因式分解练习题及答案.pdf

合集下载

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解因式分解 专题过关专题过关1.将下列各式分解因式.将下列各式分解因式 (1)3p 2﹣6pq (2)2x 2+8x+8 2.将下列各式分解因式.将下列各式分解因式(1)x 3y ﹣xy (2)3a 3﹣6a 2b+3ab 2.3.分解因式.分解因式(1)a 2(x ﹣y )+16(y ﹣x ) (2)(x 2+y 2)2﹣4x 2y2 4.分解因式:.分解因式:(1)2x 2﹣x (2)16x 2﹣1 (3)6xy 2﹣9x 2y ﹣y 3 (4)4+12(x ﹣y )+9(x ﹣y )2 5.因式分解:.因式分解:(1)2am 2﹣8a (2)4x 3+4x 2y+xy2 6.将下列各式分解因式:.将下列各式分解因式:(1)3x ﹣12x 3 (2)(x 2+y 2)2﹣4x 2y2 7.因式分解:(1)x 2y ﹣2xy 2+y3 (2)(x+2y )2﹣y 2 8.对下列代数式分解因式:.对下列代数式分解因式:(1)n 2(m ﹣2)﹣n (2﹣m ) (2)(x ﹣1)(x ﹣3)+1 9.分解因式:a 2﹣4a+4﹣b 210.分解因式:a 2﹣b 2﹣2a+1 11.把下列各式分解因式:.把下列各式分解因式:(1)x 4﹣7x 2+1 (2)x 4+x 2+2ax+1﹣a2 (3)(1+y )2﹣2x 2(1﹣y 2)+x 4(1﹣y )2 (4)x 4+2x 3+3x 2+2x+1 12.把下列各式分解因式:.把下列各式分解因式:(1)4x 3﹣31x+15; (2)2a 2b 2+2a 2c 2+2b 2c 2﹣a 4﹣b 4﹣c 4; (3)x 5+x+1;(4)x 3+5x 2+3x ﹣9; (5)2a 4﹣a 3﹣6a 2﹣a+2.因式分解因式分解 专题过关专题过关1.将下列各式分解因式.将下列各式分解因式(1)3p 2﹣6pq ; (2)2x 2+8x+8 分析:(1)提取公因式3p 整理即可;整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p 2﹣6pq=3p (p ﹣2q ),(2)2x 2+8x+8,=2(x 2+4x+4),=2(x+2)2.2.将下列各式分解因式.将下列各式分解因式(1)x 3y ﹣xy (2)3a 3﹣6a 2b+3ab 2.分析:(1)首先提取公因式xy ,再利用平方差公式进行二次分解即可;,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a ,再利用完全平方公式进行二次分解即可.,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy (x 2﹣1)=xy (x+1)(x ﹣1);(2)原式=3a (a 2﹣2ab+b 2)=3a (a ﹣b )2.3.分解因式.分解因式(1)a 2(x ﹣y )+16(y ﹣x ); (2)(x 2+y 2)2﹣4x 2y 2.分析:(1)先提取公因式(x ﹣y ),再利用平方差公式继续分解;,再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a 2(x ﹣y )+16(y ﹣x ),=(x ﹣y )(a 2﹣16),=(x ﹣y )(a+4)(a ﹣4);(2)(x 2+y 2)2﹣4x 2y 2,=(x 2+2xy+y 2)(x 2﹣2xy+y 2),=(x+y )2(x ﹣y )2.4.分解因式:.分解因式:(1)2x 2﹣x ; (2)16x 2﹣1; (3)6xy 2﹣9x 2y ﹣y 3; (4)4+12(x ﹣y )+9(x ﹣y )2.分析:(1)直接提取公因式x 即可;即可;(2)利用平方差公式进行因式分解;)利用平方差公式进行因式分解;(3)先提取公因式﹣y ,再对余下的多项式利用完全平方公式继续分解;,再对余下的多项式利用完全平方公式继续分解;(4)把(x ﹣y )看作整体,利用完全平方公式分解因式即可.)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x 2﹣x=x (2x ﹣1);(2)16x 2﹣1=(4x+1)(4x ﹣1);(3)6xy 2﹣9x 2y ﹣y 3,=﹣y (9x 2﹣6xy+y 2),=﹣y (3x ﹣y )2; (4)4+12(x ﹣y )+9(x ﹣y )2,=[2+3(x ﹣y )]2,=(3x ﹣3y+2)2.5.因式分解:.因式分解:(1)2am 2﹣8a ; (2)4x 3+4x 2y+xy2 分析:(1)先提公因式2a ,再对余下的多项式利用平方差公式继续分解;,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x ,再对余下的多项式利用完全平方公式继续分解.,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am 2﹣8a=2a (m 2﹣4)=2a (m+2)(m ﹣2);(2)4x 3+4x 2y+xy 2,=x (4x 2+4xy+y 2),=x (2x+y )2.6.将下列各式分解因式:.将下列各式分解因式:(1)3x ﹣12x 3 (2)(x 2+y 2)2﹣4x 2y 2.分析:(1)先提公因式3x ,再利用平方差公式继续分解因式;,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x ﹣12x 3=3x (1﹣4x 2)=3x (1+2x )(1﹣2x );(2)(x 2+y 2)2﹣4x 2y 2=(x 2+y 2+2xy )(x 2+y 2﹣2xy )=(x+y )2(x ﹣y )2.7.因式分解:.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.)符合平方差公式的结构特点,利用平方差公式进行因式分解即可. 解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1 分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y )2﹣2x 2(1﹣y 2)+x 4(1﹣y )2 (4)x 4+2x 3+3x 2+2x+1 分析:(1)首先把﹣7x 2变为+2x 2﹣9x 2,然后多项式变为x 4﹣2x 2+1﹣9x 2,接着利用完全平方公式和平方差公式分解因式即可求解;方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x 4+2x 2+1﹣x 2+2ax ﹣a 2,然后利用公式法分解因式即可解;,然后利用公式法分解因式即可解;(3)首先把﹣2x 2(1﹣y 2)变为﹣2x 2(1﹣y )(1﹣y ),然后利用完全平方公式分解因式即可求解;因式即可求解; (4)首先把多项式变为x 4+x 3+x 2++x 3+x 2+x+x 2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.着提取公因式即可求解.解答:解:(1)x 4﹣7x 2+1=x 4+2x 2+1﹣9x 2=(x 2+1)2﹣(3x )2=(x 2+3x+1)(x 2﹣3x+1);(2)x 4+x 2+2ax+1﹣a=x 4+2x 2+1﹣x 2+2ax ﹣a 2=(x 2+1)﹣(x ﹣a )2=(x 2+1+x﹣a )(x 2+1﹣x+a );(3)(1+y )2﹣2x 2(1﹣y 2)+x 4(1﹣y )2=(1+y )2﹣2x 2(1﹣y )(1+y )+x4(1﹣y )2=(1+y )2﹣2x 2(1﹣y )(1+y )+[x 2(1﹣y )]2=[(1+y )﹣x 2(1﹣y )]2=(1+y ﹣x 2+x 2y )2(4)x 4+2x 3+3x 2+2x+1=x 4+x 3+x 2++x 3+x 2+x+x 2+x+1=x 2(x 2+x+1)+x (x 2+x+1)+x 2+x+1=(x 2+x+1)2.12.把下列各式分解因式:.把下列各式分解因式:(1)4x 3﹣31x+15; (2)2a 2b 2+2a 2c 2+2b 2c 2﹣a 4﹣b 4﹣c 4;(3)x 5+x+1; (4)x 3+5x 2+3x ﹣9;(5)2a 4﹣a 3﹣6a 2﹣a+2.分析:(1)需把﹣31x 拆项为﹣x ﹣30x ,再分组分解;,再分组分解;(2)把2a 2b 2拆项成4a 2b 2﹣2a 2b 2,再按公式法因式分解;,再按公式法因式分解;(3)把x 5+x+1添项为x 5﹣x 2+x 2+x+1,再分组以及公式法因式分解;,再分组以及公式法因式分解;(4)把x 3+5x 2+3x ﹣9拆项成(x 3﹣x 2)+(6x 2﹣6x )+(9x ﹣9),再提取公因式因式分解;式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x 3﹣31x+15=4x 3﹣x ﹣30x+15=x (2x+1)(2x ﹣1)﹣15(2x ﹣1)=(2x ﹣1)(2x 2+1﹣15)=(2x ﹣1)(2x ﹣5)(x+3);(2)2a 2b 2+2a 2c 2+2b 2c 2﹣a 4﹣b 4﹣c 4=4a 2b 2﹣(a 4+b 4+c 4+2a 2b 2﹣2a 2c 2﹣2b 2c 2)=(2ab )2﹣(a 2+b 2﹣c 2)2=(2ab+a 2+b 2﹣c 2)(2ab ﹣a 2﹣b 2+c 2)=(a+b+c )(a+b ﹣c )(c+a ﹣b )(c ﹣a+b ); (3)x 5+x+1=x 5﹣x 2+x 2+x+1=x 2(x 3﹣1)+(x 2+x+1)=x 2(x ﹣1)(x 2+x+1)+(x 2+x+1)=(x 2+x+1)(x 3﹣x 2+1);(4)x 3+5x 2+3x ﹣9=(x 3﹣x 2)+(6x 2﹣6x )+(9x ﹣9)=x 2(x ﹣1)+6x (x ﹣1)+9(x ﹣1)=(x ﹣1)(x+3)2;(5)2a 4﹣a 3﹣6a 2﹣a+2=a 3(2a ﹣1)﹣(2a ﹣1)(3a+2)=(2a ﹣1)(a 3﹣3a ﹣2)=(2a ﹣1)(a 3+a 2﹣a 2﹣a ﹣2a ﹣2)=(2a ﹣1)[a 2(a+1)﹣a (a+1)﹣2(a+1)]=(2a ﹣1)(a+1)(a2﹣a ﹣2)=(a+1)2(a ﹣2)(2a ﹣1).。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。

因式分解专项训练(附答案)

因式分解专项训练(附答案)

因式分解专项训练(附答案)(1)18(a-b)3-12b(b-a)2 (2)(2a+b)(2a-3b)-3a(2a+b)(3)x(x+y)(x-y)-x(x+y)2 (4)3a2(x-y)3-4b2(y-x)2(5)a3-ab2-a2+b2 (6)4x2-4xy+8xz(7)6x4-4x3+2x28、已知非零实数a,b满足a+b=3,ab=2,求代数式a2b+ab2的值9、已知ab=-2,a-3b=5,求a3b-6a2b2+9ab310 、先阅读下列材料,再解答问题,材料:因式分解:(x+y)2+2(x+y)+1解: 讲“x+y”看成整体,设x+y=m,则原式=m2+2m+1=(m+1)2再将x+y=m代入,得原式=(x+y+1)2。

上述解题用到的是整体思想,整体思想是数学解题过程中常用的一种思想方法,请你写出下列因式分解的结果(1)1-2(x-y)+(x-y)2 =(2)25(a-1)2 -10(a-1)+1(3)(y2-4y)(y2-4y+8)+16答案1.6(3a-5b)(a-b)22.-(2a+b)(a+3b)3.-2xy(x+y)4.(x-y)2{3a2(x-y)-4b2}5.(a-b)2(a+b)6.4x(x-y+2z)7.2x2(3x2-2x+1)8. 69.原式=ab(a2-6ab+9b2)=ab(a-3b)2原式=-2*52 =-5010.(1)(1-x+y)2(2)(5a-6)2(3)(y-2)4因式分解专项训练1、9-12a+4a22、2mx2- 4mx+2m3、ab4- 4ab3+4ab23、-x2y+6y2x-9y3 5、(x2-1)2+6(1-x2)+9 6、x2(x-y)+y2(y-x)7、(x-2y)(x+3y)-(x-2y)2 8、(-2)2021+(-2)20229、a=602*2022-602*2021,b=4042-2020*2+301,c=2018*2019-2016*2021,则a,b,c的大小关系是()10、已知a-b=1,ab=2,则a2b-ab2的值为()11、先分解因式,在求值;4a2(b-7)-2(b-7),其中a=-1,b=2.12、在实数范围内分解因式;9a4 - 4b4。

因式分解100题试题附答案

因式分解100题试题附答案

100题搞定因式分解计算因式分解100题(试题版)日期:________时间:________姓名:________成绩:________一、解答题(共100小题)1.因式分解:4a2b﹣b.2.因式分解:a2(a﹣b)+25(b﹣a).3.因式分解:x3+3x2y﹣4x﹣12y.4.因式分解:9(x+y)2﹣(x﹣y)2.5.因式分解:2a2b﹣12ab+18b.6.因式分解:﹣x3y+4x2y2﹣4xy3.7.因式分解:a2(x﹣y)+4b2(y﹣x).8.因式分解:4a3b+4a2b2+ab3.9.因式分解:(a+b)2﹣4a2.10.因式分解:3ax2﹣6axy+3ay2.11.因式分解:6x4﹣5x3﹣4x2.12.因式分解:(x﹣3y)(x﹣y)﹣(﹣x﹣y)213.因式分解:2m(a﹣b)﹣3n(b﹣a)14.因式分解:m2﹣(2m+3)2.16.因式分解:x2﹣4xy+4y2﹣117.因式分解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)18.因式分解:a2﹣4﹣3(a+2)19.因式分解:(x﹣1)2+2(x﹣5).20.因式分解:4x3﹣8x2+4x.21.因式分解:x3﹣2x2﹣3x22.因式分解:2x2﹣4xy+3x﹣6y24.因式分解:9x2﹣6x+1.25.因式分解:4ma2﹣mb2.26.因式分解:x2﹣2xy﹣8y2.27.因式分解:a2+4a(b+c)+4(b+c)2.28.因式分解:x2﹣4y2+4﹣4x29.因式分解:xy2﹣4xy+4x.30.因式分解:x4﹣5x2﹣36.31.因式分解:x3﹣2x2y+xy2.32.在实数范围内因式分解:x2﹣4xy﹣3y2.33.因式分解:9a2(x﹣y)+4b2(y﹣x)34.因式分解:x4﹣10x2+9.35.因式分解:x2﹣y2﹣2x+1.36.因式分解:(2x﹣y)(x+3y)﹣(x+y)(y﹣2x).37.因式分解:6(x+y)2﹣2(x﹣y)(x+y).38.因式分解:2m4n﹣12m3n2+18m2n3.39.因式分解:a2(x﹣y)+4(y﹣x).40.在实数范围内因式分解:﹣2a2b2+ab+2.41.因式分解:x2﹣9+3x(x﹣3)42.因式分解:4xy2+4x2y+y3.43.因式分解:(x2+4x)2﹣2(x2+4x)﹣15.44.因式分解:6xy2+9x2y+y3.45.因式分解:x3﹣3x2+2x.46.因式分解:x(a﹣b)+y(b﹣a)﹣3(b﹣a).47.因式分解:3ax﹣18by+6bx﹣9ay48.因式分解:(2a﹣b)(3a﹣2)+b(2﹣3a)49.因式分解:(a﹣3)2+(3﹣a)50.因式分解:(a+b)﹣2a(a+b)+a2(a+b)51.因式分解:12x4﹣6x3﹣168x252.因式分解:(2m+3n)(2m﹣n)﹣n(2m﹣n)53.因式分解:3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y﹣x)54.因式分解:(x﹣1)(x+1)(x﹣2)﹣(x﹣2)(x2+2x+4)55.因式分解:8x2y2﹣10xy﹣1256.因式分解:6(x+y)2﹣2(x+y)(x﹣y)57.因式分解:9(a﹣b)(a+b)﹣3(a﹣b)258.因式分解:4xy(x+y)2﹣6x2y(x+y)59.因式分解:﹣24m2x﹣16n2x.60.因式分解:4a(x﹣y)﹣2b(y﹣x)61.因式分解:ax4﹣14ax2﹣32a.62.因式分解:x3+5x2y﹣24xy2.63.因式分解:(1﹣3a)2﹣3(1﹣3a)64.因式分解:x(x﹣y)3+2x2(y﹣x)2﹣2xy(x﹣y)2.65.因式分解:x5﹣2x3﹣8x.366.因式分解:x2-y2+2x+y+467.因式分解:2(x+y)2﹣20(x+y)+50.68.因式分解:1+a+a(1+a)+a(1+a)2+a(1+a)3.69.因式分解:x2y﹣x2z+xy﹣xz.70.因式分解:(x2﹣x)2﹣8x2+8x+12.71.因式分解:x4﹣(3x﹣2)2.72.因式分解:(3m﹣1)2﹣(2m﹣3)2.73.因式分解:(2x+5)2﹣(2x﹣5)2.74.因式分解:(﹣2x﹣1)2(2x﹣1)2﹣(4x2﹣2x﹣1)275.因式分解:(m+1)(m﹣9)+8m.76.因式分解:9(a﹣b)2+36(b2﹣ab)+36b277.因式分解:(a2+4)2﹣16a2.78.因式分解:9(m+n)2﹣(m﹣n)279.因式分解:x4﹣8x2y2+16y4.80.因式分解:25x2﹣9(x﹣2y)281.因式分解:4x2y2﹣(x2+y2)2.82.因式分解:x(x﹣12)+4(3x﹣1).83.因式分解:(x2﹣3)2+2(3﹣x2)+1.84.因式分解:(x+2)(x﹣6)+16.85.因式分解:2m(2m﹣3)+6m﹣1.86.因式分解:x4﹣16y4.87.因式分解:(a2+1)2﹣4a2.88.因式分解:(2x+y)2﹣(x+2y)2.89.因式分解:(x2﹣6)2﹣6(x2﹣6)+990.因式分解:(x2+x)2﹣(x+1)2.91.因式分解:8(x2﹣2y2)﹣x(7x+y)+xy.92.因式分解:x4﹣10x2y2+9y4.93.因式分解:(x2+x﹣5)(x2+x﹣3)﹣394.因式分解:(m2+2m)2﹣7(m2+2m)﹣895.因式分解:(x2+2x)2﹣2(x2+2x)﹣396.因式分解:2x2+6x﹣3.5.97.因式分解:3x2﹣12x+998.因式分解:(x﹣4)(x+7)+18.99.因式分解:5a2b2+23ab﹣10.100.因式分解:(x+y)2﹣(4x+4y)﹣32.因式分解100题参考答案部分可能有误仅供参考一、解答题(共100小题)1.【解答】解:4a2b﹣b=b(4a2﹣1)=b(2a+1)(2a﹣1).2.【解答】解:a2(a﹣b)+25(b﹣a)=a2(a﹣b)﹣25(a﹣b)=(a﹣b)(a2﹣52)=(a﹣b)(a+5)(a﹣5).3.【解答】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).4.【解答】解:9(x+y)2﹣(x﹣y)2=[3(x+y)﹣(x﹣y)][3(x+y)+(x﹣y)]=(2x+4y)(4x+2y)=4(x+2y)(2x+y).5.【解答】解:原式=2b(a2﹣6a+9)=2b(a﹣3)2.6.【解答】解:原式=﹣xy(x2﹣4xy+4y2)=﹣xy(x﹣2y)2.7.【解答】解:原式=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a﹣2b).故答案为:(x﹣y)(a+2b)(a﹣2b).8.【解答】解:原式=ab(4a2+4ab+b2)=ab(2a+b)2.9.【解答】解:原式=(a+b+2a)(a+b﹣2a)=(3a+b)(b﹣a).10.【解答】解:原式=3a(x2﹣2xy+y2)=3a(x﹣y)2.11.【解答】解:6x4﹣5x3﹣4x2=x2(6x2﹣5x﹣4)=x2(2x+1)(3x﹣4).12.【解答】解:原式=x2﹣xy﹣3xy+y2﹣(x2+xy+y2),=x2﹣xy﹣3xy+y2﹣x2﹣xy﹣y2,=﹣xy+y2,=﹣y(x﹣y).13.【解答】解:2m(a﹣b)﹣3n(b﹣a)=(a﹣b)(2m+3n).14.【解答】解:原式=(m+2m+3)(m﹣2m﹣3)=(3m+3)(﹣m﹣3)=﹣3(m+1)(m+3).15.【解答】解:原式=[3(x﹣y)+2]2=(3x﹣3y+2)2.16.【解答】解:x2﹣4xy+4y2﹣1=(x2﹣4xy+4y2)﹣1=(x﹣2y)2﹣1=(x﹣2y+1)(x﹣2y﹣1).17.【解答】解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)=(2y﹣x)(9x+y+3x+2y)=3(2y﹣x)(4x+y).18.【解答】解:原式=(a+2)(a﹣2)﹣3(a+2)=(a+2)(a﹣5).19.【解答】解:原式=x2﹣2x+1+2x﹣10=x2﹣9=(x+3)(x﹣3).20.【解答】解:原式=4x(x2﹣2x+1)=4x(x﹣1)2.21.【解答】解:x3﹣2x2﹣3x=x(x2﹣2x﹣3)=x(x﹣3)(x+1).22.【解答】解:原式=2x(x﹣2y)+3(x﹣2y)=(x﹣2y)(2x+3).23.【解答】解:(x﹣2y)(x+3y)﹣(x﹣2y)2=(x﹣2y)(x+3y﹣x+2y)=5y(x﹣2y).24.【解答】解:原式=(3x﹣1)2.25.【解答】解:4ma2﹣mb2,=m(4a2﹣b2),=m(2a+b)(2a﹣b).26.【解答】解:x2﹣2xy﹣8y2=(x﹣4y)(x+2y).27.【解答】解:原式=[a+2(b+c)]2=(a+2b+2c)2.28.【解答】解:x2﹣4y2+4﹣4x=(x2﹣4x+4)﹣4y2=(x﹣2)2﹣4y2=(x+2y﹣2)(x﹣2y﹣2).29.【解答】解:xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.30.【解答】解:原式=(x2﹣9)(x2+4)=(x+3)(x﹣3)(x2+4).31.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.32.【解答】解:x2﹣4xy﹣3y2=x2﹣4xy+4y2﹣7y2=(x﹣2y)2﹣7y2=(x﹣2y+y)(x﹣2y﹣y).33.【解答】解:9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).34.【解答】解:原式=(x2﹣1)(x2﹣9)=(x+1)(x﹣1)(x+3)(x﹣3).35.【解答】解:原式=(x2﹣2x+1)﹣y2=(x﹣1)2﹣y236.【解答】解:原式=(2x﹣y)(x+3y)+(x+y)(2x﹣y)=(2x﹣y)(x+3y+x+y)=(2x﹣y)(2x+4y)=2(2x﹣y)(x+2y).37.【解答】解:6(x+y)2﹣2(x﹣y)(x+y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y)38.【解答】解:2m4n﹣12m3n2+18m2n3=2m2n(m2﹣6mn+9n2)=2m2n(m﹣3n)2.39.【解答】原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).40.【解答】解:令﹣2a2b2+ab+2=0,则ab=,所以﹣2a2b2+ab+2=﹣2(ab﹣)(ab﹣).41.【解答】解:x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).42.【解答】解:4xy2+4x2y+y3=y(4xy+4x2+y2)=y(y+2x)2.43.【解答】解:原式=(x2+4x﹣5)(x2+4x+3)=(x+5)(x﹣1)(x+3)(x+1).44.【解答】解:原式=y(6xy+9x2+y2)=y(3x+y)2.45.【解答】解:x3﹣3x2+2x=x(x2﹣3x+2)=x(x﹣1)(x﹣2)46.【解答】解:原式=x(a﹣b)﹣y(a﹣b)+3(a﹣b)=(a﹣b)(x﹣y+3).47.【解答】解:原式=(3ax﹣9ay)+(6bx﹣18by)=3a(x﹣y)+6b(x﹣y)=3(x﹣y)(a+2b).48.【解答】解:(2a﹣b)(3a﹣2)+b(2﹣3a)=(2a﹣b)(3a﹣2)﹣b(3a﹣2)=(3a﹣2)(2a﹣b﹣b)=2(3a﹣2)(a﹣b).49.【解答】解:原式=(3﹣a)2+(3﹣a)=(3﹣a)(3﹣a+1)=(3﹣a)(4﹣a).50.【解答】解:原式=(a+b)(1﹣2a+a2)=(a+b)(1﹣a)251.【解答】解:12x4﹣6x3﹣168x2=6x2(2x2﹣x﹣28)52.【解答】解:原式=(2m ﹣n )(2m +3n ﹣n )=(2m ﹣n )(2m +2n )=2(2m ﹣n )(m +n ).53.【解答】解:3x 2(x ﹣2y )﹣18x (x ﹣2y )﹣27(2y ﹣x )=3x 2(x ﹣2y )﹣18x (x ﹣2y )+27(x ﹣2y )=3(x ﹣2y )(x 2﹣6x +9)=3(x ﹣2y )(x ﹣3)2.54.【解答】解:原式=(x ﹣2)(x 2﹣1﹣x 2﹣2x ﹣4)=(x ﹣2)(﹣2x ﹣5)=﹣2x 2﹣x +10.55.【解答】解:原式=2(4x 2y 2﹣5xy ﹣6)=2(4xy +3)(xy ﹣2).56.【解答】解:6(x +y )2﹣2(x +y )(x ﹣y )=2(x +y )[3(x +y )﹣(x ﹣y )]=2(x +y )(2x +4y )=4(x +y )(x +2y ).57.【解答】解:原式=3(a ﹣b )[3(a +b )﹣(a ﹣b )]=6(a ﹣b )(a +2b ).58.【解答】解:原式=2xy (x +y )•2(x +y )﹣2xy (x +y )•3x =2xy (x +y )•[2(x +y )﹣3x ]=2xy (x +y )(2y ﹣x ).59.【解答】解:原式=﹣8x (3m 2+2n 2).60.【解答】解:4a (x ﹣y )﹣2b (y ﹣x )=4a (x ﹣y )+2b (x ﹣y )=2(x ﹣y )(2a +b ).61.【解答】解:ax 4﹣14ax 2﹣32a =a (x 4﹣14x 2﹣32)=a (x 2+2)(x 2﹣16)=a (x 2+2)(x +4)(x ﹣4).62.【解答】解:原式=x (x 2+5xy ﹣24y 2)=x (x +8y )(x ﹣3y ).63.【解答】解:(1﹣3a )2﹣3(1﹣3a )=(1﹣3a )(1﹣3a ﹣3)=(1﹣3a )(﹣3a ﹣2)=﹣(1﹣3a )(3a +2)=﹣3a ﹣2+9a 2+6a =9a 2+3a ﹣2.64.【解答】解:x (x ﹣y )3+2x 2(y ﹣x )2﹣2xy (x ﹣y )2=x (x ﹣y )2[(x ﹣y )+2x ﹣2y ]=3x (x ﹣y )3.65.【解答】解:原式=x (x 4﹣2x 2﹣8)=x (x 2﹣4)(x 2+2)=x (x +2)(x ﹣2)(x 2+2).66.【解答】解:原式=x 2+2x +1-y 2+y +43=(x +1)2-(y ﹣)2⎫⎛⎫⎛31y x y x ()()322122167.【解答】解:2(x+y)2﹣20(x+y)+50.=2[(x+y)2﹣10(x+y)+25].=2(x+y﹣5)2.68.【解答】解:1+a+a(1+a)+a(1+a)2+a(1+a)3=(1+a)[1+a+a(1+a)+a(1+a)2]=(1+a)2[1+a+a(1+a)]=(1+a)4.69.【解答】解:x2y﹣x2z+xy﹣xz.=(x2y﹣x2z)+(xy﹣xz).=x2(y﹣z)+x(y﹣z).=x(x+1)(y﹣z).70.【解答】解:原式=(x2﹣x)2﹣8(x2﹣x)+12=(x2﹣x﹣2)(x2﹣x﹣6)=(x+1)(x﹣2)(x+2)(x﹣3)71.【解答】解:原式=(x2)2﹣(3x﹣2)2=(x2+3x﹣2)(x2﹣3x+2)=(x2+3x﹣2)(x﹣1)(x﹣2).72.【解答】解:原式=[(3m﹣1)+(2m﹣3)][(3m﹣1)﹣(2m﹣3)]=(5m﹣4)(m+2).73.【解答】解:原式=[(2x+5)+(2x﹣5)][(2x+5)﹣(2x﹣5)]=4x•10=40x.74.【解答】解:原式=[(﹣2x﹣1)(2x﹣1)+4x2﹣2x﹣1][(﹣2x﹣1)(2x﹣1)﹣4x2+2x+1]=﹣4x(﹣4x2+x+1).75.【解答】解:原式=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3).76.【解答】解:原式=9[(a﹣b)2+4b(a﹣b)+4b2]=9(a﹣b+2b)2=9(a+b)2.77.【解答】解:原式=(a2+4)2﹣(4a)2,=(a2+4+4a)(a2+4﹣4a),=(a+2)2(a﹣2)2.78.【解答】解:原式=[3(m+n)]2﹣(m﹣n)2=(3m+3n+m﹣n)(3m+3n﹣m+n)=4(2m+n)(m+2n).79.【解答】解:原式=(x2﹣4y2)2=(x+2y)2(x﹣2y)2.80.【解答】解:原式=[5x﹣3(x﹣2y)][5x+3(x﹣2y)]=(2x﹣6y)(8x﹣6y)=4(x+3y)(4x﹣3y).81.【解答】解:4x2y2﹣(x2+y2)2=﹣[(x2+y2)2﹣(2xy)2]=﹣(x2+y2+2xy)(x2+y2﹣2xy)=﹣(x+y)2(x﹣y)2.82.【解答】解:原式=x2﹣12x+12x﹣4=x2﹣4=(x+2)(x﹣2).83.【解答】解:(x2﹣3)2+2(3﹣x2)+1=(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣4)2=(x+2)2(x﹣2)2.84.【解答】解:原式=x2﹣4x+4=(x﹣2)2.85.【解答】解:原式=4m2﹣6m+6m﹣1=4m2﹣1=(2m+1)(2m﹣1).86.【解答】解:x4﹣16y4=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y).87.【解答】解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.88.【解答】解:(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).89.【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.90.【解答】解:原式=(x2+x+x+1)(x2+x﹣x﹣1)=(x2+2x+1)(x2﹣1)=(x+1)2(x+1)(x﹣1)=(x+1)3(x﹣1).91.【解答】解:原式=8x2﹣16y2﹣7x2﹣xy+xy=x2﹣16y2=(x+4y)(x﹣4y).92.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).93.【解答】解:原式=(x2+x)2﹣8(x2+x)+12=(x2+x﹣2)(x2+x﹣6)=(x﹣1)(x+2)(x﹣2)(x+3).94.【解答】解:(m2+2m)2﹣7(m2+2m)﹣8,=(m2+2m﹣8)(m2+2m+1),=(m+4)(m﹣2)(m+1)2.95.【解答】解:原式=(x2+2x﹣3)(x2+2x+1),=(x+3)(x﹣1)(x+1)2;96.【解答】解:原式=(2x﹣1)(x+).97.【解答】解:3x2﹣12x+9=3(x2﹣4x+3)=3(x﹣3)(x﹣1).98.【解答】解:(x﹣4)(x+7)+18=x2+3x﹣10=(x﹣2)(x+5).99.【解答】解:原式=(5ab﹣2)(ab+5).100.【解答】解:(x+y)2﹣(4x+4y)﹣32=(x+y)2﹣4(x+y)﹣32=(x+y+4)(x+y﹣8).。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)1. 二次多项式的因式分解问题描述给定一个二次多项式ax2+bx+c,请将其进行因式分解。

解答步骤1.首先确定二次多项式的系数a、b和c。

2.接着,我们需要找到两个因子,使得它们的乘积等于ac,并且它们的和等于b。

3.最后,将多项式按照因子的形式进行因式分解。

示例问题:将二次多项式2x2+3x−2进行因式分解。

解答:1.确定系数a=2,b=3和c=−2。

2.找到两个因子,它们的乘积等于ac=−4,并且它们的和等于b=3。

在本例中,-2 和 2 是满足要求的因子。

3.将多项式进行因式分解:2x2+3x−2=(x−2)(2x+1)。

因此,二次多项式2x2+3x−2的因式分解结果为(x−2)(2x+1)。

答案(x−2)(2x+1)2. 完全平方式的因式分解问题描述给定一个完全平方式a2−b2,请将其进行因式分解。

解答步骤1.首先确定完全平方式的两个因子a和b。

2.接着,根据公式(a−b)(a+b)进行因式分解。

示例问题:将完全平方式9x2−4进行因式分解。

解答:1.确定完全平方式的两个因子a=3x和b=2。

2.根据公式进行因式分解:9x2−4=(3x−2)(3x+2)。

因此,完全平方式9x2−4的因式分解结果为(3x−2)(3x+2)。

答案(3x−2)(3x+2)3. 其它特殊情况的因式分解问题描述除了二次多项式和完全平方式外,还有一些特殊情况需要进行因式分解。

下面是几个例子:1.差平方式:形式为a2−b2的差平方式可以利用公式(a−b)(a+b)进行因式分解。

2.特殊二次多项式:形式为ax2+bx+c的二次多项式,如果不能直接进行因式分解,可以尝试使用求根公式进行因式分解。

3.多项式的公因式提取:对于多项式ax2+bx,可以提取公因式得到x(ax+b)进行因式分解。

示例问题:将差平方式16x2−9进行因式分解。

解答:根据公式(a−b)(a+b)进行因式分解:16x2−9=(4x−3)(4x+3)。

中考数学总复习《因式分解》练习题附带答案

中考数学总复习《因式分解》练习题附带答案

中考数学总复习《因式分解》练习题附带答案一、单选题1.下列因式分解正确的是()A.x2−4x+4=(x−4)2B.4x2+2x+1=(2x+1)2C.9-6(m-n)+(n-m) 2 =(3-m+n) 2D.x4−y4=(x2+y2)(x2−y2)2.把(a−b)+m(b−a)提取公因式(a−b)后,则另一个因式是()A.1−m B.1+m C.m D.−m 3.已知a﹣b=3,b+c=﹣5,则代数式ac﹣bc+a2﹣ab的值为()A.-15B.-2C.-6D.6 4.下列等式从左到右的变形是因式分解的是()A.6a3b=3a2•2ab B.(x+2)(x﹣2)=x2﹣4C.2x2+4x﹣3=2x(x+2)﹣3D.ax﹣ay=a(x﹣y)5.下列分解因式正确的是()A.x2+y2=(x+y)(x﹣y)B.m2﹣2m+1=(m-1)2C.(a+4)(a﹣4)=a2﹣16D.x3﹣x=x(x2﹣1)6.分解因式x2y−y3结果正确的是().A.y(x+y)2B.y(x−y)2C.y(x2−y2)D.y(x+y)(x﹣y)7.下列由左到右的变形,属于因式分解的是()A.(x+2)(x−2)=x2−4B.x2+4x−2=x(x+4)−2 C.x2−4=(x+2)(x−2)D.x2−4+3x=(x+2)(x−2)+ 3x8.有下列各式:①x2−6x+9;②25a2+10a−1;③x2−4x+4;④a2+a+ 1.其中能用完全平方公式因式分解的个数为()4A.1B.2C.3D.4 9.多项式3x3﹣12x2的公因式是()A.x B.x2C.3x D.3x2 10.下列各式由左边到右边的变形中,是因式分解的为()A.a(x+y)=ax+ayB.10x2﹣5x=5x(2x﹣1)C.x2﹣4x+4=(x﹣4)2D.x2﹣16+3x=(x+4)(x﹣4)+3x11.﹣m(m+x)(x﹣n)+mn(m﹣x)(n﹣x)的公因式是()A.﹣m B.m(n﹣x)C.m(m﹣x)D.(m+x)(x﹣n)12.计算:1252﹣50×125+252=()A.100 B.150C.10000D.22500二、填空题13.因式分解:x2+2xy+y2−1=.14.分解因式:a3−81ab2=.15.在实数范围内分解因式:x2y﹣3y=16.多项式2a2b3+6ab2的公因式是.17.分解因式:12x2-x+ 12=。

初中数学因式分解50题专题训练含答案

初中数学因式分解50题专题训练含答案

初中数学因式分解50题专题训练含答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.分解因式(1)()()22-1-41-m m m (2)()()23812a a b b a ---2.把下列各式分解因式:(1)22344x y xy y -+;(2)41x -.3.因式分解(1) 322m -8mn(2)a (a+4)+44.因式分解:(1)x 2﹣9(2)4y 2+16y+165.分解因式:(1)22242x xy y -+ (2)()()2m m n n m -+-6.把下列各式因式分解:(1)216y -(2)32232a b a b ab -+7.计算(1))10122-⎛⎫-- ⎪⎝⎭(2)分解因式:()222224a b a b +-8.分解因式:(1) 3x x -(2) 2363x y xy y -+9.把下列各式分解因式:(1)2221218a ab b -+; (2)222(2)(12)x y y ---.10.因式分解:(1)()()35a x y b y x --- (2)32231025ab a b a b -+11.把下列各式进行因式分解(1)22818x y - (2)322a b a b ab -+12.因式分解:(1) 33a b ab -; (2) 44-b a13.因式分解:(1)3m 2n-12mn+12n ; (2)a 2(x-y)+9(y-x)14.分解因式:(1)269y y -+(2)228x -15.因式分解(1)4a 2-25b 2(2)-3x 3y 2+6x 2y 3-3xy 416.把下面各式分解因式:(1)x 2﹣4xy +4y 2;(2)3a 3﹣27a .17.将下列各式因式分解:(1)x 3﹣x ;(2)x 4﹣8x 2y 2+16y 4.18.分解因式:(1)ax 2﹣9a ; (2)4ab 2﹣4a 2b ﹣b 3.19.因式分解:(1)ax 2-9a ;(2)(y+2)(y+4)+1.20.分解因式:(1)()()22x x y y y x -+-(2)324812x x x -++21.因式分解:(1)()()323x x x --- ;(2)3231827a a a -+-22.因式分解:(1)m 2(x +y )﹣n 2(x +y );(2)x 4﹣2x 2+1.23.因式分解(1)2(2)(2)m a m a -+- (2)()222224a b a b +-24.(1)分解因式:22344a b ab b -+(2)解方程:1224x x x x -=--25.因式分解:(1)9x 2﹣1 (2)3a 2﹣18a+27.参考答案1.(1)(m -1)(m -2)2;(2) 4(a -b )2(5a -3b )【解析】【分析】(1)先提公因式,再用完全平方公式;(2)提公因式法分解因式.【详解】解:(1)原式()()2=-1-44m m m + ()()2=-1-2m m ;(2)原式()()22-343a b a a b -+= ()()245-3a b a b =-.【点睛】本题考查因式分解的方法,熟练掌握提公因式法和完全平方公式是关键..2.(1)2(2)y x y -;(2)2(1)(1)(1)x x x ++-.【解析】【分析】(1)先提公因式,然后了利用完全平方公式进行因式分解,解题得到答案.(2)利用平方差公式进行因式分解,即可得到答案.【详解】解:(1)原式=22(44)y x xy y -+=2(2)y x y -; (2)原式=22(1)(1)x x +-=2(1)(1)(1)x x x ++-.【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握提公因式法、公式法进行因式分解. 3.(1)2m (m+2n )(m-2n );()22a +.【解析】【分析】本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

(完整)因式分解习题及答案

(完整)因式分解习题及答案

一、选择题 (每题3分,共30分。

每题只有一个正确答案,请将正确答案的代号填在下面的表格中)1.计算(-a )3·(a 2)3·(-a )2的结果正确的是( )(A )a 11 (B )a 11 (C )-a 10 (D )a 132.下列计算正确的是( )(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2 (C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =13.4m ·4n 的结果是( )(A )22(m +n ) (B )16mn (C )4mn (D )16m +n4.若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为( )(A )5 (B )25(C)25 (D )105.下列算式中,正确的是( )(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )(31)-2=231=91 (C )(0.00001)0=(9999)0 (D)3.24×10-4=0。

0000324 6.(-a +1)(a +1)(a 2+1)等于( )(A )a 4-1 (B)a 4+1 (C )a 4+2a 2+1 (D )1-a 4 7.若(x +m )(x -8)中不含x 的一次项,则m 的值为( )(A )8 (B )-8 (C)0 (D )8或-8 8.已知a +b =10,ab =24,则a 2+b 2的值是( )因式分解(A )148 (B )76 (C )58 (D )529.已知多项式ax ²+bx +c 因式分解的结果为(x -1)(x +4),则abc 为…( )A .12B .9C .-9D .-1210.如图:矩形花园中ABCD,AB =a ,AD =b ,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK.若LM =RS =c,则花园中可绿化部分的面积为( ) A 。

因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)

因式分解题库100题专题训练经典练习题(含答案)、填空题(共20题) 1、 a2-9b 2= ____________ 2、 2x3-12x2+4x =2x ( )3、 -27a3=( __ )34、 2xy2-8x 3 = 2x (_) ( __ )5、 ( x+2y )( y-2x )= - (x+2y )( __ )6、 x ( x-y ) +y ( y-x )= _________7、 a-a 3= a ( a+1)( )8、 1600a2-100=100( ___ ) (___ )9、 9a2+(_)+4 =( )2 10、 ( x+2)x-x-2= ( x+2) ___ ( ) 11、 ____________ a 3-a =a ( ) (12、 ( ____ )x2+4x+16 =( ______ )2 13、 ________________ 3a3+5a2+ ( ) = ( a+ ) ( +2a-4 ) 14、 (_)-2y2 = -2 ( —+1 )2 15、 x2-6x-7= ( x ) ( x_ 16、 3xy+6y2+4x2+8xy=3y ( )+4x ( ) =( ) ()17、 a2+3a-10= ( a+m ( a+n ),贝U m= ,n= ___18、 8a3-b 3= (2a-b ) (19、 ______________________________ xy+y2+mx+my=(y2+my + ( ) = ( ) ( )20、 ( x2+y2) 2-4x2y2= ___________3、下列各式中,能有平方差公式分解因式的是( )A 4x2+4B 、( 2x+3) 2 -4 (3x2+2) 2C 、9x2-2xD 、a2+b21、 多项式2a2+3a+1因式分解等于( ) A (a+1 ) (a-1 ) B 、( 2a+1 ) (2a-1)C 、 2a+1 ) ( a+1)D 、( 2a+1 )(a-1 ) 2、 下列各式分解因式正确的是( ) A 3x2+6x+3= 3 (x+1) 2 B、2x2+5xy-2y 2= (2x+y ) C 、 2x2+6xy= (2x+3) (x+2y ) D 、a2-6=(a-3) ( a-2) 二、选择题(共32题)(x+2y )4、把多项式x2-3x-70因式分解,得()A、(x-5 )(x+14) B 、(x+5 )(x-14 )C、(x-7)(x+10 ) D 、(x+7)(x-10)5、已知a+b=O,则多项式a3+3a2+4ab+b2+b3的值是( )A 0B 、1C 、-2D 、2 6把4a2+3a-1因式分解,得( ) A 、( 2a+1)( 2a-1) B 、( 2a-1 )( a-3) C 、( 4a-1)( a+1) D 、( 4a+1)( a-1 ) 7、 下列等式中,属于因式分解的是( ) A 、 a ( 1+b ) +b ( a+1) = ( a+1)( b+1) B 、 2a ( b+2) +b ( a-1 ) =2ab-4a+ab-b C 、 a 2-6a+10 =a ( a-6) +10 D ( x+3)2-2(x+3) =(x+3)( x+1)8、 2m2+6x+2x2是一个完全平方公式,则 m 的值是( ),3, 5 9 A 、0 B 、± - C 、 ±二 D 、二 22 49、 多项式3x3-27x 因式分解正确的是()A 、3x (x2-9 )B 、3x (x2+9 )C 、3x (x+3)( x-3)D 、3x (3x-1 ) ( 3x+1) 10、已知x >0,且多项式x3+4x2+x-6=0,贝U x 的值是( )A 、1B 、2C 、3D 、411、 多项式2a2+4ab+2b2+k 分解因式后,它的一个因式是(a+b-2),贝U k 的值 是( ) A 、4B、-4 C 、8 D 、-812、对a 4 + 4进行因式分解,所得结论正确的是( )A (a2+2)2B 、 (a2+2) (a2-2)C 、有一个因式为(a2+2a+2) D、不能因式分解+9 (n-m )分解因式得( )B 、( m-n )( a+3)( a-3) D 、( m+r) ( a+3)214、多项式m i -14m2+1分解因式的结果是()13、多项式 a2 (m-n ) A 、( a2+9)( m-n ) C 、( a2+9)( m+nB 、( m2+3m+1 ( m2-6m+1) D 、( m2-1 ) (m2+1))B 、 x2+xy+x=x (x+y )A 、( n2+4m+1 ( n2-4m+1)C 、( n2-m+1)( m2+m+1 15、下列分解因式正确的是(C、2m(2m-n) +n (n-2m) = (2m-n)2D、a2-4a+4= (a+2)( a-2)16、下列等式从左到右的变形,属于因式分解的是( )A 2x (a-b) =2ax-2bxB 、2a2+a-仁a (2a+1) -1C、( a+1)( a+2) = a 2+3a+2D、3a+6a2=3a (2a+1)17、下列各式① 2m+n 和m+2n ③x3+y3 和x2+xy 其中有公因式的是(A、①② B 、② 3n (a-b )和-a+b④a2+b2 和a2-b2)②③ C 、①④ D 、③④18、下列四个多项式中,能因式分解的是(A、x2+1 B 、x 2-1 C 、x 2+5y D 、x2-5y19、将以下多项式分解因式,结果中不含因式x-1的是(A、1 -x 3 B 、x2-2x+1C、x (2a+3)- (3-2a)D 、2x (m+n -2 (m+n20、若多项式2x2+ax可以进行因式分解,则a不能为()A、0 B 、-1 C 、1 D 、221、已知x+y= -3,xy=2,贝U x3y+xy3的值是()A、2 B 、4 C 、10 D 、20a a22、多项式x -y因式分解的结果是(x2+y2)(x+y)(x-y ),则a的值是()A、2 B 、4 C 、-2 D-423、对8 (a2-2b2) -a (7a+b) +ab进行因式分解,其结果为()A、(8a-b)(a-7b) B 、(2a+3b)( 2a-3b) C、a+2b)a-2b) D 、(a+4b)( a-4b)24、下列分解因式正确的是(A、x2-x-4= (x+2)( x-2 ) C、x(x-y)- y(y-x)= (x-y ) 2)B 、2x2-3xy+y 2 = (2x-y ) (x-y ) D 、4x-5x 2+6= (2x+3)( 2x+2)25、多项式a=2x2+3x+1,b=4x2-4x-3,贝U M和N的公因式是()A、2x+1 B 、2x-3 C 、x+1 D 、x+326、多项式(x-2y )2+8xy因式分解,结果为( )A、( x-2y+2 ) (x-2y+4 ) B 、( x-2y-2 ) (x-2y-4 )C、( x+2y)2 D 、( x-2y ) 227、下面多项式① x 2+5X-50 ②x3-1③ x3-4x ④ 3x2-12他们因式分解后,含有三个因式的是()A、①②、B、③④ C ③D、④128、已知x=.,则代数式(x+2)(x+4)+x2-4的值是()A 4+2「2B 、4-2「2C 、2_2D 、4 一229、下列各多项式中,因式分解正确的()A 4x2 -2 = (4x-2)x2B 、1-x 2=(1-x)2C、x2+2 = (x+2)(x+1) D 、x2-仁(x+1)(x-1)30、若x2+7x-30与x2-17x+42有共同的因式x+m贝U m的值为()A -14B 、-3 C、3 D 、1031、下列因式分解中正确的个数为()① x 2+y2= (x+y)(x-y )② x2-12x+32= (x-4 )(x-8 )③ x3+2xy+x=x (x2+2y)④x4-仁(x2+1)(x2-1A 1B 、2C 、3D 、432、下列各式中,满足完全平方公式进行因式分解的是()A、0.0 9- x 2 B 、x2+20x+100C、4x 2+4x+4 D 、x2-y2-2xy三、因式分解(共42题)1、x2 (a-b)+ (b-a)2、x3-xy 23、(a+1)2-9 (a-1 ) 24、x (xy+yz+xz)-xyz5、(x-1 )(x-3 )+16 a2-4a+4-b 27、(x2-2x )2+2x (x-2 )+18、(x+y+z)3 -x 3-y 3-z 349、x -5x 2+410、5+7 (x+1)+2 (x+1 )2412、x +x2+1513、a -2a 3-8a15、a2 (x-y ) +16 (y-x )16、x2+6xy+9y2-x-3y-3017、(x2+y2-z2)2-4x2y218、xy2-xz 2+4xz-4x19、x2 (y-z ) +y2 (z-x ) +z2 (x-y )20、3x2-5x-11221、3n2x-4n 2y-3n2x+4n2y22、x2 (2-y ) + (y-2 )4 423、x +x2y2+y424、x -1625、(x-1 ) 2- (y+1) 226、( x-2) ( x-3) -2027、2 (x+y ) 2-4 (x+y ) -3028、x2+1-2x+4 (x-129、( a2+a) ( a2+a+1 ) -1230、5x+5y+x2+2xy+y231、x3+x2-x-132、x (a+b) 2 +x2 (a+b)33、( x+2 ) 2 -y 2-2x-334、( x2-6) ( x2-4) -1535、(x+1) 2-2 (x2-1 )36、( ax+by ) 2+ (ax-by ) 2-2 (ax+by ) (ax-by )37、( a+1) ( a+2) (a+3)(a+4)-3438、( a+1) + (a+1 ) 2 +1439、x +2x3+3x2+2x+140、4a3-31a+15541、a +a+142、a3+5a2+3a-9四、求值(共10题)1、x+y=1, xy=2 求x2+y2-4xy 的值2、x2+x-1=0,求x4+x3+x 的值亠a2+b2 + 3、已知a (a-1 ) - (a2-b) +仁0,求一2 — -ab 的值5、若(x+m) (x+n) =x2-6x+5,求2mn的值4、xy=1,求囂争+ -^2-的值x2+2x+1 y2+y5、6 已知x>y>0, x-y=1 , xy=2,求x2-y2的值7、已知a=「2+1 , b=「3-1,求ab+a-b-1 的值8、已知x=m+1,y= -2m+1, z=m-2,求x2+y2-z 2+2xy 的值。

因式分解300题及答案

因式分解300题及答案

1.因式分解300题(一)判断下列各式从左到右的变形是否是分解因式,并说明理由.⑴22()()x y x y x y +-=-; ⑵322()x x x x x x +-=+ ⑶232(3)2x x x x +-=+-; ⑷1(1)(1)xy x y x y +++=++2. 观察下列从左到右的变形:⑴()()3322623a b a b ab -=-; ⑵()ma mb c m a b c -+=-+⑶()22261266x xy y x y ++=+;⑷()()22323294a b a b a b +-=-其中是因式分解的有 (填括号)3.分解因式:ad bd d -+;4.分解因式:4325286x y z x y -5.分解因式:322618m m m -+-6. 分解因式:23229632x y x y xy ++7. 分解因式:2222224x y x z y z z --+8.分解因式:232232a b abc d ab cd c d -+-9.分解因式:22(1)1a b b b b -+-+-10.分解因式:2244a a b -+-11.分解因式:23361412abc a b a b --+12.分解因式:32461512a a a -+-13.分解因式:22224()x a x a x +--14.分解因式:3222524261352xy z xy z x y z -++15.不解方程组2631x y x y +=⎧⎨-=⎩,求代数式()()237323y x y y x ---的值.16.分解因式:2121()()m m p q q p +--+-17.分解因式:212312n n x y xy z +-(n 为大于1的自然数).18.把下列各式进行因式分解:3223224612x y x y x y -+-19.分解因式:()()23262x a b xy a b +-+20.分解因式23423232545224()20()8()x y z a b x y z a b x y z a b ---+-21.分解因式:346()12()m n n m -+-22.分解因式:55()()m m n n n m -+-23.分解因式:()()()2a a b a b a a b +--+24.分解因式:2316()56()m m n n m -+-25.分解因式:(23)(2)(32)(2)a b a b a b b a +--+-26.化简下列多项式:()()()()23200611111x x x x x x x x x ++++++++++27.分解因式:()()2121510n n a a b ab b a +---(n 为正整数)28.分解因式:212146n m n m a b a b ++--(m 、n 为大于1的自然数)29.分解因式: 2122()()()2()()n n n x y x z x y y x y z +----+--,n 为正整数.30.先化简再求值,()()()2y x y x y x y x +++--,其中2x =-,12y =.31.求代数式的值:22(32)(21)(32)(21)(21)(23)x x x x x x x -+--+++-,其中23x =-.32.已知:2b c a +-=-,求22221()()(222)33333a a b c b c a b c b c a --+-+++-的值.33.分解因式:322()()()()()x x y z y z a x z z x y x y z x y x z a +-+-+--+----.34. 若a 、b 、c 为ABC ∆的三边长,且()()()()a b b a b a a c a b a c -+-=-+-,则ABC ∆按边分类,应是什么三角形?35. 因式分解:a ab ab +-22,结果正确的是( )A .)2(-b aB .2)1(-b aC .2)1(+b aD .)2(-b ab36.分解因式:44a b -37.分解因式:2249()16()m n m n +--38.分解因式:22()()a b c d a b c d +++--+-39.分解因式:()()22114m n mn --+40.分解因式:()()4(1)x y x y y +-+-41.分解因式:34xy xy -;42.分解因式:22()()a x y b y x -+-43.因式分解:22()a b c +-44.因式分解:224(2)y z x --45.分解因式:481y -46.分解因式:229()4()m n m n --+47. 分解因式:22122x y -+48.分解因式:22(32)16x y y --49.分解因式:44()()a x a x +--50.分解因式:4232y -51. 分解因式:81644x -52.分解因式:75()()a b b a -+-53.分解因式:2243()27()x x y y x ---54.利用分解因式证明:712255-能被120整除.55.证明:两个连续奇数的平方差能被8整除56.分解因式:2242x x -+= ;57.分解因式:244ax ax a -+= ;58.分解因式:2844a a --= ;59.分解因式:2292416x xy y -+=60.分解因式:3269x x x -+61.分解因式:2363x x -+62.已知 3.43 3.14x y ==,,求221222x xy y ---值63.分解因式:22224946a b c d ac bd -+-++64.分解因式2222_________________a ab b c -+-=.65.分解因式:22222()4x y x y +-66.分解因式:222224()a b a b -+67.分解因式:2222()4()4()m n m n m n +--+-;68.分解因式:22(5)2(5)(3)(3)m n n m n m n m +-+-+-;69.分解因式:44222()4p q p q +-70.分解因式:222()4()4x x x x +-++;71.分解因式:24()520(1)x y x y ++-+-72.分解因式:()()222248416x x x x ++++73.已知2244241a ab b a b ++--+=2m ,试用含a 、b 的代数式表示m .74.化简:22()()()()()()a b b c a c a b a b a b c a b c ++-+-+-+++-75.在实数范围内分解因式:224x -;76.在实数范围内分解因式:264m m -+77. 26a -+78.在实数范围内分解因式:42514a a --79.分解因式:66a b -80.分解因式:523972x x y -81.分解因式:66a b +82. 若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值( ). A.大于零 B.小于零 C 大于或等于零 D .小于或等于零 83.分解因式:()()()3232332125x y x y x y -+---84.分解因式:22(23)9(1)x x +--85.分解因式:22222223(2)273(2)(3)a a b a b a a b b ⎡⎤+-=+-⎣⎦86.分解因式:222222(35)(53)a b a b --+-87.分解因式:2222x y z yz ---88.分解因式:2222(3)2(3)(3)(3)x x x x -+--+-;89.分解因式:22229()6()()a b a b a b ++-+-.90.已知()222410a b a b +--+=,求()20062a b +的值.91.分解因式:22222(91)36a b a b +--92.若a ,b ,c 为正数,且满足444222222a b c a b b c c a ++=++,那么,,a b c 之间有什么关系?93.a ,b ,c 是三角形ABC 的三条边,且2220,a b c ab bc ac ++---=则三角形ABC 是怎样的三角形?94. 分解因式: 33b -a95. 分解因式: 1xy x y --+96. 分解因式: ax by bx ay --+97. 分解因式: 27321x y xy x -+-98. 分解因式: 4321x x x ++-99. 分解因式: 22abx bxy axy y +--100. 分解因式: ()()x x z y y z +-+因式分解100道疯狂训练(上)答案解析1.【答案】⑴不是,此变形是整式乘法运算;⑵不是,此等式不成立;⑶不是,等式右边不是整式乘积的形式;⑷是.2.【答案】根据定义可知:把一个多项式化为几个整式的乘积的形式叫做因式分解。

因式分解练习题(含答案)

因式分解练习题(含答案)

因式分解练习题(含答案)1.下列变形中,是因式分解的是()A。

x(x-1) = x^2 - xB。

x^2 - x + 1 = x(x-1) + 1C。

x^2 - x = x(x-1)D。

2a(b+c) = 2ab + 2ac2.多项式12ab3c + 8a3b中各项的公因式是() A。

4ab2B。

4abcC。

2ab2D。

4ab3.把多项式m2 - 9m分解因式,结果正确的是() A。

m(m-9)B。

(m+3)(m-3)C。

m(m+3)(m-3)D。

(m-3)^24.分解因式:1) 5a - 10ab = 5a(1-2b)2) x^4 + x^3 + x^2 = x^2(x^2 + x + 1)3) m(a-3) + 2(3-a) = -m(a-3) + 2(a-3) = (a-3)(2-m)5.计算: - 2018×2017 = - xxxxxxx = xxxxxxxx6.分解因式:1) 2mx - 6my = 2m(x-3y)2) 3x(x+y) - (x+y)^2 = (x+y)(2x-y)7.先分解因式,再求值:a2b + ab2,其中a+b=3,ab=2. a^2b + ab^2 = ab(a+b) = 2(3) = 614.3.2 公式法第1课时运用平方差公式分解因式1.多项式x^2 - 4分解因式的结果是()A。

(x+2)(x-2)B。

(x-2)^2C。

(x+4)(x-4)D。

x(x-4)2.下列多项式中能用平方差公式分解因式的是()A。

a^2 + b^2B。

5m^2 - 20mnC。

x^2 + y^2D。

x^2 - 93.分解因式3x^3 - 12x,结果正确的是()A。

3x(x-2)^2B。

3x(x+2)^2C。

3x(x^2 - 4)D。

3x(x-2)(x+2)4.因式分解:1) 9-b^2 = (3-b)(3+b)2) m^2 - 4n^2 = (m-2n)(m+2n)5.利用因式分解计算:752 - 252 = (7+5)(7-5)(2-5) = -1506.若a+b=1,a-b=2007,则a^2 - b^2 = (a+b)(a-b) = -20067.因式分解:1) 4x^2 - 9y^2 = (2x-3y)(2x+3y)2) -16 + 9a^2 = (3a-4)(3a+4)3) 9x^2 - (x+2y)^2 = (3x-x-2y)(3x+x+2y) = (2x-2y)(4x+2y)4) 5m^2a^4 - 5m^2b^4 = 5m^2(a^4-b^4) = 5m^2(a^2-b^2)(a^2+b^2) = 5m^2(a-b)(a+b)(a^2+b^2)3.若代数式x2+kx+49能分解成(x-7)2的形式,则实数k的值为多少?4.若x2+kx+9是完全平方式,则实数k=多少?5.因式分解:1) x2-6x+9=什么?2) -2a2+4a-2=什么?6.因式分解:1) 4m2-2m+1=什么?2) 2a3-4a2b+2ab2=什么?3) (x+y)2-4(x+y)+4=什么?7.先分解因式,再求值:x3y+2x2y2+xy3,其中x=1,y=2. 因式分解14.3.1 提公因式法1.C2.D3.A4.(1) 5(1-2b)(3+b)(3-b)2) (m+2n)(m-2n)5.50006.(1) 2m(x-3y)2) (x+y)(2x-y)7.(1) (2x+3y)(2x-3y)2) (3a-4)(3a+4)3) 4(2x+y)(x-y)4) 5m2(a-b)(a+b)(a2+b2)14.3.2 公式法第1课时运用平方差公式分解因式1.A2.D3.D4.(1) (3+b)(3-b)2) (m+2n)(m-2n)5.-144.±67.(1) (2x+3y)(2x-3y)2) (3a-4)(3a+4)3) (x+y-2)26.(1) 原式=2m/(2)2) 原式=2a(a-b)2 7.原式=18。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解练习题一、填空题:2.(a-3)(3-2a)=_______(3-a)(3-2a);12.若m²-3m+2=(m+a)(m+b),则a=______,b=______;15.当m=______时,x²+2(m-3)x+25是完全平方式.二、选择题:1.下列各式的因式分解结果中,正确的是()A.a²b+7ab-b=b(a²+7a)B.3x²y-3xy-6y=3y(x-2)(x+1) C.8xyz-6x²y²=2xyz(4-3xy)D.-2a²+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m²(2-n)分解因式等于()A .(n-2)(m+m²)B.(n-2)(m-m²)C .m(n-2)(m+1)D.m(n-2)(m-1)3.在下列等式中,属于因式分解的是()A .a(x-y)+b(m+n)=ax+bm-ay+bnB .a²-2ab+b²+1=(a-b)²+1C .-4a²+9b²=(-2a+3b)(2a+3b)D .x²-7x-8=x(x-7)-84.下列各式中,能用平方差公式分解因式的是()A .a²+b²B.-a²+b²C .-a²-b²D.-(-a²)+b²5.若9x²+mxy+16y²是一个完全平方式,那么m 的值是()A .-12B.±24C .12D.±126.把多项式14++-n n a a 分解得()A .)(4a a a n -B.)1(31--a a n C .1+n a (a-1)(a²-a+1)D.1+n a (a-1)(a²+a+1)7.若a²+a=-1,则342a a +-3a²-4a+3的值为()A .8B.7C .10D.128.已知x²+y²+2x-6y+10=0,那么x,y 的值分别为()A .x=1,y=3B.x=1,y=-3C .x=-1,y=3D.x=1,y=-39.把(m²+3m)4-8(m²+3m)²+16分解因式得()A .(m+1)4(m+2)²B.(m-1)²(m-2)²(m²+3m-2)C .(m+4)²(m-1)²D.(m+1)²(m+2)²(m²+3m-2)²10.把x²-7x-60分解因式,得()A .(x-10)(x+6)B.(x+5)(x-12)C .(x+3)(x-20)D.(x-5)(x+12)11.把3x²-2xy-8y²分解因式,得()A .(3x+4)(x-2)B.(3x-4)(x+2)C .(3x+4y)(x-2y)D.(3x-4y)(x+2y)12.把a²+8ab-33b²分解因式,得()A.(a+11)(a-3)B.(a-11b)(a-3b)C.(a+11b)(a-3b)D.(a-11b)(a+3b)13.把4x-3x²+2分解因式,得()A.(x²-2)(x²-1)B.(x²-2)(x+1)(x-1)C.(x²+2)(x²+1)D.(x²+2)(x+1)(x-1)14.多项式x²-ax-bx+ab可分解因式为()A.-(x+a)(x+b)B.(x-a)(x+b)C.(x-a)(x-b)D.(x+a)(x+b)15.一个关于x的二次三项式,其x²项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是()A.x²-11x-12或x²+11x-12B.x²-x-12或x²+x-12C.x²-4x-12或x²+4x-12D.以上都可以16.下列各式x³-x²-x+1,x²+y-xy-x,x²-2x-y2+1,(x²+3x)²-(2x+1)²中,不含有(x-1)因式的有()A.1个B.2个C.3个D.4个17.把9-x²+12xy-36y²分解因式为()A.(x-6y+3)(x-6x-3)B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3)D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是()A.a²-bc+ac-ab=(a-b)(a+c)B.ab-5a+3b-15=(b-5)(a+3)C.x²+3xy-2x-6y=(x+3y)(x-2)D.x²-6xy-1+9y²=(x+3y+1)(x+3y-1)19.已知a²x²±2x+b²是完全平方式,且a,b都不为零,则a与b的关系为()A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数20.对4x+4进行因式分解,所得的正确结论是()A.不能分解因式B.有因式x²+2x+2C.(xy+2)(xy-8)D.(xy-2)(xy-8)21.把4a+2a²b²+4b-a²b²分解因式为()A.(a²+b²+ab)²B.(a²+b²+ab)(a²+b²-ab) C.(a²-b²+ab)(a²-b²-ab)D.(a²+b²-ab)²22.-(3x-1)(x+2y)是下列哪个多项式的分解结果()A.3x²+6xy-x-2y B.3x²-6xy+x-2yC.x+2y+3x²+6xy D.x+2y-3x²-6xy 23.648a-b²因式分解为()A.(644a-b)(4a+b)B.(16a²-b)(4a²+b) C.(84a-b)(84a+b)D.(8a²-b)(84a+b) 24.9(x-y)²+12(x²-y²)+4(x+y)²因式分解为()A.(5x-y)²B.(5x+y)²C.(3x-2y)(3x+2y)D.(5x-2y)²25.(2y-3x)²-2(3x-2y)+1因式分解为()A.(3x-2y-1)²B.(3x+2y+1)²C.(3x-2y+1)²D.(2y-3x-1)²26.把(a+b)²-4(a²-b²)+4(a-b)²分解因式为()A.(3a-b)²B.(3b+a)²C.(3b-a)²D.(3a+b)²27.把a²(b+c)²-2ab(a-c)(b+c)+b²(a-c)²分解因式为()A.c(a+b)²B.c(a-b)²C.c²(a+b)²D.c²(a-b)28.若4xy-4x²-y²-k有一个因式为(1-2x+y),则k的值为()A.0B.1C.-1D.429.分解因式3a²x-4b²y-3b²x+4a²y,正确的是()A.-(a²+b²)(3x+4y)B.(a-b)(a+b)(3x+4y) C.(a²+b²)(3x-4y)D.(a-b)(a+b)(3x-4y)30.分解因式2a²+4ab+2b²-8c²,正确的是()A.2(a+b-2c)B.2(a+b+c)(a+b-c) C.(2a+b+4c)(2a+b-4c)D.2(a+b+2c)(a+b-2c)三、因式分解:1.m²(p-q)-p+q;2.a(ab+bc+ac)-abc;3.4x-24y-2x³y+xy³;4.abc(a²+b²+c²)-a³bc+2ab²c²;5.a²(b-c)+b²(c-a)+c²(a-b);6.(x²-2x)²+2x(x-2)+1;7.(x-y)²+12(y-x)z+36z²;8.x²-4ax+8ab-4b²;9.(ax+by)²+(ay-bx)²+2(ax+by)(ay-bx);10.(1-a²)(1-b²)-(a²-1)²(b²-1)²;11.(x+1)²-9(x-1)²;12.4a²b²-(a²+b²-c²)²;13.ab²-ac²+4ac-4a;14.x³n+y³n;15.(x+y)³+125;16.(3m-2n)³+(3m+2n)³;17.6x(x²-y²)+6y(y²-x²);18.8(x+y)³+1;19.(a+b+c)³-a³-b³-c³;20.x²+4xy+3y²;21.x²+18x-144;22.4x +2x²-8;23.4m -+18m²-17;24.5x -2x³-8x;25.8x +195x -216x²;26.(x²-7x)²+10(x²-7x)-24;27.5+7(a+1)-6(a+1)²;28.(x²+x)(x²+x-1)-2;29.x²+y²-x²y²-4xy-1;30.(x-1)(x-2)(x-3)(x-4)-48;31.x²-y²-x-y;32.ax²-bx²-bx+ax-3a+3b;33.4m +m²+1;34.a²-b²+2ac+c²;35.a³-ab²+a-b;36.6254b -4)(b a -;37.66y x -+423y x -243y x ;38.x²+4xy+4y²-2x-4y-35;39.m²-a²+4ab-4b²;40.5m-5n-m²+2mn-n².。

相关文档
最新文档