高一期中考试数学试卷
2024-2025学年上期高一年级期中考试数学试题
2024-2025学年上期高一年级期中考试数学试题(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、考号填写在答题卡上相应的位置。
2.作答时,全部答案在答题卡上完成,答在本试卷上无效。
3.考试结束后,只交答题卡,试卷由考生带走。
一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若集合,集合,,则A ∪(C U B )=( )A .B .C .D .2.“”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知,,则( )A .B .C .D .4.已知函数,( )A .B .C .D .15.函数的定义域为( )A .B .C .D .6.为提高生产效率,某公司引进新的生产线投入生产,投入生产后,除去成本,每条生产线生产的产品可获得的利润(单位:万元)与生产线运转时间(单位:年)满足二次函{}1,2,3,4U ={}1,2A ={}2,3B ={}2{}1,3{}1,2,4{}1,2,302x <<13x -<<0a b >>d c <0ac bd >>ac bd >a c b d +>+0a cb d +>+>211,1()1,11x x f x x x ⎧--≤⎪=⎨>⎪+⎩((2))f f =15-151-()()01f x x =-2,3⎛⎫+∞ ⎪⎝⎭()2,11,3∞⎡⎫⋃+⎪⎢⎣⎭()2,11,3∞⎛⎫⋃+ ⎪⎝⎭2,3⎡⎫+∞⎪⎢⎣⎭s t数关系:,现在要使年平均利润最大,则每条生产线运行的时间t 为( )年.A .7B .8C .9D .107.已知函数,且,则实数的取值范围是( )A .B .C .D .8.德国著名数学家狄利克雷在数学领域成就显著,以其命名的函数f (x )={1, x ∈Q0, x ∈C R Q 被称为狄利克雷函数,其中为实数集,为有理数集,以下关于狄利克雷函数的四个结论中,正确的个数是( )个.①函数偶函数;②函数的值域是;③若且为有理数,则对任意的恒成立;④在图象上存在不同的三个点,,,使得∆ABC 为等边角形. A .1B .2C .3D .4二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的有( )A .命题“,”的否定是“,”B .若,则C .命题“,”是假命题D .函数是偶函数,且在上单调递减.10.下列选项中正确的有( )A .已知函数是一次函数,满足,则的解析式可能为B .与表示同一函数C .函数的值域为224098s t t =-+-()()4f x x x =+()()2230f a f a +-<a ()3,0-()3,1-()1,1-()1,3-R Q ()f x ()f x ()f x {}0,10T ≠T ()()f x T f x +=x R ∈()f x A B C 1x ∀>20x x ->1x ∃≤20x x -≤a b >22ac bc ≥Z x ∀∈20x >21y x =()0,∞+()f x ()()98f f x x =+()f x ()34f x x =--||()x f x x =1,0()1,0x g x x >⎧=⎨-≤⎩()2f x x =+(,4]-∞D .定义在上的函数满足,则11.下列命题中正确的是( )A .若,,,则B .已知,,,则的最小值是C .若,则的最小值为4D .若,,,则的最小值为三、填空题:本大题共 3 小题,每小题 5 分,共 15 分.12.已知集合,若,则实数13.已知函数,则的单调增区间为14.若定义在上的函数同时满足;①为奇函数;②对任意的,,且,都有.则称函数具有性质P .已知函数具有性质P ,则不等式的解集为 .四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15.已知集合,.(1)当时,求,,A ∩(C R B ); (2)若,求实数m 的取值范围.16.已知关于x 的不等式的解集为.(1)求m ,n 的值;(2)正实数a ,b 满足,求的最小值.R ()f x 2()()1f x f x x --=+()13x f x =+0a >0b >21a b +=ab 0a >0b >32a b +=12a b a b+++20ab >4441a b ab ++0a >0b >31132a b a b+=++2+a b 165{}21,2,1A a a a =---1A -∈a =()2f x x x x =-+()f x (,0)(0,)-∞+∞ ()f x ()f x 1x 2(0,)x ∈+∞12x x ≠x f x x f x x x -<-211212()()0()f x ()f x 2(4)(2)2f x f x x --<+{}27|A x x =-<<{}|121B x m x m =+≤≤-4m =A B ⋂A B A B B = 2200x mx --<{}2|x x n -<<2na mb +=115a b+17.已知幂函数为偶函数.(1)求的解析式; (2)若在上是单调函数,求实数的取值范围.18.已知函数.(1)证明:函数是奇函数;(2)用定义证明:函数在上是增函数;(3)若关于的不等式对于任意实数恒成立,求实数的取值范围.19.已知函数(1)证明:,并求函数的值域;(2)已知为非零实数,记函数的最大值为.①求;②求满足的所有实数.()()2157m f x m m x -=-+()f x ()()3g x f x ax =--[]1,3a ()31x f x x x =++()f x ()f x ()0,∞+x ()()2310f ax ax f ax ++-≥x a ()()f x g x ==()()222f x g x =+()f x a ()()()x x h f g x a =-()m a ()m a ()1m a m a ⎛⎫= ⎪⎝⎭a。
(完整word版)高一数学期中考试试卷及答案
高一数学期中考试试卷及答案(考试时间:120分钟)一、 选择题(10⨯5分)1. 下列四个集合中,是空集的是( )A . }33|{=+x xB . },,|),{(22R y x x y y x ∈-=C . }0|{2≤x xD . },01|{2R x x x x ∈=+- 2. 下面有四个命题:(1)集合N 中最小的数是1;(2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A . 0个B . 1个C . 2个D . 3个 3. 若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( )A . 锐角三角形B . 直角三角形C . 钝角三角形D . 等腰三角形4. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A . )2()1()23(f f f <-<-B . )2()23()1(f f f <-<-C . )23()1()2(-<-<f f fD . )1()23()2(-<-<f f f5. 下列函数中,在区间()0,1上是增函数的是( ) A . x y = B . x y -=3C .xy 1=D . 42+-=x y 6. 判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A . ⑴、⑵B . ⑵、⑶C . ⑷D . ⑶、⑸ 7 . 以下说法正确的是( ).A.正数的n 次方根是正数B.负数的n 次方根是负数C.0的n 次方根是0(其中n>1且n ∈N *) D .负数没有n 次方根8. 若n<m<0,则错误!未找到引用源。
湖南省长沙市2024-2025学年高一上学期期中考试 数学含答案
2024年下学期期中考试试卷高一数学(答案在最后)时量:120分钟分值:150分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{1,2}A =,{,}B xy x A y A =∈∈,则集合B 中元素的个数为()A.4B.3C.2D.12.设,a b ∈R ,则“a b =”是“22a b =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.命题“a ∃∈R ,210ax +=有实数解”的否定是()A.a ∀∈R ,210ax +≠有实数解 B.a ∃∈R ,210ax +=无实数解C.a ∀∈R ,210ax +=无实数解D.a ∃∈R ,210ax +≠有实数解4.已知集合{1,2}M =,{1,2,4}N =,给出下列四个对应关系:①1y x=,②1y x =+,③y x =,④2y x =,请由函数定义判断,其中能构成从M 到N 的函数的是()A.①②B.①③C.②④D.③④5.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是()A. B.C. D.6.若0a >,0b >,且4a b +=,则下列不等式恒成立的是()A.02a << B.111a b+≤2≤ D.228a b +≤7.已知定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,则满足()0xf x <的x 的取值范围是()A.(,2)(2,)-∞-+∞B.(0,2)(2,)+∞ C.(2,0)(2,)-+∞ D.(,2)(0,2)-∞-8.若函数2(21)2(0)()(2)1(0)b x b x f x x b x x -+->⎧=⎨-+--≤⎩,为在R 上的单调增函数,则实数b 的取值范围为()A.1,22⎛⎤⎥⎝⎦ B.1,2⎛⎫+∞⎪⎝⎭C.[]1,2 D.[2,)+∞二、多选题:本题共3题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全选对的得6分,选对但不全的得部分分,有选错的得0分.9.对于函数()bf x x x=+,下列说法正确的是()A.若1b =,则函数()f x 的最小值为2B.若1b =,则函数()f x 在(1,)+∞上单调递增C.若1b =-,则函数()f x 的值域为RD.若1b =-,则函数()f x 是奇函数10.已知二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)的部分图象如图所示,则()A.0abc >B.0a b +>C.0a b c ++< D.不等式20cx bx a -+>的解集为112x x ⎧⎫⎨⎬⎩⎭-<<11.定义在R 上的函数()f x 满足()()()f x f y f x y +=+,当0x <时,()0f x >.则下列说法正确的是()A.(0)0f = B.()f x 为奇函数C.()f x 在区间[],m n 上有最大值()f n D.()2(21)20f x f x -+->的解集为{31}x x -<<三、填空题,本题共3小题,每小题5分,共15分.12.若36a ≤≤,12b ≤≤,则a b -的范围为________.13.定义在R 上的函数()f x 满足:①()f x 为偶函数;②()f x 在(0,)+∞上单调递减;③(0)1f =,请写出一个满足条件的函数()f x =________.14.对于一个由整数组成的集合A ,A 中所有元素之和称为A 的“小和数”,A 的所有非空子集的“小和数”之和称为A 的“大和数”.已知集合{1,0,1,2,3}B =-,则B 的“小和数”为________,B 的“大和数”为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知集合{3}A x a x a =≤≤+,集合{1B x x =<-或5}x >,全集R U =.(1)若A B =∅ ,求实数a 的取值范围;(2)若命题“x A ∀∈,x B ∈”是真命题,求实数a 的取值范围.16.(15分)已知幂函数()2()253mf x m m x =-+是定义在R 上的偶函数.(1)求()f x 的解析式;(2)在区间[]1,4上,()2f x kx >-恒成立,求实数k 的取值范围.17.(15分)已知关于x 的不等式(2)[(31)]0mx x m ---≥.(1)当2m =时,求关于x 的不等式的解集;(2)当m ∈R 时,求关于x 的不等式的解集.18.(17分)为促进消费,某电商平台推出阶梯式促销活动:第一档:若一次性购买商品金额不超过300元,则不打折;第二档:若一次性购买商品金额超过300元,不超过500元,则超过300元部分打8折;第三档:若一次性购买商品金额超过500元,则超过300元,不超过500元的部分打8折,超过500元的部分打7折.若某顾客一次性购买商品金额为x 元,实际支付金额为y 元.(1)求y 关于x 的函数解析式;(2)若顾客甲、乙购买商品金额分别为a 、b 元,且a 、b 满足关系式45085b a a =++-320(90)a ≥,为享受最大的折扣力度,甲、乙决定拼单一起支付,并约定折扣省下的钱平均分配.当甲、乙购买商品金额之和最小时,甲、乙实际共需要支付多少钱?并分析折扣省下来的钱平均分配,对两人是否公平,并说明理由.(提示:折扣省下的钱=甲购买商品的金额+乙购买商品的金额-甲乙拼单后实际支付的总额)19.(17分)经过函数性质的学习,我们知道:“函数()y f x =的图象关于原点成中心对称图形”的充要条件是“()y f x =是奇函数”.(1)若()f x 为定义在R 上的奇函数,且当0x <时,2()1f x x =+,求()f x 的解析式;(2)某数学学习小组针对上述结论进行探究,得到一个真命题:“函数()y f x =的图象关于点(,0)a 成中心对称图形”的充要条件是“()y f x a =+为奇函数”.若定义域为R 的函数()g x 的图象关于点(1,0)成中心对称图形,且当1x >时,1()1g x x=-.(i )求()g x 的解析式;(ii )若函数()f x 满足:当定义域为[],a b 时值域也是[],a b ,则称区间[],a b 为函数()f x 的“保值”区间,若函数()tg()(0)h x x t =>在(0,)+∞上存在保值区间,求t 的取值范围.2024年下学期期中考试参考答案高一数学1.B2.A3.C4.D【详解】对于①,1y x =,当2x =时,1N 2y =∉,故①不满足题意;对于②,1y x =+,当1x =-时,110N y =-+=∉,故②不满足题意;对于③,y x =,当1x =时,1y N =∈,当2x =时,2N y =∈,故③满足题意;对于④,2y x =,当1x =时,1y N =∈,当2x =时,4N y =∈,故④满足题意. D.5.A6.C 【详解】因为0a >,0b >,当3a =,1b =时,3ab =,1114133a b +=+=,2210a b +=,所以ABC 选项错误.由基本不等式a b +≥22a b+≤=,选C.7.A 【详解】定义在R 上的奇函数()f x 在(,0)-∞上单调递减,故函数在(0,)+∞上单调递减,且(2)0f =,故(2)(2)0f f -=-=,函数在(2,0)-和(2,)+∞上满足()0f x <,在(,2)-∞-和(0,2)上满足()0f x >.()0xf x <,当0x <时,()0f x >,即(,2)x ∈-∞-;当0x >时,()0f x <,即(2,)x ∈+∞.综上所述:(,2)(2,)x ∈-∞-+∞ .故选A.8.C 【详解】21020221b b b ->⎧⎪-⎪≥⎨⎪-≥-⎪⎩,解得12b ≤≤.∴实数b 的取值范围是[]1,2,故选C.9.BCD 10.ACD11.ABD解:因为函数()f x 满足()()()f x f y f x y +=+,所以(0)(0)(0)f f f +=,即2(0)(0)f f =,则(0)0f =;令y x =-,则()()(0)0f x f x f +-==,故()f x 为奇函数;设12,x x ∈R ,且12x x <,则1122122()()()()f x f x x x f x x f x =-+=-+,即1212())()(0f x f x f x x -=->,所以()f x 在R 上是减函数,所以()f x 在区间[],m n 上有最大值()f m ;由2(21)(2)0f x f x -+->,得2(23)(0)f x x f +->,由()f x 在R 上减函数,得2230x x +-<,即(3)(1)0x x +-<,解得31x -<<,所以2(21)(2)0f x f x -+->的解集为{31}x x -<<,故选ABD.12.[1,5]13.21x -+(答案不唯一)14.5,80【详解】由题意可知,B 的“小和数”为(1)01235-++++=,集合B 中一共有5个元素,则一共有52个子集,对于任意一个子集M ,总能找到一个子集M ,使得M M B = ,且无重复,则M 与M 的“小和数”之和为B 的“小和数”,这样的子集对共有54222=个,其中M B =时,M =∅,考虑非空子集,则子集对有421-对,则B 的“大和数”为4(21)5580-⨯+=.故答案为:5;80.15.【详解】(1)因为3a a <+对任意a ∈R 恒成立,所以A ≠∅,又A B =∅ ,则135a a ≥-⎧⎨+≤⎩,解得12a -≤≤;(2)若x A ∀∈,x B ∈是真命题,则有A B ⊆,则31a +<-或5a >,所以4a <-或5a >.16.【详解】(1)因为2()(253)mf x m m x =-+是幂函数,所以22531m m -+=,解得2m =或12,又函数为偶函数,故2m =,2()f x x =;(2)原题可等价转化为220x kx -+>对[1,4]x ∈恒成立,分离参数得2k x x <+,因为对[1,4]x ∈恒成立,则min 2(k x x<+,当0x >时,2x x +≥=当且仅当2x x=即x =时取得最小值.故k <17.【详解】(1)解:当2m =时,不等式可化为(1)(5)0x x --≥解得1x ≤或5x ≥,所以当2m =时,不等式的解集是{1x x ≤或5}x ≥.(2)①当0m =时,原式可化为2(1)0x -+≥,解得1x ≤-;②当0m <时,原式可化为2((31)]0x x m m ---≤,令231m m =-,解得23m =-或1;1)当23m <-时,231m m -<.故原不等式的解为231m x m -≤≤;2)当23m =-时,解得3x =-;3)当203m -<<时,231m m <-,原不等式的解为231x m m≤≤-;③当0m >时,原式可化为2((31)]0x x m m---≥,1)当01m <<时,231m m >-,2x m∴≥或31x m ≤-;2)当1m =时,不等式为2(2)0x -≥,x ∈R ;3)当1m >时,231m m <-,31x m ∴≥-或2x m≤.综上,当23m <-时,原不等式的解集为231x m x m ⎧⎫⎨⎬⎩⎭-≤≤;当23m =-时,不等式的解集为{}3x x =-;当203m -<<时,解集为231x x m m ⎧⎫⎨⎬⎩⎭≤≤-;当0m =时,解集为{}1x x ≤-;当01m <<时,不等式的解集是{2x x m ≥或31}x m ≤-;当1m =时,不等式的解集为R ;当1m >时,解集是{31x x m ≥-或2}x m≤.18.【详解】(1)由题意,当0300x <≤时,y x =;当300500x <≤时,3000.8(300)0.860y x x =+-=+;当500x <时,3000.8(500300)0.7(500)0.7110y x x =+-+-=+.综上,,03000.860,300500 0.7110,500x x y x x x x <≤⎧⎪=+<≤⎨⎪+<⎩.(2)甲乙购买商品的金额之和为4502320(90)85a b a a a +=++≥-.45045023202(85)3201708585a b a a a a +=++=-+++--490230490550≥=⋅+=(元)当且仅当4502(85)85a a -=-即8515a -=±时,原式取得最小值.此时100a =(或70a =,舍去),550450b a =-=(元)因为550500>,则拼单后实付总金额0.7550110495M =⨯+=(元)故折扣省下来的钱为55049555-=(元).则甲乙拼单后,甲实际支付5510072.52-=(元),乙实际支付55450422.52-=(元)而若甲乙不拼单,因为100300<,故甲实际应付100a '=(元);300450500<<,乙应付0.845060420b '=⨯+=(元).因为420元<422.5元,若按照“折扣省下来的钱平均分配”的方式,则乙实付金额b 比不拼单时的实付金额b '还要高,因此该分配方式不公平.(能够答出“乙购买的商品的金额是甲购买商品的金额的4.5倍,则乙应减的价钱应是甲的4.5倍,故不公平”之类的答案的可酌情给分)答:当甲、乙的购物金额之和最小时,甲、乙实际共需要支付495元.若按“折扣省下来的钱平均分配”的方式拼单,则拼单后乙实付422.5元,比不拼单时的实付420元还要高,因此这种方式对乙不公平.19.【详解】(1)()f x 为定义在R 上的奇函数,当0x >时,0x -<,所以()()f x f x =--()2211x x ⎡⎤=--+=--⎣⎦,又()00f =,所以()221,00,01,0x x f x x x x ⎧+<⎪==⎨⎪-->⎩;(2)(i )因为定义域为R 的函数()g x 的图象关于点()1,0成中心对称图形,所以()1y g x =+为奇函数,所以()()11g x g x +=--,即()()2g x g x =--,1x <时,21x ->,所以()()1121122g x g x x x ⎛⎫=--=--=-+ ⎪--⎝⎭.所以()11,111,12x xg x x x ⎧-≥⎪⎪=⎨⎪-+<⎪-⎩;(ii )()()()11,1tg 011,12t x x h x x t t x x ⎧⎛⎫⋅-≥ ⎪⎪⎪⎝⎭==>⎨⎛⎫⎪⋅-+< ⎪⎪-⎝⎭⎩,a )当()0,1x ∈时,()11()11022h x t t t x x ⎛⎫⎛⎫=⋅-+=⋅--> ⎪ --⎝⎭⎝⎭在()0,1单调递增,当()[,]0,1a b ⊆时,则112112t a a t bb ⎧⎛⎫⋅--= ⎪⎪-⎪⎝⎭⎨⎛⎫⎪⋅--= ⎪⎪-⎝⎭⎩,即方程112t x x ⎛⎫⋅--= ⎪-⎝⎭在()0,1有两个不相等的根,即()220x t x t +--=在()0,1有两个不相等的根,令()()()22,0m x x t x t t =+-->,因为()()0011210m t m t t ⎧=-<⎪⎨=+--=-<⎪⎩,所以()220x t x t +--=不可能在()0,1有两个不相等的根;b )当()1,x ∈+∞时,()()110h x t t x ⎛⎫=⋅-=> ⎪⎝⎭在()1,+∞单调递增,当()[,]1,a b ⊆+∞时,则1111t a a t bb ⎧⎛⎫⋅-= ⎪⎪⎪⎝⎭⎨⎛⎫⎪⋅-= ⎪⎪⎝⎭⎩,即方程11t x x ⎛⎫⋅-= ⎪⎝⎭在()1,+∞有两个不相等的根,即20x tx t -+=在()1,+∞有两个不相等的根,令()()2,0n x x tx t t =-+>,则有()2110022212n t t t t t n t t t⎧=-+>⎪⎪⎪⎛⎫⎛⎫⎛⎫=-⋅+<⎨ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪>⎪⎩,解得4t >.c )当01a b <<<时,易知()g x 在R 上单调递增,所以()()()tg 0h x x t =>在()0,+∞单调递增,此时11211t a a t bb ⎧⎛⎫⋅--= ⎪⎪-⎪⎝⎭⎨⎛⎫⎪⋅-= ⎪⎪⎝⎭⎩,即()()()()()2222211221111111211112111a a a a a t a a a a a b b b t b b b b ⎧---+-====-+⎪⎪----⎨-+-+⎪===-++⎪---⎩令()()()11,011r a a a a =--+<<-,则易知()r a 在()0,1递减,所以()()00r a r <=即0t <,又1b >时,()112241t b b =-++≥=-,当且仅当()111b b -=-,即2b =时取等,以()()110111241t a a t b b ⎧=-+<⎪⎪-⎨⎪=-++≥⎪-⎩,此时无解;t 的范围是()4,+∞.。
期中考试数学高一真题试卷
期中考试数学高一真题试卷一、选择题(每题3分,共30分)1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(2) \)的值。
A. 3B. 5C. 7D. 92. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系。
A. 相离B. 相切C. 相交D. 包含3. 已知等差数列的首项为2,公差为3,求第5项的值。
A. 17B. 14C. 11D. 84. 若\( \sin \theta = \frac{1}{2} \),求\( \cos 2\theta \)的值。
A. 0B. -1C. 1D. -\( \frac{1}{2} \)5. 函数\( y = \log_2 x \)的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x \geq 0 \)D. \( x \leq 0 \)6. 已知\( \frac{1}{x} + \frac{1}{y} = 5 \),且\( x + y = 10 \),求\( xy \)的值。
A. 4B. 8C. 12D. 167. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 88. 已知\( a \)和\( b \)是方程\( x^2 + 5x + 6 = 0 \)的两个根,求\( a + b \)的值。
A. -3B. -2C. -1D. 09. 函数\( y = \sqrt{x} \)的值域是:A. \( x \geq 0 \)B. \( y \geq 0 \)C. \( y > 0 \)D. \( y \leq 0 \)10. 已知\( \tan \alpha = 2 \),求\( \sin 2\alpha \)的值。
A. \( \frac{4}{5} \)B. \( \frac{3}{5} \)C.\( \frac{2}{5} \) D. \( \frac{1}{5} \)二、填空题(每题4分,共20分)11. 若\( \cos \theta = -\frac{\sqrt{3}}{2} \),\( \theta \)的终边在第二象限,则\( \sin \theta \)的值为________。
安徽省芜湖市第一中学2024-2025学年高一上学期期中考试数学题
安徽省芜湖市第一中学2024-2025学年高一上学期期中考试数学题一、单选题1.已知R x ∈,R y ∈,则“1x >且1y >”是“2x y +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知集合{}210A x x =-≥,集合102B x x ⎧⎫=-≤⎨⎬⎩⎭,则()A B =R U ð()A .1{2x x ≤或≥1B .112x x ⎧⎫-<≤⎨⎬⎩⎭C .112x x ⎧⎫≤<⎨⎬⎩⎭D .{1}∣<xx 3.已知函数()y f x =的定义域为[]1,4-,则y =).A .[]1,4-B .31,2⎛⎤⎥⎝⎦C .31,2⎡⎤⎢⎣⎦D .(]1,94.设a ,b ∈R ,且a b >,则下列不等式一定成立的是().A .11a b <B .22ac bc >C .a b >D .33a b >5.不等式10ax x b+>+的解集为{|1x x <-或}4x >,则()()10x a bx +-≥的解集为()A .1,14⎡⎤⎢⎥⎣⎦B .1,[1,4∞∞⎛⎤-+ ⎥⎝⎦ )C .11,4⎡⎤--⎢⎥⎣⎦D .(]1,1,4∞∞⎡⎫---+⎪⎢⎣⎭6.已知0a >,0b >,3a b ab +=-,若不等式2212a b m +≥-恒成立,则m 的最大值为()A .1B .2C .3D .77.“曼哈顿距离”是十九世纪的赫尔曼-闵可夫斯基所创词汇,用以标明两个点在标准坐标系上的绝对轴距总和,其定义如下:在直角坐标平面上任意两点()11,A x y ,()22,B x y 的曼哈顿距离()1212,d A B x x y y =-+-,若点()2,1M ,点P 是直线3y x =+上的动点,则(),d M P 的最小值为()A .2B .3C .4D .58.已知(),()f x g x 是定义域为R 的函数,且()f x 是奇函数,()g x 是偶函数,满足2()()2f x g x ax x +=++,若对任意的1212x x <<<,都有()()12125g x g x x x ->--成立,则实数a 的取值范围是()A .[)0,∞+B .5,4∞⎡⎫-+⎪⎢⎣⎭C .5,4∞⎛⎫-+ ⎪⎝⎭D .5,04⎡⎤-⎢⎥⎣⎦二、多选题9.下列说法正确的是()A.y =与y =B .“0ac <”是“一元二次方程20ax bx c ++=有一正一负根”的充要条件C .若命题0p x ∃≥:,23x =,则0p x ⌝∃<:,23x ≠D .若命题q :对于任意R x ∈,220x x a +->为真命题,则1a <-10.下列选项正确的有()A .当()1,x ∈+∞时,函数2221x x y x -+=-的最小值为2B .(),1x ∈-∞,函数31y x x =+-的最大值为-C.函数2y 的最小值为2D .当0a >,0b >时,若2a b ab +=,则2+a b的最小值为3211.已知定义域为R 的奇函数()f x ,满足()103431x x f x x x ⎧-<≤⎪=⎨>⎪-⎩,,下列叙述正确的是()A .函数()f x 的值域为[]22-,B .关于x 的方程()12f x =的所有实数根之和为11C .关于x 的方程()0f x =有且只有两个不等的实根D .当[)3,0x ∈-时,()f x 的解析式为()1=-+f x x三、填空题12.已知a ,b ∈R ,{}21,3,A a =,{}1,2,B a b =+,若A B =,则a b +=13.已知)=fx ()f x 的解析式为.14.已知方程2620x x a -+=的两根分别为1x ,2x ,12x x ≠,若对于[]2,3t ∀∈,都有22121t x x t-≥+恒成立,则实数a 的取值范围是四、解答题15.已知集合{}121A xa x a =+≤≤-∣,{}16B x x =-≤≤∣.(1)当4a =时,求A B ⋂;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.16.已知幂函数()()222433mm f x m m x+-=-+为定义域上的偶函数.(1)求实数m 的值;(2)求使不等式()()21f t f t -<成立的实数t 的取值范围.17.已知函数()21f x ax bx =++.(1)若21a b =+,且0a <,求不等式()3f x >的解集(结果用a 表示);(2)若()13f =,且a ,b 都是正实数,求111a b ++的最小值.18.已知函数()21x f x ax b+=+是其定义域上的奇函数,且()12f =.(1)求a ,b 的值;(2)令函数()()()2212R h x x mf x m x=+-∈,当[]1,3x ∈时,()h x 的最小值为8-,求m 的值.19.一般地,若函数()f x 的定义域是[],a b ,值域为[],ka kb ,则称[],ka kb 为()f x 的“k 倍跟随区间”,若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.(1)写出二次函数()212f x x =的一个“跟随区间”;(2)求证:函数()11g x x=-不存在“跟随区间”;(3)已知函数()()()221R 0aa x h x a a a x+-=∈≠,有“4倍跟随区间”[]4,4m n ,当n m -取得最大值时,求a的值.。
2024-2025学年江苏省苏州市常熟市高一第一学期期中考试数学试题 (含答案)
2024-2025学年江苏省常熟市高一第一学期期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知命题p:“∃x∈R,x+2≤0”,则命题p的否定为( )A. ∃x∈R,x+2>0B. ∀x∈R,x+2>0C. ∃x∉R,x+2>0D. ∀x∈R,x+2≤02.已知x>0,则x−1+4x的最小值为( )A. 4B. 5C. 3D. 23.已知函数y=f(x)的定义域为[−2,1],则函数y=f(2x+1)的定义域为( )A. RB. [−2,1]C. [−3,3]D. [−32,0]4.若函数f(x)=(m2−2m−2)x2−m是幂函数,且y=f(x)在(0,+∞)上单调递减,则实数m的值为( )A. 3B. −1C. 1+3D. 1−35.常熟“叫花鸡”,又称“富贵鸡”,既是常熟的特产,也是闻名四海的佳肴,以其鲜美、香喷、酥嫩著称。
双十一购物节来临,某店铺制作了300只“叫花鸡”,若每只“叫花鸡”的定价是40元,则均可被卖出;若每只“叫花鸡”在定价40元的基础上提高x(x∈N∗)元,则被卖出的“叫花鸡”会减少5x只.要使该店铺的“叫花鸡”销售收入超过12495元,则该店铺的“叫花鸡”每只定价应为( )A. 48元B. 49元C. 51元D. 50元6.已知f(x)是奇函数,对于任意x1,x2∈(−∞,0)(x1≠x2),均有(x2−x1)(f(x2)−f(x1))>0成立,且f(2)=0,则不等式xf(x−2)<0的解集为( )A. (−2,0)∪(2,4)B. (−∞,−2)∪(2,4)C. (2,4)D. (−2,0)∪(0,2)7.通过研究发现:函数y=f(x)的图象关于点P(a,b)成中心对称图形的充要条件是函数y=f(x+a)−b为奇函数,则函数f(x)=x3−3x2图象的对称中心为( ) 参考公式:(a+b)3=a3+3a2b+3ab2+b3A. (0,0)B. (1,2)C. (1,−2)D. (2,−4)8.已知正实数a,b满足a+b=4,则代数式1b +b+1a的最小值为( )A. 5+12B. 5+14C. 54D. 25+2二、多选题:本题共3小题,共18分。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,不是一次函数的是()A. y = 2x + 1B. y = 3x^2 + 5C. y = 1/xD. y = -4x2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∪B等于()A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}3. 若sinα=0.6,则cosα的值是()A. 0.8B. -0.8C. -0.4D. 0.44. 函数f(x) = |x - 2| + |x + 3|的最小值是()A. 5B. 2C. 1D. 45. 不等式x^2 - 4x + 3 ≤ 0的解集是()A. (1, 3)B. (-∞, 3]C. [1, 3]D. (-∞, 1] ∪ [3, +∞)6. 已知数列1, 3, 5, 7, ...,其第n项an等于()A. 2n - 1B. 2n + 1C. 2nD. n + 17. 若a + b + c = 0,则a^2 + b^2 + c^2 =()A. 0B. 2abC. 2bcD. 2ac8. 函数y = x^3 - 6x^2 + 12x - 4的极大值点是()A. x = 1B. x = 2C. x = 3D. x = 49. 已知tanθ = 2,求sin^2θ + cos^2θ的值是()A. 1B. 5C. 3D. 410. 下列哪个选项是二元一次方程()A. x^2 + y = 7B. 3x + 2y = 10C. x^2 - y = 0D. 2x/3 + y/4 = 1二、填空题(每题4分,共20分)11. 等差数列的首项是5,公差是3,则其第10项是_________。
12. 若函数f(x) = x^2 - 2x在区间[1, 4]上是增函数,则f(1) = ________。
13. 已知三角形ABC中,∠A = 90°,a = 3,b = 4,则c=_________。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 已知集合A={1,2,3},B={2,3,4},求A∪B的值。
A. {1,2,3}B. {1,2,3,4}C. {2,3}D. {1,4}2. 函数f(x)=2x^2-3x+1在区间[-1,2]上的最大值是多少?A. 1B. 5C. 7D. 93. 已知等差数列的首项a1=3,公差d=2,求第10项的值。
A. 23B. 25C. 27D. 294. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π5. 已知直线y=-3x+5与x轴的交点坐标是什么?A. (0, 5)B. (1, 2)C. (5/3, 0)D. (0, 0)6. 已知sin(α)=3/5,α∈(0,π),求cos(α)的值。
A. 4/5B. -4/5C. √(1-(3/5)^2)D. -√(1-(3/5)^2)7. 一个函数f(x)是奇函数,且f(1)=2,求f(-1)的值。
A. 2B. -2C. 0D. 18. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 7C. 8D. 99. 已知一个函数f(x)=x^3-6x^2+11x-6,求f(2)的值。
A. -2B. 0C. 2D. 410. 已知一个等比数列的首项a1=2,公比q=3,求第5项的值。
A. 162B. 243C. 486D. 729二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求对称轴的方程。
___________________________12. 已知等比数列的前n项和为S_n=3^n-1,求首项a1。
___________________________13. 已知正弦定理公式为a/sinA=b/sinB=c/sinC,求三角形ABC的面积,已知a=5,sinA=3/5。
___________________________14. 已知某函数的导数f'(x)=6x^2-4x+1,求f'(1)的值。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 函数f(x) = 2x^2 - 3x + 1在区间[0, 2]上的最大值是:A. 1B. 5C. 7D. 93. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B的元素个数。
A. 1B. 2C. 3D. 44. 若a > 0,b < 0,且|a| < |b|,则a + b的符号是:A. 正B. 负C. 零D. 不确定5. 下列哪个不等式是正确的?A. √2 < πB. e < 2.72C. √3 > √2D. log2(3) > log3(2)6. 已知等差数列的首项为a1 = 3,公差为d = 2,第5项a5的值是:A. 9B. 11C. 13D. 157. 函数y = x^3 - 6x^2 + 9x + 2的零点个数是:A. 0B. 1C. 2D. 38. 已知f(x) = x^2 - 4x + 4,求f(x)的最小值。
A. 0B. 4C. 8D. 169. 抛物线y = x^2 - 2x - 3与x轴的交点个数是:A. 0B. 1C. 2D. 310. 已知等比数列的首项为a1 = 2,公比为r = 3,求第4项a4的值。
A. 162B. 486C. 729D. 1458二、填空题(每题2分,共20分)11. 圆的一般方程为x^2 + y^2 + dx + ey + f = 0,其中d^2 + e^2 - 4f > 0时,表示______。
12. 若函数f(x) = 3x - 2在区间[1, 4]上是增函数,则f(1) =______。
13. 已知集合M = {x | x^2 - 5x + 6 = 0},则M的补集∁_R M = {x | ______ }。
14. 函数y = log_2(x)的定义域是{x | x > ______ }。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 函数f(x) = x^2 - 2x + 1的零点是:A. 1B. -1C. 0D. 23. 集合A = {1, 2, 3},B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {4}D. {1, 2, 3, 4}4. 已知数列{a_n}的通项公式为a_n = 2n + 1,那么a_5等于:A. 11B. 9C. 13D. 155. 若函数f(x) = 3x - 5,则f(2)等于:A. 1B. -1C. 7D. 36. 直线y = 2x + 3与x轴的交点坐标是:A. (0, 3)B. (1, 5)C. (-3/2, 0)D. (3/2, 0)7. 圆的一般方程为x^2 + y^2 + 2x - 4y + 5 = 0,其圆心坐标是:A. (-1, 2)B. (1, -2)C. (-1, -2)D. (1, 2)8. 函数y = x^2 - 4x + 3的最小值是:A. -1B. 0C. 1D. 39. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定10. 函数y = √(x - 2)的定义域是:A. x ≥ 2B. x > 2C. x < 2D. x ≠ 2二、填空题(每题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3的最大值为2,则x的值为______。
2. 已知数列{a_n}满足a_1 = 1,a_n = 2a_{n-1} + 1,那么a_3等于______。
3. 函数f(x) = 2x^2 - 3x + 1的对称轴方程是______。
4. 集合A = {x | x^2 - 5x + 6 = 0},则A的元素个数为______。
福建省厦门双十中学2024-2025学年高一上学期11月期中考试 数学(含答案)
福建省厦门双十中学2024-2025学年高一上学期11月期中考试数学试题(时间:120分钟满分:150分)注意事项:1.答卷前,考生务必将己的姓名、考生号、考场号和座位号填写在答题卡上.2.选择题答案必须用2B 铅笔将答题卡对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔作答.答案必须写在各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上方式作答无效.4.考试结束后,将答题卡交回.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. [0,1]D. 2. 命题“”的否定是()A. B. C. D. 3. 函数的单调递减区间是()A. B. C. D. 4. 已知函数(其中,为常数,且),若的图象如图所示,则函数的图象是(){1},{2}M xx N x x =≥=<∣∣R ()M N ⋂=ð[1,2)(,1)[2,)-∞+∞ (,0)[2,)-∞⋃+∞20,310x x x ∃>-->20,310x x x ∃>--≤20,310x x x ∃≤--≤20,310x x x ∀>--≤20,310x x x ∀≤--≤()22()log 2f x x x =--1,2⎛⎫-∞ ⎪⎝⎭(,1)∞--1,2⎛⎫+∞⎪⎝⎭(2,)+∞()()()f x x a x b =--a b b a <()f x ()x g x a b =+A. B. C. D.5. 已知,,,则( ).A. B. C. D.6. “函数的定义域为”是“”的()A 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 若函数(,为常数)在区间上有最大值,则在区间上()A. 有最大值B. 有最大值C. 有最小值D. 有最小值8. 已知函数对于任意、,总有,且当时,,若已知,则不等式的解集为()A. B. C. D. (4,+∞)二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 设正数,满足,则()A.的最小值为 B.C.的最大值为D. 的最小值为410. 声强级Li (单位:dB )与声强I (单位:)之间的关系是:,其中指的是人能听到的最低声强,对应的声强级称为闻阈.人能承受的最大声强为,对应的声强级为120dB ,称为痛阈.某歌唱家唱歌时,声强级范围为(单位:dB ).下列选项中正确的是()A. 闻阈声强为B. 声强级增加10dB ,则声强变为原来的2倍C. 此歌唱家唱歌时的声强范围(单位:)的132a -=21log 3b =121log 3c =a b c >>a c b >>c a b >>c b a>>()2()lg 1f x ax ax =-+R 04a <<)3()ln1f x mx n x =++m n []1,37()f x [3,1]--655-7-()f x x R y ∈()()()2f x f y f x y +=++0x >()2f x >()23f =()()226f x f x +->()2,∞+()1,+∞()3,+∞m n 1m n +=12m n+3+1444m n +2/m ω010lgILi I =⨯0I 21/m ω[]70,801210-2/m ω5410,10--⎡⎤⎣⎦2/m ωD. 如果声强变为原来的10倍,对应声强级增加10dB11. 已知函数,且,则下列说法正确的是()A. B. C. D. 的取值范围为三、填空题:本题共3小题,每小题5分,共15分.12. 已知幂函数的图象过点,则______.13. __________.14. 已知是定义在R 上偶函数,且对,都有,且当时,.若在区间内关于的方程至少有2个不同的实数根,至多有3个不同的实数根,则实数的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在①,②,③这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合,(1)当时,求;(2)若,求实数a 的取值范围.注:如果选择多个条件解答按第一个解答计分.16. 已知函数,关于的不等式的解集为,且.(1)求值;(2)是否存在实数,使函数的最小值为?若存在,求出的值;若不存在,说明理由.17. 已知的定义在R 上的奇函数,其中为指数函数,且的图象过点.的的()21,2,5,2,x x f x a b c d x x ⎧-≤⎪=<<<⎨->⎪⎩()()()()f a f b f d f c ==<1c ≥0a c +<25a d <222ab d ++()18,34()y f x =(()16f =411log 2324lg lg245(64)49---+-=()f x x ∀∈R (2)(2)f x f x -=+[]2,0x ∈-()112xf x ⎛⎫=- ⎪⎝⎭(]2,6-x ()()()log 201a f x x a -+=>a A B A = A B A = A B =∅ {}123A x a x a =-<<+{}2280B x x x =--≤2a =A B ()()log 1a f x x a =>x ()1f x <(),m n 103m n +=a λ()()()2123,,93g x f x f x x λ⎡⎤⎡⎤=-+∈⎣⎦⎢⎥⎣⎦34λ()()()1m g x f x g x -=+()g x ()g x ()2,9(1)求实数的值,并求的解析式;(2)判断的单调性,并用单调性的定义加以证明.(3)若对于任意的,不等式恒成立,求实数的取值范围.18. 随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度(单位:千米/小时)和车流密度(单位:辆/千米)所满足的关系式:.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度不小于40千米/小时,求车流密度的取值范围;(2)隧道内的车流量(单位时间内通过隧道的车辆数,单位:辆/小时)满足,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).(参考数据:)19. 若函数与区间同时满足:①区间为的定义域的子集,②对任意,存在常数,使得成立,则称是区间上的有界函数,其中称为的一个上界.(注:涉及复合函数单调性求最值可直接使用单调性,不需要证明)(1)试判断函数,是否为上的有界函数?并说明理由.(2)已知函数是区间上的有界函数,设在区间上的上界为,求的取值范围;(3)若函数,问:在区间上是否存在上界?若存在,求出取值范围;若不存在,请说明理由.的m ()f x ()f x []1,2t ∈()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭m v x ()60,030R 80,30120150x v k kx x <≤⎧⎪=∈⎨-<≤⎪-⎩v x y y x v =⋅2.236≈()f x D D ()f x x D ∈0M ≥()f x M ≤()f x D M ()f x ()1923xxf x =-⋅()22223xf x x x =-+R ()121log 1x g x x +=-[]2,3()g x []2,3M M ()2313xxm f x m +⋅=+⋅()f x []0,1M M福建省厦门双十中学2024-2025学年高一上学期11月期中考试数学试题一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B2.【答案】C3.【答案】B4.【答案】A5.【答案】C6.【答案】B7.【答案】C8.【答案】A二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】ABD10.【答案】ACD11.【答案】CD三、填空题:本题共3小题,每小题5分,共15分.12.【答案】413. 【答案】14.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 【解析】【分析】(1)代入的值表示出,求解出一元二次不等式的解集表示出,根据并集运算求解出结果;(2)若选①:根据条件得到,然后分类讨论是否为空集,由此列出不等式组求解出结果;若选②:根据条件得到,然后列出不等式组求解出结果;若选③:根据交集结果分析集合的端点值的关系,列出不等式并求解出结果.【小问1详解】当时,,,因此,.【小问2详解】选①,因为,可得.当时,即当时,,合乎题意;当时,即当时,,由可得,解得,此时.综上所述,实数a 的取值范围是或;选②,因为,可得.可得,此时不等式组无解,所以实数a 的取值范围是;选③,当时,即当时,,,满足题意;当时,即当时,,3-2a ≤<a A B A B ⊆A B A ⊆,A B 2a ={}17A x x =<<{}{}228024B x x x x x =--≤=-≤≤{}27A B x x ⋃=-≤<A B A = A B ⊆123a a -≥+4a ≤-A B =∅⊆123a a -<+4a >-A ≠∅A B ⊆12234a a -≥-⎧⎨+≤⎩112a -≤≤112a -≤≤{4a a ≤-112a ⎫-≤≤⎬⎭A B A = B A ⊆12234123a a a a -≤-⎧⎪+≥⎨⎪-<+⎩∅123a a -≥+4a ≤-A =∅A B =∅ 123a a -<+4a >-A ≠∅因为,则或,解得或,此时或,综上所述,实数a 的取值范围是或.16. 【解析】【分析】(1)先根据,求出不等式的解,结合可得的值;(2)利用换元法,把函数转化为二次函数,结合二次函数区间最值法求解.【小问1详解】由可得,又,所以,又因为的解集为,所以,因为,所以,即,解得或,因为,所以;【小问2详解】由(1)可得,令,则,设,①当时,在上单调递增,则,解得,符合要求;②当时,在上单调递减,在上单调递增,,解得,又,故;③当时,在上单调递减,,解得,不合题意;综上所述,存在实数或符合题意.17.A B =∅ 232a +≤-14a -≥52a ≤-5a ≥542a -<≤-5a ≥52a a ⎧≤-⎨⎩}5a ≥()1f x <103n m +=a ()g x log 1a x <1log 1a x -<<1a >1x a a <<()1f x <(),m n 1,n a m a==103n m +=1103a a +=()()231033130a a a a -+=--=3a =13a =1a >3a =()()2331log 2log 3,,93g x x x x λ⎡⎤=-+∈⎢⎥⎣⎦31log ,,93t x x ⎡⎤=∈⎢⎥⎣⎦[]1,2t ∈-()[]223,1,2h t t t t λ=-+∈-1λ≤-()h t []1,2-()()min 31424h t h λ=-=+=138λ=-12λ-<<()h t []1,λ-[],2λ()()22min 3234h t h λλλ==-+=32λ=±12λ-<<32λ=2λ≥()h t []1,2-()()min 324434h t h λ==-+=25216λ=<138λ=-32【解析】【分析】(1)利用待定系数法可求出的表达式,结合奇函数性质计算即可得解;(2)设,从而计算的正负即可得证;(3)由奇函数性质结合函数单调性可得对恒成立,构造二次函,结合二次函数性质可得,解出即可得.【小问1详解】设,由的图象过点,可得,∴(负值舍去),即,故函数,由为奇函数,可得,∴,即,满足,即为奇函数,故;【小问2详解】在上单调递减,证明如下:,设,则,则,结合,可得,∴,即,故在上单调递减;【小问3详解】()g x 12x x <()()12f x f x -212134mt t t -≥+[]1,2t ∈()()21284h t t m t =+-+()()1020h h ⎧≤⎪⎨≤⎪⎩()()0,1xg x aa a =>≠()g x ()2,929a =3a =()3xg x =()()()3113xxm g x m f x g x --==++()f x ()()()01001011m g m f g --===++1m =()1313x x f x -=+()()13311313x x x xf x f x -----===-++()f x 1m =()f x R ()()2131321131313xx x x xf x -+-===-+++12x x <12033x x <<()()()()()211212122332213131313x x x x x x f x f x --=-=++++12033x x <<()212330x x->()()120f x f x ->()()12f x f x >()f x R由且为奇函数,所以,又在上单调递减,所以对恒成立,所以对恒成立,令,所以有,即,解得.18.【解析】【分析】(1)根据题意得,再根据分段函数解不等式即可得答案;(2)由题意得,再根据基本不等式求解最值即可得答案【小问1详解】解:由题意知当(辆/千米)时,(千米/小时),代入,解得,所以.当时,,符合题意;当时,令,解得,所以.所以,若车流速度不小于40千米/小时,则车流密度的取值范围是.【小问2详解】解:由题意得,当时,为增函数,所以,当时等号成立;当时,()2132104f t t f mt ⎛⎫--+-≤ ⎪⎝⎭()f x ()212134f mt f t t ⎛⎫-≤+ ⎪⎝⎭()f x R 212134mt t t -≥+[]1,2t ∈()212840t m t +-+≤[]1,2t ∈()()21284h t t m t =+-+()()1020h h ⎧≤⎪⎨≤⎪⎩1128404241640m m +-+≤⎧⎨+-+≤⎩178m ≥2400k =60,030240080,30120150x x y xx x x <≤⎧⎪=⎨-<≤⎪-⎩120x =0v =80150kv x=--2400k =60,030240080,30120150x v x x <≤⎧⎪=⎨-<≤⎪-⎩030x <≤6040v =≥30120x <≤24008040150x-≥-90x ≤3090x <≤v x (]0,9060,030240080,30120150x x y xx x x <≤⎧⎪=⎨-<≤⎪-⎩030x <≤60y x =1800y ≤30x =30120x <≤.当且仅当,即时等号成立.所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.19. 【解析】【分析】(1)根据有界函数的定义,分别计算出及的值域即可判断;(2)先求解函数的值域,进而求解的取值范围,再根据有界函数的定义确定上界M 的取值范围;(3)先求解函数及,再根据有界函数的定义,讨论m 取不同数值时,函数是否存在上界,并求解出对应的上界范围.【小问1详解】,的值域为不是上的有界函数;,则,当时,,当时,则,当时,,当且仅当则()()2150180150450024004500808080180150150150150x x x y x x x x x --+--⎡⎤⎛⎫=-==--+ ⎪⎢⎥---⎝⎭⎣⎦4800(33667≤-≈4500150150x x-=-30(583x =≈()1f x ()2f x ()g x ()g x ()f x ()f x ()()21923311xxxf x =-⋅=-- ()1f x ∴[)1,-+∞()1f x ∴R ()22223xf x x x =-+()200f =0x ≠()22223232x f x x x x x ==-++-0x >3x x +≥=x =()20f x <≤=0x <33x x x x ⎛⎫+=--+≤-=- ⎪-⎝⎭x =()20f x >≥=综上可得,,即有上恒成立,是上的有界函数;【小问2详解】,易知在区间上单调递增,∴,∴,所以上界构成的集合为;【小问3详解】,当时,,,此时的取值范围是,当时,在上是单调递减函数,其值域为,故,此时的取值范围是,当时,,若在上是有界函数,则区间为定义域的子集,所以不包含0,所以或,解得:或,时,在上是单调递增函数,此时的值域为,①,即时,()2f x ∈()2f x ≤R ()2f x ∴R ()112212log log 111x g x x x +⎛⎫==+ ⎪--⎝⎭()g x []2,3()[][]2log 3,1,2,3g x x ∈--∈()[]1221log 1,log 31x g x x +=∈-M [)2log 3,+∞()23113311x x x m f x m m +⋅==++⋅+⋅0m =()2f x =()2f x =M [)2,+∞0m >()1311x f x m =++⋅[]0,1()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦()232,131m m f x m m ++⎡⎤∈⎢⎥++⎣⎦M 2,1m m +⎡⎫+∞⎪⎢+⎣⎭0m <[]1331,1x m m m +⋅∈++()f x []0,1[]0,1()f x []31,1m m ++310m +>10+<m 1m <-103m -<<0m <()1311xf x m =++⋅[]0,1()f x 232,131m m m m ++⎡⎤⎢⎥++⎣⎦232311m m m m ++≥++m ≤103m -<<,此时的取值范围是,②,即时,,此时的取值范围是,综上:当时,存在上界,;当或时,存在上界,;当时,存在上界,,当时,此时不存在上界.()32323131m m f x m m ++≤=++M 32,31m m +⎡⎫+∞⎪⎢+⎣⎭232311m m m m ++<++1m <<-()2211m m f x m m ++≤=-++M 2,1m m +⎡⎫-+∞⎪⎢+⎣⎭0m ≥M 2,1m M m +⎡⎫∈+∞⎪⎢+⎣⎭1m ≤--103m -<<M 32,31m M m +⎡⎫∈+∞⎪⎢+⎣⎭11m -<<-M 2,1m M m +⎡⎫∈-+∞⎪⎢+⎣⎭113m -≤≤-M。
2024学年哈尔滨市三中高一数学上学期期中考试卷附答案解析
哈三中2024-2025学年度上学期高一学年期中考试数学试卷考试说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试时间为120分钟;第Ⅰ卷(选择题,共58分)一、单选题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{M x y ==,(],2N =-∞,则M N = ( )A. [)1,+∞B. []1,2 C. RD. ∅【答案】B 【解析】【分析】根据函数有意义求出集合A ,进而结合交集的定义求解即可.【详解】因为{{}1M x y x x ===≥,(],2N =-∞,所以[]1,2M N = .故选:B.2. 已知函数()1,13,1x x x f x x ⎧-≤=⎨>⎩,则()3f f -=⎡⎤⎣⎦( )A. 0B. 1C. 3D. 9【答案】D 【解析】【分析】根据分段函数解析式,由内而外,逐步计算, 即可得出结果.【详解】由题意,()3312f -=--=,则()()23239f f f -===⎡⎤⎣⎦.故选:D.3. 若函数()211f x x +=-,则()f x =( )A. 22x x +B. 21x -C 22x x- D. 21x +.【答案】C 【解析】【分析】借助配凑法即可解答.【详解】由()()()2211121f x x x x +=-=+-+,则()22f x x x =-.故选:C.4. 已知20.1a =,2log 2b =,0.12c =,则a ,b ,c 的大小关系是( )A. c a b >> B. c b a >>C. b a c >> D. b c a>>【答案】B 【解析】【分析】先化简0.01a =,1b =,结合指数函数的单调性比较1c >,进而比较大小即可.【详解】因为20.010.1a ==,2log 21b ==,0.10221c =>=所以c b a >>.故选:B.5. 已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()1f x x x =-.则当0x <时,()f x =( )A. ()1x x + B. ()1x x -C. ()1x x -+ D. ()1x x -【答案】A 【解析】【分析】结合奇函数的性质求解即可.【详解】因为函数()f x 是定义在R 上的奇函数,所以()()f x f x -=-,当0x ≥时,()()1f x x x =-,则当0x <时,0x ->,()()()1f x x x f x -=-+=-,即()()1f x x x =+.故选:A.6. 函数()f x =的单调递增区间为( )A. ()0,2B. (),2-∞C. ()2,4D. ()2,+∞【答案】A 【解析】【分析】求出函数定义域,由复合函数的内函数的单调区间得到函数单调区间.【详解】函数定义域:240x x -+≥,∴04x ≤≤,∵函数24y x x =-+在区间()0,2上单调递增,()2,4上单调递减,∴函数()f x 在区间()0,2上单调递增,()2,4上单调递减.故选:A.7. 若函数(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩满足对任意不相等的两个实数1x ,2x 都有()()()12120f x f x x x -->⎡⎤⎣⎦,则实数a 的取值范围是( )A [)4,8- B. [)4,8 C. ()4,8 D. ()1,8【答案】B 【解析】【分析】结合题设易得函数()f x 在R 上单调递增,进而由分段函数单调性的性,结合指数函数与一次函数单调性求解即可.【详解】因为对任意不相等的两个实数1x ,2x 都有()()()12120f x f x x x -->⎡⎤⎣⎦,所以函数()f x 在R 上单调递增,则1402422a a aa ⎧⎪>⎪⎪->⎨⎪⎪-+≤⎪⎩,解得48a ≤<,即实数a 的取值范围是[)4,8.故选:B..8. 关于x 的方程33245xa a +⎛⎫= ⎪-⎝⎭有负根的一个充分不必要条件是( )A. 344a << B.354a <<C 364a << D. 2334a -<<【答案】A 【解析】【分析】结合指数函数的性质,要使关于x 的方程33245xa a +⎛⎫= ⎪-⎝⎭有负根,可得3215a a+>-,解出354a <<,再根据充分不必要条件的定义判断即可.【详解】当0x <时,314⎛⎫> ⎪⎝⎭x,要使关于x 的方程33245xa a +⎛⎫= ⎪-⎝⎭有负根,则3215a a +>-,即4305a a->-,即()()4350a a --<,解得354a <<,所以关于x 的方程33245xa a +⎛⎫= ⎪-⎝⎭有负根的一个充分不必要条件是344a <<.故选:A.二、多选题:共3小题,每小题6分,共18分在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知0x >,0y >,且31x y +=,则下列选项正确的是( )A. y 的范围为10,3⎛⎫ ⎪⎝⎭B. xy 的最大值为112C. 13x y+的最小值为16D. 229x y +的最小值为2【答案】ABC 【解析】【分析】根据题意,结合不等式的性质可判断A ;根据基本不等式可判断BCD.【详解】对于A :由题知0,0x y >>,所以0130y x y >⎧⎨=->⎩,解得103y <<,即10,3y ⎛⎫∈ ⎪⎝⎭,故A 正确;.对于B :31x y +=≥=,即112xy ≤,当且仅当3x y =,即11,26x y ==时等号成立,所以xy 的最大值为112,故B 正确;对于C :()1313310310316x y x y x y x y y x ⎛⎫⎛⎫+=++=++≥+⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当x y =时等号成立,所以13x y+的最小值为16,故C 正确;对于D :222293112224x y x y ++⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭,∴22192x y +≥,当且仅当132x y ==,即11,26x y ==时,时等号成立,∴229x y +有最小值12,故D 不正确.故选:ABC.10. 在同一平面直角坐标系中,函数21:aC y x-=,2:xC y a =(0a >且1a ≠)图象可能是( )A. B.C. D.【答案】AC 【解析】【分析】根据幂函数和指数函数的单调性分析判断即可.【详解】若01a <<,122a <-<,则21:aC y x-=在[)0,+∞上单调递增,且图象呈现下凸趋势,2:x C y a =是R 上的减函数,故A 正确,BD 错误;若3a =,21a -=-,则11:1xC y x-==在(),0-∞和()0,∞+上单调递减,2:3x C y =是R 上的增函数,故C 正确.故选:AC.11. 下列命题中正确的是( )A. 函数()2xf x x =+,[]1,2x ∈的值域是[]3,6B. 函数()1421xx f x +=++的值域是[)1,+∞C. 函数()211f x x x =++的值域是40,3⎛⎤⎥⎝⎦D. 函数()2125x f x x x +=++的值域是11,44⎡⎤-⎢⎥⎣⎦【答案】ACD 【解析】【分析】对于A ,结合指数函数和一次函数的性质求解判断即可;对于B ,令()20xt t =>,换元,利用二次函数的性质求解判断即可;对于C ,利用二次函数的性质求解判断即可;对于D ,结合基本不等式讨论求解判断即可.【详解】对于A ,因为函数2,x y y x ==在[]1,2上单调递增,所以函数()2xf x x =+在[]1,2上单调递增,且()()13,26f f ==,所以函数()2xf x x =+,[]1,2x ∈的值域是[]3,6,故A 正确;对于B ,令()20xt t =>,则()()1242121xx f x g t t t +=++==++,因为函数()g t 在()0,∞+上单调递增,且()01g =,所以函数()1421xx f x +=++的值域是()1,+∞,故B 错误;对于C ,因为221331244y x x x ⎛⎫=++=++≥ ⎪⎝⎭,所以214013x x <≤++,则函数()211f x x x =++的值域是40,3⎛⎤⎥⎝⎦,故C 正确;对于D ,对于函数()2125x f x x x +=++,当1x =-时,()0f x =;当1x ≠-时,()()221114251411x x f x x x x x x ++===+++++++,若1x >-,则4141x x ++≥=+,当且仅当411x x +=+,即1x =时等号成立,则()110,4411f x x x ⎛⎤=∈ ⎥⎝⎦+++;若1x <-,则4141x x ++≤-=-+,当且仅当411x x +=+,即3x =-时等号成立,则()11,04411f x x x ⎡⎫=∈-⎪⎢⎣⎭+++.综上所述,函数()2125x f x x x +=++的值域是11,44⎡⎤-⎢⎥⎣⎦,故D 正确.故选:ACD.第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12. 函数()21f x x =-在区间[]2,4上的最大值为________.【答案】2【解析】【分析】根据函数的单调性求解最值即可.【详解】因为函数()21f x x =-在区间[]2,4上单调递减,所以()()max 22221f x f ===-.故答案为:2.13. 已知函数()f x 的数据如下表,则该函数可能的一个解析式为________.x012345…()f x 3612244896…【答案】()32xf x =⋅(答案可能不止一个)【解析】【分析】根据表中数据可得函数与指数函数相关,故可得一个可能的解析式.【详解】表中数据中函数值从左到右的规律为:右侧数据为相邻左侧数据的2倍,故可设()2xf x a =⨯,由()03f =可得3a =,故()32xf x =⋅,检验符合,另外,如果()()()()123(4)(5)312345x x x x x f x -----=-⨯⨯⨯⨯⨯()()()()()()()()()()()23(4)(5)13(4)(5)6121123421123x x x x x x x x x x --------+⨯+⨯⨯-⨯-⨯-⨯-⨯⨯-⨯-⨯-()()()()()()()12(4)(5)12(3)(5)24483211243211x x x x x x x x x x --------+⨯+⨯⨯⨯⨯-⨯-⨯⨯⨯⨯-()()12(3)(4)9612345x x x x x ----+⨯⨯⨯⨯⨯,检验后也符号要求.故答案为:()32xf x =⋅(答案可能不止一个)14. 设函数()()()4e 166xf x x x x =+--<<,则()f x 是________函数(从“奇”、“偶”、“既奇又偶”、“非奇非偶”中选一个恰当答案填入),关于x 的不等式()()()31213f x f f x ++-<-的解集为________.【答案】 ①. 奇函数. ②. 51,33⎛⎫- ⎪⎝⎭.【解析】【分析】根据奇函数的定义可判断函数为奇函数,再根据函数单调性定义可判断()f x 在()6,6-上为增函数,设()()()()31213s x f x f f x =++---,根据复合函数的单调性可得()s x 在()6,6-上为增函数,据此可求不等式的解.【详解】因为()()()4e 1xf x x x f x -=-+-=-且()6,6-关于原点对称,故()f x 为奇函数.当06x ≤<时,()5e xf x x x x =+-,设()()e 1xg x x =-,06x ≤<,任意1206x x ≤<<,则有120e 1e 1x x ≤-<-,故()()12120e 1e 1xxx x ≤-<-即()()12g x g x <,故()()e 1x g x x =-在[)0,6上为增函数,而5y x =在[)0,6上为增函数,故()5e xf x x x x =+-在[)0,6上为增函数,结合()f x 为奇函数,()00f =,故()5e xf x x x x =+-在()6,6-上为增函数,设()()()()31213s x f x f f x =++---,由复合函数的同增异减可得()s x 在()6,6-上为增函数,而()()()122003s f f f ⎛⎫=+--= ⎪⎝⎭,故()()()31213f x f f x ++-<-即为()10()3s x s <=,故13x <,又63166136x x -<+<⎧⎨-<-<⎩,故5133x -<<故不等式的解集为51,33⎛⎫- ⎪⎝⎭.故答案为:奇函数;51,33⎛⎫- ⎪⎝⎭.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知102m =,105n =,求下列各式的值:(1)210m n -;(2)m n +;(3)1125mn+.【答案】(1)225(2)1 (3)20【解析】【分析】(1)根据同底数幂的除法法则及幂的乘方求解即可;(2)根据同底数幂的乘法法则求解即可;(3)结合指数与对数相互转化可得lg 2m =,lg 5n =,再结合换底公式可得21log 10m =,51log 10n=,进而代值计算即可.【小问1详解】()2222101022105251010m m m n n n-====.【小问2详解】因为1010251010m n n m +=⋅=⨯=,所以1m n +=.【小问3详解】由102m =,105n =,则lg 2m =,lg 5n =,则21log 10m =,51log 10n=,所以52log 10log 01112510102025m n ==+++=16. 已知幂函数()()21af x a a x =+-在()0,∞+上单调递增.(1)求()f x 解析式;(2)若()()22g x x f x mx m =⋅-+在[]0,2上的最小值为2-,求m 的值.【答案】(1)()f x x = (2)1-或3【解析】【分析】(1)根据幂函数的定义和单调性可得2110a a a ⎧+-=⎨>⎩,进而求解即可;(2)根据二次函数的性质讨论求解即可.【小问1详解】由题意得,2110a a a ⎧+-=⎨>⎩,解得1a =,则()f x x =.【小问2详解】的.由()()22222g x x f x mx m x mx m =⋅-+=-+,对称轴为x m =,当0m ≤时,()()min 02g x g m ==,则22m =-,即1m =-;当02m <<时,()()2min 2g x g m m m ==-+,则222m m -+=-,即1m =+1m =;当2m ≥时,()()min 242g x g m ==-,则422m -=-,即3m =.综上所述,1m =-或3.17. 中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.经研究:把茶水放在空气中冷却,如果茶水开始的温度是1θ℃,室温是0θ℃,那么t min 后茶水的温度θ(单位:℃)可由公式()()010e kt t θθθθ-=+-求得,其中k 是常数.为了求出这个k 的值,某数学建模兴趣小组在25℃室温下进行了数学实验,先用95℃的水泡制成95℃的茶水,利用温度传感器,测量并记录从0t =开始每一分钟茶水的温度,多次实验后搜集整理到了如下的数据:t min012345θ(℃)95.0089.1984.7581.1978.1975.00(1)请你仅利用表中的一组数据5t =,75.00θ=,求k 的值,并求出此时()t θ的解析式;(2)在25℃室温环境下,王老师用95℃的水泡制成的茶水,想等到茶水温度降至45℃时再饮用,根据(1)的结果,王老师要等待多长时间?(参考数据:ln 20.7≈,ln 5 1.6≈,ln 7 1.9≈,e 是自然对数的底数.)【答案】(1)350k ≈,()3502570et θ-=+ (2)王老师大约等待20min 【解析】【分析】(1)由题意得()575259525ek-=+-,结合指数与对数的相互转化及对数的运算性质求解即可;(2)令3502570e 45t -+=,进而结合指数与对数的相互转化及对数的运算性质求解即可.【小问1详解】由题意,得()575259525ek-=+-,即55e7k-=,即55ln ln 5ln 7 1.6 1.90.37k -==-≈-=-,解得350k ≈,此时()3502570e t t θ-=+.【小问2详解】令3502570e 45-+=,即3502e7-=,即32ln ln 2ln 70.7 1.9 1.2507t -==-≈-=-,解得20t ≈,所以王老师大约等待20min.18. 已知函数()e 1e 1x x a f x -=+为奇函数.(1)求a 的值;(2)利用定义证明()y f x =在R 上单调递增;(3)若存在实数[]1,3x ∈,使得()()4320xxf k f ⋅-+>成立,求k 的取值范围.【答案】(1)1 (2)证明见解析(3)1,12⎛⎫-+∞ ⎪⎝⎭【解析】【分析】(1)利用奇函数的性质求解即可;(2)利用函数的单调性定义证明即可;(3)结合函数()f x 的单调性和奇偶性转化题目问题为存在实数[]1,3x ∈,使得3142xx k >-成立,则min3142x x k ⎛⎫>- ⎪⎝⎭,进而令111282x t t ⎛⎫=≤≤ ⎪⎝⎭,结合二次函数的性质求解即可.【小问1详解】因为函数()e 1e 1x x a f x -=+为奇函数,定义域为R ,所以()10011a f -==+,即1a =,此时()e 1e 1x x f x -=+,则()()e 11e e 11e x xx xf x f x -----===-++,满足题意,所以1a =.【小问2详解】证明:由(1)知,()e 1e 1221e 1e 1e 1x x x x xf x -+-===-+++,任取12,x x ∈R ,且12x x <,则()()122112222211e 1e 1e 1e 1x x x x f x f x -=--+=-++++()()()()()()121212122e 1e 12e e e 1e 1e 1e 1x x x x x x x x +---==++++,因为12x x <,则12e e 0x x -<,()()12e 1e 10xx++>,所以()()120f x f x -<,即()()12f x f x <,所以()y f x =在R 上单调递增.【小问3详解】由()()4320xxf k f ⋅-+>,即()()()4322xxxf k f f ⋅->-=-,因为函数()y f x =在R 上单调递增,所以432x x k ⋅->-,即3142xx k >-,由题意,存在实数[]1,3x ∈,使得3142xx k >-成立,则min3142x x k ⎛⎫>- ⎪⎝⎭,令111282x t t ⎛⎫=≤≤ ⎪⎝⎭,则()2min 3k t t >-当16t =时,()2min1312t t -=-,即112k >-,所以k 的取值范围为1,12⎛⎫-+∞ ⎪⎝⎭.19. 对于定义在区间D 上的函数()f x ,若存在闭区间[],a b D ⊆和常数c ,使得对任意[]1,x a b ∈,都有()1f x c =,且对任意2x D ∈,当[]2,x a b ∉时,()2f x c >恒成立,则称函数()f x 为区间D 上的“卷函数”.(1)判断函数()11g x x x =++-是否为R 上的“卷函数”?并说明理由:(2)设()g x 是(1)中的“卷函数”,若不等式()2344222xttttg ---≤+++-对t ∀∈R 恒成立,求实数x 的取值范围;(3)若函数()h x mx =[)3,∞-+上的“卷函数”,求m n 的值.【答案】(1)函数()11g x x x =++-为R 上的“卷函数”,理由见解析 (2)[]1,2 (3)4【解析】【分析】(1)写出函数()g x 的分段函数形式,再结合新定义判断即可;(2)令()222ttm m -=≥+,结合二次函数的性质及题意可得不等式()232x g -≤恒成立,进而结合函数()g x 的值域可得1231x -≤-≤,进而求解即可;(3)根据题意可得存在区间[][),3,a b ⊆-+∞和常数c,使得mx c +=恒成立,即()224x x n mx c ++=-,列出方程组即可求得m 、c 、n 的值,代入函数验证是否满足题意即可确定m 、n的值,进而求解.【小问1详解】函数()11g x x x =++-为R 上的“卷函数”,理由如下:对于函数()2,1112,112,1x x g x x x x x x -<-⎧⎪=++-=-≤≤⎨⎪>⎩,当[]1,1x ∈-时,()2g x =,且当1x <-或1x >时,()2g x >恒成立,所以函数()11g x x x =++-为R 上的“卷函数”.【小问2详解】由于222t t -≥=+,当且仅当22t t -=,即0t =时等号成立,令()222ttm m -=≥+,则2244t t m -+=-,所以2442224t t t t m m --+++-=+-,因为函数24y m m =+-在[)2,+∞上单调递增,所以当2m =时,()2min42m m +-=,由题意,不等式()2344222xttttg ---≤+++-对t ∀∈R 恒成立,即不等式()232xg -≤恒成立,由(1)知,当[]1,1x ∈-时,()2g x =,且当1x <-或1x >时,()2g x >恒成立,则1231x -≤-≤,解得12x ≤≤,即实数x 的取值范围为[]1,2.【小问3详解】因为函数()h x mx =+是区间[)3,∞-+上的“卷函数”,则存在区间[][),3,a b ⊆-+∞和常数c,使得mx c +=恒成立.所以()2222242x x n c mx m x mcx c ++=-=-+恒成立,即22124m mc c n ⎧=⎪-=⎨⎪=⎩,解得124m c n =⎧⎪=-⎨⎪=⎩或124m c n =-⎧⎪=⎨⎪=⎩,当124m c n =⎧⎪=-⎨⎪=⎩时,()2,32222,2x h x x x x x x --≤≤-⎧==++=⎨+>-⎩,当[]3,2x ∈--时,()2h x =-,当()2,x ∈-+∞时,()2h x >-恒成立.此时,()h x 是区间[)3,∞-+上的“卷函数”.当124m c n =-⎧⎪=⎨⎪=⎩时,()22,3222,2x x h x x x x x ---≤≤-⎧=-+=-++=⎨>-⎩.当[]3,2x ∈--时,()2h x >-,当()2,x ∈-+∞时,()2h x =,此时,()h x 不是区间[)3,∞-+上的“卷函数”.综上所述,1m =,4n =,所以4m n =.【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.。
湖北省四校2024-2025学年高一上学期期中考试数学试题(含答案)
2024-2025学年上学期高一期中考试数学试题注意事项:1.答卷前,考生务必将姓名、准考证号等在答卷上填写清楚2.选择题答案用2B 铅笔在答题卷把对应题目的答案标号涂黑,非选择题用0.5mm 黑色签字笔在每题对应的答题区内做答,答在试卷上无效。
第Ⅰ卷(选择题共58分)一、单选题:本题共8个小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列说法正确的有( )A .10以内的质数组成的集合是B .与是同一个集合C :方程的解集是D .集合中的元素是的三边长,则一定不是等腰三角形2.命题:p :,的否定为( )A .,B .,C .,D .,3.已知函数的定义域为,则函数的定义域为( )A .B .C .D .4下列函数中,既是奇函数,又在区间上是减函数的是( )A .B .C .D .5下列说法正确的是( )A .若,则B .若a ,b ,,则C .若,则D .若,,则6.不等式的一个必要不充分条件是( )A .B .C .D .7已知,,且恒成立,则实数m 的取值范围是( )A .B .C .D .{}0,2,3,5,7∅{}02210xx -+={}1,1{},,M a b c =ABC ∆ABC ∆x ∀∈R 0x x +≥x ∃∈R 0x x +≥x ∃∈R 0x x +<x ∃∈R 0x x +≤x ∀∈R 0x x +<()f x []0,1()1f x +[]0,1[]1,0-{}0[]1,2()0,+∞y x=3y x =2y x =3y x=-22acbc >a b>()0,m ∈+∞b b m a a m+<+a b >11a b<a b >x y >ax by>22530x x --<132x -<<16x -<<102x -<<132x <<0a >0b >211a b+=a b m +≥(,3-∞(],6-∞(,3-∞+(],7-∞8.今有一台坏天平,两臂长不等,其余均精确,有人要用它称物体的质量,他将物体放在左右托盘各称一次,记两次称量结果分别为a ,b ,设物体的真实质量为G ,则( )A .B .C .D二、选择题:本题共3小题,每小题6分,共18分。
2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷(含解析)
考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:人教A 版必修第一册第一章~第三章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的2024-2025学年河南省郑州市高一上学期期中数学质量检测试卷.1. 已知(){}(){},3,,1A x y x y B x y x y =+==-=∣∣,则A B = ( )A. 2,1x y ==B. ()2,1 C.(){}2,1 D. {}2,1【答案】C 【解析】【分析】利用交集定义即可求得A B⋂【详解】由31x y x y +=⎧⎨-=⎩,可得21x y =⎧⎨=⎩则A B =(){}(){},3,1x y x y x y x y +=⋂-=∣∣()(){}3=,=2,11x y x y x y ⎧⎫+=⎧⎨⎨⎬-=⎩⎩⎭∣故选:C2. 已知a ,b ,c ,d 均为实数,则下列说法正确的是( )A. 若a b >,c d >,则a c b d +>+ B. 若a b >,c d >,则a c b d ->-C. 若a b >,c d >,则ac bd > D. 若ac bc >,则a b>【答案】A 【解析】【分析】根据不等式的性质,结合举反例的方法,可得答案.【详解】对于A ,根据同向不等式具有可加性可知A 正确;对于B ,21a b =>=,24c d =->=-,但45a c b d -=<-=,故B 错误;对于C ,21a b =>=,24c d =->=-,但44ac bd =-==-,故C 错误;对于D ,当0c <时,由ac bc >,得a b <,故D 错误.故选:A .3. 下列函数中,与函数2y x =+是同一函数的是( )A. 22y =+B. 2y =+C. 22x y x=+ D.y =【答案】B 【解析】【分析】通过两个函数三要素的对比可得答案.【详解】2y x =+的定义域为R .对于A ,22y =+的定义域为[)0,+∞,与2y x =+的定义域不同,不是同一函数;对于B ,22y x =+=+定义域为R ,与2y x =+的定义域相同,对应关系相同,是同一函数;对于C ,22x y x=+的定义域为{}0x x ≠,与2y x =+的定义域不同,不是同一函数;对于D,2,2,22,2x x y x x x +≥-⎧==+=⎨--<-⎩与2y x =+对应关系不同,不是同一函数.故选:B .4. 已知p :0a b >> q :2211a b<,则p 是q 的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】根据0a b >>与2211a b <的互相推出情况判断出属于何种条件.【详解】当0a b >>时,220a b >>,所以2211a b<,所以充分性满足,当2211a b<时,取2,1a b =-=,此时0a b >>不满足,所以必要性不满足,所以p 是q 的充分不必要条件,的故选:A.5. 已知函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,则()()03f f +等于( )A. 3- B. 1- C. 1D. 3【答案】C 【解析】【分析】根据(3)f (3)f =--以及(0)0f =可求出结果.【详解】因为函数()f x 为R 上的奇函数,当0x <时,()2f x x =+,所以()()()33321f f =--=--+=.而()00f =,∴()()031f f +=.故选:C .6. 若0x <,则1x x+( )A 有最小值―2B. 有最大值―2C. 有最小值2D. 有最大值2【答案】B 【解析】【分析】运用基本不等式求解即可.【详解】因为0x <,则0x ->,所以1()()2x x -+≥=-,当且仅当1x x -=-即:=1x -时取等号.所以12x x+≤-,当且仅当=1x -时取等号.故选:B.7. 已知函数()f x 的图象由如图所示的两条曲线组成,则( )A. ()()35ff -= B. ()f x 是单调增函数.C. ()f x 的定义域是(][],02,3∞-⋃D. ()f x 的值域是[]1,5【答案】D 【解析】【分析】根据函数的图象,结合函数求值、函数单调性、定义域与值域,可得答案.【详解】对于选项A ,由图象可得()32f -=,所以()()()321ff f -==,A 错误;对于选项B ,()04f =,()21f =,()()02f f >,故()f x 不是单调增函数,B 错误;对于选项C ,由图象可得()f x 的定义域为[][]3,02,3-⋃,C 错误;对于选项D ,由图象可得()f x 的值域为[]1,5,D 正确.故选:D .8. 若定义域为R 的奇函数()f x 在(),0-∞上单调递减,且()20f =,则满足20)(x f x x≥的x 的取值范围是( )A. [][)2,02,-⋃+∞ B. ][3,10,1⎡⎤--⋃⎣⎦C. [)[)2,02,-⋃+∞ D. [)(]2,00,2-U 【答案】D 【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,由20)(x f x x≥可得()0xf x ≥且0x ≠可得020x x <⎧⎨-≤<⎩或002x x >⎧⎨<≤⎩解得20x -≤<或02x <≤,所以满足20)(x f x x≥的x 的取值范围是[)(]2,00,2-U ,故选:D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列函数既是偶函数,又在()0,∞+上单调递增的是( )A. y =B. 2y x =C. yD. 1y x=【答案】BC 【解析】【分析】根据函数的单调性和奇偶性逐项分析判断.【详解】对A :=y =在定义域内为奇函数,又∵y =在R 上单调递增,5u x =在R 上单调递增,则y =在R 上单调递增,A 错误;对B :∵()22x x -=,则2y x =在定义域内为偶函数,且在()0,∞+内单调递增,B 正确;对C :y又∵当()0,x ∈+∞,y 在()0,∞+内单调递增,C 正确;对A :∵11=--x x ,则1y x =在定义域内为奇函数,且1y x=在()0,∞+内单调递减,D 错误;故选:BC.10. 下列关于幂函数y x α=的说法正确的是( )A. 幂函数的图象都过点()0,0,()1,1B. 当1,3,1α=-时,幂函数的图象都经过第一、三象限C. 当1,3,1α=-时,幂函数是增函数D. 若0α<,则幂函数的图象不过点()0,0【答案】BD 【解析】【分析】由幂函数的性质逐个判断即可.【详解】对于A ,当0α<时,幂函数的图象不通过点()0,0,A 错误;对于B ,幂指数1,3,1α=-时,幂函数分别为y x =,3y x =,1y x -=,三者皆为奇函数,图象都经过第一、三象限,故B 正确;对于C ,当1α=-时,幂函数1y x -=在(),0∞-,(0,+∞)上皆单调递减,C 错误;对于D ,若0α<,则函数图象不通过点()0,0,D 正确.故选:BD .11. 下列结论正确的是( )A. 函数21x y x+=的最小值是2B. 若0ab >,则2b a a b+≥C. 若x ∈R ,则22122x x +++的最小值为2D. 若0,0a b >>22a b ++≥【答案】BD 【解析】【分析】根据题意,结合基本不等式,逐项判定,即可求解.【详解】对于A 中,当0x <时,可得0y <,所以A 错误;对于B 中,因0ab >,则2b a a b +≥=,当且仅当b a a b =时,即a b =时,等号成立,所以B 正确;对于C中,由221222x x ++≥=+,当且仅当22122x x +=+时,此时方程无解,即等号不成立,所以C 错误;对于D 中,因为0,0a b >>22a b ++≥≥,当且仅当a b =时,等号成立,所以D 正确.故选BD .12. 已知函数()f x 的定义域为A ,若对任意x A ∈,存在正数M ,使得()f x M ≤成立,则称函数为()f x 是定义在A 上的“有界函数”.则下列函数是“有界函数”的是( )A. 3()4x f x x+=- B. ()f x =C. 25()22f x x x =-+ D. ()f x 【答案】BCD 【解析】【分析】“有界函数”值域需要有界,化简各函数,并求出函数的值域,然后进行判断.【详解】对于A ,3(4)77()1444x x f x x x x+--+===-+---,由于704x ≠-,所以()1f x ≠-,所以()[)0,f x ∈+∞,故不存在正数M ,使得()f x M ≤成立.对于B ,令21u x =-,则[]0,1u ∈,()f x =,所以()[]0,1f x ∈,故存在正数1,使得()1f x ≤成立.对于C ,令2222(1)1u x x x =-+=-+,则()5f x u=,易得1u ≥.所以()5051f x <≤=,即()(]0,5∈f x ,故存在正数5,使得()5f x ≤成立.对于D ,令t =[]0,2t ∈,24x t =-,则[]()22117()40,224f x t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,易得()1724f x ≤≤,所以()172,4f x ⎡⎤∈⎢⎥⎣⎦,故存在正数174,使得()174f x ≤成立.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13. 已知命题p :x ∀∈Q ,x N ∈,则p ⌝为______.【答案】x ∃∈Q ,x ∉N 【解析】【分析】由全称命题的否定为特称命题即可求解.【详解】因为p :x ∀∈Q ,x ∈N ,所以p ⌝为x ∃∈Q ,x ∉N .故答案为:x ∃∈Q ,x ∉N .14. 函数()1f x x=+的定义域为_____________.【答案】()(],00,1-∞⋃【解析】【分析】由题意列不等式组即可求得.【详解】要使函数()1f x x=有意义,只需10,0,x x -≥⎧⎨≠⎩解得:1x ≤且0x ≠,从而()f x 的定义域为()(],00,1-∞⋃.故答案为:()(],00,1-∞⋃15. 已知函数()f x 满足下列3个条件:①函数()f x 的图象关于y 轴对称;②函数()f x 在()0,∞+上单调递增;③函数()f x 无最值.请写出一个满足题意的函数()f x 的解析式:______.【答案】()21f x x=-(答案不唯一)【解析】【分析】结合函数的对称性、单调性及常见函数即可求解.【详解】由()f x 的图象关于y 轴对称知()f x 为偶函数,()f x 在(0,+∞)上单调递增,()f x 无最值,根据幂函数性质可知满足题意的一个函数为()21f x x=-.故答案为:()21f x x =-(答案不唯一)16. 已知函数()21x f x x=+,则不等式()211f x -<的解集是____________.【答案】()0,1【解析】【分析】由题可得()f x 为偶函数,且在()0,∞+上单调递增,后利用()()f x f x =可得答案.【详解】因为()f x 的定义域为R ,且()()f x f x -=,所以()f x 是偶函数.的又当0x >时,()21x f x x =+2222211x x x+-==-++单调递增.因为()f x 是偶函数,所以()f x 在(),1-∞单调递减,又因为()11f =,所以()211f x -<()()211f x f ⇔-<211121101x x x ⇔-<⇒-<-<⇒<<.故答案为:()0,1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 设全集U =R ,集合{}2680A x x x =-+=,31B x x ⎧⎫=<⎨⎬⎩⎭.(1)求()U A B ⋃ð;(2)设集合(){}233,C x x a a x a =+=+∈Z ,若A C 恰有2个子集,求a 的值.【答案】(1)(){03U A B x x ⋃=≤≤ð或}4x = (2)2或4.【解析】【分析】(1)解方程和不等式求出集合,A B ,再由补集、并集运算即可求解;(2)解方程求出集合C ,再通过a 的讨论即可求解.【小问1详解】2680x x -+=,解得2x =或4,则{}2,4A =;由31x<,解得0x <或3x >,则{0B x x =<或}3x >;所以{}03U B x x =≤≤ð,(){03U A B x x ⋃=≤≤ð或}4x =.【小问2详解】因为A C 恰有2个子集,所以A C 仅有一个元素.()()()23330x a a x x x a +=+⇒--=,当3a =时,{}3C =,A C ⋂=∅,不满足题意;当2a =时,{}2,3C =,{}2A C ⋂=,满足题意;当4a =时,{}4,3C =,{}4A C ⋂=,满足题意.综上,a 的值为2或4.18. 已知函数()1f x x x=+.(1)求证:()f x 在()0,1上单调递减,在()1,+∞上单调递增;(2)当1,22x ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 值域.【答案】(1)证明见解析 (2)52,2⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)根据函数单调性的定义,结合作差法,可得答案;(2)根据(1)的单调性,求得给定区间上的最值,可得答案.【小问1详解】证明:()12,0,1x x ∀∈,且12x x <,有()()()121221212121212121121211111x x x x f x f x x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫---=+-+=-+-=-+=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由()12,0,1x x ∀∈,且12x x <,得210x x ->,1210x x -<,120x x >,所以()12211210x x x x x x --⋅<,即()()21f x f x <.所以()f x 在()0,1上单调递减.同理,当()12,1,x x ∈+∞,且12x x <,有()()()1221211210x x f x f x x x x x --=-⋅>.故()f x 在()1,+∞上单调递增.【小问2详解】由(1)得()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递减;在[]1,2上单调递增.()12f =,()15222f f ⎛⎫== ⎪⎝⎭,所以()52,2f x ⎡⎤∈⎢⎥⎣⎦.故函数()f x 的值域为52,2⎡⎤⎢⎥⎣⎦.的19. 设函数()223y ax b x =+-+.(1)若关于x 的不等式0y >的解集为{}13x x -<<,求4y ≥的解集;(2)若1x =时,2,0,0y a b =>>,求14a b+的最小值.【答案】(1){}1(2)9【解析】【分析】(1)根据不等式的解集得到方程的根,代入求出,a b ,从而解不等式求出解集;(2)先得到1a b +=,利用基本不等式“1”的妙用求出最小值.【小问1详解】由题知()2230ax b x +-+=的两个根分别是1-,3,则23093630a b a b +-+=⎧⎨+-+=⎩,解得1,4.a b =-⎧⎨=⎩故()2223234y ax b x x x =+-+=-++≥,2210x x -+≤,解得1x =.所求解集为{}1.【小问2详解】1x =时,2y =,即12++=a b ,所以有1a b +=,那么()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭41459b a a b=+++≥+=,当且仅当41b a a b a b ⎧=⎪⎨⎪+=⎩,即1,323a b ⎧=⎪⎪⎨⎪=⎪⎩时,取等号.故14a b+的最小值为9.20. 已知集合(){}40A x x x =-≥,{}121B x a x a =+<<-.(1)若x A ∀∈,均有x B ∉,求实数a 的取值范围;(2)若2a >,设p :x B ∃∈,x A ∉,求证:p 成立的充要条件为23a <<.【答案】(1)5,2⎛⎤-∞ ⎥⎝⎦(2)证明见解析【解析】【分析】(1)根据二次不等式,解得集合的元素,利用分类讨论思想,可得答案;(2)根据充要条件的定义,利用集合之间的包含关系,可得答案.【小问1详解】(){}(][)40,04,A x x x ∞∞=-≥=-⋃+.因为x A ∀∈,均有x B ∉,所以A B =∅ .当2a ≤时,B =∅,满足题意;当2a >时,10214a a +≥⎧⎨-≤⎩,解得512a -≤≤,所以522a <≤.综上,52a ≤,即a 的取值范围是5,2⎛⎤-∞ ⎥⎝⎦.【小问2详解】证明:若p :x B ∃∈,x A ∉为真命题,则p ⌝:x B ∀∈,x A ∈为假命题.先求p ⌝:x B ∀∈,x A ∈为真命题时a 的范围,因为2a >,所以B ≠∅,由p ⌝:x B ∀∈,x A ∈,得B A ⊆.则210a -≤或14a +≥,解得12a ≤或3a ≥,所以3a ≥.因为p ⌝:x B ∀∈,x A ∈为假命题,所以23a <<.综上,若2a >,则p 成立的充要条件为23a <<.21. 某市财政下拨专款100百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数1y (单位:百万元):12710x y x =+,处理污染项目五年内带来的生态收益可表示为投放资金x (单位:百万元)的函数2y (单位:百万元):20.3y x =.设分配给植绿护绿项目的资金为x (单位:百万元),两个生态项目五年内带来的生态收益总和为y (单位:百万元).(1)将y 表示成关于x 的函数;(2)为使生态收益总和y 最大,对两个生态项目的投资分别为多少?【答案】(1)27330(0100)1010x x y x x =-+≤≤+ (2)分配给植绿护绿项目20百万元,处理污染项目80百万元【解析】【分析】(1)由题意列式化简即可;(2)将原式变形构造成对勾函数,利用对勾函数的性质求最值即可.【小问1详解】若分配给植绿护绿项目的资金为x 百万元,则分配给处理污染项目的资金为()100x -百万元,∴272730.3(100)30(0100)101010x x x y x x x x =+-=-+≤≤++.【小问2详解】由(1)得27(10)2703(1010)2703(10)306010101010x x x y x x +-+-+⎡⎤=-+=-+⎢⎥++⎣⎦6042≤-=(当且仅当2703(10)1010x x +=+,即20x =时取等号),∴分配给植绿护绿项目20百万元,处理污染项目80百万元,生态收益总和y 最大.22. 设函数()()2*1488,,N f x mx m mn x m m n =+-++∈ .(1)若()f x 为偶函数,求n 的值;(2)若对*N n ∀∈,关于x 的不等式()0f x ≤有解,求m 的最大值.【答案】(1)2. (2)2.【解析】【分析】(1)根据函数为偶函数可得到14880m mn -+=,变形为714n m=+,结合*,1,N m n m ∈≥,即可确定答案.(2)根据对*N n ∀∈,关于x 的不等式()0f x ≤有解,可得22(1488)40m mn m ∆=-+-≥恒成立,结合二次不等式的解法,讨论n 取值,即可确定答案.【小问1详解】根据题意,函数()()2*1488,R,,N f x mx m mn x m x m n =+-++∈∈为偶函数,即满足()()f x f x -=,即()()22()1488()1488m x m mn x m mx m mn x m -+-+-+=+-++,R x ∈,则14880m mn -+=变形可得:714n m =+ ,又由*,1,N m n m ∈≥ ,则 101m<≤ , 故77111711,44444n m <+≤<≤∴ ,又N n *∈ ,则2n = ;【小问2详解】根据题意,若对*N n ∀∈,关于x 的不等式()0f x ≤有解,由于*,N 0m m ∈>,则22(1488)416[(32)2][(42)2]0m mn m m n m n ∆=-+-=-+-+≥恒成立 ,当1n = 时,32(2)(1)0m m ∆=++≥ ,对*N m ∀∈都成立, 当2n =时,32(2)0m ∆=-+≥,解得2m ≤ ,又*N m ∈,则12m ≤≤ ,当3n ≥时,21232n n <-- ,则223m n ≤- 或 12m n ≥-,当 223m n ≤- 时,又由1m ≥,则n 只能取2,不符合题意,舍去,当 12m n ≥- 时,又由1m ≥,从3n =开始讨论:令1()2g n n =-,由于1()2g n n =-单调递减,故只需1(3)132m g ≥==-,此时m 的取值范围为[1,2] ;综上所述,m 的最大值为2.。
上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)
2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题(第1-6题每題4分,第7-12题每题5分,满分54分)1.若,,则______.2.不等式的解集是______.3.已知,则______.4.不等式“”是“”______的条件.5.已知集合,集合,若集合M 满足,则这样的集合M 共有______个.6.已知,那么等于______.7.已知,,则用m ,n 表示______.8.若关于x 的不等式恰有两个整数解,则a 的取值范围是______.9.命题“任意,为真命题,则实数a 的取值范围是______.10.碳14是透过宇宙射线撞击空气中的氨14原子所产生.碳14原子经过衰变转变为氨原子.由于其半衰期达5730年,经常用于考古年代鉴定,半衰期(Half-life )是指放射性元素的原子核有半数发生衰变时所需要的时间,对北京人遗址中某块化石鉴定时,碳14含量约为原来的1%,则这块化石距今约为______万年.(四舍五入到0.1万年)11.已知,,,,,若且,,中各元素的和为256,则集合______.12.已知实数a ,b 满足,且,则的最小值为______.二、单选题(本大题共4题,满分20分)13.已知集合,,则( )A .B .C .D .14.关于x 的不等式的解集是,那么()A .1B .C .12D .{}|31A x x =-≥{}|15B x x =<<A B = 304x x -≤+12510a b ==11a b +=23x x ≤|2|1x -<{}2,3,5,8A ={}2,3,5,8,13,21B =A M B ⊂⊆()223350x x x -+=>1133x x -+9log 5m =3log 7n =35log 9=()22120x a x a -++<x ∈R ()()222240a x a x -+--<β14235{,,,,}A a a a a a =4222221235{,,,},B a a a a a =51234a a a a a <<<<i a ∈Z 1,2,3,4,5i ={}14,B a a A = 1410a a +=22a >A B A =11a b -<<<2a b +=1311a ab ++-4|,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}|14Q x x =-≤≤P Q = {}1,2,4{}0,1,3{}|03x x ≤≤{}|14x x -≤≤2x ax b ≤-{}4log a b =344315.若,,则下列不等式中一定成立的是()A .B .C .D .16.定义集合运算;将称为集合A 与集合B 的对称差,命题甲::命题乙:则下列说法正确的是( )A .甲乙都是真命题B .只有甲是真命题C .只有乙是真命题D ,甲乙都不是真命题三、解答题(本大题共有5题,满分76分)17.已知集合,,若,,则实数a 、b 、c 的值为.18.设关于x 的方程的两个实根分别是,.(1)求实数p 的取值范围;(2)求的取值范围.19.近几年来,“盲盒文化”广为流行,这种文化已经在中国落地生根,并发展处具有中国特色的盲盒经济,某盲盒生产及销售公司今年初用98万购进一批盲盒生产线,每年可有50万的总收入,已知生产此盲盒x 年(x 为正整数)所用的各种费用总计为万元(1)该公司第几年首次盈利(总收入超过总支出,今年为第一年)?(2)该公司第几年年平均利润最大,最大是多少?20.某天数学课上,你突然惊醒,发现黑板上有如下内容:(1)老师请你模仿例题,研究,上的最小值;(提示:,当且仅当时,等号成立);(2)研究,上的最小值;(3)当时,求,的最小值.21.已知有限集,如果A 中的元素满足,就称A 为“完美集”.x a m -<y a n -<2x y m -<2x y n -<x y n m-<-x y n m -<+{}|A B x x A x B -=∈∉且()()A B A B B A ∆=-- ()()()A B C A B A C ∆=∆ △()()()A B C A B A C ∆=∆ {}2|0A x x ax b =++={}2|150B x x cx =++={}3,5A B = {}3A B = 22lg lg 30x x p -+=αβlog log βαβα+2210x x +44x x -()0,x ∈+∞a b c d +++≥a b c d ===3139x x -()0,x ∈+∞0a >3x ax -()0,x ∈+∞{}()12,,2,,n A a a a n n ⋅⋅⋅=≥∈N ()1,2,,i a i n =⋅⋅⋅1212n n a a a a a a ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯(1)判断:集合是否是“完美集”并说明理由:(2)、是两个不同的正数,且是“完美集”,求证:、至少有一个大于2;(3)若为正整数,求:“完美集”A .2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题1.【答案】【解析】由题意知,,所以.2.【答案】【解析】,解得或,所以不等式的解集为.3.【答案】【解析】若,可得,,.4.【答案】必要不充分【解析】,,由于是的真子集,所以“”是“”的必要不充分条件.5.【答案】3【解析】因为集合,所以集合M 中包含2,3,5,8且至少包含13,21中的一个元素,所以或或,所以满足条件的M 个数为3.6.【解析】由,因,故,即得,.7.【答案】【解析】由,,可得,,又由{11---+1a 2a {}12,a a 1a 2a i a ()1,4(),4A =-∞()1,4A B = ()[),43,-∞-+∞ ()()34030440x x x x x -+≤⎧-⎪≤⇔⎨++≠⎪⎩4x <-3x ≥()[),43,-∞-+∞ 1-12510b a ==2log 10a =-5log 10b =-()521111lg 5lg 2lg101log 10log 10a b ⎛⎫+=-+=-+=-=- ⎪⎝⎭{}{}23|0|3x x x x x ≤=≤≤{}{}3|21|1x x x x -<=<<{}|13x x <<{}3|0x x ≤≤23x x ≤21x -<A M B ⊂⊆{}2,3,5,8,13M ={}2,3,5,8,21{}2,3,5,8,13,212112233332527x x x x --⎛⎪+=++⎫⎝⎭+ ==0x >11330x x -+>1133x x -+=22m n+9log 5m =3log 7n =31log 52m =3log 7n =8.【答案】【解析】令,解得或.当,即时,不等式,解得,则不等式中的两个整数解为2和3,有,解得;当,即时,不等式无解,所以不符合题意;当,即时,不等式解得,则不等式中的两个整数解为0和,有,解得.综上,a 的取值范围是9.【答案】【解析】因为“任意,”为真命题,所以不等式在上恒成立,当时,,显然成立,当时,有,解得,综上所述,实数a 的取值范围是.10.【答案】3.8【解析】设第n 个半衰期结束时,碳14含为,由题意可得,第一个半衰期结束时,碳14含量为,第二个半衰期结束时,碳14含量为;以此类推,为以首项,公比为的等比数列,所以第n 个半衰期结束时,碳14含量为,335333log 922log 9log 35log 5log 72m n===++3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或()22120x a x a -++=1x =2x a =21a >12a >()22120x a x a -++<12x a <<324a <≤322a <≤21a =12a =()22120x a x a -++<12a =21a <12a <()22120x a x a -++<21a x <<1-221a -≤<-112a -≤<-3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或(]2,2-x ∈R ()()222240a x a x -+--<()()222240a x a x -+--<R 2a =40-<2a ≠()()220421620a a a -<⎧⎪⎨∆=-+-<⎪⎩22a -<<(]2,2-n a 112a =214a ={}n a 112a =12q =12n n a ⎛⎫= ⎪⎝⎭令,解得所以这块化石距今约为年,即约为3.8万年:11.【答案】【解析】由,且,得到只可能,即或0,当时,,而,故舍去,则,又,∴,且,∴或,①若时,,不合题意;②若时,此时,,因,从而,又,则,当时,无整数解,当时,,所以,综上,12.【解析】因为,所以,,因为,所以,由,所以所以,11%2n n a ⎛⎫== ⎪⎝⎭2212lg102log 10 6.6410.301lg 2n ---===≈-5730 6.6438047.2⨯={}1,3,5,9,11{}14,A B a a = 12345a a aa a <<<<211a a =1a =11a =0410a ={}14,A B a a = =Z 1a =11410a a +=49a =()24923i a a i ==≤≤23a =33a =33a =22a =23a ={}531,3,,9,A a a ={}22531,9,,81,B a a =22353513981256a a a a +++++++=2255331620a a a a +++-=234a a a <<339a <<3a =4,6,7,85a 35a =511a ={}1,3,5,9,11A ={}1,3,5,9,11A =1-11a b -<<<10a +>10b ->2a b +=()()112a b ++-=2a b +=()32131133111111b a a b a b a b -+=+=+-+-+-+-()()13113311311211a b a b a b ⎡⎤⎢-+-=+++--⎡⎤⎣⎦+-+⎥⎣⎦()31111133432312112a b a b ⎛+- =+++-≥⎝⎛⎫ ⎪⎝+-=+-=- +⎭-当且仅当,即,二、单选题13.【答案】B 【解析】若,则是4的正因数,而4的正因数有1,2,4,所以,因为,所以,故选:B .14.【答案】D【解析】即,因为解集为,则根据韦达定理知,即,则故选:D .15.【答案】D 【解析】运用绝对值三角不等式,由于,,运用不等式性质得到故,故选:D .16.【答案】B【解析】对于甲,,故命题甲正确;对于乙,如图所示:所以,,故命题乙不正确三、解答题17.【答案】,,()31111a b a b +-=+-2a =-+4b =-41y x =+y ∈N 1x +{}4|,0,1,31P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N {}|14Q x x =-≤≤{}0,1,3P Q = 2x ax b ≤-20x ax b -+≤{}42424a b =⨯⎧⎨=⎩816a b =⎧⎨=⎩32844log log 16log 23a b ===x y x a a y x a a y -=--≤-++-x a m -<y a n -<x a a y m n-+-<+x y m n -<+()()()()A B C A B B C B C A B C A B C ∆=-=- ()()()()()()A B A C A B A C A B A C =-=∆ ()()()A B C A B A C ∆≠∆ ()A B C ∆ ()()A B A C ∆ 6a =-9b =8c =-【解析】因为,所以,所以,得,所以,所以,即有且只有一个实根,所以,,解得,,综上可得,,,.18.【答案】(1);(2)【解析】(1)因为,即,设,则关于t 的方程:的两根为和,所以,解得.(2)由韦达定理,得,所以因为且,所以或,所以或,所以的取值范围为19.【答案】(1)第3年:(2)第7年平均利润最大,为12万元【解析】(1)设利润为y ,则,由整理得,,解得,由于,所以,所以第3年首次盈利.(2)首先,由(1)得平均利润万元,{}3AB = 3B ∈93150c ++=8c =-{}{}28150|3,5B x x x =-+=={}3A =20x ax b ++=3x =33a +=-33b ⨯=6a =-9b =6a =-9b =8c =-1,3⎛⎤-∞ ⎥⎝⎦()[),22,-∞-+∞ 22lg lg 30x x p -+=2lg 2lg 30x x p -+=lg t x =2230t t p -+=lg αlg β()22120p ∆=-≥-13p ≤lg lg 2lg lg 3pαβαβ+=⎧⎨=⎩22lg lg lg lg log log lg lg lg lg αββαβαβααβαβ++=+=2(lg lg )2lg lg 4642lg lg 33p p pβααβαβ+--===-31p ≤30p ≠443p ≥403p<4223p -≥4223p-<-log log αββα+()[),22,-∞-+∞ ()()22*509821024098y x x x x x x =-++=-+-∈N 2240980x x -+->220490x x -+<1010x -<<x *∈N {}|317x x x *∈∈≤≤N {}|317x x x *∈∈≤≤N 4924024012y x x x ⎛⎫=-++≤-⨯+= ⎪⎝⎭当且仅当,万元时等号成立,综上,第7年,平均利润最大,为12万元20.【答案】(1):(2);(3)【解析】(1)因为,利用,于是,,当且仅当时,取得最小值.(2)因为,利用,得到,于是,,当且仅当时,取得最小值.(3)因为利用,得到,于是,,当且仅当时,取得最小值21.【解析】(1)由,,则集合是“完美集”.(2)若、是两个不同的正数,且是“完美集”,设,根据根和系数的关系知,和相当于的两根,由,解得或(舍去),所以,又,均为正数所以、至少有一个大于2.(3)不妨设A中,49x x=7x =3-6-0x >a b c d +++≥41114x x ++≥+444111434433x x x x x x -=+++--≥--=-1x =3-0x >a b c ++≥313339x x ++≥331133363363699x x x x x x -=++--≥--=-3x =6-0x >a b c ++≥3x ax +≥33x ax x ax -=-≥x =((112-+-+=-(112--=-{11--+1a 2a {}12,a a 12120a a a a t +=⋅=>1a 2a 20x tx t -+=240t t ∆=->4t >0t <124a a ⋅>1a 2a 1a 2a 312n a a a a <<<⋅⋅⋅<由,得,当时,即有,又为正整数,所以,于是,则无解,即不存在满足条件的“完美集”;当时,,故只能,,求得,于是“完美集”A 只有一个,为.当时,由,即有,而,又,因此,故矛盾,所以当时不存在完美集A ,综上知,“完美集”A 为1212n n n a a a a a n a a ⋅⋅⋅=++⋅⋅<⋅+121n n a a a -⋅⋅<⋅2n =12a <i a 11a =2211a a +=⨯2a 3n =123a a <11a =2a =23a =3{}1,2,34n ≥()1211231n a a a n n -⋅⋅⋅≥⨯⨯⨯⋅⋅⋅⨯-()1231n n n ≥⨯⨯⨯⋅⋅⋅⨯-()()()221242220n n n n n n ---=-+-=--+<()()()121231n n n n --≤⨯⨯⨯⋅⋅⋅⨯-()1231n n n <⨯⨯⨯⋅⋅⋅⨯-4n ≥{}1,2,3。
四川省成都市2024-2025学年高一上学期期中考试数学试题含答案
成都市2024-2025学年上学期半期考试高一年级数学试题(答案在最后)考试时间120分钟满分150分一、单选题1.已知集合A ={1,2,3,4,5},{},|15B x x =<<,则A ∩B 的元素个数为()A.2B.3C.4D.5【答案】B 【解析】【分析】直接根据集合的交集运算求解即可.【详解】因为集合A ={1,2,3,4,5},{}|15B x x =<<所以{}2,3,4A B = ,即A ∩B 的元素个数为3个.故选:B2.函数221y x mx =++在[2,+∞)单调递增,则实数m 的取值范围是()A.[2,)-+∞B.[2,+∞)C.(,2)-∞ D.(,2]-∞【答案】A 【解析】【分析】直接由抛物线的对称轴和区间端点比较大小即可.【详解】函数221y x mx =++为开口向上的抛物线,对称轴为x m =-函数221y x mx =++在[2,+∞)单调递增,则2m -≤,解得2m ≥-.故选:A.3.若函数的定义域为{}22M x x =-≤≤,值域为{}02N y y =≤≤,则函数的图像可能是()A. B.C. D.【答案】B 【解析】【分析】根据函数的定义域与值域,结合函数的性质判断即可.【详解】对A ,该函数的定义域为{}20x x -≤≤,故A 错误;对B ,该函数的定义域为{}22M x x =-≤≤,值域为{}02N y y =≤≤,故B 正确;对C ,当()2,2x ∈-时,每一个x 值都有两个y 值与之对应,故该图像不是函数的图像,故C 错误;对D ,该函数的值域不是为{}02N y y =≤≤,故D 错误.故选:B.4.已知函数()af x x =,则“1a >”是“()f x 在()0,∞+上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由幂函数的单调性结合充分必要条件的定义判断.【详解】当0a >时,函数()af x x =在()0,∞+上单调递增,则1a >时,一定有()f x 在()0,∞+上单调递增;()f x 在()0,∞+上单调递增,不一定满足1a >,故“1a >”是“()f x 在()0,∞+上单调递增”的充分不必要条件.故选:A.5.已知0,0x y >>,且121y x+=,则12x y +的最小值为()A.2B.4C.6D.8【答案】D 【解析】【分析】利用不等式的乘“1”法即可求解.【详解】由于0,0x y >>,故111122244428x y x xy y x y xy ⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪⎝⎭⎝⎭,当且仅当14,121,xy xyy x⎧=⎪⎪⎨⎪+=⎪⎩即2,14x y =⎧⎪⎨=⎪⎩时,等号成立,故12x y +的最小值为8.故选:D6.已知定义域为R 的函数()f x 不是偶函数,则()A.()(),0x f x f x ∀∈-+≠RB.()(),0x f x f x ∀∈--≠RC.()()000,0x f x f x ∃∈-+≠RD.()()000,0x f x f x ∃∈--≠R 【答案】D 【解析】【分析】根据偶函数的概念得()(),0x f x f x ∀∈--=R 是假命题,再写其否定形式即可得答案.【详解】定义域为的函数()f x 是偶函数()(),0x f x f x ⇔∀∈--=R ,所以()f x 不是偶函数()()000,0x f x f x ⇔∃∈--≠R .故选:D .7.若函数()22f x ax bx c=++的部分图象如图所示,则()1f =()A.23-B.112-C.16-D.13-【答案】D 【解析】【分析】利用函数图象求得函数定义域,利用函数值可得出其解析式,代入计算即求得函数值.【详解】根据函数图象可知2x =和4x =不在函数()f x 的定义域内,因此2x =和4x =是方程20ax bx c ++=的两根,因此可得()()()224f x a x x =--,又易知()31f =,所以可得2a =-;即()()()124f x x x =---,所以()113f =-.故选:D8.奇函数()f x 在(),0-∞上单调递增,若()10f -=,则不等式()0xf x <的解集是().A.()()101,∪,-∞-B.()()11,∪,-∞-+∞C.()()1001,∪,- D.()()101,∪,-+∞【答案】C 【解析】【分析】由()f x 奇偶性,单调性结合题意可得答案.【详解】因奇函数()f x 在(),0∞-上单调递增,()10f -=则()f x 在()0,∞+上单调递增,1=0.得()()()01,01,f x x ⋃∞>⇒∈-+;()()()0,10,1f x x ∞⋃<⇒∈--.则()()000x xf x f x <⎧<⇒⎨>⎩或()()()01,00,10x x f x ⋃>⎧⇒∈-⎨<⎩.故选:C二、多选题9.下列关于集合的说法不正确的有()A.{0}=∅B.任何集合都是它自身的真子集C.若{1,}{2,}a b =(其中,a b ∈R ),则3a b +=D.集合{}2yy x =∣与{}2(,)x y y x =∣是同一个集合【答案】ABD 【解析】【分析】根据集合的定义,真子集的定义,集合相等的定义判断各选项.【详解】{0}中含有一个元素,不是空集,A 错;任何集合都是它自身的子集,不是真子集,B 错;由集合相等的定义得2,1a b ==,3a b +=,C 正确;集合{}2yy x =∣中元素是实数,集合{}2(,)x y y x =∣中元素是有序实数对,不是同一集合,D 错,故选:ABD .10.已知二次函数()2223y m x mx m =-++-的图象与x 轴有两个交点()()12,0,,0x x ,则下面说法正确的是()A.该二次函数的图象一定过定点()1,5--;B.若该函数图象开口向下,则m 的取值范围为:625m <<;C.当2m >,且12x ≤≤时,y 的最大值为45m -;D.当2m >,且该函数图象与x 轴两交点的横坐标12,x x 满足1232,10x x -<<--<<时,m 的取值范围为:21114m <<【答案】ABD 【解析】【分析】代入1x =-,解得5y =-,即可求解A ,根据判别式即可求解B ,利用二次函数的单调性即可求解C ,利用二次函数的图象性质即可列不等式求解.【详解】由()2223y m x mx m =-++-可得()22123y m x x =+--,当1x =-时,5y =-,故二次函数的图象一定过定点()1,5--,A 正确,若该函数图象开口向下,且与x 轴有两个不同交点,则()()220Δ44230m m m m -<⎧⎨=--->⎩,解得:625m <<,故B 正确,当2m >,函数开口向上,对称轴为02mx m =-<-,故函数在12x ≤≤时,单调递增,当2x =时,911y m =-,故y 的最大值为911m -;C 错误,当2m >,则开口向上,又1232,10x x -<<--<<时,则3,4210x y m =-=->,且2,110x y m =-=-<,且1,50x y =-=-<,且0,30x y m ==->,解得21114m <<,m 的取值范围为:21114m <<,D 正确,故选:ABD11.已知幂函数()()293mf x m x =-的图象过点1,n m ⎛⎫-⎪⎝⎭,则()A.23m =-B.()f x 为偶函数C.364n =D.不等式()()13f a f a +>-的解集为(),1-∞【答案】AB 【解析】【分析】利用幂函数的定义结合过点1,n m ⎛⎫- ⎪⎝⎭,可求,m n 判断AC ;进而可得函数的奇偶性判断B ;解不等式可求解集判断D.【详解】因为函数()()293mf x m x =-为幂函数,所以2931m -=,解得23m =±,当23m =时,幂函数()23f x x =的图象不可能过点3,2n ⎛⎫- ⎪⎝⎭,故23m ≠,当23m =-,幂函数()23f x x -=的图象过点3,2n ⎛⎫ ⎪⎝⎭,则2332n -=,解得3232629n -⎛⎫=±=±⎪⎝⎭,故A 正确,C 错误;()23f x x -=的定义域为{|0}x x ≠,且()2233()()f x x x f x ---=-==,故()f x 为偶函数,故B 正确;函数()23f x x-=在(0,)+∞上单调递减,由()()13f a f a +>-,可得()()13fa f a +>-,所以1310a a a ⎧+<-⎪⎨+≠⎪⎩,解得1a <且1a ≠-,故D 错误.故选:AB.三、填空题12.满足关系{2}{2,4,6}A ⊆⊆的集合A 有____________个.【答案】4【解析】【分析】由题意可得集合A 为{}2,4,6的子集,且A 中必包含元素2,写出满足条件的集合,即可得答案.【详解】即集合A 为{}2,4,6的子集,且A 中必包含元素2,又因为{2,4,6}的含元素2的子集为:{}2,{}2,4,{}2,6,{2,4,6}共4个.故答案为:4.13.已知()f x 满足()()()2f x y f x f y +=++,且()22f =,则()3f =______.【答案】4【解析】【分析】令1x y ==得()10f =,再令1x =,2y =即可求解.【详解】令1x y ==得()()()21122f f f =++=,所以()10f =,令1x =,2y =得()()()31224f f f =++=.故答案为:4.14.已知函数()()()22223124,,4f x x ax ag x x x a a =-+-=-+-∈R ,若[]10,1x ∀∈,[]20,1x ∃∈,使得不等式()()12f x g x >成立,实数a 的取值范围是__________.【答案】(),6-∞【解析】【分析】由题意将问题转化为()(),min max f x g x >[]0,1x ∈,成立,利用二次函数的性质求解即可.【详解】若对任意[]10,1x ∈,存在[]20,1x ∈,使得不等式()()12f x g x >成立,即只需满足[]min min ()(),0,1f x g x x >∈,()22314g x x x a =-+-,对称轴()1,2x g x =在10,2⎡⎫⎪⎢⎣⎭递减,在,1,12⎛⎤ ⎥⎝⎦递增,()2min 18,2g x g a ⎛⎫==- ⎪⎝⎭()[]2224,0,1f x x ax a x =-+-∈,对称轴4a x =,①04a≤即0a ≤时,()f x 在0,1递增,()22min min ()04()8f x f a g x a ==->=-恒成立;②014a<<即04a <<时,()f x 在0,4a ⎡⎫⎪⎢⎣⎭递减,在,14a ⎛⎤ ⎥⎝⎦递增,22min min 7()4,()848a f x f a g x a ⎛⎫==-=- ⎪⎝⎭,所以227488a a ->-,故04a <<;③14a≥即4a ≥时,()f x 在[0,1]递减,()22min min ()12,()8f x f a a g x a ==--=-,所以2228a a a -->-,解得46a ≤<,综上(),6a ∞∈-.故答案为:(),6∞-【点睛】方法点睛:本题首先需要读懂题意,进行转化;其次需要分类讨论,结合二次函数的性质最后进行总结,即可求出结果.四、解答题15.设全集R U =,集合{|23}P x x =-<<,{|31}.Q x a x a =<≤+(1)若1a =-,求集合()U P Q ð;(2)若P Q =∅ ,求实数a 的取值范围.【答案】(1){|03}x x <<(2)][132,,⎛⎫-∞-+∞ ⎪⎝⎭【解析】【分析】(1)先求出U Q ð,再求()U P Q ⋂ð即可;(2)分Q =∅和Q ≠∅两种情况求解即可【小问1详解】解:当1a =-时,{|31}{|30}Q x a x a x x =<≤+=-<≤;{|3U C Q x x =≤-或0}x >,又因为{}23P x x =-<<,所以(){|03}.U P Q x x ⋂=<<ð【小问2详解】解:由题意知,需分为Q =∅和Q ≠∅两种情形进行讨论:当Q =∅时,即31a a ≥+,解得12a ≥,此时符合P Q =∅ ,所以12a ≥;当Q ≠∅时,因为P Q =∅ ,所以1231a a a +≤-⎧⎨<+⎩或3331a a a ≥⎧⎨<+⎩,解之得3a ≤-.综上所述,a 的取值范围为][1,3,.2∞∞⎛⎫--⋃+ ⎪⎝⎭16.已知二次函数()()20f x ax bx c a =++≠满足()()14f x f x x -+=,且()0 1.f =(1)求函数()f x 的解析式;(2)解关于x 的不等式()()2641f x t x t ≤-+-+.【答案】(1)()2221f x x x =-+(2)答案见解析.【解析】【分析】(1)利用待定系数法计算即可求解析式;(2)根据(1)的结论含参讨论解一元二次不等式即可.【小问1详解】因为()01f =,1c =,所以()21f x ax bx =++,又因为()()14f x f x x -+=,所以()(()22[1)1114a x b x ax bx x ⎤++++-++=⎦,所以24ax a b x ++=,所以240a a b =⎧⎨+=⎩,所以22a b =⎧⎨=-⎩,即()222 1.f x x x =-+【小问2详解】由()()2641f x t x t ≤-+-+,可得不等式()222440x t x t +++≤,即()2220x t x t +++≤,所以()()20x x t ++≤,当2-=-t ,即2t =时,不等式的解集为{|2}x x =-,当2t -<-,即2t >时,不等式的解集为{|2}x t x -≤≤-,当2t ->-,即2t <时,不等式的解集为{|2}x x t -≤≤-,综上所述,当2t =时,不等式的解集为{|2}x x =-,当2t >时,不等式的解集为{|2}x t x -≤≤-,当2t <时,不等式的解集为{|2}.x x t -≤≤-17.已知函数()221x f x x -=.(1)用单调性的定义证明函数()f x 在()0,∞+上为增函数;(2)是否存在实数λ,使得当()f x 的定义域为11,m n ⎡⎤⎢⎥⎣⎦(0m >,0n >)时,函数()f x 的值域为[]2,2m n λλ--.若存在.求出λ的取值范围;若不存在说明理由.【答案】(1)证明见详解;(2)存在,()2,+∞.【解析】【分析】(1)设()12,0,x x ∞∈+,且12x x <,然后作差、通分、因式分解即可判断()()12f x f x <,得证;(2)根据单调性列不等式组,将问题转化为210x x λ-+=存在两个不相等的正根,利用判别式和韦达定理列不等式组求解可得.【小问1详解】()222111x f x x x-==-,设()12,0,x x ∞∈+,且12x x <,则()()()()22121212122222222212211212111111x x x x x x f x f x x x x x x x x x -+⎛⎫--=---=-== ⎪⎝⎭,因为120x x <<,所以221212120,0,0x x x x x x <-+>>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在0,+∞上为增函数.【小问2详解】由(1)可知,()f x 在11,m n ⎡⎤⎢⎥⎣⎦上单调递增,若存在λ使得()f x 的值域为[]2,2m n λλ--,则22112112f m m m f n n n λλ⎧⎛⎫=-=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-=- ⎪⎪⎝⎭⎩,即221010m m n n λλ⎧-+=⎨-+=⎩,因为0m >,0n >,所以210x x λ-+=存在两个不相等的正根,所以21212Δ40100x x x x λλ⎧=->⎪=>⎨⎪+=>⎩,解得2λ>,所以存在()2,λ∞∈+使得()f x 的定义域为11,m n ⎡⎤⎢⎥⎣⎦时,值域为[]2,2m n λλ--.18.习总书记指出:“绿水青山就是金山银山”.淮安市一乡镇响应号召,因地制宜的将该镇打造成“生态水果特色小镇”.调研过程中发现:某珍稀水果树的单株产量W (单位:千克)与肥料费10x (单位:元)满足如下关系:()252,02()48,251x x W x x x x ⎧+≤≤⎪=⎨<≤⎪+⎩其它成本投入(如培育管理等人工费)为20x (单位:元).已知这种水果的市场售价大约为10元/千克,且供不应求.记该单株水果树获得的利润为()f x (单位:元).(1)求()f x 的函数关系式;(2)当投入的肥料费用为多少时,该单株水果树获得的利润最大?最大利润是多少?【答案】(1)25030100,02()48030,251x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩;(2)当投入的肥料费用为30元时,获得的利润最大,最大利润是270元.【解析】【分析】(1)由单株产量W 乘以售价减去肥料费和其它成本投入可得出的函数关系式;(2)利用二次函数的单调性求出当02x ≤≤时,()f x 的最大值,由基本不等式求出当25x <≤时,()f x 的最大值,即可得出答案.【小问1详解】(1)由题意可得()()()1020101030f x W x x x W x x=--=-()22105230,025030100,024804830,251030,2511x x x x x x x x x x x x x x ⎧⨯+-≤≤⎧-+≤≤⎪⎪==⎨⎨-<≤⨯-<≤⎪⎪+⎩+⎩.故()f x 的函数关系式为25030100,02()48030,251x x x f x x x x x⎧-+≤≤⎪=⎨-<≤⎪+⎩.【小问2详解】(2)由(1)22319150,025030100,02102()48030,251651030(1),2511x x x x x f x x x x x x x x ⎧⎧⎛⎫-+≤≤⎪-+≤≤⎪ ⎪⎪⎪⎝⎭==⎨⎨-<≤⎡⎤⎪⎪-++<≤+⎢⎥⎪⎪+⎣⎦⎩⎩,当02x ≤≤时,()f x 在30,10⎡⎤⎢⎥⎣⎦上单调递减,在3,210⎛⎤ ⎥⎝⎦上单调递增,且(0)100(2)240f f =<=,max ()(2)240f x f ∴==;当25x <≤时,16()51030(1)1f x x x ⎡⎤=-++⎢⎥+⎣⎦,16181x x ++≥=+ 当且仅当1611x x=++时,即3x =时等号成立.max ()510308270f x ∴=-⨯=.因为240270<,所以当3x =时,max ()270f x =.当投入的肥料费用为30元时,该单株水果树获得的利润最大,最大利润是270元.19.已知集合,A B 中的元素均为正整数,且,A B 满足:①对于任意,i j a a A ∈,若i j a a ≠,都有i j a a B ∈;②对于任意,m k b b B ∈,若m k b b <,都有k mb A b ∈.(1)已知集合{}1,2,4A =,求B ;(2)已知集合{}()2,4,8,8A t t =>,求t ;(3)若A 中有4个元素,证明:B 中恰有5个元素.【答案】(1){}2,48B =,(2)16t =(3)证明见解析【解析】【分析】(1)根据①可得2,4,8都是B 中的元素,进而证明B 中除2,4,8外没有其他元素即可求解,(2)根据条件①②,即可求解,(3)根据题意可得41a a ,3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素,进而根据11a =和12a ≥可得{}2341111,,,A a a a a =,进而{}3456711111,,,,a a a a a B ⊆,接下来假设B 中还有其他元素,且该元素为k ,利用k 与31a 的关系得矛盾求解.【小问1详解】由①可得2,4,8都是B 中的元素.下面证明B 中除2,4,8外没有其他元素:假设B 中还有其他元素,分两种情况:第一种情况,B 中最小的元素为1,显然81不是A 中的元素,不符合题意;第二种情况,B 中最小的元素为2,设B 中除2,4,8外的元素为()2k k b b >,因为2k b 是A 中的元素,所以k b 为4或8,而4,8也是B 中的元素,所以B 中除2,4,8外没有其他元素.综上,{}2,4,8B =.【小问2详解】由①可得,8,16,32,2,4,8t t t 都是B 中的元素.显然84,82,162t t t <<<,由(2)可得,422,,8816t t t 是A 中的元素,即,,248t t t 是A 中的元素.因为842t t t t <<<,所以2,4,8842t t t ===,解得16t =.【小问3详解】证明:设{}12341234,,,,A a a a a a a a a =<<<.由①可得,1224,a a a a 都是B 中的元素.显然1224a a a a <,由②可得,2412a a a a 是A 中的元素,即41a a 是A 中的元素.同理可得3324421123,,,,a a a a a a a a a a ,4321a a a a 是A 中的元素.若11a =,则34344122a a a a a a a a =>,所以3412a a a a 不可能是A 中的元素,不符合题意.若12a ≥,则32311a a a a a <<,所以321211,a a a a a a ==,即23213121,a a a a a a ===.又因为44443211a a a a a a a <<<<,所以444123321,,a a a a a a a a a ===,即441a a =,所以{}2341111,,,A a a a a =,此时{}3456711111,,,,a a a a a B ⊆.假设B 中还有其他元素,且该元素为k ,若31k a <,由(2)可得71a A k ∈,而7411a a k >,与{}2341111,,,A a a a a =矛盾.若31k a >,因为31k A a ∈,所以131,1,2,3,4i k a i a ==,则31,1,2,3,4i k a i +==,即{}45671111,,,k a a a a ∈,所以B 中除3456711111,,,,a a a a a 外,没有其他元素.所以{}3456711111,,,,B a a a a a =,即B 中恰有5个元素.【点睛】方法点睛:对于以集合为背景的新定义问题的求解策略:1、紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;2、用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.3、涉及有交叉集合的元素个数问题往往可采用维恩图法,基于课标要求的,对于集合问题,要熟练基本的概念,数学阅读技能、推理能力,以及数学抽象和逻辑推理能力.。
2024-2025学年银川一中高一数学上学期期中考试卷附答案解析
银川一中2024/2025学年度(上)高一期中考试数 学 试 卷命题教师:朱建锋一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1. 已知集合{}{}2(,)21,(,)23,A x y y x x B x y y x C A B ==-+==-=⋂∣∣,则C 的真子集的个数为( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】联立方程组221, 23,y x x y x ⎧=-+⎨=-⎩得2440x x -+=有一解,即C 有一个元素,即可求解.【详解】联立方程组221, 23,y x x y x ⎧=-+⎨=-⎩,整理得2440x x -+=,解得2x =,则{(2,1)}C =,故C 的真子集的个数为1.故选:B.2. 已知点(),27a 在幂函数()()()2,m f x a x a m =-∈R 的图象上,则a m +=( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】直接由幂函数的定义列方程组即可求解.【详解】由题意2136273m a a a m a m -==⎧⎧⇒⇒+=⎨⎨==⎩⎩.故选:C.3. 函数||x y x x=+的图象是( ).A. B. C. D.【答案】C【解析】【分析】将函数表达式化简成分段函数形式即可判断.【详解】1,01,0x x xy x x x x +>⎧=+=⎨-<⎩,对比选项可知,只有C 符合题意.故选:C.4. 函数()f x =的单调递减区间是( )A. []1,0- B. []0,1 C. [)2+∞, D. (]2-∞,【答案】A【解析】【分析】求得()f x 的定义域,利用复合函数的单调性,结合二次函数单调性可得答案.【详解】函数()f x =中,220x x --≥,解得20x -≤≤,又22y x x =--的开口向下,对称轴方程为1x =-,函数22yx x =--在[1,0]-上单调递减,在[2,1]--上单调递增,又y =在[0,1]上单调递增,因此函数()f x =在[1,0]-上单调递减,在[2,1]--上单调递增,所以函数()f x =的单调递减区间是[1,0]-.故选:A5. 已知a ,b ,c ,d 均为实数,则下列命题正确的是( )A. 若a b >,c d >,则a b c d+>+ B. 若22a b >,则a b -<-C. 若0c a b >>>,则a b c a c b >-- D. 若0a b >>且0m >,则a m a b m b+>+【答案】C【解析】【分析】由不等式的性质及特例逐项判断即可.【详解】选项A ,取1a =,0b =,2c =,1d =,则a b c d +<+,A 错误;选项B ,当1a =-,0b =时,22a b >,但a b ->-,不成立,B 错误;选项C ,当0c a b >>>时,()()a b a c b b c a ac bc a b c a c b >⇔->-⇔>⇔>--,C 正确;选项D ,根据糖水不等式可知0b m b a m a +>>+,再根据倒数不等式可得a m a b m b +<+,D 错误.故选:C .6. 函数()y f x =为定义在R 上的减函数,若0a ≠,则( )A. ()()2f a f a > B. ()()2f a f a >C. ()()2f a a f a +< D. ()()21f a a f a +>+【答案】C【解析】【分析】根据()f x 是定义域R 上的减函数,且0a ≠,然后比较a 与2a 的大小关系,从而得出选项A 错误;比较2a 与a 的大小即可得出选项B 错误;可得出2a a a +>,从而得出选项C 正确;比较2,1a a a ++大小即可判断D.【详解】()y f x = 是定义在R 上的减函数,0a ≠,a 与2a 的大小关系不能确定,从而()(),2f a f a 关系不确定,故A 错误;2(1)-=-a a a a ,1a >时,2a a >;01a <<时,2a a <,故()()2,f a f a 的关系不确定,故B 错误;220a a a a -=+>,2a a a ∴+>,()2()f a a f a ∴+<,故C 正确.()()221111a a a a a a +--=-=+-,1a >时,21a a a +>+;01a <<时,21a a a +<+,故()()2,1f a a f a ++关系不确定,D 错误,故选:C .7. 已知函数()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩在(),1m m +上单调递增,则实数m 的取值范围为( )A. (][),21,-∞-+∞ B. []2,1-C. (][),12,-∞-⋃+∞ D. []1,2-【答案】A【解析】【分析】作出分段函数的函数图象,由图象得到单调区间,建立不等式,得出m 取值范围.【详解】画出分段函数()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩的图象,如图所示,所以要使函数()f x 在(),1m m +上单调递增,则1m ≥或11m +≤-,解得1m ≥或2m ≤-,所以实数m 的取值范围为(][),21,-∞-+∞ .故选:A8. 定义{}max ,,a b c 为,,a b c 中的最大值,设()28max ,,63h x x x x ⎧⎫=-⎨⎬⎩⎭,则()h x 的最小值为().A. 649 B. 4 C. 0 D. 4811【答案】D【解析】【分析】分别画出28,,63y x y x y x ===-的图象,即可得函数ℎ(x )的图象,根据图象分析最值.【详解】分别画出28,,63y x y x y x ===-的图象,则函数ℎ(x )的图象为图中实线部分.由图知:函数ℎ(x )的最低点为A ,由836y x y x ⎧=⎪⎨⎪=-⎩ ,解得18114811x y ⎧=⎪⎪⎨⎪=⎪⎩,即1848,1111A ⎛⎫ ⎪⎝⎭.所以ℎ(x )的最小值为4811.故选:D.二、多选题:本题共4小题,共20分.在每小题给出的选项中,有多项符合题目要求.9. 下列说法中正确的有()A. 命题0:p x ∃∈R ,200220x x ++<”则命题p 的否定是2,220∀∈++≥R x x x B. “11x y>”是“x y <”的必要不充分条件C. 命题“2,0x x ∀∈>Z ”是真命题D. “0m <”是“关于x 的方程220x x m -+=有一正一负根”的充要条件【答案】AD【解析】【分析】利用特称量词命题否定求解选项A ;利用不等式的性质确定选项B ;利用全称量词命题的真假判断选项C;利用一元二次方程根与系数的关系确定选项D.【详解】对于A ,命题p 的否定是2220x x x ∀∈++≥R ,,故A 正确;对于B ,由11x y>可知由两种情况,①0xy >且y x >;②0y x <<,故11x y >不能推出x y <,由x y <也不能推出11x y>,所以11x y>是x y <的既不充分也不必要条件,故B 错误;对于C ,当x =0时,20x =,故C 错误;对于D ,关于x 的方程220x x m -+=有一正一负根,则4400m m ->⎧⎨<⎩,解得0m <.所以"0m <"是"关于x 的方程220x x m -+=有一正一负根"的充要条件,故D 正确.故选:AD.的10.已知函数)1fx +=+,则( )A. ()()21f x x x =-∈R B. ()f x 的最小值为0C. ()23f x -定义域为[)2,+∞D. 1f x ⎛⎫ ⎪⎝⎭的值域为()1,-+∞【答案】BC【解析】【分析】根据给定条件,利用配凑法求出函数()f x 的解析式,再逐项判断即得答案.详解】由)211)1f x +=+=+-11+≥,所以()()211f x x x =-≥,故A 错误;当1x ≥时,()210f x x =-≥,因此()f x 的最小值为0,故B 正确;在函数()23f x -中,231x -≥,即2x ≥,所以函数()23f x -的定义域为[)2,+∞,故C 正确;2111f x x⎛⎫=- ⎪⎝⎭,由11x ≥,即01x <≤,所以[)211,x ∞∈+,所以1f x ⎛⎫ ⎪⎝⎭值域为[)0,∞+,故D 错误.故选:BC.11. 已知函数()328x f x x -=-,则( )A. ()f x 的定义域为()(),44,-∞⋃+∞ B. ()f x 的值域为11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C. ()f x 的图象关于点14,2⎛⎫ ⎪⎝⎭对称D. 若()f x 在(),1a a +上单调递减,则4a ≥【答案】ABC【解析】【分析】求出函数的定义域和值域可判断A 、B ;根据图象的平移法可判断C ;根据函数的单调性解不等式的【的可判断D【详解】由280x -≠得4x ≠,所以()f x 的定义域为()(),44,-∞⋃+∞,A 正确;由()341112828228x x f x x x x --+===+---及1028x ≠-,可得()f x 的值域为11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭,B 正确;()11228f x x =+-的图象可由奇函数12y x=的图象向右平移4个单位,再向上平移12个单位得到,所以()f x 的图象关于点14,2⎛⎫ ⎪⎝⎭对称,C 正确;()f x 在(),1a a +上单调递减,则4a ≥或14a +≤,即4a ≥或3a ≤ ,D 错误.故选:ABC .三、填空题:本题共3小题,每小题5分,共15分.12. 已知函数()f x 为R 上的偶函数,当0x >时,2()23f x x x =+-,则0x <时,()f x =____________.【答案】223x x --【解析】【分析】根据题意,当0x <时,0x ->,由函数的解析式求出()f x -的表达式,结合奇偶性分析可得答案.详解】解:根据题意,当0x <时,0x ->,则22()()2()323f x x x x x -=-+--=--,又由函数()f x 为R 上的偶函数,则2()()23f x f x x x =-=--.则0x <时,2()23f x x x =--.故答案为:223x x --.13. 已知函数1,0()(1)(2),0x x f x f x f x x +≤⎧=⎨--->⎩,则(3)f 的值等于________【答案】1-【解析】【分析】根据分段函数的表达式直接代入即可.【【详解】由分段函数可知,(2)(3(1))f f f =-,而(1)(2(0))f f f =-,∴(3)(2)(1)(1)(0)(1)(0)1f f f f f f f =-=--=-=-.故答案为:1-.【点睛】本题考查分段函数求值的问题,属于基础题.14. 若函数()f x 在定义域[],a b 上的值域为()(),f a f b ⎡⎤⎣⎦,则称()f x 为“Ω函数”.已知函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”,则实数m 的取值范围是____________(用区间表示)【答案】[]10,14【解析】【分析】根据“Ω函数”的定义确定()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩的值域为[0,]m ,结合每段上的函数的取值范围列出相应不等式,即可求得答案.【详解】由题意可知()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩的定义域为[0,4],又因为函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”,故其值域为()()[0,4]f f ;而()()00,4f f m ==,则值域为[0,]m ;当02x ≤≤时,()5[0,10]f x x =∈,当24x <≤时,()24f x x x m =-+,此时函数在(2,4]上单调递增,则()(4,]f x m m ∈-,故由函数()25,024,24x x f x x x m x ≤≤⎧=⎨-+<≤⎩是“Ω函数”可得041010m m ≤-≤⎧⎨≥⎩,解得1014m ≤≤,即实数m 的取值范围是[]10,14,故答案为:[]10,14四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15. (1)求函数()()52(1)1x x y x x ++=>-+的最小值;(2)已知0x >,0y >且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值范围.【答案】(1)9;(2)16m ≤【解析】【分析】(1)对函数解析式变形,利用基本不等式求解最值;(2)先常数代换变形,再利用基本不等式求解最值;【详解】(1)由1x >-,得10x +>,因此1(5)(2[()4][(1))11]1x x x y x x x +++++=+=++2(1)5(1)44155911x x x x x ++++==+++≥+=++,当且仅当411x x +=+,即1x =时取等号,所以原函数的最小值为9.(2)由191x y+=,则()199101016x y x y x y x y y x ⎛⎫+=++=++≥+=⎪⎝⎭.当且仅当169x y x y y x +=⎧⎪⎨=⎪⎩,即412x y =⎧⎨=⎩时取到最小值16.若x y m +≥恒成立,则16m ≤.16. 已知函数()f x 的解析式为()22,1,126,2x x f x x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩(1)画出这个函数的图象,并解不等式()2f x <;(2)若直线y k =(k 为常数)与函数()f x 的图象有两个公共点,直接写出k的范围.【答案】(1)图象见解析,{|x x <4}x >(2)0k <或14k <<【解析】【分析】(1)根据解析式画出图像,结合图像即可求解不等式;(2)由图像即可求解.【小问1详解】根据分段函数的解析式,画出函数的图象,当1x ≤-时,11x +≤,所以()2f x <恒成立,当12x -<≤时,22x x <⇔<<,所以1x -<<当2x >时,624x x -+<⇒>,所以4x >,综上可知,x <或4x >,所以不等式的解集为{x x <或4}x >;【小问2详解】如图,y k =与()y f x =有2个交点,则0k <或14k <<.17. 已知函数()f x ax b =+是R 上的奇函数,且(1)2f =.(1)若函数2()()h x x m f x =+⋅在区间[2,)+∞递增,求实数m 的取值范围;(2)设2()21(0)g x kx kx k =++≠,若对1[1,1]x ∀∈-,2[1,2]x ∃∈-,使得()()12f x g x =成立,求实数k 的取值范围.【答案】(1)[)2,-+∞;(2)(][),13,-∞-+∞ .【解析】【分析】(1)利用奇函数求出()f x ,再利用二次函数单调性求出m 的范围.(2)分别求出函数()f x 在[1,1]-上的值域、函数()g x 在区间[1,2]-上值域,利用集合的包含关系列式求解即得.【小问1详解】由函数()f x ax b =+是R 上的奇函数,且(1)2f =,得(0)0(1)2f b f a b ==⎧⎨=+=⎩,解得20a b =⎧⎨=⎩,由函数2()2h x x mx =+在区间[2,)+∞上单调递增,得2m -≤,解得2m ≥-,所以实数m 的取值范围是[)2,-+∞.【小问2详解】对于()2f x x =,当[1,1]x ∈-,()f x 的值域为[]22-,,由对1[1,1]x ∀∈-,2[1,2]x ∃∈-,使得()()12f x g x =成立,得函数()f x 在区间[1,1]-的值域为()g x 在区间[1,2]-上值域的子集,2()21(0)g x kx kx k =++≠的对称轴为1x =-,当0k >时,函数()g x 在区间[1,2]-上单调递增,()g x 的值域为[]1,18k k -+,由[][]2,21,18k k -⊆-+,得21218k k -≥-⎧⎨≤+⎩,解得3k ≥;当0k <时,函数()g x 在区间[1,2]-上单调递减,()g x 的值域为[]18,1k k +-,由[][]2,218,1k k -⊆+-,得21821k k -≥+⎧⎨≤-⎩,解得1k ≤-,所以实数k 的取值范围(][),13,∞∞--⋃+.18. 已知函数()31x f x x x =++.(1)证明:函数()f x 是奇函数;(2)用定义证明:函数()f x 在()0,∞+上是增函数;(3)若关于x 的不等式()()2310f ax ax f ax ++-≥对于任意实数x 恒成立,求实数a 的取值范围.【答案】(1)证明见解析(2)证明见解析(3)[]0,1【解析】【分析】(1)根据函数奇偶性的定义和判定方法,即可可证;(2)根据函数单调性的定义和判定方法,即可得证;(3)根据题意,得到函数()f x 为定义域R 上的奇函数,且为单调递增函数,不等式转化为231ax ax ax +≥-对于任意实数x 恒成立,分0a =和0a ≠,结合二次函数的性质,列出不等式组,即可求解.【小问1详解】证明:由函数()31x f x x x =++,可得其定义域为R ,关于原点对称,又由()()3(3)11x x f x x x f x x x -=--=-+=--++,所以函数()f x 为定义域R 上的奇函数.【小问2详解】证明:当(0,)x ∈+∞时,()133111x f x x x x x =+=+-++,任取12,(0,)x x ∈+∞,且12x x <,可得()()1212121221111131(31)3()(1111f x f x x x x x x x x x -=+--+-=-+-++++()()()()121212212113()()[3]1111x x x x x x x x x x -=-+=-⋅+++++因为12,(0,)x x ∈+∞,且12x x <,可得120x x -<,()()21110x x ++>,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在(0,+∞)上是增函数.【小问3详解】因为函数()f x 为定义域R 上的奇函数,且在(0,+∞)上是增函数,所以函数()f x 在(),0∞-上也是增函数,又因为()00f =,所以函数()f x 在R 上是增函数,又由()()2310f ax ax f ax ++-≥,可得()()231(1)f ax x f ax f ax α+≥--=-,因为不等式()()2310f ax ax f ax ++-≥对于任意实数x 恒成立,即不等式()23(1)f ax ax f ax +≥-对于任意实数x 恒成立,可得不等式231ax ax ax +≥-对于任意实数x 恒成立,即不等式2210ax ax ++≥对于任意实数x 恒成立,当0a =时,不等式即为10≥恒成立,符合题意;当0a ≠时,则满足()20Δ240a a a >⎧⎪⎨=-≤⎪⎩,解得01a <≤,综上可得,01a ≤≤,即实数a 的取值范围[0,1].19. 设函数()y f x =的定义域为M ,且区间I M ⊆.若函数()y f x x =+在区间I 上单调递增,则称函数()f x 在区间I 上具有性质A ;若函数()y f x x =-在区间I 上单调递增,则称函数()f x 在区间I 上具有性质B .(1)试证明:“函数()f x 在区间I 上具有性质B ”是“函数()f x 位区间I 上单调递增”的充分不必要条件;(2)若函数()k f x x=在区间[)2,+∞上具有性质A ,求实数k 的取值范围;(3)若函数()32f x x x =+在区间[],1a a +上同时具有性质A 和性质B ,求实数a 的取值范围.【答案】(1)证明见解析(2){}4k k ≤(3){1a a ≤-∣或a ≥【解析】【分析】(1)根据题意结合单调性的定义以及充分、必要条件分析判断;(2)分析可知()()k g x f x x x x =+=+在区间[)2,+∞上单调递增,结合单调性的定义分析求解;(3)分析可知13y x x ⎛⎫=+⎪⎝⎭在区间[],1+a a 上单调递增,3y x x =+在区间[],1+a a 上单调递增,结合对勾函数单调性分析求解.【小问1详解】若函数()f x 在区间I 上具有性质B ,对任意12,x x I ∈且12x x <,由条件可知()()2211f x x f x x ->-变形可得()()21210f x f x x x ->->,即()()210f x f x ->,所以()f x 在区间I 上单调递增,即充分性成立;若函数()f x 位区间I 上单调递增,如()f x x =在任意区间I 上单调递增,但()0f x x -=,故不符合性质B ,即必要性不成立;所以“()f x 在区间I 上具有性质B ”是“()f x 在区间I 上单调递增”的充分不必要条件.【小问2详解】若具有性质A ,即可知()()k g x f x x x x=+=+在区间[)2,+∞上单调递增.对任意[)12,2,x x ∈+∞,且12x x <,则()()()()1212212121120x x k x x k k g x g x x x x x x x --⎛⎫-=+-+=> ⎪⎝⎭,因为122x x ≤<,则12120,40x x x x ->,可得12k x x <恒成立,则4k ≤,所以实数k 的取值范围是{}4k k ≤.【小问3详解】由条件可知,()f x 具有性质A ,即()13y f x x x x ⎛⎫=+=+ ⎪⎝⎭在区间[],1+a a 上单调递增;由条件可知,()f x 具有性质B ,即()3y f x x x x =-=+在区间[],1+a a 上单调递增;由对勾函数可知:13y x x ⎛⎫=+ ⎪⎝⎭的增区间为(][),1,1,∞∞--+,3y x x =+的增区间为(),,∞∞-+,要使得条件成立,需要1a +≤或a ≥所以实数a 的取值范围是{1a a ≤-∣或a ≥.。
2024-2025学年安徽省芜湖市第一中学高一上学期期中考试数学题(含答案)
2024-2025学年安徽省芜湖市第一中学高一上学期期中考试数学题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知x ∈R ,y ∈R ,则“x >1且y >1”是“x +y >2”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.已知集合A ={x |x 2−1≥0},集合B ={x |x−12≤0},则(∁R A )∪B =( )A. {x |x ≤12或 x ≥1}B. {x |−1<x ≤12}C. {x |12≤x <1}D. {x∣x <1}3.已知函数y =f (x )的定义域为[−1,4],则y =f (2x +1) x−1的定义域为( ).A. [−1,4] B. (1,32] C. [1,32] D. (1,9]4.设a ,b ∈R ,且a >b ,则下列不等式一定成立的是( ).A. 1a <1bB. ac 2>bc 2C. |a |>|b |D. a 3>b 35.不等式ax +1x +b >0的解集为{x|x <−1或x >4},则(x +a )(bx−1)≥0的解集为( )A. [14,1] B. (−∞,14]∪[1,+∞)C. [−1,−14] D. (−∞,−1]∪[−14,+∞)6.已知a >0,b >0,a +b =ab−3,若不等式a +b ≥2m 2−12恒成立,则m 的最大值为( )A. 1 B. 2 C. 3 D. 77.“曼哈顿距离”是十九世纪的赫尔曼−闵可夫斯基所创词汇,用以标明两个点在标准坐标系上的绝对轴距总和,其定义如下:在直角坐标平面上任意两点A (x 1,y 1),B (x 2,y 2)的曼哈顿距离d (A,B )=|x 1−x 2|+|y 1−y 2|,若点M (2,1),点P 是直线y =x +3上的动点,则d (M,P )的最小值为( )A. 2B. 3C. 4D. 58.已知f(x),g(x)是定义域为R 的函数,且f(x)是奇函数,g(x)是偶函数,满足f(x)+g(x)=ax 2+x +2,若对任意的1<x 1<x 2<2,都有g (x 1)−g (x 2)x 1−x 2>−5成立,则实数a 的取值范围是( )A. [0,+∞) B. [−54,+∞) C. (−54,+∞) D. [−54,0]二、多选题:本题共3小题,共18分。
天津市滨海新区塘沽第一中学2024-2025学年高一上学期11月期中考试数学试题(含答案)
塘沽一中2024—2025学年度第一学期高一年级期中考试数学学科试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间100分钟,试卷共4页。
卷Ⅰ答案用2B 铅笔填涂在答题纸上对应区域,卷Ⅱ答案用黑色字迹的笔答在答题纸规定区域内。
第Ⅰ卷(共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是最符合题目要求的)1.已知集合,,则( )A. B. C. D.2.命题“,”的否定是( )A., B.,C., D.,3.如果a ,b ,c ,,则正确的是( )A.若,则B.若,,则C.若,则D.若,,则4.设a ,,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.下列函数既是偶函数,且在上单调递减的是( )A. B. C. D.6.已知,,,则( )A. B. C. D.7.已知函数的部分图象如下图所示,则的解析式可能为( ){}|2A x x =<}2,1,0,1,{,23B =--()R A B = ð{}3{}2;3}0,1,2,3{}2,1,{0,1,2--0x ∃>2310x x -->0x ∀>2310x x --≤0x ∀≤2310x x --≤0x ∃>2310x x --≤0x ∃≤2310x x --≤R d ∈a b >11a b<a b >c d >a c b d ->-22ac bc >a b>a b >c d >ac bd>R b ∈22a b =1133ab⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()0,+∞2y x =1y x =+231y x =+21y x =32log 3a =0.23b =23log 2c =a b c>>b a c >>c b a>>b c a>>()f x ()f xA. B. C. D.8.函数的零点所在区间为( )A. B. C. D.9.已知国内某人工智能机器人制造厂在2023年机器人产量为300万台,根据市场调研和发展前景得知各行各业对人工智能机器人的需求日益增加,为满足市场需求,该工厂决定以后每一年的生产量都比上一年提高,那么该工厂到哪一年人工智能机器人的产量才能达到900万台(参考数据:,)( )A.2029年B.2030年C.2031年D.2032年10.设正实数x ,y 满足,则( )A.的最大值是B.的最小值为4C.最小值为2D.最小值为211.对任意的函数,都有,,且当时,,若关于x 的方程;在区间内恰有10个不等实根,则实数a 的取值范围是( )A. B. C. D.12.已知函数的定义域是,对,都有,且当时,,且,则下列说法中正确的个数为( )①②函数在上单调递增③④满足不等式的x 的取值范围为()e e 43x xf x x --=-()e e 34x xf x x--=-()e e 48x xf x x -+=-()1x f x x =-()1ln 3xf x x ⎛⎫=- ⎪⎝⎭()0,1()1,2()2,e ()e,320%lg 20.30≈lg 30.48≈22x y +=xy 14112x y+224x y +212x y x+R x ∈()f x ()()f x f x -=()()2f x f x =+[]1,0x ∈-()112xf x ⎛⎫=- ⎪⎝⎭()log 0a f x x -=[]10,10-()3,5()5,7[]5,7[]3,5()f x ()0,+∞x ∀()0,y ∈+∞()()()f x y f x f y ⋅=+1x >()0f x >113f ⎛⎫=- ⎪⎝⎭()10f =()f x ()0,+∞()()()()1111123202220230232022220222023f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()22f x f x --≥92,4⎛⎤ ⎥⎝⎦A.1个B.2个C.3个D.4个第Ⅱ卷(共90分)二、填空题(每小题5分,双空题答对一个给3分,共30分)13.已知函数,则函数的定义域为____________.14.____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020—2021学年度第一学期
高一级数学期中考试试卷
本试卷分选择题和非选择题两部分,共4页,满分为150分。
考试用时120分钟。
注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡相应的
位置上,用2B 铅笔将自己的学号填涂在答题卡上。
2、选择题每小题选出答案后,有2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,
用橡皮擦干净后,再选涂其他答案;不能答在试卷上。
3、非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4、考生必须保持答题卡的整洁和平整。
一、单选题(本题共10小题,每小题5分,共50分.每小题只有一项是符合题目要求)
1.下列说法正确的是( )
A .我校爱好足球的同学组成一个集合
B .{1,2,3}是不大于3的自然数组成的集合
C .集合{1,2,3,4,5}和{}5,4,3,2,1表示同一集合
D .数1,0,5,12,32,64组成的集合有7个元素 2.命题“0,)[x ∀∈+∞,30x x +≥”的否定是( )
A .,0)(x -∀∈∞,30x x +<
B .,0)(x -∀∈∞,30x x +≥
C .00,)[x ∈∃+∞,3000x x +<
D .00,)[x ∈∃+∞,3000x x +≥ 3.已知集合A ={x |x 2=4},①2⊆A ;②{-2}∈A ;③∅⊆A ;④{-2,2}=A ;⑤-2∈A .则
上列式子表示正确的有几个( )
A .1
B .2
C .3
D .4
4.已知:2p x >,:1q x >,则p 是q 的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件 5.函数f(x)=x -1
x -2的定义域为( )
A .(1,+∞)
B .[1,+∞)
C .[1,2)
D .[1,2)∪(2,+∞)
6.下列各组函数中,表示同一函数的是( )
A .2
(),()x f x x g x x
== B .y x =与33y x = C .y x =与2y x = D .x y =与()2
x y = 7.已知函数f (x )=2x +1,x ∈{x ∈N |-1≤x ≤3},则函数f (x )的值域为( )
A .{-1, 1,3,5,7}
B .{1,3,5,7}
C .[-1,7]
D .[1,7]
8. 函数y =x |x |的图象大致是 ( )
A B C D
9.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )
10.已知函数f (x )的定义域为(0,+∞),且在(0,+∞)上单调递增,则不等式f (x )>f (2x -
3)的解集是( )
A .(-∞,3)
B .(3,+∞)
C .(0,3) D.(2
3,3) 二、多选题(本题包括2个小题,每小题5分,共10分。
每小题有多个选项符合题意,选全对得5分,选对但不全得3分,选错得0分。
)
11.若a >0,b >0,且a +b =4,则下列不等式恒成立的是( )
A .a 2+b 2≥8 B.1ab ≥14
C.ab ≥2
D.1a +1b
≤1
12.已知函数f (x )=πx -π-x 2,g (x )=πx +π-x
2
,则f (x ),g (x )满足( ) A .f (-x )+g (-x )=g (x )-f (x ) B .f (-2)<f (3)
C .f (x )-g (x )=π-x
D .f (2x )=2f (x )g (x )
三、填空题(本题共4小题,每小题5分,共20分)
13.设函数()2,01,0
x x f x x x -≤⎧=⎨+>⎩则()()1f f -的值为________. 14.函数f (x )=x +2x -1
(x >1)的最小值是________;取到最小值时,x =________. 15.若不等式ax 2+bx -2>0的解集是(-∞,-2)∪(1,+∞),则a +b =________.
16.已知f (x )=⎩⎪⎨⎪⎧
x 2-2x +a ,x >1,(3-2a )x -1,x ≤1是R 上的单调递增函数,则实数a 的取值范围为________.
四、解答题(本题共6小题,共70分)
17(本题10分).已知集合A={}0,1,2+a a ,集合B={}51<<∈x N x
(1)若a =1且全集U={0,1,2,3,4,5},求A ∪B ;(∁U A )∩B
(2)若A ∩B={4},求a 的值
18(本题12分).已知集合A={}32≤≤-x x ,B={x|21>-<x x 或},C={x|x >a}
(1)求A ∩B ;A ∪B 。
(2)若p:x ∈C 是q:x ∈B 的充分条件,求a 的取值范围。
19(本题12分).(1)解不等式032-2<++x x
(2)解不等式21<x
(3)化简:
(其中a >0,b >0)
20(本题12分).已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x.现已作出函数f (x )在y 轴左侧的图象,如图所示.
(1)作出函数f (x )剩余部分的图象,并根据图象写出函数f (x )的单调区间(只写结论);
(2)求函数f (x )的解析式.
21(本题12分).已知函数f (x )=x x 4+, (1)证明f (x )在区间[2,+∞)上单调递增;
(2)若x ∈[2,8]求f (x )的最大值和最小值.
22(本题12分).已知函数f (x )=b
a x ++33,且f (x )是定义域为R 的奇函数。
(1)求a 和
b 的值,并判断f (x )的单调性(只用写结论);
(2)若对任意实数m ,不等式f (m-1)+f (m 2
+t )≥0恒成立,求实数t 的取值范围。