1)(2018·辽宁实验中学期中)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪⎪x +1x -2≤0,则集合A 的子集的个数为( )A .7B .8C .15D .16 答案 B解析 由x +1x -2≤0,可得(x +1)(x -2)≤0,且x ≠2,解得-1≤x <2.又x ∈Z ,可得x =-1,0,1,∴A ={-1,0,1}.∴集合A 的子集的个数为23=8.(2)已知集合A ={x |-1<x <3},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为__________. 答案 (-∞,1]解析 当m ≤0时,B =∅,显然B ⊆A . 当m >0时,因为A ={x |-1<x <3},B ⊆A , 所以在数轴上标出两集合,如图,所以⎩⎪⎨⎪⎧m >0,-m ≥-1,所以0<m ≤1.综上所述,m 的取值范围为(-∞,1].题型三 集合的基本运算命题点1 集合的运算例2 (1)(2018·全国Ⅰ)已知集合A ={}x |x 2-x -2>0,则∁R A 等于( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2} 答案 B解析 ∵x 2-x -2>0,∴(x -2)(x +1)>0,∴x >2或x <-1,即A ={x |x >2或x <-1}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={x |-1≤x ≤2}. 故选B.(2)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ) A .A ∩B =∅ B .A ⊆B C .B ⊆A D .A ∪B =R答案 D解析 ∵A ={x |x >2或x <0},∴A ∪B =R . 命题点2 利用集合的运算求参数例3 (1)(2018·锦州模拟)已知集合A ={x |x <a },B ={x |x 2-3x +2<0},若A ∩B =B ,则实数a 的取值范围是( )A .a <1B .a ≤1C .a >2D .a ≥2 答案 D解析 集合B ={x |x 2-3x +2<0}={x |1<x <2}, 由A ∩B =B 可得B ⊆A ,作出数轴如图.可知a ≥2.(2)设集合A ={-1,0,1},B =⎩⎨⎧⎭⎬⎫a -1,a +1a ,A ∩B ={0},则实数a 的值为________.答案 1解析 0∈⎩⎨⎧⎭⎬⎫a -1,a +1a ,由a +1a ≠0,则a -1=0,则实数a 的值为1.经检验,当a =1时满足题意.(3)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若A ∩B =B ,则实数a 的取值范围是______. 答案 (-∞,-1]∪{1}解析 因为A ∩B =B ,所以B ⊆A ,因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此可知,0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根, 由根与系数的关系,得⎩⎪⎨⎪⎧Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1;②当B ≠∅且B A 时,B ={0}或B ={-4}, 并且Δ=4(a +1)2-4(a 2-1)=0, 解得a =-1,此时B ={0}满足题意;③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.综上所述,所求实数a 的取值范围是(-∞,-1]∪{1}.思维升华 (1)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化. 跟踪训练2 (1)(2018·葫芦岛检测)已知集合A ={x |-2<x <4},B ={x |y =lg(x -2)},则A ∩(∁R B )等于( )A .(2,4)B .(-2,4)C .(-2,2)D .(-2,2] 答案 D解析 由题意得B ={x |y =lg(x -2)}=(2,+∞), ∴∁R B =(-∞,2],∴A ∩(∁R B )=(-2,2].(2)已知集合A ={x |x 2-x -12≤0},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为( ) A .[-1,2) B .[-1,3] C .[2,+∞) D .[-1,+∞)答案 D解析 由x 2-x -12≤0,得(x +3)(x -4)≤0, 即-3≤x ≤4,所以A ={x |-3≤x ≤4}. 又A ∩B =B ,所以B ⊆A .①当B =∅时,有m +1≤2m -1,解得m ≥2; ②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞). 题型四 集合的新定义问题例4 (1)对于任意两集合A ,B ,定义A -B ={x |x ∈A 且x ∉B },A *B =(A -B )∪(B -A ),记A ={y |y ≥0},B ={x |-3≤x ≤3},则A *B =______________. 答案 [-3,0)∪(3,+∞)解析 由题意知,A -B ={x |x >3},B -A ={x |-3≤x <0}, A *B =(A -B )∪(B -A )=[-3,0)∪(3,+∞).(2)设数集M =⎩⎨⎧⎭⎬⎫x ⎪⎪ m ≤x ≤m +34,N =⎩⎨⎧⎭⎬⎫x ⎪⎪n -13≤x ≤n ,且M ,N 都是集合U ={x |0≤x ≤1}的子集,定义b -a 为集合{x |a ≤x ≤b }的“长度”,则集合M ∩N 的长度的最小值为________. 答案112解析 在数轴上表示出集合M 与N (图略),可知当m =0且n =1或n -13=0且m +34=1时,M ∩N 的“长度”最小.当m =0且n =1时,M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪23≤x ≤34, 长度为34-23=112;当n =13且m =14时,M ∩N =⎩⎨⎧⎭⎬⎫x ⎪⎪14≤x ≤13, 长度为13-14=112.综上,M ∩N 的长度的最小值为112.思维升华 解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,应用到具体的解题过程之中.(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素.跟踪训练3 用C (A )表示非空集合A 中元素的个数,定义A *B =⎩⎪⎨⎪⎧C (A )-C (B ),C (A )≥C (B ),C (B )-C (A ),C (A )<C (B ).若A ={1,2},B ={x |(x 2+ax )(x 2+ax +2)=0},且A *B =1,设实数a 的所有可能取值组成的集合是S ,则C (S )=________. 答案 3解析 因为C (A )=2,A *B =1,所以C (B )=1或C (B )=3.由x 2+ax =0,得x 1=0,x 2=-a .关于x 的方程x 2+ax +2=0,当Δ=0,即a =±22时,易知C (B )=3,符合题意;当Δ>0,即a <-22或a >22时,易知0,-a 均不是方程x 2+ax +2=0的根,故C (B )=4,不符合题意;当Δ<0,即-22<a <22时,方程x 2+ax +2=0无实数解,当a =0时,B ={0},C (B )=1,符合题意,当-22<a <0或0<a <22时,C (B )=2,不符合题意.综上,S ={0,-22,22},故C (S )=3.1.设集合P ={x |0≤x ≤2},m =3,则下列关系中正确的是( ) A .m ⊆P B .m P C .m ∈P D .m ∉P答案 D解析 P =[0,2],m =3>2,故选D.2.设集合M ={-1,1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪1x<2,则下列结论中正确的是( ) A .N M B .M N C .N ∩M =∅ D .M ∪N =R答案 B解析 由题意得,集合N =⎩⎨⎧⎭⎬⎫x ⎪⎪ 1x <2=⎩⎨⎧⎭⎬⎫x ⎪⎪x <0或x >12,所以M N .故选B. 3.设集合A ={x ∈Z |x 2-3x -4<0},B ={x |2x ≥4},则A ∩B 等于( ) A .[2,4) B .{2,4} C .{3} D .{2,3} 答案 D解析 由x 2-3x -4<0,得-1<x <4,因为x ∈Z ,所以A ={0,1,2,3},由2x ≥4,得x ≥2,即B ={x |x ≥2},所以A ∩B ={2,3}.4.(2018·全国Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5 D .4 答案 A解析 将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个. 故选A.5.设集合M ={-4,-3,-2,-1,0,1},N ={x ∈R |x 2+3x <0},则M ∩N 等于( ) A .{-3,-2,-1,0} B .{-2,-1,0} C .{-3,-2,-1} D .{-2,-1}答案 D解析 因为集合M ={-4,-3,-2,-1,0,1},N ={x ∈R |x 2+3x <0}={x |-3<x <0},所以M ∩N ={-2,-1}.6.(2018·呼和浩特联考)已知全集U={x∈N|x2-5x-6<0},集合A={x∈N|-2<x≤2},B ={1,2,3,5},则(∁U A)∩B等于()A.{3,5} B.{2,3,5}C.{2,3,4,5} D.{3,4,5}答案 A解析由题意知,U={0,1,2,3,4,5},A={0,1,2},则(∁U A)∩B={3,5}.故选A. 7.(2017·全国Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B等于() A.{1,-3} B.{1,0}C.{1,3} D.{1,5}答案 C解析∵A∩B={1},∴1∈B.∴1-4+m=0,即m=3.∴B={x|x2-4x+3=0}={1,3}.故选C.8.已知集合A={x|-1<x<0},B={x|x≤a},若A⊆B,则a的取值范围为()A.(-∞,0] B.[0,+∞)C.(-∞,0) D.(0,+∞)答案 B解析用数轴表示集合A,B(如图),由A⊆B,得a≥0.9.已知集合P={x|y=-x2+x+2,x∈N},Q={x|ln x<1},则P∩Q=________.答案{1,2}解析由-x2+x+2≥0,得-1≤x≤2,因为x∈N,所以P={0,1,2}.因为ln x<1,所以0<x<e,所以Q=(0,e),则P∩Q={1,2}.10.若全集U=R,集合A={x|x2-x-2≥0},B={x|log3(2-x)≤1},则A∩(∁U B)=________________.答案{x|x<-1或x≥2}解析集合A={x|x2-x-2≥0}={x|x≤-1或x≥2},∵log3(2-x)≤1=log33,∴0<2-x≤3,∴-1≤x<2,∴B={x|-1≤x<2},∴∁U B={x|x<-1或x≥2},∴A∩(∁U B)={x|x<-1或x≥2}.11.设集合A ={-1,1,2},B ={a +1,a 2-2},若A ∩B ={-1,2},则a 的值为________. 答案 -2或1解析 ∵集合A ={-1,1,2},B ={a +1,a 2-2},A ∩B ={-1,2},∴⎩⎪⎨⎪⎧a +1=-1,a 2-2=2或⎩⎪⎨⎪⎧a +1=2,a 2-2=-1,解得a =-2或a =1.经检验,a =-2和a =1均满足题意.12.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.答案 [1,+∞)解析 由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.13.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =______,n =________.答案 -1 1解析 A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n ),可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.14.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.答案 6解析 依题意可知,由S 的3个元素构成的所有集合中,不含“孤立元”时,这三个元素一定是连续的三个自然数.故这样的集合共有6个.15.已知集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪x 24+y 22=1,B ={(x ,y )|y =kx +m ,k ∈R ,m ∈R },若对任意实数k ,A ∩B ≠∅,则实数m 的取值范围是____________. 答案 [-2,2]解析 由已知,无论k 取何值,椭圆x 24+y 22=1和直线y =kx +m 均有交点,故点(0,m )在椭圆x 24+y 22=1上或在其内部,∴m 2≤2,∴-2≤m ≤ 2. 16.已知集合A ={x |y =x -1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪12a ≤x ≤2a -1.若A ∩B =∅,则实数a 的取值范围是________.答案 (-∞,1)解析 由题意知,A =[1,+∞),当B =∅,即12a >2a -1时,a <23.符合题意. 当B ≠∅时,令⎩⎪⎨⎪⎧12a ≤2a -1,2a -1<1,解得23≤a <1. 综上,实数a 的取值范围是(-∞,1).。

2020年高考数学·第一轮专题复习讲义

2020年高考数学·第一轮专题复习讲义

2020年第一轮高考数学专题复习第一讲:集合一、考纲导读(一)集合的含义与表示1.了解集合的含义、元素与集合的“属于”关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

(二)集合间的基本关系1.理解集合之间包含与相等的含义,能识别给定集合的子集.2.在具体情境中,了解全集与空集的含义.(三)集合的基本运算1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.3.能使用韦恩图(Venn)表达集合的关系及运算。

根据考试大纲的要求,结合2009年高考的命题情况,我们可以预测2010年集合部分在选择、填空和解答题中都有涉及,高考命题热点有以下两个方面:一是集合的运算、集合的有关述语和符号、集合的简单应用等作基础性的考查,题型多以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现.第1课时 集合的概念一、基础过关 <1>.集合1.集合是一个不能定义的原始概念,描述性定义为:某些指定的对象 就成为一个集合,简称 .集合中的每一个对象叫做这个集合的 .2.集合中的元素属性具有:(1) 确定性; (2) ; (3) .3.集合的表示法常用的有 、 和韦恩图法三种,有限集常用 ,无限集常用 ,图示法常用于表示集合之间的相互关系.<2>.元素与集合的关系4.元素与集合是属于和 的从属关系,若a 是集合A 的元素,记作 ,若a 不是集合B 的元素,记作 .但是要注意元素与集合是相对而言的.<3>.集合与集合的关系5.集合与集合的关系用符号 表示.6.子集:若集合A 中 都是集合B 的元素,就说集合A 包含于集合B (或集合B 包含集合A ),记作 .7.相等:若集合A 中 都是集合B 的元素,同时集合B 中 都是集合A 的元素,就说集合A 等于集合B ,记作 .8.真子集:如果 就说集合A 是集合B 的真子集,记作 .9.若集合A 含有n 个元素,则A 的子集有 个,真子集有 个,非空真子集有 个.10.空集∅是一个特殊而又重要的集合,它不含任何元素,∅是任何集合的 ,∅是任何非空集合的 ,解题时不可忽视∅.二、典型例题例1. 已知集合8|6A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,试求集合A 的所有子集.变式训练1.若a,b ∈R,集合{}1,,0,,,b a b a b a ⎧⎫+=⎨⎬⎩⎭求b-a 的值.例2. 设集合2{2,3,23}U a a =+-,{|21|,2}A a =-,{5}U C A =,求实数a 的值.变式训练2:(1)P ={x|x2-2x -3=0},S ={x|ax +2=0},S ⊆P ,求a 取值?(2)A ={-2≤x ≤5},B ={x|m +1≤x ≤2m -1},B ⊆A,求m 。

重磅!2020高考数学专题知识复习方案第1课 集合的概念及运算配套课件.ppt

重磅!2020高考数学专题知识复习方案第1课 集合的概念及运算配套课件.ppt

基础自测
1.设集合 M {1,0,1}, N {x x2 x},则 M N
()
A.{1, 0,1} B.{0,1} C.{1}
D.{0}
【答案】B
【解析】∵ M {1,0,1}, N {0,1},
∴ M N {0,1}.
2.设集合U {1, 2,3, 4,5,6}, M {1,3,5} ,则
当 x 1时, y 0,2 ,此时 z x y 1,3 ,
∴集合{z z 1,1,3} {1,1,3} ,共三个元素.
典例剖析
考点1 集合元素的特征
【例 1】已知集合 A {1, 3, m} , B { 3
B. 0 或 3
C.1或 3
【变式】设 a,b R ,现有三个实数的集合,既可表示为
{1, a b, a},也可以表示为{0, b , b} ,则 b2012 a2011 ( ) a
A.1
B. 1
C. 2
D. 2
【答案】C
【解析】∵{1, a b, a} {0, b , b} ,可知 a 0 . a
a b 0
B {x | m 1 x 2m 1}且 A B A ,
则实数 m 的取值范围是( )
A. [2, 3]
B. (2,3]
C. (, 3]
D. (2, )
【答案】C
【解析】 ∵ A B A ,∴ B A . (1)当 B 时,则 m 1 2m 1, 解得 m 2. m 1 2m 1 (2)当 B 时,则 2m 1 5 , m 1 2 解得 2 m 3. ∴实数 m 的取值范围是 m 3 .
③集合的表示法:列举法 、描述法 、韦恩图.
④常用数集的表示
集合 自然数集 正整数集 整数集 有理数集 实数集

2020年高考数学备考艺体生百日突围系列专题01集合(基础篇)原卷版Word版缺答案

2020年高考数学备考艺体生百日突围系列专题01集合(基础篇)原卷版Word版缺答案

<2021艺体生文化课 -百日突围系列>专题一 集合集合间的根本关系【背一背根底知识】一.集合的根本概念:1、集合的含义:某些指定的对象集在一起就成为一个总体 ,这个总体就叫集合 ,其中每一个对象叫元素.2、集合中元素的三个特性: 确定性、互异性、无序性.(1)对于一个给定的集合 ,集合中的元素是确定的 ,任何一个对象或者是或者不是这个给定的集合的元素 ,这叫集合元素确实定性;(2)任何一个给定的集合中 ,任何两个元素都是不同的对象 ,相同的对象归入一个集合时 ,仅算一个元素 ,这叫集合元素的互异性;(3)集合中的元素是平等的 ,没有先后顺序 ,因此判定两个集合是否一样 ,仅需比较它们的元素是否一样 ,不需考查排列顺序是否一样 ,这叫集合元素的无序性.3、元素与集合之间只能用 "∈〞或 "∉〞符号连接.4、集合的表示常见的有四种方法.(1 )自然语言描述法:用自然的文字语言描述.如:英才中学的所有团员组成一个集合. (2 )列举法:把集合中的元素一一列举出来 ,元素之间用逗号隔开 ,然后用一个花括号全部括上.如:{0,1,2,3})}(|{x P x 2{|230}x x x --=、 2{|23}x y x x =--、2{|23}y y x x =--、2{(,)|23}x y y x x =--.(4 )Venn 图法:如:75315、常见的特殊集合: (1 )非负整数集 (即自然数集 )N (包括零 ) (2 )正整数集N*或+N(3)整数集Z (包括负整数、零和正整数) (4 )有理数集Q (5)实数集R (5)复数集C6、集合的分类: (1 )有限集:含有有限个元素的集合. (2 )无限集:含有无限个元素的集合. (3 )空集 :不含任何元素的集合二.集合间的根本关系1、子集 A B ⊆或B A ⊇.2、真子集对于两个集合A 与B ,如果A B ⊆A B ⊂≠.3、空集是任何集合的子集 , 空集是任何非空集合的真子集.4、假设一个集合含有n 个元素 ,那么子集个数为2n 个 ,真子集个数为21n -.【讲一讲根本技能】1. 必备技能:(1 )解题常用的方法:数形结合的方法 ,含不等式的题型常用数轴表示解集 ,或者用韦恩图表示两个集合的关系或者是大小关系.有限个元素的集合常用列举的方法 ,通过列举找到答案或找到解题思路.(2 )能力要求:解二次方程 ,解二次不等式得能力要具备.含对数指数的方程不等式也要会处理.分类的思想.(3 )知识要求:由于集合方面的知识主要是依托其它知识作为背景的题型 ,所以涉及知识较多 ,可以是函数方面 ,立几知识 ,解几知识等.2. 注意点: (1 )注意集合中元素的性质 - -互异性的应用 ,解答时注意检验. (2 )注意描述法给出的集合的元素 ,首||先要搞清楚集合中代表元素的含义 ,再看元素的限制条件 ,明白集合的类型 ,是数集、点集还是其他集合.如{}2x y y = ,{}2x x y = ,(){},2xx y y =表示不同的集合.例1.集合2{|lg()}A x y x x ==-,集合2{|0(0)}B x x cx c =-<>,假设A B ⊆,那么c 的取值范围为( )A.(0,1]B.(0,1)C.[1,)+∞D.(1,)+∞例2设集合254{|}M x x a a a R ∈==-+, ,2{|442}N y y b b b R ∈==++, ,那么以下关系中正确的选项是 ( )A .M N =B .M N ⊂≠C .M N ⊆D .M N ∈【练一练趁热打铁】1. 集合A ={x |x 2+mx +4=0}为空集 ,那么实数m 的取值范围是( )A .(-4 ,4)B .[-4 ,4]C .(-2 ,2)D .[-2 ,2] 2. 设P 、Q 为两个非空集合 ,定义集合{|}P Q a b a P b Q ∈∈+=+,.假设{}{}0,2,51,2,6P Q =,= ,那么P Q +中元素的个数是( )A .9B .8C .7D .6集合的根本运算【背一背根底知识】集合的根本运算及其性质1、交集的定义:一般地 ,由所有属于A 且属于B 的元素所组成的集合叫做A 、B 的交集. 记作A∩B(读作〞A 交B 〞) ,即A∩B ={x|x∈A ,且x∈B}.2、并集的定义:一般地 ,由所有属于集合A 或属于集合B 的元素所组成的集合 ,叫做A 、B 的并集.记作:A∪B(读作〞A 并B 〞) ,即A∪B ={x|x∈A ,或x∈B}.3、交集与并集的性质A A A = , A ∅=∅ , AB BA = , A A A = , A A ∅= , AB BA =. 4、全集与补集.(2 )补集:设U 是一个集合 ,A 是U 的一个子集 ,由U 中所有不属于A 的元素组成的集合 ,叫做U 中子集A 的补集. 记作:{|}U C A x x U x A =∈∉且.5、补集的性质 (C A)A U U C = ,U C U =∅ ,U C U ∅=.6、重要结论A B A A B =⇔⊆, A B A B A =⇔⊆, ()U U U C A B C A C B =,()U U U C A B C A C B =.【讲一讲根本技能】1.必备技能:(1 )解题常用的方法:集合的根本运算包括集合间的交、并、补集运算 ,解决此类运算问题一般应注意以下几点:一是看元素组成.集合是由元素组成的 ,从研究集合中元素的构成入手是解决运算问题的前提.二是对集合化简.有些集合是可以化简的 ,如果先化简再研究 其关系并进行运算 ,可使问题变得简单明了 ,易于解决.三是注意数形结合思想的应用.集合运算常用的数形结合形式有数轴、坐标系和Venn 图.(2 )能力要求:解二次方程 ,解二次不等式得能力要具备.含对数指数的方程不等式也要会处理.分类的思想.(3 )知识要求:由于集合方面的知识主要是依托其它知识作为背景的题型 ,所以涉及知识较多 ,可以是函数方面 ,立几知识 ,解几知识等.例1集合{}|{|24130}A x x B x x x =<<=--<,()() ,那么A B ⋂= ( )(A )1,3() (B )1,4() (C ) (2,3() (D )2,4() )例2全集U R = ,集合{}1,234,5A =,,, 3+[B ∞=,) ,那么图中阴影局部所表示的集合为( )A. {012},, B. {0}1, , C. {1}2, D. 1{} 【练一练趁热打铁】1. 设集合2{|340}M x x x =--< ,{|05}N x x =≤≤ ,那么M N ⋂= ( )A .(0,4]B .[0,4)C .[1,0)-D .(1,0]-2. 假设集合{}{}2|,|2,M x y x N y y x x R ====-∈,那么M N ⋂= ( )A.[0,)+∞B.[2,)-+∞C.∅D.[2,0)-(一) 选择题 (12*5 =60分 )1. 集合{1,2,3},B {1,3}A ,那么A B ⋂= ( )(A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3}2. 全集{}{}6,3,2,6,5,4,3,2,1==A U ,那么U C A = ( )A .{}54,1, B .{}6,3,2 C .{}6,4,1 D .{}6,5,4 3.设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤ ,那么()U A C B ⋂= ( ) .(3,0)A - .(3,1)B -- .(3,1]C -- .(3,3)D -4.集合{}2,0,2A =- ,{}220B x x x =--= ,那么A B ⋂= ( )A .∅B .{ 2 }C .{ 0 }D .{2-}5. 函数211)(x x f -=的定义域为M ,)1ln()(x x g +=的定义域为N ,那么()R M C N =( )A .}1|{<x xB .}1|{≥x xC .ΦD .}11|{<≤-x x 6. 集合A ={}1,2,3,B ={}2,3 ,那么 ( )A 、A =B B 、A ⋂B =∅C 、A ⊆BD 、B ⊆A7. 集合{|20}A x x =-< ,{|}B x x a =< ,假设AB A = ,那么实数a 的取值范围是( )(A )(,2]-∞- (B )[2,)-+∞ (C )(,2]-∞ (D )[2,)+∞8. 设集合A ={x |-1<x <2} ,集合B ={x |1<x <3} ,那么A ∪B =( )(A ){x |-1<x <3} (B ){x |-1<x <1} (C ){x |1<x <2} (D ){x |2<x <3}9.集合A ={x |4≤x 2≤16} ,B =[a ,b ] ,假设A ⊆B ,那么实数a -b 的取值范围是 ( )A. (-∞ ,-2]B. [)+∞-,2C. (-∞ ,2]D. [)+∞,210.设集合2{|}M x x x == ,{|lg 0}N x x =≤ ,那么M N = ( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞11. 集合21,01,2A =--{,,} ,{}(1)(20B x x x =-+<,那么A B ⋂= ( ) A .{}1,0A =- B .{}0,1 C .{}1,0,1- D .{}0,1,212.定义集合运算:A⊙B={z|z =xy(x +y) ,x∈A ,y∈B} ,设集合A ={1,2} ,B ={3,4} ,那么集合A⊙B 所有元素之积为 ( )A .4 500B .342 000C .345 600D .135 600 (二) 填空题 (4*5 =20分 )13. 集合U ={}1,2,3,4 ,A ={}1,3,B ={}1,3,4,那么A (U C B ) =_____. R =U .假设集合}4,3,2,1{=A ,}32|{<≤=x x B ,那么()U A C B ⋂= .15. 集合{}3,2,1=A ,{}5,4,2=B ,那么集合A B ⋃中元素的个数为_______.16. 全集U =R ,集合{13}A x x =-≤≤ ,集合{}2log (2)1B x x =-< ,那么A B = ;()U A C B ⋂= .。

重磅-2020高考数学专题知识考点:第1节集合 课件 文.ppt

重磅-2020高考数学专题知识考点:第1节集合 课件 文.ppt

高考体验
已 知 全 集 U {0,1, 2,3, 4} , 集 合 A {1,2,3} ,
B {2, 4},则(CU A) B 为
(A){1,2,4}
(B){2,3,4}
(C){0,2,4}
(D){0,2,3,4}
C 【解析】 CU A {0,4} ,所以(CU A) B {0,2,4} , 选 C.

表示 关系
定义
空集是任何集非合空的集子合集
空集 空集是任何
的真子集
记法
∅⊆B
∅B (B≠∅)
三、集合的基本运算
符号 表示
集合的并集 A∪B
图形 表示
{x|x∈A, 意义 或补集 若全集为U,则集 合A的补集为∁UA
{x|x∈A, 且x∈B}
{x|x∈U,且x∉A}
4≤k≤7, 经检验,k=4或k=7适合题意,故4≤k≤7.
7.已知集合M={0,1,2},
N={x|x=-a,a∈M},则集合M∩N=( )
A. {0,-1}
B. {0}
C. {-1,-2} D. {0,-2}
B 解析:
∵N={0,-1,-2}, ∴M∩N={0}.故选B.
8.设全集U=A∪B={x∈N*|lg x<1}. 若A∩(∁UB)={m|m=2n+1,n=0,1,2,3,4}, 则集合B=________.
题型三 集合的运算
【例3】 设全集U={1,2,3,4,5}, 集合M={1,4},N={1,3,5},求N∩(∁UM).
解:∁UM={2,3,5},N={1,3,5}, 则N∩(∁UM)={1,3,5}∩{2,3,5}={3,5}. 变式3-1 B 解析:∵N={0,-1,-2}, ∴M∩N={0}.故选B.

高中数学2020版 第1章 第1节 集 合优秀课件

高中数学2020版 第1章 第1节 集 合优秀课件

A∩B=________.
∴A∩B={x|-2<x<1}.]
解析答案 栏目导航
12
5 . 已 知 集 合 A = {x2 + x,4x} , 若
x2+x=0,
0∈A,则 x=________.
-1 [由题意,得4x≠0
4x=0, 或x2+x≠0, 解得 x=-1.]
解析答案 栏目导航
谢谢欣赏
Thank you for watching !
栏目导航
01 课前·知识全通关
栏 目
02 课堂·题型全突破
导 航
03 真题·自主验效果
04 课后限时集训
4
课前知识 全通关
栏目导航
5
1.元素与集合 (1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是 属于或不属于,表示符号分别为∈和∉. (3)集合的三种表示方法:列举法、描述法、Venn 图法.
(4)常见数集的记法
集合 自然数集 正整数集 整数集 有理数集 实数集
符号
N
N*(或 N+)
Z
Q
R
答案子集:若对∀x∈A,都有 x∈B ,则 A⊆B 或 B⊇A.
(2)真子集:若 A⊆B,但 ∃x∈B,且 x∉A ,则 A B 或 B A.
(3)相等:若 A⊆B,且 B⊆A ,则 A=B.
栏目导航
8
[基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打 “×”) (1)任何一个集合都至少有两个子集.( ) (2){x|y=x2}={y|y=x2}={(x,y)|y=x2}.( ) (3)若{x2,1}={0,1},则 x=0,1.( ) (4)直线 y=x+3 与 y=-2x+6 的交点组成的集合是{1,4}.( ) [答案] (1)× (2)× (3)× (4)×

艺术班高考文科数学复习讲义

艺术班高考文科数学复习讲义

第1讲 集合【基础知识】一、集合有关概念1、集合中元素的特性:1.确定性; 2.互异性; 3.无序性2、常用数集及其记法:自然数集 ;正整数集 ;整数集 ;有理数集 、实数集 。

二、集合间的基本关系1.子集:A B ⊆.任何一个集合是它本身的子集。

A A2.集合相等: A =B3.真子集:如果AB ,且A B 那就说集合A 是集合B 的真子集,记作A ⊂B (或B ⊃A )4. 空集:不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

三、集合的运算1.交集的定义:}|{B x A x x B A ∈∈=,且I . 2、并集的定义:A ∪B ={x |x ∈A ,或x ∈B }. 3、补集: },|{A x S x x A C S ∉∈=且性质:⇔=A B A I ;⇔=A B A Y ; 四、集合中元素的个数的计算:若集合A 中有n 个元素,则集合A 的所有子集个数为______,所有真子集的个数是______,所有非空真子集的个数是 。

【基础训练】1、(2013·四川高考文科)设集合{1,2,3}A =,集合{2,2}B =-,则A B =I ( )A .∅B .{2}C .{2,2}-D .{2,1,2,3}-2、(2010·福建高考文科)若集合{}13A x x =≤≤,{}2B x x =>,则A B ⋂等于 ( ) (A ){}23x x <≤ (B ){}1x x ≥ (C ){}23x x ≤< (D ){}2x x >3、(2011·全国)已知集合{}{}0,1,2,3,4,1,3,5,,M N P M N ===I 则P 的子集共有( )(A )2个 (B )4个 (C )6个 (D )8个4、(2010·湖南高考文科)已知集合A ={1,2,3},B ={2,m ,4},A ∩B ={2,3},则m = . 【典例分析】1、(2010·北京高考文科)集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M I = ( )(A ) {1,2} (B ) {0,1,2} (C ){1,2,3} (D ){0,1,2,3}2、(2010·安徽高考文科)若A ={}|10x x +>,B ={}|30x x -<,则A B I =( )(A )(-1,+∞) (B )(-∞,3) (C )(-1,3) (D )(1,3)3. (2013·北京高考文科)已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B = ( )A .{0}B .{-1,0}C .{0,1}D .{-1,0,1}4、(2011·广东)已知集合A =}1,,|),{22=+y x y x y x 且为实数(,B =},,|),{(1=+y x y x y x 且为实数,则A ⋂B 的元素个数为( )(A )4 (B )3 (C )2 (D )1【典型例题讲练】例1 设集合11,,,2442k k M x x k Z N x x k Z ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,则_______M N练习: 设集合11,,,3663kk P x x k Z Q x x k Z ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭,则______P Q例2已知集合{}2210,,A x ax x x R a =++=∈为实数。

【2020高考专题讲义】1集合

【2020高考专题讲义】1集合

个集合的关系时,避免出错的一个有效手段是合理利用数轴帮助分析与求解,这也是数与形的完美结合之所在.跟踪练习2(2011·安徽阜阳模拟)设集合M ={x |x =5-4a +a 2,a ∈R},N ={y |y =4a 2+4a +2,a ∈R},则下列关系正确的是( )A .M =NB .M ⊂NC .M ⊃ND .M ⊆N [分析] 根据集合的表示法可先将集合化简,而后看其关系便可获解. [答案] A[解析] 由x =5-4a +a 2(a ∈R),得x =(a -2)2+1≥1,故M ={x |x ≥1}.由y =4a 2+4a +2(a ∈R),得y =(2a +1)2+1≥1. 故N ={y |y ≥1},故M =N .故选A.[点评] 一般地,对于两个或两个以上集合,要判断它们之间的关系,应先将集合进行化简,弄清每一个集合中的元素的个数或范围,然后判断集合间的关系.3.命题方向:集合的运算[例3] (2011·广东中山质检)设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}. (1)若A ∩B ={2},求实数a 的值; (2)若A ∪B =A ,求实数a 的取值范围.[分析] 对于含参数的集合的运算,首先解出不含参数的集合,而后根据已知条件求参数. [解析] 由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}. (1)∵A ∩B ={2},∴2∈B ,代入B 中的方程,得a 2+4a +3=0⇒a =-1或a =-3; 当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件; 当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件; 综上,a 的值为-1或-3; (2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3). ∵A ∪B =A ,∴B ⊆A ,①当Δ<0,即a <-3时,B =∅满足条件; ②当Δ=0,即a =-3时,B ={2},满足条件; ③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件,则由根与系数的关系得⎩⎪⎨⎪⎧1+2=-(a +1)1×2=a 2-5⇒⎩⎪⎨⎪⎧a =-52a 2=7,矛盾;(3)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的。

山东艺术生高考数学辅导讲义之集合

山东艺术生高考数学辅导讲义之集合

第一节 集合【热点聚焦】集合是高中数学中的基本概念之一,也是历届高考的必考点。

考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用文氏图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练.【基础知识】1. 集合中元素具有确定性、无序性、互异性.2. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅)4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.【试题精析】高考试题中的集合问题主要集中在以下五种常见的类型: 一.基本型这类题型主要考查集合的基本概念和基本运算,常用的解法有定义法、列举法、性质法、韦恩图法及语言转换法等;【例1】( 2006年重庆卷)已知集合U ={1,2,3,4,5,6,7}, A ={2,4,5,7},B ={3,4,5}, 则(u A )∪(u B )= ( )(A){1,6} (B){4,5} (C){1,2,3,4,5,7} (D){1,2,3,6,7} 【例2】(2006年山东卷)定义集合运算:A ⊙B ={z ︳z = xy (x+y ),z ∈A ,y ∈B },设集合A={0,1},B={2,3},则集合A ⊙B 的所有元素之和为 ( )(A )0 (B )6 (C )12 (D )18 二.综合型这类题型主要将集合与不等式、三角函数、解析几何等知识结合,形成多个知识点的综合问题。

2020高考知识点1 集合—人教A版高考数学自编知识点复习讲义

2020高考知识点1 集合—人教A版高考数学自编知识点复习讲义

知识点1、集合 定义把研究的对象统称为元素,把一些元素组成的总体叫做集合。

元素的性质:确定性、互异性、无序性。

重点:互异性(有多个解时代入验证)常见数集 N * :正整数集, N : 自然数集,Z :整数集,Q : 有理数集, R : 实数集,集合的表示方法集合的表示方法:列举法、描述法、图示法(Ⅰ)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

(Ⅱ)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式 x-3>2 的解集是{x ∈R| x-3>2}或{x| x-3>2} 集合的分类 (1)点集: ()(){}x f y y x =,,曲线f(x)上的点的集合(2)数集:(){}x f y x =; 函数的定义域 ;(){}x f y y =; 函数的值域(){}0〉x f x ; 不等式的解集 (){}0=x f x ;方程的解的集合元素和集合的关系属于(∈)与不属于(∉) 子集 如集合A 中任意一个元素都是B 中的元素,则称A 是B 的子集。

记作B A ⊆.注意:1、任何集合都是它本身的子集! 2、空集是任何集合的子集真子集如集合B A ⊆,但存在元素B x ∈且A x ∉,称集合A 是集合B 的真子集.记作:A B注意:1、任何集合都不是它本身的真子集2、空集是任何非空集合的真子集 空集 把不含任何元素的集合叫做空集.记作:∅.规定:(1)空集是任何集合的子集.(2)空集是任何非空集合的真子集子集、真子集个如集合A 中有n 个元素,则A 有n 2个子集,21n -个真子集.有22-n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节、集合
【基础知识】
1、理解集合中的有关概念
(1)集合中元素的特征: 、 、
(2)集合与元素的关系用符号∈,∉表示。

(3)常用数集的符号表示:自然数集 ;正整数集;整数集 ;有理数集 、
实数集 。

(4)集合的表示法: 、 、 注意:区分集合中元素的形式:如:}12|{2++==x x y x A ;}12|{2++==x x y y B ;}12|),{(2++==x x y y x C ;}12|{2++==x x x x D ;
(5)空集是指不含任何元素的集合。

(}0{、φ和}{φ的区别;0与三者间的关系)
空集是任何集合的子集,是任何非空集合的真子集。

(注意:B A ⊆,讨论时不要遗忘了φ=A 的情况。

)
2、集合间的关系及其运算
(1)符号“∉∈,”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ;
符号“⊄⊂,”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。

(2){________________}A B =I ;{________________}A B =U ;{_______________}U C A =
(3)对于任意集合B A ,,则:①A B B A Y Y ___;A B B A I I ___;B A B A Y I ___; ②⇔=A B A I ;⇔=A B A Y ;⇔=U B A C U Y ;⇔=φB A C U I ;
3、集合中元素的个数的计算: 若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。

【基础训练】
1、设集合{}{}1,2,3,4,2,==|-2≤≤∈P Q x x x R ,则P Q I 等于 ( )
A 、{1,2}
B 、{3,4}
C 、{1}
D 、{-2,-1,0,1,2}
2、已知全集}6,5,4,3,2,1{=U ,集合}5,2,1{=A ,U {4,5,6}C B =,则集合=B A I ( )
A .}2,1{
B .}5{
C .}3,2,1{
D .}6,4,3{
3、已知集合}12|{+==x y x A ,}1|{2++==x x y y B ,则B A I 等于 ( )
A .)}3,1(),1,0{( B.R C.),0(+∞ D.),43[+∞
4、设{}{}(,)46,(,)38A x y y x B x y y x ==-+==-,则A B =I ( )
{}{}{}{}.(2,1).(2,2).(3,1).(4,2).A B C D ----
5、已知集合M 满足{
}{}3,2,12,1=Y M , 则集合M 的个数是( ) A. 1 B. 2 C. 3 D. 4
6、A={()}2137x x x -<-,则A I Z 的元素的个数 .
7、满足},,,{}{d c b a M a ⊂⊆的集合M 有 个
8、集合}02)6(|{2
=+-+=x a ax x A 是单元素集合,则实数a=
9、集合{3,2},{,},{2},a A B a b A B A B ====I U 若则____________________.
10. 已知集合M= {|lg(1)}x y x =-,集合e R x e y y N x }(,|{∈==为自然对数的底数),则N M I =
11..已知集合N M M a a x x N M I 则集合},,2|{},2,1,0{∈===等于
12. 设全集为U ,用集合A 、B 、C 的交、并、补集符号表图中的阴影部分。

(1)______________ (2)_________________
【高考真题】
1.(2018·新课标Ⅰ,文1)已知集合{}02A =,,{}21012B =--,,,
,,则A B =I ( )
A .{}02,
B .{}12,
C .{}0
D .{}21012--,,
,, 2.【2017,1】已知集合{}2A x x =<,{}320B x x =->,则( )
A .3{|}2A
B x x =<I B . A B =∅I
C .3{|}2A B x x =<U
D . A B =R U
3.【2016,1】设集合{}1,3,5,7A =,{|25}B x x =≤≤,则A B =I ( )
A .{}1,3
B .{}3,5
C .{}5,7
D .{}1,7
4.【2015,1】已知集合A={x |x=3n +2, n ∈N},B={6,8,10,12,14},则集合A ∩B 中的元素个数为( )
A .5
B .4
C .3
D .2
5.【2014,1】已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M B =I ( )
A . (2,1)-
B . (1,1)-
C . (1,3)
D . )3,2(-
6.【2013,1】已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( )
A .{1,4}
B .{2,3}
C .{9,16}
D .{1,2}
7.【2012,1】1.已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( )
A .A
B B .B A
C .A B =
D .A B φ=I
8.【2011,1】已知集合{}0,1,2,3,4M =,{}1,3,5N =,
P M N =I ,则P 的子集共有 ( ). A .2个 B .4个 C .6个 D .8个。

相关文档
最新文档