传感器测速实验报告(第一组)
传感器实验实验报告
传感器实验实验报告传感器实验实验报告引言:传感器是一种能够将各种物理量、化学量或生物量转换为可测量电信号的装置。
它在各个领域中都有着广泛的应用,如环境监测、医疗诊断、智能家居等。
本次实验旨在通过对不同类型传感器的测试和比较,深入了解传感器的原理和性能。
实验一:温度传感器温度传感器是一种常见的传感器类型,用于测量环境中的温度。
我们选择了一款热敏电阻温度传感器进行测试。
实验中,我们将传感器连接到一个电路板上,并使用示波器测量输出电压随温度的变化。
通过改变环境温度,我们观察到传感器输出电压与温度之间的线性关系。
这表明该传感器具有良好的灵敏度和稳定性。
实验二:光照传感器光照传感器是一种能够测量环境中光照强度的传感器。
我们选择了一款光敏电阻光照传感器进行测试。
实验中,我们将传感器暴露在不同光照条件下,并使用万用表测量输出电阻的变化。
结果显示,传感器输出电阻随光照强度的增加而减小。
这说明该传感器能够准确地感知光照强度,并将其转化为电信号输出。
实验三:湿度传感器湿度传感器是一种用于测量环境湿度的传感器。
我们选择了一款电容式湿度传感器进行测试。
实验中,我们将传感器放置在一个密封的容器中,并通过改变容器内的湿度来模拟不同湿度条件。
通过连接传感器到一个数据采集系统,我们能够实时监测到传感器的输出信号。
结果显示,传感器的输出电容随湿度的增加而增加。
这说明该传感器对湿度变化非常敏感,并能够准确地测量环境湿度。
实验四:气体传感器气体传感器是一种能够检测环境中气体浓度的传感器。
我们选择了一款气敏电阻气体传感器进行测试。
实验中,我们将传感器暴露在不同浓度的气体环境中,并使用示波器测量输出电阻的变化。
结果显示,传感器的输出电阻随气体浓度的增加而减小。
这表明该传感器能够准确地感知气体浓度,并将其转化为电信号输出。
结论:通过本次实验,我们深入了解了不同类型传感器的原理和性能。
温度传感器、光照传感器、湿度传感器和气体传感器在各自的应用领域中都具有重要的作用。
测速传感器实训报告总结
一、实训背景随着科技的不断发展,传感器技术在我国得到了广泛的应用。
测速传感器作为一种重要的传感器,广泛应用于汽车、工业、航空航天等领域。
为了更好地了解测速传感器的工作原理、性能特点及其在实际应用中的重要性,我们进行了为期两周的测速传感器实训。
二、实训目的1. 掌握测速传感器的基本原理和结构;2. 熟悉测速传感器的安装、调试及维护方法;3. 了解测速传感器在实际应用中的重要作用;4. 培养动手实践能力,提高团队协作意识。
三、实训内容1. 测速传感器基本原理及结构实训过程中,我们首先学习了测速传感器的基本原理和结构。
测速传感器主要分为电磁式、光电式、超声波式和磁电式等类型。
其中,电磁式测速传感器应用最为广泛,其原理是通过检测线圈中磁通量的变化来测量转速。
2. 测速传感器的安装与调试在了解了测速传感器的基本原理后,我们进行了其实际安装与调试。
实训中,我们学会了如何根据实际需求选择合适的测速传感器,并掌握了其安装方法。
同时,我们还学会了如何对测速传感器进行调试,确保其性能达到预期效果。
3. 测速传感器在实际应用中的重要作用实训过程中,我们了解了测速传感器在各个领域的应用。
例如,在汽车领域,测速传感器可以实时监测车速,为驾驶员提供安全驾驶依据;在工业领域,测速传感器可以用于检测设备转速,确保生产过程稳定;在航空航天领域,测速传感器可以用于测量飞行器速度,提高飞行安全。
4. 团队协作与动手实践在实训过程中,我们充分发挥了团队协作精神,共同完成了各项任务。
通过动手实践,我们不仅提高了自己的动手能力,还学会了如何与他人沟通、协作,为今后的工作积累了宝贵经验。
四、实训成果1. 理论知识方面:通过实训,我们对测速传感器的基本原理、结构、安装、调试及维护方法有了深入的了解,为今后的工作奠定了坚实基础。
2. 实践能力方面:在实训过程中,我们学会了如何进行测速传感器的安装、调试及维护,提高了自己的动手实践能力。
3. 团队协作方面:实训过程中,我们充分发挥了团队协作精神,共同完成了各项任务,为今后的工作积累了宝贵经验。
传感器测速实验报告(第一组)讲诉
传感器测速实验报告院系:班级:、小组:组员:日期:2013年4月20日实验二十霍尔转速传感器测速实验一、实验目的了解霍尔转速传感器的应用。
二、基本原理利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。
每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。
本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平三、需用器件与单元霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。
四、实验步骤1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。
图9-1 霍尔转速传感器安装示意图2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。
3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。
4、将转速调解中的转速电源引到转动源的电源插孔。
5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。
6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。
五、实验结果分析与处理1、记录频率计输出频率数值如下表所示:电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。
六、思考题1、利用霍尔元件测转速,在测量上是否有所限制?答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。
2、本实验装置上用了十二只磁钢,能否只用一只磁钢?答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。
实验二十一 磁电式传感器转速测量实验一、 实验目的:了解磁电式测量转速的原理; 二、需用器件与单元:磁电传感器、转动调节2-24V ,转动源单元。
传感器检测技术实验报告
传感器与检测技术实验报告姓 名: 学 号: 院 系:仪器科学与工程学院 专 业: 测控技术与仪器 实 验 室: 机械楼5楼 同组人员: 评定成绩: 审阅教师:传感器第一次实验实验一 金属箔式应变片——单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应及单臂电桥工作原理和性能;二、基本原理电阻丝在外力作用下发生机械形变时,其电阻值发生变化,这就是电阻应变效应;金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它反映被测部位受力状态的变化;电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态;单臂电桥输出电压 1/4o U EK ε=,其中K 为应变灵敏系数,/L L ε=∆为电阻丝长度相对变化;三、实验器材主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等;四、实验步骤1. 根据接线示意图安装接线;2. 放大器输出调零;3. 电桥调零;4. 应变片单臂电桥实验;测得数据如下,并且使用Matlab 的cftool 工具箱画出实验点的线性拟合曲线:由matlab 拟合结果得到,其相关系数为,拟合度很好,说明输出电压与应变计上的质量是线性关系,且实验结果比较准确; 系统灵敏度S =ΔU ΔW=0.0535V/Kg 即直线斜率,非线性误差=Δm yFS=0.0810.7×100%=0.75%五、思考题单臂电桥工作时,作为桥臂电阻的应变片应选用:1正受拉应变片;2负受压应变片;3正、负应变片均可以;答:1负受压应变片;因为应变片受压,所以应该选则2负受压应变片;实验三 金属箔式应变片——全桥性能实验一、实验目的了解全桥测量电路的优点二、基本原理全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边;当应变片初始阻值R1=R2=R3=R4、其变化值1234R R R R ∆=∆=∆=∆时,其桥路输出电压3o U EK ε=;其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差都得到了改善;三、实验器材主机箱、应变传感器实验模板、托盘、砝码、万用表、导线等;四、实验步骤1.根据接线示意图安装接线;2.放大器输出调零;3.电桥调零;4.应变片全桥实验数据记录如下表所示,并且使用Matlab的cftool工具箱画出实验点的线性拟合曲线:由matlab拟合结果得到,其相关系数为,比上个实验中的单臂电桥线性度差,跟理论存在误差;系统灵敏度S=ΔUΔW = 0.2232V/Kg 即直线斜率,非线性误差δ= ΔmyFS=0.4945×100%1.1%,可见全桥的灵敏度是单臂电桥的4倍可以看出,但非线性度却高于单臂电桥;按照实验结果,对于灵敏度的测量时符合理论值的,但是非线性误差是有误的,分析其原因可能是测量过程中的仪器调节、读数误差、以及仪器本身存在的问题;我们在做实验的过程中,仪器存在一定问题,总是很难调节或者得到稳定的数据,不够精准;五、思考题1.测量中,当两组对边电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:1可以;2不可以;答:2不可以;因为电桥平衡的条件为:R1×R3=R2×R4;2.某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如图2-8,能否如何利用四组应变片组成电桥,是否需要外加电阻;图2-8 受拉力时应变式传感器圆周面展开图答:能够利用它们组成电桥;a图中 4个应变片对称分布于测试棒上,检测试件横向拉力,如果已知试件泊松比则可知试件纵向应变;任意选取两个电阻接入电桥的对边,输出为两倍的横向应变,并选取外加电阻使电桥平衡;b图中R3、R4应变片检测试件纵向拉力,R1、R2检测横向拉力,可以选取R3、R4接入电桥对边,输出为两倍的纵向应变;需要接入与应变片阻值相等的电阻组成电桥;3.金属箔式应变片单臂、半桥、全桥性能比较基本原理如图2-9a、b、c;比较单臂、半桥、全桥输出时的灵敏度和非线性度,根据实验结果和理论分析,阐述原因,得出相应的结论;注意:比较实验中,a、b、c放大电路的放大器增益必须相同;a单臂 b半桥 c全桥图2-9 应变电桥①单臂U0 = U1-U3=〔R1+△R1/R1+△R1+R2-R4/R3+R4〕E=〔1+△R1/R1/1+△R1/R1+R2/R2-R4/R3/1+R4/R3〕E设R1=R2=R3=R4,且△R1/R1<<1;U0≈1/4△R1/R1E所以电桥的电压灵敏度:S=U0/△R1/R1≈kE=1/4E②半桥U0≈1/2△R1/R1ES =1/2E ③ 全桥 U0≈△R1/R1E S =E答:由以上可以看出,在灵敏度方面全桥的灵敏度最高,半桥次之,单臂最差,非线性度,单臂的非线性度最高即线性度最差,全桥的线性度最好 线性度:单臂>单桥>全桥 理论上: 灵敏度: 单臂 4E S = ,半桥 2ES = ,全桥 S E =; 非线性度:单臂100%2K K εδε=⨯+,半桥 0δ=,全桥 0δ=; 如前所述,由于外界因素,导致我们的非线性误差的计算存在很大偏差,但是就根据理论分析来看,全桥利用差动技术,能有效地提高灵敏度、降低非线性误差、有效地补偿温度误差;全桥利用差动技术,能有效地提高灵敏度、降低非线性误差、有效地补偿温度误差; 4、金属箔式应变片的温度影响电阻应变片的温度影响主要有两个方面;敏感栅丝的温度系数,应变栅的线膨胀系数与弹性体或被测试件的线膨胀系数不一致而产生附加应变;当温度变化时,即使被测体受力状态不变,输出也会有变化;① 按照全桥性能实验步骤,将200g 砝码放在砝码盘上,在数显表上读取数值Uo 1; ② 将主机箱中直流稳压电源+5V 、地⊥接于实验模板的加热器+6V 、地⊥插孔上,数分钟后待数显表电压显示基本稳定后,记下读数Uo t ;U ot -U 01即为温度变化的影响; 温度变化产生的相对误差:②如何消除金属箔式应变片温度影响答:可以采用温度自补偿法或者桥路补偿法;实验五差动变压器的性能实验一、实验目的了解差动变压器的工作原理和特性;二、基本原理差动变压器由一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有两段式和三段式,本实验采用三段式;当被测物体移动时差动变压器的铁芯也随着轴向位移,从而使初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化;将两只次级反向串接,引出差动电势输出;其输出电势反映出被测物体的移动量;三、实验器材主机箱、差动变压器、差动变压器实验模板、测微头、双踪示波器、万用表、导线等;四、实验步骤1.按照接线图连接线路;2.差动变压器L1的激励电压从主机箱中的音频振荡器的Lv端引入,音频振荡器的频率为4~5KHz,本次实验选取4561Hz,输出峰峰值为2V;3.松开测微头的紧固螺钉,移动测微头的安装套使变压器次级输出的Vp-p较小;然后拧紧螺钉,仔细调节测微头的微分筒使变压器的次级输出Vp-p为最小值零点残余电压,约为,定义为位移的相对零点;4.从零点开始旋动测微头的微分筒,每隔微分筒转过20格从示波器上读出示波器的输出电压Vp-p,记入表格中;一个方向结束后,退到零点反方向做相同的实验;5.根据测得数据画出Vop-p —X曲线,做出位移为±1mm、±3mm时的灵敏度和非线性误差;数据表格如下:实验曲线如下:从图可以看出,数据基本呈线性,关于x=0对称的,在零点时存在一个零点误差,即零点残余电压,在15mv左右;位移为1mm时, 灵敏度为151V/m,非线性度δ= ΔmyFS =5.67286×100%=1.98%;位移为-1mm时,灵敏度为m,非线性度δ= ΔmyFS =3.89263×100%=1.48%由上式得到的非线性度可知,差动式变压器输出的非线性较好;五、思考题1.用差动变压器测量,振动频率的上限受什么影响答:受导线的驱肤效应和铁损等的影响,若频率过大超过某一数值时该值视铁心材料而定将会导致灵敏度下降;2.试分析差动变压器与一般电源变压器的异同答:相同点:都利用了电磁感应原理;不同点:一般变压器为闭合磁路,初、次级间的互感为常数;差动变压器为开磁路,初、次级间的互感随衔铁移动而变,且两个次级绕组按差动方式工作;传感器第二次实验实验九电容式传感器的位移实验一、实验目的了解电容式传感器结构及其特点;二、基本原理利用电容C=εA/d的关系式,通过相应的结构和测量电路,可以选择ε、A、d三个参数中保持二个参数不变,而只改变其中一个参数,就可以组成测介质的性质ε变、测位移d变和测距离、液位A变等多种电容传感器;本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如图3-6所示:由二个圆筒和一个圆柱组成;设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=ε2 x/lnR/r; 图中C1、C2是差动连接,当图中的圆柱产生X位移时,电容量的变化量为C=C1-C2=ε2 2 X/lnR/r,式中ε2 、lnR /r为常数,说明C与位移X成正比,配上配套测量电路就能测量位移;图3-6 电容式位移传感器结构三、实验器材主机箱、电容传感器、电容传感器实验模板、测微头;四、实验步骤图3-7 电容传感器位移实验原理图1、按图3-8将电容传感器装于电容传感器实验模板上,实验模板的输出Vo1接主机箱电压表的Vin;2、将实验模板上的Rw调节到中间位置方法:逆时针转到底再顺时传3圈;3、将主机箱上的电压表量程显示选择开关打到2v档,合上主机箱电源开关;旋转测微头改变电容传感器的动极板位置使电压表显示0v ,再转动测微头向同一个方向5圈,记录此时测微头读数和电压表显示值,此点为实验起点值;此后,反方向每转动测微头1圈即△x=位移读取电压表读数,共转10圈读取相应的电压表读数单行程位移方向做实验可以消除测微头的回差;将数据填入表3-7并作出x-v实验曲线;结构:传感器为上下两个极板,谷物从传感器之间穿过;考虑因素:感应器是否与谷物接触的充分、谷物是否均匀的从传感器之间穿过以及直板传感器的边缘效应;实验十一压电式传感器振动测量实验一、实验目的了解压电传感器的测量振动原理和方法;二、基本原理压电式传感器由惯性质量块和受压的压电片等组成;工作时传感器感受与试件相同的振动频率,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶体上产生正比于运动速度的表面电荷;三、实验器材主机箱、差动变压器实验模板、振动源、示波器;四、实验步骤1、按照连线图将压电传感器安装在振动台上,振动源的低频输入接主机箱的低频振荡器,其它连线按照图示接线;2、合上主机箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察低通滤波器输出波形;3、用示波器的两个通道同时观察低通滤波器输入和输出波形;在振动台正常振动时用手指敲击振动台,同时观察输出波形的变化;4、改变振动源的频率,观察输出波形的变化;低频振荡器的幅度旋钮固定至最大,调节频率,用频率表监测,用示波器读出峰峰值填入表格;实验曲线:五、思考题根据实验结果,可以知道振动台的自然频率大致是多少传感器输出波形的相位差大致为多少答:根据实验曲线可知,振动台的自然频率大约为11Hz;×360°=17°t=5ms T=106ms φ=5106实验十二电涡流传感器位移实验一、实验目的了解电涡流传感器测量位移的工作原理和特性;二、基本原理通过交变电流的线圈产生交变磁场,当金属体处于交变磁场时,根据电磁感应原理,金属体内产生电流,该电流在金属体内自行闭合,并呈旋涡状,故称为涡流; 涡流的大小与金属体的电阻率、导磁率、厚度、线圈激磁电流频率及线圈与金属表面的距离x等参数有关;电涡流的产生必然要消耗一部分磁场能量,从而改变激磁线圈阻抗,涡流传感器就是基于这种涡流效应制成的;电涡流工作在非接触状态,当线圈与金属体表面的距离x以外的所有参数一定时可以进行位移测量;三、实验器材主机箱、电涡流传感器实验模板、电涡流传感器、测微头、被测体铁圆片;四、实验步骤1、观察传感器结构,根据示意图安装测微头、被测体、电涡流传感器并接线;2、调节测微头使被测体与传感器端部接触,将电压表显示选择开关切换到20V档,检查接线无误后开启主机箱电源开关,记下电压表读数,然后每隔0.1mm读一个数,直到输出几乎不变为止;将数据填入下表:3、画出V-X 曲线,根据曲线找出线性区域及正、负位移测量时的最佳工作点即曲线线性段的中点;试计算测量范围为1mm 与3mm 时的灵敏度和非线性度可以用端点法或其他拟合直线;1415161718192021xv测量范围1mm :非线性度:v =0.007v yFs= 所以测量范围3mm :非线性度:v =0.056v yFs=五、思考题1、电涡流传感器的量程与哪些因素有关,如果需要测量±5mm 的量程应如何设计传感器答:电涡流传感器的量程就是传感器的线性范围,它受到线圈半径;被测体的性质及形状和厚度等因素影响;2、用电涡流传感器进行非接触位移测量时,如何根据量程使用选用传感器 答:所测量的位移在所选的传感器量程范围内;传感器第三次实验实验十五 直流激励时线性霍尔传感器的位移特性实验一、实验目的了解霍尔式传感器原理与应用;二、基本原理根据霍尔效应,霍尔电势H H B U K I =•,当霍尔元件处在梯度中运动时,它的电势会发生变化,利用这一性质可以进行位移测量;三、实验器材主机箱、霍尔传感器实验模板、霍尔传感器、测微头;四、实验步骤图5-1 霍尔传感器直流激励实验原理图1、按图5-2示意图接线实验模板的输出Vo1接主机箱电压表的Vin,将主机箱上的电压表量程显示选择开关打到2v 档;2、检查接线无误后,开启电源,调节测微头使霍尔片处在两磁钢的中间位置,再调节Rw1使数显表指示为零;3、向某个方向调节测微头2mm 位移,记录电压表读数作为实验起始点;再反方向调节测微头,每增加0.2mm 记下一个读数建议做4mm 位移,将读数填入表5-1;表5-1作出V-X曲线,计算不同测量范围时的灵敏度和非线性误差;实验完毕,关闭电源;灵敏度:7277,4V mV X mm∆=∆=所以非线性度:207Vm mV∆=5983.8yFs=所以五、思考题本实验中霍尔元件位移的线性度实际上反映的是什么量的变化答:反映的是磁场的变化;实验十七霍尔转速传感器测量电机转速实验一、实验目的了解霍尔转速传感器的应用;二、基本原理利用霍尔效应表达式:UH =KH·IB,当被测圆盘上装上N只磁性体时,圆盘每转一周磁场就变化N次;每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路计数就可以测量被测物体的转速;三、实验器材主机箱、霍尔转速传感器、转动源;四、实验步骤1、根据图5-5将霍尔转速传感器安装于霍尔架上,传感器的端面对准转盘上的磁钢并调节升降杆使传感器端面与磁钢之间的间隙大约为2~3mm;图5-5霍尔转速传感器实验安装、接线示意图2、在接线以前,先合上主机箱电源开关,将主机箱中的转速调节电源2~24v旋钮调到最小逆时针方向转到底,接入电压表显示选择打到20v档,监测大约为1.25v;关闭主机箱电源,将霍尔转速传感器、转动电源按图5-5所示分别接到主机箱的相应电源和频率/转速表转速档的Fin上;3、合上主机箱电源开关,在小于12v范围内电压表监测调节主机箱的转速调节电源调节电压改变电机电枢电压,观察电机转动及转速表的显示情况;4、从2v开始记录,每增加1v相应电机转速的数据待电机转速比较稳定后读取数据;表5-3电压v 2 3 4 5 6转速380 600 840 1060 1290电压v 7 8 9 10 11转速1520 1740 1980 2200 2420画出电机的V~n 电机电枢电压与电机转速的关系特性曲线; 实验完毕,关闭电源;五、思考题1、利用霍尔元件测转速,在测量上是否有限制 答:有;霍尔元件不能用来测磁体的转速;2、本实验装置上用了六只磁钢,能否用一只磁钢 答:可以,但是分辨率会降低,使实验结果不准确;实验十八 磁电式转速传感器测电机转速一、实验目的了解磁电式测量转速的原理;二、基本原理基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线圈中感应电势:发生变化,因此当转盘上嵌入N 个磁棒时,每转一周线圈感应电势产生N 次的变化,通过放大、整形和计数等电路即可以测量转速;三、实验器材主机箱、磁电式传感器、转动源;四、实验步骤磁电式转速传感器测速实验除了传感器不用接电源外,其它完全与实验十七相同;图5-6 磁电转速传感器实验安装、接线示意图按图5-6接线,实验十七中的实验步骤做实验; 实验完毕,关闭电源;画出电机的V~n 电机电枢电压与电机转速的关系特性曲线; 实验完毕,关闭电源;dt d Ne Φ-=表5-4画出电机v~n特性曲线:五、思考题为什么磁电式转速传感器不能测很低速的转动,能说明理由么答:磁电式转速传感器是利用旋转体改变磁路,使磁通量发生变化,从而使其线圈产生感应电压,如果转速很慢,旋转体改变磁路也很慢,磁通量的变化也很慢,感应电压就会很小,就无法正确地测定转速;传感器第四次实验实验二十七发光二极管光源的照度标定实验一、实验目的了解发光二极管的工作原理;作出工作电流与光照度的对应关系及工作电压与光照度的对应关系曲线,为以后实验做好准备;二、基本原理半导体发光二极管筒称 LED;它是由Ⅲ-Ⅳ族化合物,如 GaAs砷化镓、GaP磷化镓、GaAsP磷砷化镓等半导体制成的,其核心是 PN 结;因此它具有一般二极管的正向导通及反向截止、击穿特性;此外,在一定条件下,它还具有发光特性;其发光原理如图7-1所示,当加上正向激励电压或电流时,在外电场作用下,在P-N 结附近产生导带电子和价带空穴,电子由 N 区注入 P 区,空穴由 P 区注入N 区,进入对方区域的少数载流子少子一部分与多数载流子多子复合而发光;假设发光是在 P 区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光;除了这种发光复合外,还有些电子被非发光中心这个中心介于导带、价带中间附近捕获,再与空穴复合,每次释放的能量不大,以热能的形式辐射出来;发光的复量相对于非发光复合量的比例越大,光量子效率越高;由于复合是在少子扩散区内发光的,所以光仅在靠近PN 结面数μm 以内产生;发光二极管的发光颜色由制作二极管的半导体化合物决定;本实验使用纯白高亮发光二极管;图7-1 发光二极管的工作原理三、实验器材主机箱0~20mA 可调恒流源、电流表、0~24V 可调电压源,照度表,照度计探头,发光二极管,光筒;四、实验步骤1、按图7-2配置接线,接线注意+、-极性;2、检查接线无误后,合上主机箱电源开关;3、调节主机箱中的恒流源电流大小电流表量程 20mA 档,即改变发光二管的工作电流大小就可改变光源的光照度值;拔去发光二极管的其中一根连线头,则光照度为 0如果恒流源的起始电流不为 0,要得到 0 照度只有断开光源的一根线;按表7-1进行标定实验调节恒流源,得到照度~电流对应值;4、关闭主机箱电源,再按图7-3配置接线,接线注意+、-极性;5、合上主机箱电源,调节主机箱中的 0~24V 可调电压电压表量程 20V 档就可改变光源发光二极管的光照度值;按表7-1进行标定实验调节电压源,得到照度~电压对应值;6、根据表7-1画出发光二极管的电流~照度、电压~照度特性曲线;表7-1 发光二极管的电流、电压与照度的对应关系照度Lx 2 10 20 30 40 50 60 70 80 90 100电流0 0mA电压V 0照度Lx 110 120 130 140 150 160 170 180 190 200电流mA电压V 3照度Lx 210 220 230 240 250 260 270 280 290 300电流mA电压V6、根据表7-1画出发光二极管的电流~照度、电压~照度特性曲线;发光二极管的电流-照度图纵坐标电流A,横坐标照度Lx发光二极管的电压-照度图横坐标照度,纵坐标电压由图可知,发光二极管的电压和电流必须达到一定值后,二极管才发光;这是由于正向电压必须达到二极管正向导通电压,二极管才能开始工作,才能发光;实验二十八光敏电阻特性实验一、实验目的了解光敏电阻的光照特性和伏安特性;二、基本原理在光线的作用下,电子吸收光子的能量从键合状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应;光电导效应是半导体材料的一种体效应;光照愈强,器件自身的电阻愈小;基于这种效应的光电器件称光敏电阻;光敏电阻无极性,其工作特性与入射光光强、波长和外加电压有关;实验原理图如图7-4;图7-4 光敏电阻实验原理图三、实验器材主机箱0~20mv可调恒流源、电流表、0~24V可调电压源、照度表,照度计探头,发光二极管,遮光筒;四、实验步骤1、亮电阻和暗电阻的测量1将光敏电阻和电流表串联,两端并联电压表内接法,电压表正极接一上拉电阻至VCC;光敏电阻接受一个发光二级管的光照,中间有一个遮光筒;调节发光二级光的供电电压,查表7-1,使光照度为100Lx;210s左右读取光敏电阻电流值,作为亮电流I亮;3缓慢调节二极管供电电压减到0V,10s左右读取电流值,作为暗电流I暗;4根据以下公式,计算亮阻和暗阻照度100Lx:I亮=,U亮=10V, R亮=U/I=6kΩI暗=0mA,U暗=10V, R暗=U/I=∞2、光照特性测量光敏电阻的两端电压为定值时,光敏电阻的光电流随光照强度的变化而变化,它们之间的关系是非线性的;调节不同光照度,做出光电流与光照度的曲线图;表7-2 光照特性实验数据图7-3光敏电阻光电流-光照度曲线由图可知光敏电阻的光照特性呈非线性,因此不宜做线性检测元件,但是在自控系统中用作开关元件;3、伏安特性的测量光敏电阻在一定光照强度下,光电流随外加电压的变化而变化;测量时,光照强度为定值下,光敏电阻输入6档电压,测得光敏电阻上的电流值如表7-3,在同一坐标图中做出不同照度的三条伏安特性曲线;表7-3 光敏电阻伏安特性实验数据图7-4 光敏电阻伏安特性由图可知,光敏电阻的伏安特性是呈线性的;光照越强,伏安特性曲线斜率越大,说明电阻阻值越小;五、思考为什么测光电阻亮阻和暗阻要经过10s后才读数这是光敏电阻的缺点,只能应用于什么状态答:当光照强度发生变化时,材料的电阻率也会发生改变,从而电阻阻值也发生改变;该种改变需要时间,当光线突然改变,阻值不稳定,经过10秒后阻值基本稳定,便可以读数,以获得稳定的输出读数;光敏电阻只能应用于自动控制系统中的开关作用;实验三十一硅光电池实验一、实验目的了解光电池的光照、光谱特性,熟悉其应用;二、基本原理光电池是根据光生伏特效应制成的,不需加偏压就能把光能转换成电能的P-N 结的光电池器件;当光照射到光电池的P-N结上时,便在P-N结两端产生电动势;这。
传感器检测实验报告
一、实验目的1. 了解传感器的基本原理和检测方法。
2. 掌握不同类型传感器的应用和特性。
3. 通过实验,验证传感器检测的准确性和可靠性。
4. 培养动手能力和分析问题的能力。
二、实验原理传感器是将物理量、化学量、生物量等非电学量转换为电学量的装置。
本实验主要涉及以下几种传感器:1. 电阻应变式传感器:利用应变片将应变转换为电阻变化,从而测量应变。
2. 电感式传感器:利用线圈的自感或互感变化,将物理量转换为电感变化,从而测量物理量。
3. 电容传感器:利用电容的变化,将物理量转换为电容变化,从而测量物理量。
4. 压电式传感器:利用压电效应,将物理量转换为电荷变化,从而测量物理量。
三、实验仪器与设备1. 电阻应变式传感器实验装置2. 电感式传感器实验装置3. 电容传感器实验装置4. 压电式传感器实验装置5. 数字万用表6. 示波器7. 信号发生器8. 振动台四、实验步骤1. 电阻应变式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的应变值和电压值。
(4)分析应变值和电压值之间的关系,验证电阻应变式传感器的检测原理。
2. 电感式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的电感值和电压值。
(4)分析电感值和电压值之间的关系,验证电感式传感器的检测原理。
3. 电容传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
(3)观察数字万用表和示波器显示的电容值和电压值。
(4)分析电容值和电压值之间的关系,验证电容传感器检测原理。
4. 压电式传感器实验(1)连接实验装置,确保电路连接正确。
(2)调整信号发生器输出频率和幅度,使振动台产生一定频率和幅度的振动。
传感器实验实习报告
一、实习背景随着科技的不断发展,传感器在各个领域得到了广泛的应用。
为了更好地了解传感器的原理和应用,提高自己的实践能力,我参加了本次传感器实验实习。
通过本次实习,我对传感器的原理、结构、工作方式及在实际应用中的重要作用有了更深入的认识。
二、实习目的1. 了解传感器的基本原理、分类、结构和工作方式。
2. 掌握传感器实验的基本操作方法和技巧。
3. 通过实验验证传感器的性能,提高自己的实践能力。
4. 了解传感器在实际应用中的重要作用。
三、实习内容本次实习主要分为以下几个部分:1. 传感器基本原理学习首先,我们学习了传感器的定义、分类、工作原理和性能指标。
传感器是一种能够将非电学量转换为电学量的装置,它具有测量精度高、响应速度快、便于自动控制等优点。
传感器按照其工作原理可以分为电阻式、电容式、电感式、压电式等。
2. 传感器实验操作(1)电阻应变式传感器实验实验目的:了解电阻应变式传感器的结构、工作原理,掌握电桥测量应变片电阻的微小变化,进而测定悬臂梁的应变。
实验步骤:① 搭建惠斯通电桥,将电阻应变片接入电桥中;② 对悬臂梁施加微小形变,观察应变片电阻的变化;③ 通过电桥测量应变片电阻的微小变化,计算悬臂梁的应变。
(2)压电式传感器实验实验目的:了解压电式传感器的测量振动的原理和方法。
实验步骤:① 将压电传感器安装在振动台上;② 通过低频振荡器产生振动信号,接入振动台;③ 观察压电传感器输出信号的变化,分析振动信号的特点。
3. 传感器性能测试(1)灵敏度测试测试方法:通过改变输入信号的大小,观察输出信号的变化,计算灵敏度。
(2)线性度测试测试方法:在一定的输入范围内,分别测量输出信号,绘制输出信号与输入信号的关系曲线,分析线性度。
(3)频率响应测试测试方法:在一定的频率范围内,分别测量输出信号,绘制输出信号与频率的关系曲线,分析频率响应。
四、实习总结通过本次传感器实验实习,我收获颇丰。
以下是我对本次实习的总结:1. 深入了解了传感器的原理、分类、结构和工作方式。
传感器测速实验报告
传感器测速实验报告传感器测速实验报告引言:近年来,随着科技的发展和社会的进步,传感器技术在各个领域得到了广泛应用。
其中,传感器在测速领域的应用越来越受到重视。
本文将介绍一项关于传感器测速实验的研究,探讨其原理、方法和实验结果。
一、实验目的本实验的主要目的是通过使用传感器测速的方法,了解传感器的工作原理,以及探究传感器测速的准确性和可行性。
二、实验装置和方法1. 实验装置:本实验使用了一台传感器测速仪器,该仪器由传感器、计算机和数据处理软件组成。
2. 实验方法:a. 将传感器正确安装在测速仪器上,并连接至计算机。
b. 在实验过程中,保持传感器与被测物体之间的距离恒定。
c. 启动测速仪器,并开始进行测速实验。
d. 实验过程中,记录传感器所测得的速度数据,并进行数据处理和分析。
三、实验原理传感器测速的原理基于多种物理现象,如声波、光学、电磁等。
不同类型的传感器采用不同的原理来测量速度。
在本实验中,我们使用了一种基于光学原理的传感器。
光学传感器利用光的传播速度和物体的运动速度之间的关系来测量物体的速度。
当物体通过传感器时,光束被物体遮挡,传感器会记录下遮挡时间。
通过计算遮挡时间和传感器与物体之间的距离,可以得出物体的速度。
四、实验结果与讨论在实验过程中,我们使用传感器测速仪器对一辆运动车辆进行了测速。
实验结果显示,该车辆的速度为每小时60公里。
通过多次实验,我们发现传感器的测速结果相对准确,与实际速度相差不大。
然而,我们也注意到传感器测速的准确性受到一些因素的影响。
首先,传感器与物体之间的距离需要保持恒定,否则会导致测速结果的偏差。
其次,传感器对于高速运动的物体可能存在测量误差,因为遮挡时间非常短,传感器的响应时间有限。
为了提高测速的准确性,我们可以采取以下措施:1. 定期校准传感器,确保其测量结果的准确性。
2. 采用多个传感器进行测速,以提高测量的可靠性和准确性。
3. 结合其他测速方法,如GPS等,进行对比验证,以确保测速结果的可信度。
传感器霍尔测速实验报告
实验报告()霍尔测速实验
姓名学号实验日期指导教师
一、实验目的:
了解霍尔组件的应用——测量转速。
二、实验仪器:
霍尔传感器、+5V、2~24V 直流电源、转动源、频率/转速表。
三、实验原理;
利用霍尔效应表达式:U H=K H IB,当被测圆盘上装上N 只磁性体时,转盘每转一周磁场变化N 次,每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测出被测旋转物的转速。
四、实验内容与步骤
1.安装根据图1-1,霍尔传感器已安装于传感器支架上,且霍尔组件正对着转盘上的磁钢。
图1-1
2.将+5V 电源接到三源板上“霍尔”输出的电源端,“霍尔”输出接到频率/转速表(切换到测转速位置)。
“2~24V”直流稳压电源接到“转动源”的“转动电源”输入端。
3.合上主控台电源,调节2~24V 输出,可以观察到转动源转速的变化。
用示波器观测霍尔组件输出的脉冲波形。
五、实验报告
1.分析霍尔组件产生脉冲的原理。
2.根据记录的驱动电压和转速,作V-RPM 曲线。
测速传感器实训报告单
一、实训背景随着科技的不断发展,测速传感器在各个领域得到了广泛应用。
为了提高学生的实践能力,加深对测速传感器原理和应用的了解,我们开展了测速传感器实训。
本次实训旨在使学生掌握测速传感器的原理、结构、性能和应用,提高学生的动手能力和创新能力。
二、实训目的1. 了解测速传感器的原理、结构、性能和应用;2. 掌握测速传感器的安装、调试和维修方法;3. 培养学生的动手能力和创新能力;4. 提高学生对实际工程问题的分析和解决能力。
三、实训内容1. 测速传感器原理及分类实训过程中,我们首先学习了测速传感器的原理和分类。
测速传感器根据工作原理可分为电磁式、光电式、超声波式等。
电磁式测速传感器利用电磁感应原理,通过测量线圈中磁通量的变化来获取转速信息;光电式测速传感器利用光电效应,通过测量光线在旋转物体上的遮挡情况来获取转速信息;超声波式测速传感器则利用超声波在介质中的传播速度变化来获取转速信息。
2. 测速传感器结构及性能接着,我们学习了测速传感器的结构及性能。
测速传感器主要由感应元件、信号处理电路、输出电路和外壳等组成。
感应元件负责将转速信息转化为电信号;信号处理电路负责对电信号进行放大、滤波、整形等处理;输出电路负责将处理后的信号输出;外壳则起到保护作用。
3. 测速传感器应用实训过程中,我们还学习了测速传感器在各个领域的应用。
例如,在汽车领域,测速传感器可用于测量车轮转速,从而实现汽车的电子控制;在工业领域,测速传感器可用于测量电机转速,从而实现电机的精确控制。
4. 测速传感器的安装、调试和维修最后,我们学习了测速传感器的安装、调试和维修方法。
安装时,要确保传感器与被测物体之间的接触良好;调试时,要根据实际情况调整传感器参数,使其达到最佳工作状态;维修时,要针对故障原因进行针对性维修。
四、实训过程及结果1. 实训过程本次实训分为以下几个阶段:(1)理论学习:通过查阅资料,了解测速传感器的原理、结构、性能和应用。
传感器检测实验报告
传感器检测实验报告传感器检测实验报告一、引言传感器是一种能够将物理量转化为电信号的装置,广泛应用于各个领域,如工业自动化、环境监测、医疗诊断等。
本实验旨在通过对传感器的检测,了解其工作原理、性能参数以及应用范围。
二、实验目的1. 了解传感器的基本工作原理;2. 掌握传感器的性能参数检测方法;3. 分析传感器的应用场景。
三、实验装置与方法1. 实验装置:传感器、信号采集器、示波器等;2. 实验步骤:a. 连接传感器与信号采集器;b. 设置示波器参数;c. 对传感器进行检测。
四、实验结果与分析1. 传感器工作原理传感器通过感受外界物理量的变化,转化为电信号输出。
常见的传感器类型有温度传感器、压力传感器、光敏传感器等。
不同类型的传感器有不同的工作原理,如热敏电阻式温度传感器利用温度变化导致电阻值的变化,从而输出电信号。
2. 传感器性能参数检测a. 灵敏度:传感器对被测量物理量变化的响应能力。
通过改变被测量物理量,记录传感器输出信号的变化,计算灵敏度。
b. 线性度:传感器输出信号与被测量物理量之间的线性关系程度。
通过改变被测量物理量,记录传感器输出信号,绘制曲线,判断线性度。
c. 分辨率:传感器能够检测到的最小变化量。
通过改变被测量物理量,记录传感器输出信号的变化,计算分辨率。
d. 响应时间:传感器从感受到物理量变化到输出信号变化所需的时间。
通过改变被测量物理量,记录传感器输出信号的变化,计算响应时间。
3. 传感器应用场景a. 工业自动化:传感器在工业生产中广泛应用,如温度传感器用于监测设备温度,压力传感器用于监测管道压力等。
b. 环境监测:传感器用于监测环境中的各种物理量,如光敏传感器用于检测光照强度,湿度传感器用于检测空气湿度等。
c. 医疗诊断:传感器在医疗设备中起着重要作用,如心率传感器用于监测患者心率,血压传感器用于测量患者血压等。
五、实验总结通过本次实验,我们了解了传感器的工作原理、性能参数检测方法以及应用场景。
传感器的测量实验报告
一、实验目的1. 了解传感器的原理和结构;2. 掌握传感器测量实验的基本方法;3. 熟悉传感器在工程中的应用。
二、实验原理传感器是一种将物理量、化学量、生物量等非电学量转换为电学量的装置。
本实验主要研究电阻式传感器和光电传感器两种类型的传感器。
1. 电阻式传感器:利用电阻元件的电阻值随被测物理量变化而变化的原理,将非电学量转换为电学量。
常见的电阻式传感器有电阻应变片、热敏电阻等。
2. 光电传感器:利用光电元件的光电效应,将光信号转换为电信号。
常见的光电传感器有光电二极管、光电三极管等。
三、实验仪器与设备1. 电阻式传感器实验装置;2. 光电传感器实验装置;3. 示波器;4. 数字多用表;5. 数据采集器;6. 计算机及实验软件。
四、实验步骤1. 电阻式传感器测量实验(1)将电阻应变片粘贴在悬臂梁上,连接好实验电路;(2)通过数字多用表测量电阻应变片的电阻值;(3)在悬臂梁上施加不同的力,观察电阻应变片的电阻值变化;(4)利用示波器观察电阻应变片电阻值的变化波形;(5)记录实验数据,分析电阻应变片的灵敏度。
2. 光电传感器测量实验(1)将光电传感器安装在实验装置上,连接好实验电路;(2)利用数据采集器采集光电传感器的输出信号;(3)改变光源的强度,观察光电传感器的输出信号变化;(4)利用示波器观察光电传感器输出信号的变化波形;(5)记录实验数据,分析光电传感器的灵敏度。
五、实验结果与分析1. 电阻式传感器测量实验结果(1)当悬臂梁上施加的力增加时,电阻应变片的电阻值也随之增加,两者呈线性关系;(2)根据实验数据,计算电阻应变片的灵敏度为0.2Ω/με。
2. 光电传感器测量实验结果(1)当光源强度增加时,光电传感器的输出信号也随之增加,两者呈线性关系;(2)根据实验数据,计算光电传感器的灵敏度为1mV/lx。
六、实验总结1. 通过本次实验,掌握了电阻式传感器和光电传感器的测量原理和实验方法;2. 熟悉了传感器在工程中的应用,提高了对传感器技术的认识;3. 在实验过程中,发现了实验装置和实验方法的一些不足,为以后的研究提供了参考。
传感器实验报告1_1
传感器实验报告1传感器实验报告实验一 Pt100铂电阻测温特性实验一、实验目的1.通过自行设计热电阻测温实验方案,加深对温度传感器工作原理的理解。
2.掌握测量温度的电路设计和误差分析方法。
二、实验内容1.设计PT100 铂热电阻测温实验电路方案;2.测量PT100 的温度与电压关系,要求测温范围为:室温~65℃;温度测量精度:±2℃;输出电压≤4V,输出以电压V方式记录。
3.通过测量值进行误差分析。
三、实验仪器、设备、材料主机箱、温度源、Pt100热电阻(2支)、温度传感器实验模板、万用表。
四、实验原理利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。
常用的热电阻有铂电阻(650℃以内)和铜电阻(150℃以内)。
铂电阻是将~mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷管等保护管内构成。
在0-650℃以内,它的电阻Rt与温度t的关系为:Rt=Ro(1+At+Bt2),式中:Ro系温度为0℃时的电阻值(本实验的铂电阻Ro=100Ω)。
A=×10-3/℃,B=-×10-7/℃2。
铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计。
)。
实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示。
五、实验步骤1、用万用表欧姆档测出Pt100三根线中其中短接的二根线(同种颜色的线)设为1、 2,另一根设为3,并测出它在室温时的大致电阻值。
2、在主机箱总电源、调节仪电源都关闭的状态下,再根据图1示意图接线,温度传感器实验模板中a、b(Rt)两端接传感器,这样传感器(Rt)与R3、R1、Rw1、R4组成直流电桥,是一种单臂电桥工作形式。
3、放大器调零:将图的温度传感器实验模板的放大器的两输入端引线(一根传感器引线、另一根桥路输出即Rw1活动触点输出)暂时不要引入,而用导线直接将放大器的两输入端相连(短接);将主机箱上的电压表量程(显示选择)切换开关打到2V档,合上主机箱电源开关,调节温度传感器实验模板中的RW2(逆时针转到底)增益电位器,使放大器增益最小;再调节RW3(调零电位器)使主机箱的电压表显示为0。
传感器测试实验报告
传感器测试实验报告实验一直流激励时霍尔传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。
二、基本原理:金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。
具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势UH=KHIB,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为UHk_,式中k—位移传感器的灵敏度。
这样它就可以用来测量位移。
霍尔电动势的极性表示了元件的方向。
磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。
三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、15V直流电源、测微头、数显单元。
四、实验步骤:1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。
1、3为电源5V,2、4为输出。
2、开启电源,调节测微头使霍XX大致在磁铁中间位置,再调节Rw1使数显表指示为零。
图9-1直流激励时霍尔传感器位移实验接线图3、测微头往轴向方向推进,每转动0.2mm记下一个读数,直到读数近似不变,将读数填入表9-1。
表9-1作出V-_曲线,计算不同线性范围时的灵敏度和非线性误差。
五、实验注意事项:1、对传感器要轻拿轻放,绝不可掉到地上。
2、不要将霍尔传感器的激励电压错接成15V,否则将可能烧毁霍尔元件。
六、思考题:本实验中霍尔元件位移的线性度实际上反映的时什么量的变化七、实验报告要求:1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。
2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。
实验二集成温度传感器的特性一、实验目的:了解常用的集成温度传感器基本原理、性能与应用。
二、基本原理:集成温度传器将温敏晶体管与相应的辅助电路集成在同一芯片上,它能直接给出正比于绝对温度的理想线性输出,一般用于-50℃-+150℃之间测量,温敏晶体管是利用管子的集电极电流恒定时,晶体管的基极—发射极电压与温度成线性关系。
实验五光电转速传感器测速实验(5篇)
实验五光电转速传感器测速实验(5篇)第一篇:实验五光电转速传感器测速实验实验五光电转速传感器测速实验一、实验目的了解光电转速传感器测量转速的原理及方法。
二、基本原理光电式转速转速传感器有反射型和透射型两种,本实验装置是透射型的,传感器端部有发光管和光电管,发光管发出的光源通过转盘上开的孔透射后由光电二极管接受转换成电信号,由于转盘上有相间的6个孔,转动时将获得与转速及孔数有关的脉冲,将电脉冲计数处理即可得到转速值。
三、需用器件与单元传感器实验模块四、实验步骤1.光电转速传感器已经安装在传感器实模块上。
2.将+5V直流稳压电源接到光电转速传感器的“+5V输入”端。
3.将光电转速传感器的输出接“频率/转速表”输入端。
4.将面板上的0~30V稳压电源调节到小于24V,接到传感器实验模块“0~24V转动电源”输入端。
5.调节0~30V直流稳压电源输出电压(+24V以下),使转盘的转速发生变化,观察频率/转速表显示的变化,并用虚拟示波器观察光电转速传感器输出波形。
五、注意事项1.转动源的正负输入端不能接反,否则可能击穿电机里面的晶体管。
2.转动源的输入电压不可超过24V,否则容易烧毁电机。
3.光电转速传感器中+5V电源不能接错,否则会烧毁光电传感器.六、思考题根据上面实验观察到的波形,分析为什么方波的高电平比低电平要宽。
第二篇:传感器实验五传感器实验报告五姓名江璐学号 1315212017 班级电子二班时间 2015.12.2 实验题目 CC2530基础实验一:实验设备1.硬件:教学实验箱、PC机。
2.软件:PC机操作系统Windows 98(2000、XP)+IAR开发环境。
二:实验(一)光照传感器采集实验1.实验目的(1)掌握光照传感器的操作方法。
(2)掌握光照传感器采集程序的编程方法。
2.实验内容在IAR集成开发环境中编写光照传感器采集程序。
3.相关电路图4.程序5.实验现象(二)人体感应传感器采集实验1.实验目的(1)掌握人体感应传感器的操作方法。
光纤传感器测速实验
光纤传感器测速实验
一、实验目的:了解光纤位移传感器用于测量转速的方法。
二、基本原理:利用光纤位移传感器探头对旋转体被测物反射光的明显变化产生的电脉冲,经电路处理即可测量转速。
三、需用器件与单元:光纤传感器、光纤传感器实验模板、数显单元测转速档、直流源±15V、转速调节2-24V,转动源单元。
四、实验步骤:
1、将光纤传感器按下图装于传感器支架上,使光纤探头与电机转盘平台中反射点对准。
2、按下图将光纤传感器实验模板输出V 01与数显电压表V I 端相接,接上实验模板上±15V 电源,数显表的切换开关选择开关拨到2V 档。
①用手转动圆盘,使探头避开反射面(暗电流),合上主控箱电源开关,调节R W 使数显表显示接近零(≥0)。
②再用手转动圆盘,使光纤探头对准反射点,调节升降支架高低,使数显表指示最大,重复①、②步骤,直至两者的压差值最大,再将V01与转速/频率数显表
F in 输入端相接,数显表的波段开关拨到转速档。
3、将转速调节2-24V,接入转动电源24V 插孔上,使电机转动,逐渐加大转速源电压。
使电机转速盘加快,固定某一转速观察并记下数显表上读数n1。
4、固定转速电压不变,将选择开关拨到频率测量档,测量频率记下频率读数,根据转盘上的测速点数折算成转速值n2。
5、将实验步骤4与实验步骤3比较,以转速n1作为真值计算二种方法的测速误差(相对误差),相对误差r=((n1-n2)/n1)×100%。
五、思考题:测量转速时转速盘上反射 (或吸收点)的多少与测速精度有否影响,你可以用实验来验证比较转盘上是一个黑点的情况。
转速传感器测速实验报告
转速传感器测速实验报告转速传感器测速实验报告引言:转速传感器是一种用于测量机械设备转速的重要工具。
在工业生产中,准确地测量转速对于设备的正常运行和维护至关重要。
本实验旨在通过对转速传感器的测速实验,验证其测量转速的准确性和可靠性。
一、实验目的本实验的主要目的是验证转速传感器的测速准确性和可靠性。
通过对不同转速下的测量数据进行分析,评估转速传感器的性能,并对实验结果进行解释和讨论。
二、实验装置和方法1. 实验装置:本实验使用的转速传感器为型号为XXX的磁电式转速传感器,测速范围为0-10000转/分钟。
实验中还使用了一台转速可调的电机和一台数字示波器。
2. 实验方法:(1)将转速传感器安装在电机的转轴上,并固定好。
(2)将数字示波器连接到转速传感器的输出端口。
(3)调节电机的转速,分别设置为500、1000、2000、5000和8000转/分钟。
(4)记录示波器上显示的转速传感器输出信号,并记录下来。
(5)重复实验3次,取平均值作为最终的测量结果。
三、实验结果和分析在实验过程中,我们按照上述方法进行了多次测量,得到了如下的实验结果:转速(转/分钟) | 传感器输出信号(V)500 | 0.51000 | 1.02000 | 2.15000 | 5.28000 | 8.3通过对实验数据的分析,我们可以得出以下结论:1. 转速传感器的输出信号与转速之间存在线性关系。
随着转速的增加,传感器输出信号也相应增加。
2. 实验数据与理论值相符合,说明转速传感器的测量准确性较高。
3. 由于实验条件的限制,我们无法测试更高转速下的测量结果。
在实际应用中,需要根据设备的转速范围选择合适的转速传感器。
四、实验误差和改进措施在本实验中,可能存在一些误差和改进的空间。
主要包括以下几个方面:1. 由于实验设备的限制,我们无法测试更高转速下的测量结果。
在未来的实验中,可以尝试使用更高转速的电机进行测试。
2. 实验过程中,传感器的安装位置和固定方式可能会对测量结果产生一定的影响。
传感器的实验报告
传感器的实验报告传感器的实验报告引言:传感器是一种能够将物理量或化学量转化为电信号的装置,广泛应用于各个领域。
本实验旨在通过对不同类型的传感器进行实验,了解其原理和应用。
实验一:温度传感器温度传感器是一种常见的传感器,用于测量环境或物体的温度。
本实验选择了热敏电阻作为温度传感器,通过测量电阻值的变化来间接测量温度。
实验中使用了一个简单的电路,将热敏电阻与电源和电阻相连接,通过测量电路中的电压来计算温度。
实验结果显示,随着温度的升高,电阻值逐渐下降,电压也相应变化。
这说明热敏电阻的电阻值与温度呈负相关关系。
实验二:压力传感器压力传感器用于测量物体受到的压力大小。
本实验选择了压电传感器作为压力传感器,通过压电效应将压力转化为电信号。
实验中,将压电传感器与一个振荡电路相连,当物体施加压力时,压电传感器会产生电荷,导致振荡电路频率的变化。
通过测量频率的变化,可以间接测量物体受到的压力。
实验结果显示,当施加压力时,频率逐渐增加,说明压电传感器的输出信号与压力呈正相关关系。
实验三:光敏传感器光敏传感器用于测量光线的强度或光照度。
本实验选择了光敏电阻作为光敏传感器,通过测量电阻值的变化来间接测量光照度。
实验中,将光敏电阻与一个电路相连,通过测量电路中的电压来计算光照度。
实验结果显示,随着光照度的增加,电阻值逐渐下降,电压也相应变化。
这说明光敏电阻的电阻值与光照度呈负相关关系。
实验四:湿度传感器湿度传感器用于测量环境中的湿度。
本实验选择了电容式湿度传感器作为湿度传感器,通过测量电容值的变化来间接测量湿度。
实验中,将电容式湿度传感器与一个电路相连,通过测量电路中的电容值来计算湿度。
实验结果显示,随着湿度的增加,电容值逐渐增加,说明电容式湿度传感器的输出信号与湿度呈正相关关系。
结论:通过本次实验,我们对不同类型的传感器进行了实验,了解了它们的原理和应用。
温度传感器、压力传感器、光敏传感器和湿度传感器分别用于测量温度、压力、光照度和湿度。
传感器系列实验实验报告(3篇)
第1篇一、实验目的1. 理解传感器的基本原理和分类。
2. 掌握常见传感器的工作原理和特性。
3. 学会传感器信号的采集和处理方法。
4. 提高实验操作能力和数据分析能力。
二、实验设备与器材1. 传感器实验平台2. 数据采集卡3. 信号发生器4. 示波器5. 计算机及相应软件6. 传感器:热敏电阻、霍尔传感器、光电传感器、电容式传感器、差动变压器等三、实验内容及步骤1. 热敏电阻实验(1)目的:了解热敏电阻的工作原理和特性。
(2)步骤:1. 将热敏电阻连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集热敏电阻的输出信号。
3. 使用示波器观察热敏电阻输出信号的波形和幅度。
4. 分析热敏电阻输出信号与温度的关系。
2. 霍尔传感器实验(1)目的:了解霍尔传感器的工作原理和特性。
1. 将霍尔传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集霍尔传感器的输出信号。
3. 使用示波器观察霍尔传感器输出信号的波形和幅度。
4. 分析霍尔传感器输出信号与磁场强度的关系。
3. 光电传感器实验(1)目的:了解光电传感器的工作原理和特性。
(2)步骤:1. 将光电传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集光电传感器的输出信号。
3. 使用示波器观察光电传感器输出信号的波形和幅度。
4. 分析光电传感器输出信号与光照强度的关系。
4. 电容式传感器实验(1)目的:了解电容式传感器的工作原理和特性。
(2)步骤:1. 将电容式传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集电容式传感器的输出信号。
3. 使用示波器观察电容式传感器输出信号的波形和幅度。
4. 分析电容式传感器输出信号与电容变化的关系。
5. 差动变压器实验(1)目的:了解差动变压器的工作原理和特性。
1. 将差动变压器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
转速传感器测速实验报告
转速传感器测速实验报告转速传感器测速实验报告引言:转速传感器是一种常用的测速装置,广泛应用于各种机械设备中。
通过测量旋转物体的转速,可以为我们提供重要的运行状态信息,帮助我们进行故障诊断和性能优化。
本实验旨在通过使用转速传感器,实现对旋转物体的准确测速,并对测速结果进行分析和讨论。
实验目的:1. 了解转速传感器的原理和工作机制;2. 掌握使用转速传感器进行测速的方法和技巧;3. 分析和讨论测速结果,探讨转速传感器的准确性和可靠性。
实验器材和方法:1. 实验器材:转速传感器、旋转物体、示波器、计时器等;2. 实验步骤:a. 将转速传感器固定在旋转物体上;b. 连接传感器输出端与示波器输入端;c. 启动旋转物体,记录示波器上的输出波形;d. 根据示波器上的波形,使用计时器测量旋转物体的转速。
实验结果与分析:通过实验测得的数据,我们可以得到旋转物体的转速。
根据示波器上的波形,我们可以观察到传感器输出的脉冲信号。
通过计时器测量脉冲信号的频率,我们可以得到旋转物体的转速。
在实验过程中,我们还可以对转速传感器的准确性和可靠性进行评估。
首先,我们可以通过与其他测速装置进行对比,检验传感器的测量结果是否准确。
其次,我们可以对传感器进行多次测量,观察其稳定性和重复性。
如果测量结果相对稳定且重复性好,那么说明转速传感器具有较高的准确性和可靠性。
实验讨论:在实际应用中,转速传感器的准确性和可靠性对于机械设备的运行和维护非常重要。
准确的转速测量结果可以帮助我们及时发现设备故障和异常情况,及时采取措施进行修复和调整。
而可靠的传感器性能可以保证长期稳定的测量结果,提高设备的运行效率和寿命。
然而,转速传感器的准确性和可靠性受到多种因素的影响。
例如,传感器的安装位置和固定方式、传感器与旋转物体的接触方式、传感器的工作温度范围等都会对测量结果产生影响。
因此,在实际应用中,我们需要根据具体情况选择合适的传感器,并进行正确的安装和调试。
传感器测速实验报告(第一组)
传感器测速实验报告院系:班级:小组:组员:日期:2013年4月20日实验二十霍尔转速传感器测速实验一、实验目的了解霍尔转速传感器的应用。
二、基本原理利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。
每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。
本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平三、需用器件与单元霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。
四、实验步骤1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。
图9-1 霍尔转速传感器安装示意图2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。
3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。
4、将转速调解中的转速电源引到转动源的电源插孔。
5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。
6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。
五、实验结果分析与处理1、记录频率计输出频率数值如下表所示:电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。
六、思考题1、利用霍尔元件测转速,在测量上是否有所限制?答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。
2、本实验装置上用了十二只磁钢,能否只用一只磁钢?答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。
实验二十一 磁电式传感器转速测量实验一、 实验目的:了解磁电式测量转速的原理;二、需用器件与单元:磁电传感器、转动调节2-24V ,转动源单元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器测速实验报告
院系:
班级:
、
小组:
组员:
日期:2013年4月20日
实验二十霍尔转速传感器测速实验
一、实验目的
了解霍尔转速传感器的应用。
二、基本原理
利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。
每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。
本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平
三、需用器件与单元
霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。
四、实验步骤
1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。
图 9-1 霍尔转速传感器安装示意图
2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。
3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。
4、将转速调解中的转速电源引到转动源的电源插孔。
5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。
6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。
五、实验结果分析与处理
1、记录频率计输出频率数值如下表所示:
电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264
由以上数据可得:电压的值越大,电机的转速就越快。
六、思考题
1、利用霍尔元件测转速,在测量上是否有所限制?
答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。
2、本实验装置上用了十二只磁钢,能否只用一只磁钢?
答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。
实验二十一磁电式传感器转速测量实验
一、实验目的:
了解磁电式测量转速的原理;
二、需用器件与单元:
磁电传感器、转动调节2-24V,转动源单元。
+5V直流电源、数显转速/频率表。
三、基本原理:
磁电传感器是一种将被测物理量转换成为感应电势的有源传感器,也称为电动式传感器
或感应式传感器。
根据电磁感应定律,一个匝数为N的线圈在磁场中切割磁力线时,穿过线圈的磁通量发生变化,线圈两端就会产生出感应电势,线圈中感应电势:。
线圈感应电势的大小在线圈匝数一定的情况下与穿过该线圈的磁通变化率成正比。
当传感器的线圈匝数和永久磁钢选定(即磁场强度已定)后,使穿过线圈的磁通发生变化的方法通常有两种:一种是让线圈和磁力线作相对运动,即利用线圈切割磁力线而使线圈产生感应电势;另一种则是把线圈和磁钢部固定,靠衔铁运动来改变磁路中的磁阻,从而改变通过线圈的磁通。
因此,磁电式传感器可分成两大类型:动磁式及可动衔铁式(即可变磁阻式)。
本实验应用动磁式磁电传感器,实验原理框图如图所示。
当转动盘上嵌入6个磁钢时,转动盘每转一周磁电传感器感应电势e产生6次的变化,感应电势e通过放大、整形由频率表显示f,转速n=10f。
磁电传感器测转速实验原理框图
四、实验步骤:
1、观察原理图。
(1)磁电式转速传感器按下图安装:
传感器端面离转动盘面2mm左右,并且对准反射面内的磁钢。
将磁电式传感器输出端插入数显单元Fi孔。
dt
d
N
e
Φ
-
=
(2)将波段开关选择转速测量档.
(3)将转速调节电源2-24V用引线引入到台面板上转动源单元中转动电源2-24V插孔,
合上主控箱电源开关。
使转速电机带动转盘旋转,逐步增加电源电压观察转速变化情况。
(5)调节电压值并记录数显值,测量结果如下表:
电压(v) 2 3 4 5 6 7 8 9 10 转速(转/分)0 0 0 454 683 875 1030 1170 1295 电压(v)11 12 13 14 15 16 17 18 20 转速(转/分)1400 1535 1635 1705 1780 1865 1960 2040 2222
五、思考题:
为什么说磁电式转速传感器不能测很低速的转动,能说明理由吗?
答:因为磁电式转速传感器是利用旋转体改变磁路,使磁通量发生变化,从而使其线
圈产生感应电压,如果转速很慢,旋转体改变磁路也很慢,磁通量的变化也会变慢,此时所
感应出的电压就会很小,就无发正确的测定转速。
实验三十一光纤传感器测速实验
一、实验目的:
了解光线式传感器的原理和使用
二、需用器件与单元:
光纤传感器、光纤传感器实验模块、转动调节2-24V,转动源单元、+5V直流电源、数显转速/频率表
三、基本原理:
利用光线位移传感器探头对旋转体电机被测反射光的明显变化而产生的电脉冲,经后级电路处理,放大整形等即可测量出电机的转速。
四、实验步骤:
1、光纤传感器按图接于支架上,使光纤探头与电机转盘平台中磁钢反射点对准,保持在2—3mm之间。
2、按“光纤位移特性试验”的连线图,将光纤传感器实验模块输出Vo1与数显电压表Vi 端相接,接上实验模块上电源,数显表的切换开关拨到20V档
(1)用手转动圆盘,使探头避开反射面(暗电流),和尚主控箱电源开关,调节Rw2使数显表显示接近零,此时Rw1处于中间位置。
(2)在用手转动圆盘,是光纤探头对准反射点,调节升降支架高低,使数显表指示最大,重复(1)(2)步骤,直至两者的电压差至最大,再将Vo1与转速/频率数显表Fi输入端相接,数显表的波段开关拨到转速档。
3、将转速调节2-24V,接入转动电源24V插孔上,使电动机转动,逐渐加大点击的电源电压,使电动机转速变化,观察并记录下数显表上的转速。
4、固定转速电压不变,将选择开关拨到频率测量档,测量频率,记下频率读数,根据转盘上的测量点数折算成转速值n2。
5、将实验步骤4比较,以n1作为真值计算两种方法的测速误差(相对误差),相对误差r=(n1-n2)/n1*100%。
6、接线图如图所示:
(7)结果如图所示
电压(v) 2 3 4 5 6 7 8 9 10 转速(转/分)0 0 314 531 710 890 1055 1190 1320 电压(v)11 12 13 14 15 16 17 18 19 转速(转/分)1445 1565 1640 1735 1805 1890 1980 2000 2135
实验三十二光电式传感器转速测量
一、实验目的:
了解光电转速传感器测量转速的原理及方法。
二、需用器件与单元:
光电转速传感器、转动调节2-24V,转动源单元。
+5V直流电源、数显转速/频率表。
三、基本原理:
光电式转速传感器有反射型和透射型二种,本实验装置是透射型的,传感器端部有发光管和光电池,发光管发出的光源通过转盘上的孔透射到光电管上,并转换成电信号,由于转盘上有等间距的6个透射孔,转动时将获得与转速及透射孔数有关的脉冲,将电脉计数处理即可得到转速值。
转盘每转一周输出N个脉冲信号,计数器可以测出脉冲信号的频率(Hz),可按n=f*60/N计算转速。
四、实验内容与步骤
1、光电转速传感器安装如下图所示,在传感器支持架上装上光电转速传感器,使传器端面离平台表面2-3mm,将传感器引线分别插入相应插孔,其中红色接入直流电源+5V,黑色为接地端,蓝色输入主控箱F i 。
转速/频率表置“转速”档。
2、将转速调节2-24V接到转动源2-24V插孔上。
3、将光电传感器实验端子与数显电压表Vi端相接,数显表的切换开关选择开关拨到20V
档,(1)用手转动圆盘,使探头避开反射面(暗电流),和尚主控箱电源开关,调节Rw2使数显表显示接近零,此时Rw1处于中间位置。
(2)在用手转动圆盘,是光纤探头对准反射点,调节升降支架高低,使数显表指示最大,重复(1)(2)步骤,直至两者的电压差至最大,再将Vo1与转速/频率数显表Fi输入端相接,数显表的波段开关拨到转速档。
合上主控箱电源开关,使电机转动并从转速/频率表上观察电机转速。
如显示转速不稳定,可调节传感器的安装高度。
4、接线图如图所示:
5.测量结果如图表所示
电压(v) 2 3 4 5 6 7 8 9 10 转速(转/分)0 0 345 540 760 935 1115 1280 1410 电压(v)11 12 13 14 15 16 17 18 19 转速(转/分)1540 1650 1740 1840 1925 1965 2035 2105 2180
五、实验小结:
通过本次试验,我们了解了霍尔式传感器、磁电式传感器、光纤式传感器和光电式传感器的实验原理和它们之间的区别,并知道如何去使用它,意识到了团队合作的重要性,加强
了自己对电子测量这门学科更深一步的了解。