多边形重要知识点总结
多边形内角和知识点
多边形内角和知识点1. 多边形内角和那可是很关键的知识呢呀!就说三角形吧,内角和就是180 度,这就像一个稳定的小团体,三个角紧紧相依。
比如我们常见的直角三角形,一个直角 90 度,那另外两个锐角加起来不就是 90 度嘛!2. 哎呀呀,四边形的内角和是 360 度哟!你想想看,把四边形分成两个三角形,不就清楚啦。
就好比一间房子有四个角,它们的和就是 360 度啊。
像长方形,四个角都是直角,加起来就是 360 度呢!3. 多边形内角和会随着边数增加而变化呢,神奇吧!五边形的内角和是540 度呀。
这就好像是一个更复杂的团队,角度的组合更多啦。
比如五边形的地砖,那里面的角度组合起来就是 540 度哦!4. 你知道吗,多边形内角和的规律超有趣呀!六边形内角和是 720 度呢。
这就如同一个更大型的图案,蕴含着更多的秘密。
像蜂巢的形状,不就是六边形嘛,它们的内角和就有 720 度呀!5. 多边形内角和还能让我们解决很多问题呢!七边形内角和是 900 度哟。
就像是一个难解的谜题,等我们去探索。
好比一个奇特的七边形徽章,它的内角和就是 900 度呢。
6. 哇塞,八边形内角和有 1080 度呢!是不是很惊讶呀!这就像一个超级复杂的结构,需要我们仔细研究。
比如一个八边形的花坛,里面的角度加起来就是 1080 度呀。
7. 多边形内角和真的好神奇呀,九边形内角和是 1260 度呢!就像一个神秘的图案等待我们解开。
像一些特别的九边形装饰,内角和就是1260 度。
8. 多边形内角和可是数学里的宝贝呀!十边形内角和是 1440 度哦!这就如同一个宏伟的计划,充满了未知与挑战。
像一个华丽的十边形图案,那其中的内角和真是让人惊叹!总之,多边形内角和是非常有意思且重要的知识呀!。
多边形重要知识点总结
多边形重要知识点总结多边形重要知识点总结 1一、多边形1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。
2、多边形的边:组成多边形的各条线段叫做多边形的边。
3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。
4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。
5、多边形的周长:多边形各边的长度和叫做多边形的周长。
6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。
说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。
今后所说的多边形,如果不特别声明,都是指凸多边形。
7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。
8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。
注意:多边形的外角也就是与它有公共顶点的内角的邻补角。
二、平行四边形1、平行四边形:两组对边分别平行的四边形叫做平行四边形。
2、平行四边形性质定理1:平行四边形的对角相等。
3、平行四边形性质定理2:平行四边形的对边相等。
4、平行四边形性质定理2推论:夹在平行线间的平行线段相等。
5、平行四边形性质定理3:平行四边形的对角线互相平分。
6、平行四边形判定定理1:一组对边平行且相等的四边形是平行四边形。
7、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形。
8、平行四边形判定定理3:对角线互相平分的四边形是平行四边形。
9、平行四边形判定定理4:两组对角分别相等的四边形是平行四边形。
说明:(1)平行四边形的定义、性质和判定是研究特殊平行四边形的基础。
同时又是证明线段相等,角相等或两条直线互相平行的重要方法。
(2)平行四边形的定义即是平行四边形的一个性质,又是平行四边形的一个判定方法。
三、矩形矩形是特殊的平行四边形,从运动变化的观点来看,当平行四边形的一个内角变为90°时,其它的边、角位置也都随之变化。
多边形的知识点梳理
多边形的知识点梳理
多边形是指由多个边组成的封闭图形。
初中阶段,学生需要掌握多边形的基本概念、属性以及常见的多边形类型。
以下是初一多边形的知识点梳理:
1. 多边形的定义
多边形是由多条线段构成的封闭图形。
多边形的每条线段称为边,相邻边之间的交点称为顶点。
2. 多边形的属性
多边形有以下几个重要的属性:
- 边数:多边形有多少条边,可以根据边的数量来命名,如三边形、四边形等。
- 顶点数:多边形有多少个顶点,也可以根据顶点的数量来命名。
- 内角和:多边形内所有角的和,根据多边形的边数可以使用公式来计算。
- 外角和:多边形外所有角的和,也可以根据多边形的边数使用公式计算。
3. 常见的多边形类型
在初中阶段,学生需要了解以下常见的多边形类型:
- 三角形:具有三条边和三个顶点的多边形。
- 矩形:具有四个直角和四条相等且相邻的边的多边形。
- 正方形:具有四个直角和四条相等的边的矩形。
- 平行四边形:具有两组平行边的四边形。
- 梯形:具有两边平行的四边形。
4. 多边形的性质
多边形还有一些重要的性质:
- 内角和定理:任意一个n边形的内角和等于180度乘以(n-2)。
- 外角和定理:任意一个凸n边形的外角和等于360度。
以上是初一多边形的知识点梳理,掌握这些基本概念和属性,
可以帮助学生更好地理解和应用多边形的相关内容。
多边形的特性与分类知识点总结
多边形的特性与分类知识点总结多边形是由若干条线段构成的封闭图形,它在几何学中占据着重要的地位。
本文将总结多边形的特性与分类知识点,以帮助读者更好地理解和应用多边形的相关概念。
一、多边形的特性1. 边和顶点:多边形由若干条线段组成,这些线段被称为边。
对于多边形内的每个交点,我们称之为顶点。
2. 闭合性:多边形是封闭的,即它的起点和终点相连,形成一个封闭的图形。
3. 内角和外角:多边形的内角是指多边形内部两条邻边之间的角度。
而多边形的外角是指多边形的一条边的延长线与相邻边之间的角度。
4. 对角线:多边形内部的两个非相邻顶点可以通过一条线段连接,这条线段被称为对角线。
二、多边形的分类根据边的数量和长度,多边形可分为以下几类:1. 三角形:三角形是指有三条边和三个顶点的多边形。
根据三条边的长度关系,三角形可以进一步分为等边三角形、等腰三角形和一般三角形。
- 等边三角形:三条边的长度相等。
- 等腰三角形:两条边的长度相等。
- 一般三角形:三条边的长度都不相等。
2. 四边形:四边形是指有四条边和四个顶点的多边形。
根据四条边的性质,四边形可以进一步分为矩形、正方形、平行四边形和菱形。
- 矩形:四个角都是直角的四边形。
- 正方形:四条边的长度都相等且四个角都是直角的四边形。
- 平行四边形:有两对边是平行的四边形。
- 菱形:四条边的长度都相等的四边形。
3. 多边形(五边形及以上):多边形除了三角形和四边形之外,还包括五边形、六边形等。
根据边的数量,多边形可以被进一步细分。
通过边数分类:- 五边形:有五条边和五个顶点的多边形。
- 六边形:有六条边和六个顶点的多边形。
- 七边形:有七条边和七个顶点的多边形。
- 八边形:有八条边和八个顶点的多边形。
通过角数分类:- 正多边形:所有内角和边数相等的多边形。
- 凸多边形:从多边形内部选择两个顶点,与其他顶点的连线完全在多边形内部的多边形。
需要注意的是,多边形的分类并不是互斥的,一个多边形可能符合多个分类标准。
多边形知识点总结
多边形知识点总结按照不同的标准,多边形可以分为正多边形和非正多边形、凸多边形及凹多边形等。
由在同一平面且不在同一直线上的三条或三条以上的线段首尾顺次连结且不相交所组成的封闭图形叫做多边形。
在不同平面上的多条线段首尾顺次连结且不相交所组成的图形也被称为多边形,是广义的多边形。
组成多边形的线段至少有3条,三角形是最简单的多边形。
组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点;多边形相邻两边所成的角叫做多边形的内角;连接多边形的两个不相邻顶点的线段叫做多边形的对角线。
多边形还可以分为正多边形和非正多边形。
正多边形各边相等且各内角相等。
多边形也可以分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形上面的此定理只适用于凸多边形,即平面多边形,空间多边形不适用。
1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。
2、多边形的边:组成多边形的各条线段叫做多边形的边。
3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。
4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。
5、多边形的周长:多边形各边的长度和叫做多边形的周长。
6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。
说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。
今后所说的多边形,如果不特别声明,都是指凸多边形。
7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。
8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。
注意:多边形的外角也就是与它有公共顶点的内角的邻补角。
1、平行四边形:两组对边分别平行的四边形叫做平行四边形。
2、平行四边形性质定理1:平行四边形的对角相等。
3、平行四边形性质定理2:平行四边形的对边相等。
多边形及内角和知识点汇总
知识要点梳理180°(n-2)。
360°.n边形得对角线条数等于1/2·n(n-3)3、4、6/。
拼成360度得角):3、4。
、多边形得定义:在平面内,由一些线段首尾顺次相接组成得图形叫做多边边:组成多边形得各条线段叫做多边形得边。
顶点:每相邻两条边得公共端点叫做多边形得顶点。
内角:多边形相邻两边组成得角叫多边形得内角,一个n边形有n个内角。
ﻫ外角:多边形得边与它得邻边得延长线组成得角叫做多边形得外角。
(2)在定义中应注意:ﻫ①一些线段(多边形得边数就是大于等于3得正整数);②首尾顺次相连,二者缺一不可;ﻫ③理解时要特别注意“在同一平面内”这个条件,其目得就是为了排除几个点不共面得情况,即空间ﻫ多边形、ﻫ2、多边形得分类:ﻫ(1)多边形可分为凸多边形与凹多边形,画出多边形得任何一条边所在得直线,如果整个多边形都在这ﻫ条直线得同一侧,则此多边形为凸多边形,反之为凹多边形(见图1)、本章所讲得多边形都就是指凸多边形、ﻫ凸多边形凹多边形ﻫ图1(2)多边形通常还以边数命名,多边形有n条边就叫做n边形。
三角形、四边形都属于多边形,其中三角形就是边数最少得多边形.ﻫ知识点二:正多边形ﻫ各个角都相等、各个边都相等得多边形叫做正多边形.如正三角形、正方形、正五边形等.ﻫ正三角形正方形正五边形正六边形正十二边形要点诠释:ﻫ各角相等、各边也相等就是正多边形得必备条件,二者缺一不可、如四条边都相等得四边形不一定就是正方形,四个角都相等得四边形也不一定就是正方形,只有满足四边都相等且四个角也都相等得四边形才就是正方形知识点三:多边形得对角线多边形得对角线:连接多边形不相邻得两个顶点得线段,叫做多边形得对角线、如图2,BD为四边形ABCD得一条对角线。
ﻫ要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
ﻫ(2)n边形共有条对角线。
ﻫ证明:过一个顶点有n—3条对角线(n≥3得正整数),又∵共有n个顶点,∴共有n(n—3)条对角线,但过两个不相邻顶点得对角线重复了一次,∴凸n边形,共有条对角线。
多边形及内角和知识点汇总
知识要点梳理定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。
凸多边形凹多边形正多边形:各边相等,各角也相等的多边形叫做正多边形。
非正多边形:1、n 边形的内角和等于 180°( n-2 )。
多边形的定理2 、任意凸形多边形的外角和等于 360°。
3 、n 边形的对角线条数等于 1/2 ·n ( n-3)只用一种正多边形: 3、 4、 6/ 。
只用一种非正多边形(全等) :3、 4。
知识点一:多边形及有关概念1、 多边形的定义: 在平面内,由一些线段首尾顺次相接组成的图形叫做多边形 .( 1)多边形的一些要素: 边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点. 内角:多边形相邻两边组成的角叫多边形的内角,一个 n 边形有 n 个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
( 2)在定义中应注意: ①一些线段(多边形的边数是大于等于 3 的正整数); ②首尾顺次相连,二者缺一不可 ;③理解时要特别注意“在同一平面内”这个条件 , 其目的是为了排除几个点不共面的情况 , 即空间 多边形 .2、多边形的分类 : (1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这 条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图 1). 本章所讲的多边形都是指凸多边形 .凸多边形(2) 多边形通常还以边数命名,多边形有形是边数最少的多边形.知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
拼成 360 度的角图1n 条边就叫做 n 边形.三角形、四边形都属于多边形,其中镶嵌要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可 . 如四条边都相等的四边形不一定是正方形,四个 角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形 知识点三:多边形的对角线多边形的对角线 :连接多边形不相邻的两个顶点的线段,叫做多边形的对角线 . 如图 2,BD 为四边形 ABCD 的一 条对角线。
多边形(基础) 知识讲解
多边形(基础)知识讲解【学习目标】1.理解多边形的概念;2.掌握多边形内角和与外角和公式;3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n边形的一个顶点可以引(n-3)条对角线,n边形对角线的条数为(3)2n n;(3)过n边形的一个顶点的对角线可以把n边形分成(n-2)个三角形.知识点二、多边形内角和n边形的内角和为(n-2)·180°(n≥3).要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;凸多边形凹多边形(2)正多边形的每个内角都相等,都等于(2)180nng°;知识点三、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.【典型例题】类型一、多边形的概念1.如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线?它们将六边形ABCDEF 分成哪几个三角形?【答案与解析】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【总结升华】从一个多边形一个顶点出发,可以连的对角线的条数(n-3)条,分成的三角形数是个数(n-2)个.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。
(完整版)多边形及其内角和知识点
知识要点梳理边形的内角和等于180°(n-2)。
360°。
边形的对角线条数等于1/2·n (n-3)3、4、6/。
拼成360度的角3、4。
知识点一:多边形及有关概念 1、 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. (1)多边形的一些要素: 边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点. 内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
(2)在定义中应注意: ①一些线段(多边形的边数是大于等于3的正整数); ②首尾顺次相连,二者缺一不可; ③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间 多边形. 2、多边形的分类: (1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这 条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸 多边形. 凸多边形 凹多边形 图1 (2)多边形通常还以边数命名,多边形有n 条边就叫做n 边形.三角形、四边形都属于多边形,其中三角 形是边数最少的多边形.知识点二:正多边形 各个角都相等、各个边都相等的多边形叫做正多边形。
如正三角形、正方形、正五边形等。
正三角形 正方形 正五边形 正六边形 正十二边形要点诠释: 各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形知识点三:多边形的对角线 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD 为四边形ABCD 的一条对角线。
要点诠释: (1)从n 边形一个顶点可以引(n -3)条对角线,将多边形分成(n -2)个三角形。
关于多边形的知识点
关于多边形的知识点
1. 多边形的边数可重要啦!你想想,三角形有三条边,四边形有四条边,这多不一样呀!就像不同的人有不同的性格一样。
比如三角形就特别稳定,像金字塔一样稳稳地立在那。
2. 多边形的内角和也很有意思呢!四边形的内角和是 360 度,五边形
的又不一样咯!这就好像每个人都有自己独特的魅力值。
你看正方形,四个角都是直角,内角和就是 360 度呀,神奇吧!
3. 多边形还分凸多边形和凹多边形呢,这差别可大了去了!凸多边形就像个小勇士,堂堂正正的;凹多边形呢,就有点特别啦。
就好比在一群乖孩子里突然出现一个调皮的,多显眼呀!比如有些奇奇怪怪形状的地砖就是凹多边形呢。
4. 多边形的外角和也有规律哦!不管是几边形,外角和都是 360 度,
这不是很奇妙嘛!就像不管你怎么绕圈,最后还是会回到原点一样。
像正六边形,它的每个外角不就是 60 度嘛。
5. 嘿,多边形的对角线你知道不?那可是连接多边形不相邻顶点的线呢!这就像是给多边形搭了好多桥。
比如五边形有五条对角线,是不是很神奇呀!
6. 多边形的形状可以千变万化呀,三角形、四边形、五边形……哎呀,数都数不过来!真像那天空中的星星一样多。
像生活中我们常见的桌子椅子很多就是四边形的形状哟。
7. 多边形的应用可多啦!建筑设计里、图案绘画里,到处都有它们的身影呢!这好比多边形是个大明星,到处都受欢迎。
那漂亮的地砖图案,不就是多边形组成的嘛。
8. 哇塞,多边形真的太有趣啦!它们有着各种各样的特点和规律,让我们的世界变得丰富多彩。
多边形就像是我们生活中的小惊喜,时不时给我们带来新奇和感叹。
所以呀,一定要好好认识多边形哟!。
多边形及其内角和知识点
多边形及其内角和知识点多边形是由线段组成的闭合图形,它拥有多个边和多个顶点。
多边形的内角和指的是多边形内部所有角的和。
首先,我们需要了解多边形的基本概念和性质。
1.多边形的定义:多边形是由一系列线段组成的闭合图形。
每条线段称为多边形的一条边,相邻两个边的交点称为多边形的一个顶点。
多边形至少有三条边和三个顶点。
2.多边形的性质:-每个顶点至少有两个邻接的边;-每个边至少有一个邻接的顶点;-每条边的两个端点都是相邻的顶点。
接下来,我们来探讨多边形的内角和的计算方法。
假设一个n边形的内角和为S。
从一个顶点出发,画一条射线,与相邻的两个边相交。
这样,一个n边形就被分成了n个三角形。
由三角形的内角和的性质可知,每个三角形的内角和为180°。
因此,n个三角形的内角和为n×180°。
但是我们需要注意的是,从同一个顶点出发的n个射线会有重叠的部分,即每个内角都重叠了两次。
因此,我们需要减去这些重叠的部分。
由于每个内角重叠了两次,重叠的部分的度数等于(n-2)×180°。
因此,最终的计算公式为:S=n×180°-(n-2)×180°简化后可得到:S=(n-2)×180°通过这个公式,我们可以方便地计算多边形的内角和。
举例来说,如果一个五边形的内角和是多少呢?根据公式S=(5-2)×180°=3×180°=540°所以,五边形的内角和为540°。
通过上面的例子,我们可以看出多边形的内角和的计算方法。
除了计算多边形内角和的方法,我们还可以根据多边形的性质来推导一些结论。
比如:1.任意n边形的内角和等于(n-2)×180°,这个结论适用于所有的多边形,无论是凸多边形还是凹多边形。
2.任意n边形的外角和等于360°。
外角是顶点的补角,即一个内角与相邻的外角之和等于180°。
数学多边形知识点总结初一
数学多边形知识点总结初一一、多边形的定义、性质及分类1. 多边形的定义多边形是由一系列有限个直线段所围成的封闭图形。
每个直线段称为多边形的边,相邻的边之间的交点称为多边形的顶点。
2. 多边形的性质(1)多边形的内角和问题对于任意的n边形,它的内角和等于180°×(n-2)。
(2)多边形的外角和问题对于任意的n边形,它的外角和等于360°。
(3)对角线问题n边形的对角线的条数n(n-3)/2。
3. 多边形的分类(1)按边的性质进行分类根据多边形的边数,可以将多边形分为三种:三角形、四边形和多边形。
三角形是边数为3的多边形;四边形是边数为4的多边形;而多边形则是边数大于4的多边形。
(2)按角的性质进行分类多边形还可以根据内角的性质来进行分类,有锐角三角形、直角三角形、钝角三角形、凹多边形和凸多边形等。
(3)按边的长度进行分类根据多边形各边的长度是否相等,多边形可以分为等边多边形和不等边多边形。
二、多边形的计算1. 多边形的周长多边形的周长是指多边形的所有边长之和。
计算多边形的周长时,只需要把多边形的各边长相加即可。
2. 多边形的面积(1)三角形的面积计算三角形的面积,可以利用三角形的底和高的乘积再除以2来计算,面积=(底×高)/2。
(2)四边形的面积计算四边形的面积,可以根据四边形的形状分为梯形、平行四边形、菱形和矩形等多种形状来计算。
(3)多边形的面积计算多边形的面积时,可以利用多边形的各个顶点的坐标以及多边形的性质来计算,其中可以用到向量、矢量等知识。
三、多边形的应用1. 多边形的几何解题在几何解题中,多边形经常被用来解决各种角度、边长、面积等问题。
通过掌握多边形的性质,可以更好地应用到几何解题中。
2. 多边形的工程应用在工程领域中,多边形是一种具有广泛应用的图形,例如建筑设计中的平面图、土地测量中的地块面积计算等都需要用到多边形的相关知识。
3. 多边形的计算机应用在计算机图形学中,多边形是一种基本的图形表示方法。
多边形的认识知识点
多边形的认识知识点
以下是 7 条关于多边形的认识知识点:
1. 多边形是由好多条线段首尾相连组成的图形呢!比如说三角形,它可是多边形家族里最简单的啦!就像我们用积木搭成的小房子的屋顶,那就是三角形的形状呀!
2. 嘿,多边形的边数可不一样哦!四边形就有四条边,像我们平时玩的飞盘不就是四边形嘛!它比三角形可就复杂一些了呢,多了一条边呢,是不是很神奇!
3. 多边形还有角呢!每个角都有它的特点。
你看长方形的四个角都是直角,这就像桌子的四个角一样直直的,多规整呀!
4. 很多多边形组合在一起能变成更漂亮更有趣的形状哦!就像拼图一样,把三角形和四边形拼在一起,哇,能出来一个全新的图形,多有意思呀!
5. 多边形的周长你知道是什么吗?就是绕着它一圈的长度呀!比如正方形,你量量它四条边加起来就是周长啦,就像给多边形围了一圈绳子一样呢!
6. 面积也是多边形的重要方面哦!三角形的面积和四边形的面积计算方法都不一样呢,这就好像不同口味的糖果有不同的甜美度,是不是很有趣呐!
7. 多边形里面还有正多边形呢,它们的边和角都相等,很整齐的哦!像正六边形,不就像蜂巢的一格一格嘛!多奇妙呀!
我的观点结论就是:多边形的世界丰富多彩,等着我们去深入探索和发现它们的奇妙之处呢!。
多边形的性质与计算知识点总结
多边形的性质与计算知识点总结多边形是几何学中的重要概念,它们在各种数学问题和实际应用中都扮演着重要角色。
本文将总结多边形的性质与计算知识点,帮助读者深入理解和应用多边形的相关概念。
一、多边形的定义与性质1. 定义多边形是由一系列线段所组成的封闭图形,每条线段称为边,相邻两边的端点称为顶点。
2. 性质(1)多边形的内角和公式:任意n边多边形的内角和等于180°×(n-2),即(180°×(n-2))/n。
(2)对角线的个数与边数的关系:n边多边形的对角线个数为n(n-3)/2。
(3)多边形的对称性:多边形具有旋转对称性和镜像对称性。
(4)多边形的面积:根据不同的多边形类型,面积计算方法也不同,如正多边形的面积可通过边长计算,而不规则多边形的面积需要通过分解为三角形或梯形等进行计算。
二、计算多边形的性质1. 计算多边形的内角和多边形的内角和可以通过下面的步骤计算:(1)设多边形的边数为n。
(2)将多边形分解为n-2个三角形,每个三角形的内角和为180°。
(3)将每个三角形的内角和相加,即可得到多边形的内角和。
2. 计算多边形的外角外角指的是多边形内角与其相邻内角的补角。
计算多边形的外角可以通过下面的公式得到:外角 = 360°/n3. 计算多边形的面积多边形的面积计算方法根据不同的多边形类型而异。
下面以几种常见的多边形为例进行介绍:(1)正多边形的面积:正n边形的面积可通过以下公式计算:面积 = (边长^2 × n) / (4 × tan(π/n))(2)不规则多边形的面积:不规则多边形的面积可以通过将其分解为多个三角形或梯形等进行计算,具体方法需要根据多边形的形状和给定的信息来决定。
4. 计算多边形的周长多边形的周长等于各边长度之和。
三、应用举例多边形的性质和计算方法在实际应用中具有广泛的应用。
以下是几个例子:1. 建筑设计:在建筑设计中,多边形的概念与计算方法被用于测量和绘制建筑物的平面图,计算建筑物的面积和周长等。
初三多边形知识点归纳总结
初三多边形知识点归纳总结多边形是初中数学中的一个重要内容,它们在几何图形中起着重要的作用。
在初三阶段,我们需要掌握多边形的基本概念、性质和计算方法。
本文将对初三多边形的知识点进行归纳总结。
1. 多边形的定义多边形是由若干个线段首尾相连而形成的封闭图形,它的边数大于等于3。
2. 多边形的分类2.1 根据边数,多边形可以分为三角形、四边形、五边形等。
2.2 根据边的长短及角的大小,多边形可以分为等边形、等腰形、直角形等。
3. 三角形3.1 定义:三角形是由三条边和三个内角组成的多边形。
3.2 分类:- 根据边长关系:* 等边三角形:三边相等。
* 等腰三角形:两边相等。
* 普通三角形:三边都不相等。
- 根据角度关系:* 直角三角形:一个内角为直角(90°)。
* 钝角三角形:一个内角大于直角。
* 锐角三角形:三个内角都小于直角。
4. 四边形4.1 定义:四边形是由四条边和四个内角组成的多边形。
4.2 分类:- 矩形:四个内角都是直角。
- 正方形:四边相等且四个内角都是直角的矩形。
- 平行四边形:两组对边平行。
- 菱形:四边都相等。
- 梯形:至少有一对对边平行。
- 长方形:有四个直角的平行四边形。
5. 多边形的面积计算5.1 三角形的面积:面积 = 1/2 * 底边长 * 高。
5.2 矩形的面积:面积 = 长 * 宽。
5.3 正方形的面积:面积 = 边长 * 边长。
5.4 平行四边形的面积:面积 = 底边长 * 高。
5.5 梯形的面积:面积 = (上底 + 下底) * 高 / 2。
5.6 针对更复杂的多边形,在了解边长和角度信息后,可以利用分割成多个简单的形状计算各个部分面积,然后求和得到整个多边形的面积。
6. 多边形的周长计算6.1 多边形周长即为各边长的累加值。
7. 多边形的内角和7.1 对于n边形,即n个内角之和为(n-2)*180°。
8. 相似多边形8.1 定义:两个多边形的对应角相等,对应边成比例。
多边形重要知识点总结
多边形重要知识点总结多边形是由多条线段组成的封闭图形,它是几何学中的重要概念之一、在学习多边形的性质和特点时,有一些重要的知识点需要掌握。
下面是对多边形重要知识点的总结:1.多边形的定义:多边形是由若干个线段首尾相连而组成的封闭图形。
线段首尾相接的点称为多边形的顶点,相邻两个顶点之间的线段称为多边形的边。
2.多边形的分类:根据边的条数,多边形可以分为三种类型:三边形(三角形)、四边形和多边形。
其中,三角形是具有三条边的多边形,四边形是具有四条边的多边形,多边形是具有五条或五条以上边的多边形。
3.多边形的内角和外角:多边形的内角是指多边形内部相邻两条边所夹的角度,而多边形的外角是指多边形的一条边与其邻接边的延长线所夹的角度。
对于任意一个n边形(n≥3),它的内角和为180°×(n-2),外角和为360°。
4.多边形的对角线:对于一个n边形(n≥4),它的对角线是指多边形两个不相邻顶点之间的线段。
一个n边形的对角线数目为n×(n-3)/25.多边形的中心对称性:对于任意一个多边形,它的中心对称轴可以通过连接多边形的两个对边中点而得到。
中心对称轴将该多边形分成两个完全相同的部分。
6.多边形的等边性:如果一个多边形的所有边长度相等,则称该多边形为等边多边形。
例如,三边形的三条边长度相等时,该三角形就是一个等边三角形。
7.多边形的等角性:如果一个多边形的所有内角大小相等,则称该多边形为等角多边形。
例如,正多边形就是一种等角多边形,其中的所有内角都相等。
8.多边形的内接圆和外接圆:多边形的内接圆是指一个圆,它的内切于多边形的每一条边。
多边形的外接圆是指一个圆,它的外接于多边形的每一条边。
内接圆和外接圆的圆心是多边形的中心。
9.多边形的面积:多边形的面积是指多边形所包围的区域的大小。
根据多边形的类型不同,计算方法也不相同。
对于三角形,可以根据底和高的长度计算面积;对于正多边形,可以利用边长和中心到顶点的距离计算面积;对于一般多边形,可以利用向量的叉乘计算面积。
多边形讲义
多边形知识点一:多边形及其有关概念(1)多边形定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.多边形按组成它的线段的条数分为三角形、四边形、五边形、六边形、……由n条线段组成的多边形就叫做n边形.如图,是一个五边形,可表示为五边形ABCDE.三角形是最简单,边数最少的多边形.(2)多边形的边:组成多边形的线段叫做多边形的边.(3)多边形的内角、外角:多边形相邻两边组成的角叫做多边形的内角,也称为多边形的角;多边形的边与它的邻边的延长线组成的角叫做多边形的外角.如图,∠B,∠C,∠D,…是五边形的内角,∠1是五边形的外角.(4)多边形的对角线:①定义:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.如图,AC,AD 就是五边形ABCDE中的两条对角线.②拓展理解:一个n边形从一个顶点可以引(n-3)条对角线,把n边形分成(n-2)个三角形.一个n边形一共有n (n -3)2条对角线.(5)凸多边形和凹多边形:①在图(1)中,画出四边形ABCD 的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;②在图(2)中,画出DC (或BC )所在直线,整个四边形不都在这条直线的同一侧,我们称这个四边形为凹四边形,像这样的多边形称为凹多边形.【例1】 填空:(1)十边形有________个顶点,________个内角,________个外角,从一个顶点出发可画________条对角线,它共有________条对角线.(2)从多边形一个顶点出发画对角线将它分成了四个三角形,这个多边形是________边形.变式1:过n 边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是( ).A .8B .9C .10D .11变式3:一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的内角和.知识点二:正多边形(1)定义:各个角都相等,各条边都相等的多边形叫做正多边形.如等边三角形、正方形等.(2)特点:不仅边都相等,角也都相等,两个条件必须同时具备才是正多边形.如长方形四个角都是直角,都相等,但边不等,所以不是正多边形.注:正多边形外角的特征 因为边数相同的正多边形各个内角都相等,同顶点的内角与外角互为邻补角,所以边数相同的正多边形的各个外角也相等.【例2】 下列说法正确的个数有( ).(1)由四条线段首尾顺次相接组成的图形是四边形; (2)各边都相等的多边形是正多边形; (3)各角都相等的多边形一定是正多边形;(4)正多边形的各个外角都相等.知识点三:多边形的内角和(1)公式:n边形内角和等于(n-2)×180°.(2)探究过程:如图,以五边形、六边形为例.①从五边形的一个顶点出发,可以画2条对角线,它们将五边形分成3个三角形,五边形的内角和等于180°×3=540°;②从六边形的一个顶点出发,可以画3条对角线,它们将六边形分成4个三角形,六边形的内角和等于180°×4=720°;③从n边形的一个顶点出发,可以画(n-3)条对角线,它们将n边形分成(n-2)个三角形,n边形的内角和等于180°×(n-2).所以多边形内角和等于(n-2)×180°.(3)应用:①运用多边形内角和公式可以求出任何边数的多边形的内角和;②由多边形内角和公式可知,边数相同的多边形内角和也相等,因此已知多边形内角和也能求出边数.【例3】选择:(1)十边形的内角和为( ).A.1 260° B.1 440°C.1 620° D.1 800°(2)一个多边形的内角和为720°,那么这个多边形的对角线共有( ).A.6条 B.7条C.8条 D.9条(3)多边形的每一个内角都是150°,则此多边形的一个顶点引出的对角线的条数是( ).A.7 B.8 C.9 D.10变式1:若一个四边形的四个内角度数的比为3∶4∶5∶6,则这个四边形的四个内角的度数分别为__________.变式2:一个多边形的内角和等于1 440°,则它的边数为__________.变式3:一个多边形的内角和不可能是( ).A.1 800° B.540°C.720° D.810°知识点四:多边形的外角和(1)公式:多边形的外角和等于360°.(2)探究过程:如图,以六边形为例.①外角和:在每个顶点处各取一个外角,即∠1,∠2,∠3,∠4,∠5,∠6,它们的和为外角和.②因为同顶点处的一个内角和外角互为邻补角,所以六边形内、外角和等于180°×6=1 080°,所以∠1+∠2+∠3+∠4+∠5+∠6=1 080°-180°×(6-2)=360°.③n边形外角和=n×180°-(n-2)×180°=360°.(3)拓展理解:①多边形的外角和是一个恒值,即任何多边形的外角和都是360°,与边数无关.②多边形的外角和与多边形所有外角的和不是一回事,多边形的外角和是每个顶点处取一个外角的和.【例4】填空:(1)一个多边形每个外角都是60°,这个多边形是__________边形,它的内角和是__________度,外角和是__________度;(2)多边形边数每增加一条,它的内角和会增加__________,外角和增加__________.变式1:如图所示,已知∠ABE=138°,∠BCF=98°,∠CDG=69°,则∠DAB=__________.变式2:如图,在四边形ABCD中,∠1,∠2分别是∠BCD和∠BAD的邻补角,且∠B+∠ADC=140°,则∠1+∠2等于( ).A.140° B.40°C.260° D.不能确定变式3:在多边形的内角中,锐角的个数不能多于( )A.2个B.3个C.4个D.5个知识点五:正多边形知识的应用正多边形是特殊的多边形,它特殊在每一个内角、外角、每一条边都相等,所以在正多边形中,只要知道一个角的度数,就能知道所有角的度数,包括每一个外角的度数.知道一边的长度,就能知道每一边的长度.因此它的应用主要包括两个方面:(1)已知内角(或外角)能求边数、内角和;已知边数能求每一个外角(或内角)的度数及内角和,即在内角和、边数、内角度数、外角度数四个量中知道一个量就能求出其他三个量.(2)因为正多边形每一条边都相等,所以知道周长能求边长,知道边长能求周长(因较简单所以考查较少).【例5】若八边形的每个内角都相等,则其每个内角的度数是__________.变式1:一个多边形的每一个外角都等于30°,这个多边形的边数是__________,它的内角和是__________.变式2:一个多边形的每一个内角都等于144°,求这个多边形的边数.知识点六:将多边形截去一个角问题的探讨在多边形问题中,有一类问题是将多边形截去一个角后,探讨多边形边数变化和内角和变化的问题.在这类问题中,因截法不同,会出现不同的变化,现以四边形为例加以说明.如图所示,将正方形的桌面截去一个角,那么余下的多边形的内角和度数将怎样变化?因截法有三种情况,所以内角和也就有三种情况:(1)当是图①所示情况时,不过任何一个顶点,四边形变为五边形,边数增加1,所以内角和为540°.(2)当是图②所示情况时,过一个顶点,四边形边数不变,所以内角和也不变,为360°.(3)当是图③所示情况时,过两个顶点,四边形变为三角形,边数减少1,所以内角和也变为180°.【例6】一个多边形截去一个角后,变为十六边形,则原来的多边形的边数为( ).A.15或17 B.16或17C.16或18 D.15或16或17变式1:一个多边形截去一个角(截线不过顶点)之后,所形成的一个多边形的内角和是2 520°,那么原多边形的边数是( ).A.13 B.15 C.17 D.19变式2:如果一个多边形的边数增加一倍,它的内角和是2 880°,那么原来的多边形的边数是( ).A.10 B.9 C.8 D.7知识点七:多边形内角和少算或多算一个角类型题目探索因为多边形的边数只能是整数,由多边形内角和公式(n-2)×180°可知,n-2是正整数,所以多边形的内角和必定是180°的整数倍,因此:①当所给内角和是多计算一个角的情况时,用所给内角和除以180°,因为多加的角大于0°小于180°,所以得到的余数部分就是多加角的度数,得到的整数部分加2就是边数;②当所给内角和是少计算一个角的情况时,因为少加了角,所以得到的整数部分加2比实际的角个数少1,所以用所给内角和除以180°,整数部分加3才是边数,180°减余数部分就是少加的角的度数.破疑点多边形内角和与边数的关系内角和除以180°所得到的整数并不是边数(或角的个数)n,而是n-2的值,所以得到的整数加2才是边数,这是易错点,要注意.【例7】一个多边形除了一个内角之外,其余内角之和为2 670°,求这个多边形的边数和少加的内角的大小.变式:若多边形所有内角与它的一个外角的和为600°,求这个多边形的边数及内角和.知识点八:平面镶嵌1.用形状、大小完全相同的一种或几种平面图形进行________,彼此之间不留空隙、不_______地铺成一片,这就是平面图形的密铺,又称做平面图形的镶嵌.2. 取一些形状、大小相同的多边形也可以作平面镶嵌,此时要求以其中一个顶点处的各个内角之和为__________.例8:(2009年广州市)只用下列正多边形地砖中的一种,能够铺满地面的是()(A)正十边形(B)正八边形(C)正六边形(D)正五边形注:只用同一种正多边形能够进行密铺的,只有三种正多边形,即正三角形、正方形、正六边形.变式1:如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指钝角)是___度.变式2:(1)如果用三种正多边形地砖镶嵌地面,一个顶点处已有一个正方形和一个正六边形地砖,则还需一个正__________边形地砖.(2)用正三角形与正方形两种图案作平面镶嵌,设在一个顶点周围有a个正三角形和b 个正方形,则a=__________,b=__________.【随堂检测】1.若多边形的边数由3增加到n(n是正整数,且大于3),则其外角和的度数( )(A)增加(B)减少(C)不变(D)不确定2.一个多边形共有5条对角线,这个多边形内角和等于( )(A)360°(B)540°(C)720°(D)900°3.已知一个多边形的内角和与外角和的比为9:2,则它的边数是_____.4.一个凸n边形除了一个内角外,其余各内角之和是2570°,则这个内角等于( ) A.90°B.15°C.120°D.130°5.不能够铺满地面的正多边形的组合是()A.正三角形与正方形B.正五边形与正十边形C.正六边形与正三角形D.正六边形与正八边形6、一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.【课后强化练习】一、选择题1. 一个多边形的每个内角都等于120°,这个多边形的边数为()条A. 5B. 6C. 7D. 82. 用正四边形一种图形进行平面镶嵌时,它在一个顶点周围的正四边形的个数为()A. 2个B. 3个C. 4个D. 5个3. 如果一个多边形的每个内角都相等,且内角和为1260°,那么它的一个外角为()A. 30°B. 36°C. 40°D. 45°4. 多边形的内角和不可能是()A. 810°B. 540°C. 1800°D. 180°5. 如果多边形的边数增加1,则多边形的内角和、外角和分别()A. 增加180°,增加180°B. 不变,增加180°C. 不变,不变D. 增加180°,不变6. 能够铺满地面的正多边形组合是()A. 正八边形和正方形B. 正五边形和正十边形C. 正四边形和正六边形D. 正四边形和正七边形*7. 在n边形一边上取一点与各顶点相连,可得三角形的个数为()A. n个B. (n-2)个C. (n-1)个D. (n+1)个*8. 过多边形的一个顶点的所有对角线把多边形分成9个三角形,这个多边形的边数为()条A. 9B. 10C. 11D. 12二、填空题9. 在正六边形ABCDEF中,∠A=120°,AB=2cm,则∠D=__________,DE=__________.10. 一个正多边形的每个外角都是72°,则这个多边形是__________边形.11. n(n为整数,且n≥3)边形的内角和比(n+1)边形的内角和小__________度.12. 从n边形的一个顶点出发共引出了5条对角线,则这个n边形是__________边形,这5条对角线把n边形分成了__________个三角形.*13. 如果用三种正多边形地砖镶嵌地面,一个顶点处已有一个正方形和一个正六边形地砖,则还需一个正__________边形地砖.**14. 用正三角形与正方形两种图案作平面镶嵌,设在一个顶点周围有a个正三角形和b 个正方形,则a=__________,b=__________.三、解答题15. 若一个多边形的各边都相等,周长为63,且内角和为900°,求它的边长.16. 如图所示,(1)四边形共有__________条对角线,五边形共有__________条对角线,六边形共有__________条对角线;(2)你能说出七边形共有多少条对角线吗?(3)由(1)、(2),请猜想n边形的对角线的总条数,说说你的理由.四边形五边形六边形*17. 将五边形截去一个角后所得的多边形有几条对角线?*18. 小军在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现是少加了一个内角,求:(1)这个多边形是几边形?(2)这个内角是多少度?四、拓广探索**19. (1)填表:正多边形3 4 5 6 … n 正多边形每个内角的度数…(2)如果限用一种正多边形进行平面镶嵌,哪几种正多边形能镶嵌成一个平面图形? (3)从正三角形、正四边(方)形、正六边形中选一种,再在其他正多边形中选一种,请画出这两种不同的正多边形进行平面镶嵌的草图,并探索这两种正多边形共能镶嵌成几种不同的平面图形,说明你的理由.参考答案一、选择题 1. B2. C二、填空题9. 120°,2cm 10. 正五11. 180三、解答题15. 解:设该多边形有n 条边,则(n -2)×180°=900°,解得n =7.因为63÷7=9,所以这个多边形的边长为9.16. 解:(1)2,5,9(2)14.因为过七边形的一个顶点可引4条对角线,故过7个顶点可引28条对角线,由于每条对角线均重复计算一次,所以七边形共有14条对角线(3)n 边形共有(n -3)×n2条对角线,理由与(2)类似.17. 解:因为将五边形截去一个角后可能得到四边形、五边形、六边形三种(如图所示)多边形.当得到四边形时,有12×4×(4-3)=2条对角线;当得到五边形时,有12×5×(5-3)=5条对角线;当得到六边形时,有12×6×(6-3)=9条对角线.18. 解:(1)设这是一个n边形,则(n-2)·180°=1125°,n=8.25,故这个多边形是九边形;(2)135°.设这个内角为x°,则(9-2)×180°=1125°+x°,解得x=135.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形重要知识点总结
导读:一、多边形
1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。
2、多边形的边:组成多边形的各条线段叫做多边形的边。
3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。
4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。
5、多边形的周长:多边形各边的长度和叫做多边形的周长。
6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。
说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。
今后所说的多边形,如果不特别声明,都是指凸多边形。
7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。
8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。
注意:多边形的外角也就是与它有公共顶点的内角的邻补角。
二、平行四边形
1、平行四边形:两组对边分别平行的四边形叫做平行四边形。
2、平行四边形性质定理1:平行四边形的对角相等。
3、平行四边形性质定理2:平行四边形的对边相等。
4、平行四边形性质定理2推论:夹在平行线间的平行线段相等。
5、平行四边形性质定理3:平行四边形的对角线互相平分。
6、平行四边形判定定理1:一组对边平行且相等的四边形是平行四边形。
7、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形。
8、平行四边形判定定理3:对角线互相平分的四边形是平行四边形。
9、平行四边形判定定理4:两组对角分别相等的四边形是平行四边形。
说明:(1)平行四边形的定义、性质和判定是研究特殊平行四边形的基础。
同时又是证明线段相等,角相等或两条直线互相平行的重要方法。
(2)平行四边形的定义即是平行四边形的一个性质,又是平行四边形的一个判定方法。
三、矩形
矩形是特殊的平行四边形,从运动变化的观点来看,当平行四边形的一个内角变为90°时,其它的边、角位置也都随之变化。
因此矩形的性质是在平行四边形的基础上扩充的。
1、矩形:有一个角是直角的平行四边形叫做短形(通常也叫做长方形)
2、矩形性质定理1:矩形的四个角都是直角。
3.矩形性质定理2:矩形的对角线相等。
4、矩形判定定理1:有三个角是直角的四边形是矩形。
说明:因为四边形的内角和等于360度,已知有三个角都是直角,那么第四个角必定是直角。
5、矩形判定定理2:对角线相等的平行四边形是矩形。
说明:要判定四边形是矩形的方法是:
法一:先证明出是平行四边形,再证出有一个直角(这是用定义证明)
法二:先证明出是平行四边形,再证出对角线相等(这是判定定理1)
法三:只需证出三个角都是直角。
(这是判定定理2)
四、菱形
菱形也是特殊的平行四边形,当平行四边形的两个邻边发生变化时,即当两个邻边相等时,平行四边形变成了菱形。
1、菱形:有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质1:菱形的四条边相等。
3、菱形的性质2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。
4、菱形判定定理1:四边都相等的四边形是菱形。
5、菱形判定定理2:对角线互相垂直的平行四边形是菱形。
说明:要判定四边形是菱形的方法是:
法一:先证出四边形是平行四边形,再证出有一组邻边相等。
(这就是定义证明)。
法二:先证出四边形是平行四边形,再证出对角线互相垂直。
(这是判定定理2)
法三:只需证出四边都相等。
(这是判定定理1)
五、正方形
正方形是特殊的平行四边形,当邻边和内角同时运动时,又能使平行四边形的一个内角为直角且邻边相等,这样就形成了正方形。
1、正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形性质定理1:正方形的四个角都是直角,四条边都相等。
3、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
4、正方形判定定理互:两条对角线互相垂直的矩形是正方形。
5、正方形判定定理2:两条对角线相等的菱形是正方形。
注意:要判定四边形是正方形的方法有
方法一:第一步证出有一组邻边相等;第二步证出有一个角是直角;第三步证出是平行四边形。
(这是用定义证明)
方法二:第一步证出对角线互相垂直;第二步证出是矩形。
(这是判定定理1)
方法三:第一步证出对角线相等;第二步证出是菱形。
(这是判
定定理2)
六、梯形
1、梯形:一组对边平行而另一组对边不平行的四边形叫做梯形。
2、梯形的底:梯形中平行的两边叫做梯形的底(通常把较短的底叫做上底,较长的边叫做下底)
3、梯形的腰:梯形中不平行的两边叫做梯形的腰。
4、梯形的高:梯形有两底的距离叫做梯形的高。
5、直角梯形:一腰垂直于底的梯形叫做直角梯形。
6、等腰梯形:两腰相等的'梯形叫做等腰梯形。
7、等腰梯形性质定理1:等腰梯形在同一底上的两个角相等。
8、等腰梯形性质定理2:等腰梯形的两条对角线相等。
9、等腰梯形的判定定理l。
:在同一个底上钩两个角相等的梯形是等腰梯形。
10、等腰梯形的判定定理2:对角线相等的梯形是等腰梯形。
研究等腰梯形常用的方法有:化为一个等腰三角形和一个平行四边形;或两个全等的直角三角形和一矩形;或作对角线的平行线交下底的延长线于一点;或延长两腰交于一点。
七、中位线
1、三角形的中位线连结三角形两边中点的线段叫做三角形的中位线。
说明:三角形的中位线与三角形的中线不同。
2、梯形的中位线:连结梯形两腰中点的线段叫做梯形中位线。
3、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。
4、梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半。
八、多边形的面积
说明:多边形的面积常用的求法有:
(1)将任意一个平面图形划分为若干部分再通过求部分的面积的和,求出原来图形的面积这种方法叫做分割法。
如图3-l,作六边形的最长的一条对角线,从其它各顶点向这条对角线引垂线,把六边形分成四个直角三角形和两个直角梯形,计算它们的面积再相加。
(2)将一个平面图形的某一部分割下来移放在另一个适当的位置上,从而改变原来图形的形状。
利用计算变形后的图形的面积来求原图形的面积的这种方法。
叫做割补法。
(3)将一个平面图形通过拼补某一图形,使它变为另一个图形,利用新的图形减去所补充图形的面积,来求出原来图形面积的这种方法叫做拼凑法。
注意:两个图形全等,它们的面积相等。
等底等高的三角面积相等。
一个图形的面积等于它的各部分面积的和。
【多边形重要知识点总结】
1.高数重要知识点总结怎么写
2.概率论重要知识点总结
3.合同法重要知识点
4.小说的重要知识点
5.《多边形》评课稿
6.初一上册生物重要知识点总结
7.初中语文重要知识点之趣味成语
8.《文言文两则》重要课文知识点
上文是关于多边形重要知识点总结,感谢您的阅读,希望对您有帮助,谢谢。