线性代数常用公式合集2
线代公式总结
线代公式总结
线性代数中有很多重要的公式,以下是其中一些主要的公式:
1. 逆矩阵公式:对于一个矩阵A,如果存在一个矩阵B,使得AB=BA=I (单位矩阵),那么矩阵B称为矩阵A的逆矩阵,记作A^(-1)。
2. 行列式公式:对于一个n阶方阵A,其行列式记作det(A),定义为所有
取自不同行不同列的元素的乘积的代数和,即det(A)=a11a22...ann。
3. 特征值公式:对于一个n阶方阵A,如果存在一个数λ和一个非零向量x,使得Ax=λx成立,那么λ称为矩阵A的特征值,x称为矩阵A的对应于特
征值λ的特征向量。
4. 转置矩阵公式:对于一个矩阵A,其转置矩阵记作A^T,定义为将矩阵
A的行列互换得到的矩阵。
5. 行列式性质公式:对于一个n阶方阵A,有det(A^T)=det(A),
det(kA)=k^ndet(A),det(AB)=det(A)det(B)。
6. 向量点乘公式:对于两个向量a和b,其点乘记作a·b,定义为
a1b1+a2b2+...+anbn。
7. 向量叉乘公式:对于两个向量a和b,其叉乘记作a×b,定义为一个新
的向量c,其中c的每个分量c_i是a和b各个分量乘积的和,即
c=(a2b3-a3b2, a3b1-a1b3, a1b2-a2b1)。
这些公式是线性代数中最重要的部分,可以帮助我们解决很多问题。
《线性代数》公式大全
《线性代数》公式大全1.向量1.1向量的加法和减法v1=(x1,y1,z1)v2=(x2,y2,z2)v1+v2=(x1+x2,y1+y2,z1+z2)v1-v2=(x1-x2,y1-y2,z1-z2)1.2向量的数量乘法v=(x,y,z),k是一个实数kv = (kx, ky, kz)1.3向量的点积v1·v2=x1x2+y1y2+z1z21.4向量的模长v,=√(x^2+y^2+z^2)2.矩阵2.1矩阵的加法和减法A = (aij),B = (bij)是两个m x n矩阵A +B = (aij + bij)A -B = (aij - bij)2.2矩阵的数量乘法A = (aij)是一个m x n矩阵,k是一个实数kA = (kaij)2.3矩阵的乘法A = (aij)是一个m x n矩阵,B = (bij)是一个n x p矩阵AB = (cij)是一个m x p矩阵,其中cij = a1j*b1i + a2j*b2i+ ... + anj*bni2.4矩阵的转置A = (aij)是一个m x n矩阵A的转置为A^T = (aij)^T = (aji)2.5矩阵的逆A为可逆矩阵,A^-1为其逆矩阵,满足AA^-1=A^-1A=I,其中I为单位矩阵3.行列式3.1二阶行列式D=,abc d, = ad - b3.2三阶行列式D=,abcdeg h i, = aeI + bfG + cdH - ceG - afH - bd3.3n阶行列式D=,a11a12 (1)a21a22...a2...........an1 an2 ... ann, = (-1)^(i+j)*Mij,其中Mij为aij的代数余子4.线性方程组4.1齐次线性方程组Ax=0,其中A为一个mxn矩阵4.2非齐次线性方程组Ax=b,其中A为一个mxn矩阵,x为一个n维列向量,b为一个m维列向量4.3线性方程组的解法4.3.1矩阵消元法通过矩阵的初等行变换将线性方程组转化为行阶梯形或最简形4.3.2克拉默法则Ax = b的解可以表示为x = (Dx1/D, Dx2/D, ..., Dxn/D),其中D 为系数矩阵A的行列式,Di为将第i列的系数替换为b后的行列式4.3.3矩阵求逆法若A为可逆矩阵,则Ax=b的解可以表示为x=A^(-1)b以上是线性代数的一些重要公式,通过理解和掌握这些公式,可以帮助我们解决线性代数相关的问题和应用。
线性代数公式定理大全
线性代数公式大全第一章 行列式1.逆序数 1.1 定义n 个互不相等的正整数任意一种排列为:12n i i i ⋅⋅⋅,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不同时,就说有一个逆序数,该排列全部逆序数的总合用()12n i i i τ⋅⋅⋅表示,()12n i i i τ⋅⋅⋅等于它所有数字中后面小于前面数字的个数之和。
1.2 性质一个排列中任意两个元素对换,排列改变奇偶性,即 ()211ττ=-。
证明如下:设排列为111l m n a a ab b bc c ,作m 次相邻对换后,变成111l m n a a abb b c c ,再作1m +次相邻对换后,变成111l m n a a bb b ac c ,共经过21m +次相邻对换,而对不同大小的两元素每次相邻对换逆序数要么增加1 ,要么减少1 ,相当于()211ττ=-,也就是排列必改变改变奇偶性,21m +次相邻对换后()()2121111m τττ+=-=-,故原命题成立。
2.n 阶行列式的5大性质性质1:转置(行与列顺次互换)其值不变。
性质2:互换任意两行(列)其值变号。
性质3:任意某行(列)可提出公因子到行列式符号外。
性质4:任意行列式可按某行(列)分解为两个行列式之和。
性质5:把行列式某行(列)λ倍后再加到另一行(列),其值不变。
行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。
对性质4的重要拓展: 设n 阶同型矩阵,()()(); ij ij ij ij A a B b A B a b ==⇒+=+,而行列式只是就某一列分解,所以,A B +应当是2n个行列式之和,即A B A B+≠+。
韦达定理的一般形式为:()121201201110; ; 1n nnn n n n n n n n n i i j i i i j i n n n a a aa x a xa xa x x x x a a a ------=≠==++++=⇒=-==-∑∑∏一、行列式定义 1.定义111212122212n n n n nna a a a a a a a a n n nj j j j j j a a a 221211)()1(τ∑-=其中逆序数 ()121n j j j j τ=后面的1j 小的数的个数 2j +后面比2j 小的数的个数+1n j -+后面比1n j -小的数的个数.2.三角形行列式1112122200n n nna a a a aa 11212212000n n nna a a a a a =1122nn a a a=1211000n n n nn nna a a a a -111212122100n n a a a a a a =()()12112111n n n n n a a a τ-⋅⎡⎤⎣⎦-=-()()1212111n n n n n a a a --=-二、行列式性质和展开定理1.会熟练运用行列式性质,进行行列式计算. 2.展开定理1122i k i k in kn ik a A a A a A A δ+++=A A a A a A a jk nk nj k j k j δ=+++2211三、重要公式 设A 是n 阶方阵,则 1.T A A =2.11A A--=3.1*n A A-=4.n kA k A =5.AB A B =,其中B 也是n 阶方阵6.设B 为m 阶方阵,则00A C A A B B CB ==()10mnAC A A BB CB==-7.范德蒙行列式()1222212111112111n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏四.有关结论 1.对于,n n n n A B ⨯⨯(1)00A A ⇒==⇐ (2) A B A B⇒==⇐2.A 为n 阶可逆矩阵A E A E ⇔→⇔→行变列变(A 与E 等价)0AX ⇔=只有惟一零解AX b ⇔=有惟一解(克莱姆法则) A ⇔的行(列)向量组线性无关 A ⇔的n 个特征值0,1,2,,i i n λ≠=⇔A 可写成若干个初等矩阵的乘积 ⇔)()(B r AB r = ⇔A A T 是正定矩阵⇔A 是n R 中某两组基之间的过渡矩阵3.A 为n 阶不可逆矩阵0=A 0AX ⇔=有非零解 ⇔n A r <)( ⇔0是A 的特征值 ⇔A A -=4.若A 为n 阶矩阵,)2,1(n i i =λ为A 的n 个特征值,则∏==ni i A 1λ5.若B A ~,则B A =行列式的基本计算方法:1. 应用行列式的性质化简行列式(例如化为三角形行列式就是一个常用方法)。
线性代数性质公式整理
线性代数性质公式整理-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN线性代数第一章行列式一、相关概念1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积的代数和,这里是1,2,···n的一个排列。
当是偶排列时,该项的前面带正号;当是奇排列时,该项的前面带负号,即(1.1)这里表示对所有n阶排列求和。
式(1.1)称为n阶行列式的完全展开式。
2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。
一个排列的逆序总是称为这个排列的逆序数。
用表示排列的逆序数。
3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。
4.2阶与3阶行列式的展开——,5.余子式与代数余子式——在n阶行列式中划去所在的第i 行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式称为的余子式,记为;称为的代数余子式,记为,即。
6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作。
二、行列式的性质1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。
2.两行互换位置,行列式的值变号。
特别地,两行相同(或两行成比例),行列式的值为0.3.某行如有公因子k,则可把k提出行列式记号外。
4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和:5.把某行的k倍加到另一行,行列式的值不变:6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0三、行列式展开公式n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即|A|按i行展开的展开式|A|按j列展开的展开式四、行列式的公式1.上(下)三角形行列式的值等于主对角线元素的乘积;2.关于副对角线的n阶行列式的值3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则4.范德蒙行列式5.抽象n阶方阵行列式公式 (矩阵)若A、B都是n阶矩阵,是A的伴随矩阵,若A可逆,是A的特征值:;; |AB|=|A||B|;;;;若,则,且特征值相同。
线性代数重要公式、定理大全
1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-;(1)22(1)n n D D -=-将D 顺时针或逆时针旋转90,所得行列式为2D ,则; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C A BCB O B==、(1)m n CA OA A BB OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解;⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C CCC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 是否有AX B ⇔=解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关 ⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P )②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆;()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。
线性代数公式大全-互联网类
线性代数公式大全-互联网类关键信息项:1、矩阵运算公式矩阵加法矩阵乘法矩阵转置2、行列式计算公式二阶行列式三阶行列式n 阶行列式3、向量运算公式向量加法向量数量积向量叉积4、线性方程组求解公式高斯消元法克莱姆法则5、特征值与特征向量公式特征值计算特征向量求解11 矩阵运算公式111 矩阵加法若有两个矩阵 A =(a_{ij})_{m×n} 和 B =(b_{ij})_{m×n} ,则它们的和为 C = A + B =(a_{ij} + b_{ij})_{m×n} 。
112 矩阵乘法设矩阵 A 为 m×p 矩阵,矩阵 B 为 p×n 矩阵,则矩阵 A 与矩阵 B 的乘积 C = AB 是一个 m×n 矩阵,其中 C 中的元素 c_{ij} 为 A 的第 i 行元素与 B 的第 j 列对应元素乘积之和。
113 矩阵转置若矩阵 A =(a_{ij})_{m×n} ,则其转置矩阵 A^T =(a_{ji})_{n×m} 。
21 行列式计算公式211 二阶行列式对于二阶矩阵 A = a b; c d ,其行列式的值为|A| = ad bc 。
212 三阶行列式对于三阶矩阵 A = a11 a12 a13; a21 a22 a23; a31 a32 a33 ,其行列式的值为|A| = a11a22a33 + a12a23a31 + a13a21a32 a13a22a31a12a21a33 a11a23a32 。
213 n 阶行列式n 阶行列式的计算较为复杂,通常采用按行(列)展开、化上三角(下三角)等方法进行计算。
31 向量运算公式311 向量加法若有向量 a =(a1, a2,, an) 和向量 b =(b1, b2,, bn) ,则它们的和为 c = a + b =(a1 + b1, a2 + b2,, an + bn) 。
线性代数重要公式
线性代数重要公式在线性代数中,有许多重要的公式和定理,它们在解决线性方程组、矩阵运算、向量空间等问题中起到了关键作用。
接下来我们将介绍一些线性代数中的重要公式。
1.矩阵乘法的结合律:对于任意矩阵A、B和C,满足大小相容时,有(A·B)·C=A·(B·C)。
2.矩阵乘法的分配律:对于任意矩阵A、B和C,满足大小相容时,有A·(B+C)=A·B+A·C。
3.矩阵的转置:对于任意矩阵A,有(A^T)^T=A,其中A^T表示A的转置矩阵。
4.矩阵的转置与乘法:若A和B是满足乘法规则的矩阵,那么有(A·B)^T=B^T·A^T。
5.矩阵的逆:对于n阶方阵A,若存在逆矩阵A^-1,使得A·A^-1=A^-1·A=I,那么称A是可逆矩阵。
6.矩阵的伴随矩阵:对于n阶方阵A,将其每个元素的代数余子式组成的矩阵A*称为A的伴随矩阵。
7.克拉默法则:对于n个线性方程和n个未知数的线性方程组,如果行列式的值不为0,则该方程组存在唯一解,可以通过克拉默法则求解。
8.行列式的性质:-互换行列式的两行(列),行列式的值变号;-将行列式的行(列)乘以一个非零常数k,行列式的值变为原来的k 倍;-将行列式的行(列)加上另一行(列)的k倍,行列式的值不变。
9.矩阵的行列式和转置:对于矩阵A,有,A^T,=,A。
10.矩阵的秩:对于任意矩阵A,定义A的秩为矩阵A的行或列向量组的最大线性无关组中所含向量的个数。
11.矩阵的特征值和特征向量:对于n阶矩阵A,如果存在非零向量x,使得Ax=λx,其中λ是常数,那么称λ为矩阵A的特征值,x为对应的特征向量。
12.特征多项式和特征方程:对于n阶矩阵A,定义特征多项式为f(λ)=,λI-A,其中I为n阶单位矩阵。
将特征多项式f(λ)=0得到的方程称为特征方程。
13.矩阵的相似:对于n阶矩阵A和B,如果存在可逆矩阵P,使得P^-1AP=B,则称A 和B是相似的。
线性代数公式大全_线性代数公式定理总结
线性代数公式大全——最新修订1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1. A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1. m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5. n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。
线性代数公式总结大全
1 k
(k 0) ; 1
1
k
1
1
k
⑤、倍加某行或某列,符号
E(ij(k))
,且
E(ij(k))1
E(ij(k))
,如:
1
1
1
(k
0)
;
1
17. 矩阵秩的基本性质: ①、 0 r(Amn ) min(m, n) ;
②、 r( AT ) r( A) ;
③、若 A B ,则 r(A) r(B) ;
n ( n 1)
④、 ◤ 与 ◢ :副对角元素的乘积 (1) 2 ;
⑤、拉普拉斯展开式: A
OA
C A B 、C
AO
A (1)m n A B
CB OB
BO BC
⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;
n
6. 对于 n 阶行列式 A ,恒有: E A n (1)k Sknk ,其中 Sk 为 k 阶主子式; k 1
④、若 P 、 Q 可逆,则 r(A) r(PA) r(AQ) r(PAQ) ;(可逆矩阵不影响矩阵的秩) ⑤、 max(r(A), r(B)) r(A, B) r(A) r(B) ;(※)
⑥、 r(A B) r(A) r(B) ;(※) ⑦、 r(AB) min(r(A), r(B)) ;(※)
O 1 A1
B
B 1CA1
O B 1
;(拉普拉斯)
3、 矩 阵 的 初 等 变 换 与 线 性 方 程 组
13.
一个
m
n
矩阵
A
,总可经过初等变换化为标准形,其标准形就是唯一确定的:
F
Er O
O
O
mn
线性代数重要公式定理大全
线性代数重要公式定理大全线性代数是数学中的一个重要分支,它研究矩阵、向量、线性方程组等基本概念和性质,并运用线性代数的理论和方法解决实际问题。
在学习线性代数时,了解一些重要的公式和定理,不仅可以帮助我们更好地理解和应用线性代数的知识,还能为进一步学习和研究提供基础。
在线性代数中,有许多公式和定理与行列式、矩阵、向量、线性变换和特征值等相关。
下面我将介绍一些重要的公式和定理,希望对你的学习有所帮助。
一、行列式的公式和定理1. 行列式的定义:设有n阶方阵A,它的行列式记作,A,或det(A),定义为:A,=a₁₁A₁₁-a₁₂A₁₂+...+(-1)^(1+n)a₁ₙA₁其中,a₁₁,a₁₂,...,a₁ₙ分别是矩阵第一行元素,A₁₁,A₁₂,...,A₁ₙ是矩阵去掉第一行和第一列的余子式。
2.行列式的性质:(1)行互换改变行列式的符号,列互换改变行列式的符号。
(2)行列式相邻行(列)对换,行列式的值不变。
(3)行列式其中一行(列)中的各项都乘以同一个数k,行列式的值也乘以k。
(4)互换行列式的两行(列),行列式的值不变。
(5)若行列式的行(列)的元素都是0,那么行列式的值为0。
(6)行列式的其中一行(列)的元素都是两数之和,那么行列式的值等于两个行列式的值之和。
3.行列式的计算:(1)按第一行展开计算行列式:将行列式的第一行元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。
(2)按第一列展开计算行列式:将行列式的第一列元素与其所对应的代数余子式相乘,然后加上符号,得到行列式的值。
4.行列式的性质定理:(1)拉普拉斯定理:行列式等于它的每一行(列)的元素与其所对应的代数余子式的乘积之和。
(2)行(列)对阵定理:行列式的值等于它的转置矩阵的值。
(3)行列式的转置等于行列式的值不变。
二、矩阵的公式和定理1.矩阵的定义:将一个复数域上的m行n列数排成一个长方形,并按照一定的顺序进行排列,这个排列称为一个m×n矩阵,其中m是矩阵的行数,n是矩阵的列数。
(完整版)线性代数公式大全
1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nn k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。
线性代数重要公式定理大全
1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为A ;3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-;(1)22(1)n n D D -=-将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积;④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C A BCBO B==、(1)m n C AO AA B B OB C==-g⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-;②、反证法;③、构造齐次方程组0Ax=,证明其有非零解;④、利用秩,证明()<;r A n⑤、证明0是其特征值;2、矩阵1.A是n阶可逆矩阵:A≠(是非奇异矩阵);⇔0⇔()=(是满秩矩阵)r A n⇔A的行(列)向量组线性无关;⇔齐次方程组0Ax=有非零解;⇔n=总有唯一解;b R∀∈,Ax b⇔A与E等价;⇔A 可表示成若干个初等矩阵的乘积;⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基;⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;4. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫⎪⎪= ⎪ ⎪⎝⎭O,则: Ⅰ、12s A A A A =L ;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭O;②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O AO ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nE OF OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X :,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x :,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭O λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; 5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B :,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※)⑥、()()()r A B r A r B +≤+;(※)⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※)Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑L L ; 注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-L L g g g L g m nn n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m m m m r nr r nnn n nnn n r C CCC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A -=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0;③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ; ②、1112111212222212n n m m mn m m a a a x b a aa xb Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M O M M M L(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M );④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1. m 个n 维列向量所组成的向量组A :12,,,m αααL 构成n m ⨯矩阵12(,,,)m A =L ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 是否有AX B ⇔=解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5. n 维向量线性相关的几何意义:①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s αααL 线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s αααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3)向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P L ,使12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆);③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵A 的行秩等于列秩;10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯L 可由向量组12:,,,n s s A a a a ⨯L 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P )②、对矩阵m n A ⨯,存在n m P ⨯,n PA E =()r A n ⇔=、P 的行向量线性无关;14. 12,,,s αααL 线性相关⇔存在一组不全为0的数12,,,s k k k L ,使得11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-L 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a L11b a =;121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----g g L g ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B,P、Q可逆;r A r B,A、B同型;()()⇔=②、A与B合同⇔=TC AC B,其中可逆;⇔T x Ax与T x Bx有相同的正、负惯性指数;③、A与B相似1-P AP B;⇔=5.相似一定合同、合同未必相似;若C为正交矩阵,则T C AC B:,(合同、相似的约束条件不同,相似的更严格);=⇒A B6.A为对称阵,则A为二次型矩阵;7.n元二次型T x Ax为正定:⇔的正惯性指数为n;A⇔与E合同,即存在可逆矩阵C,使T C AC EA=;⇔的所有特征值均为正数;AA ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。
线性代数常用公式合集2
6121212,,,0,,,()(),,,A n n A n A x A n A x A x r A r A A x A n βαααβαααβββααα⇔=−−−−−→=<⇔⇒⇔=⇔=⇔=⇔=−−−−−→≠⇒=⇔⇒ 当为方阵时当为方阵时有无穷多解0 表示法不唯一线性相关有非零解 可由线性表示有解有唯一组解0克莱姆法则表示法唯一 线127()(),,,()()()1()n A x r A r A A x r A r A r A r A οββαααβββ⎧⎪⎪⎪⎪⎨⎪⎪⎪⇔=⎪⎩⎧⇔≠⎪⇔=⇔<⎨⎪⇔+=⎩教材72讲义8性无关只有零解 不可由线性表示无解○注:A x A x ββ⇒=<≠⇒=<≠有无穷多解其导出组有非零解有唯一解其导出组只有零解线性方程组的矩阵式 A x β= 向量式 1122n n x x x αααβ+++=1112111212222212,,n n m m m n n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12,,2,,jj jm jj n αααα⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭11212(,,,)n n x x x αααβ⎛⎫⎪⎪= ⎪ ⎪⎝⎭矩阵转置的性质: ()T TA A = ()TT TA B B A = ()T TkA kA =TA A = ()T T TA B A B ±=±11()()TT AA --=()()T TA A **=矩阵可逆的性质: 11()A A --=111()A B BA---= 111()kA kA---=11AA--= 111()A B AB---±≠± 11()()k kkA A A ---==伴随矩阵的性质:2()n A A A -**=()A B B A ***=1()n kA kA *-*=1n AA-*=***()A B A B ±≠±11()()A AAA -**-==()()kkA A **=() () 1 ()10 () 1 n r A n r A r A n r A n *=⎧⎪==-⎨⎪<-⎩若若若A B A B = nkA kA =kkAA =A B A B ±≠± A A A A A E **==(无条件恒成立)线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k A x A x k k A x k A x A x A x A x A x ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k k k k k A x A x A x A x A x ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则 也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =⇒()()r A r A β= ⇒A x β=一定有解,当m n <时,一定不是唯一解⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β 和的上限.√ 判断12,,,s ηηη 是A x ο=的基础解系的条件: ① 12,,,s ηηη 线性无关; ② 12,,,s ηηη 都是A x ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数.√ 一个齐次线性方程组的基础解系不唯一.√ 若η*是A x β=的一个解,1,,,s ξξξ 是A x ο=的一个解⇒1,,,,s ξξξη*线性无关 √ A x ο=与B x ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 两个齐次线性线性方程组A x ο=与B x ο=同解⇔()()A r r A r B B ⎛⎫==⎪⎝⎭. √ 两个非齐次线性方程组A x β=与B x γ=都有解,并且同解⇔()()A r r A r B B βγ⎛⎫== ⎪⎝⎭. √ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组A x ο=与B x ο=同解⇔P A B =(左乘可逆矩阵P );101p 教材 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔A Q B =(右乘可逆矩阵Q ).√ 关于公共解的三中处理办法:① 把(I)与(II)联立起来求解;② 通过(I)与(II)各自的通解,找出公共解;当(I)与(II)都是齐次线性方程组时,设123,,ηηη是(I)的基础解系, 45,ηη是(II)的基础解系,则 (I)与(II)有公共解⇔基础解系个数少的通解可由另一个方程组的基础解系线性表示.即:1231231425(,,)(,,)r r c c ηηηηηηηη=+当(I)与(II)都是非齐次线性方程组时,设11122c c ξηη++是(I)的通解,233c ξη+是(II)的通解,两方程组有公共解⇔2331c ξηξ+-可由12,ηη线性表示. 即:12122331(,)(,)r r c ηηηηξηξ=+- ③ 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解中的任意常数所应满足(II)的关系式而求出公共解。
线性代数性质公式整理
线性代数性质公式整理-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN线性代数第一章行列式一、相关概念1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积的代数和,这里是1,2,···n的一个排列。
当是偶排列时,该项的前面带正号;当是奇排列时,该项的前面带负号,即(1.1)这里表示对所有n阶排列求和。
式(1.1)称为n阶行列式的完全展开式。
2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。
一个排列的逆序总是称为这个排列的逆序数。
用表示排列的逆序数。
3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。
4.2阶与3阶行列式的展开——,5.余子式与代数余子式——在n阶行列式中划去所在的第i 行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式称为的余子式,记为;称为的代数余子式,记为,即。
6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作。
二、行列式的性质1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。
2.两行互换位置,行列式的值变号。
特别地,两行相同(或两行成比例),行列式的值为0.3.某行如有公因子k,则可把k提出行列式记号外。
4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和:5.把某行的k倍加到另一行,行列式的值不变:6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0三、行列式展开公式n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即|A|按i行展开的展开式|A|按j列展开的展开式四、行列式的公式1.上(下)三角形行列式的值等于主对角线元素的乘积;2.关于副对角线的n阶行列式的值3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则4.范德蒙行列式5.抽象n阶方阵行列式公式 (矩阵)若A、B都是n阶矩阵,是A的伴随矩阵,若A可逆,是A的特征值:;; |AB|=|A||B|;;;;若,则,且特征值相同。
线性代数性质公式整理
线性代数第一章行列式一、相关概念1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积的代数和,这里是1,2,···n的一个排列。
当是偶排列时,该项的前面带正号;当是奇排列时,该项的前面带负号,即(1.1)这里表示对所有n阶排列求和。
式(1.1)称为n阶行列式的完全展开式。
2.逆序与逆序数——一个排列中,假如一个大的数排列在小的数之前,就称这两个数构成一个逆序。
一个排列的逆序总是称为这个排列的逆序数。
用表示排列的逆序数。
3.偶排列与奇排列——假如一个排列的逆序数是偶数,那么称这个排列为偶排列,否那么称为奇排列。
阶与3阶行列式的展开——,5.余子式与代数余子式——在n阶行列式中划去所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式称为的余子式,记为;称为的代数余子式,记为,即。
6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作。
二、行列式的性质1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。
2.两行互换位置,行列式的值变号。
特别地,两行一样(或两行成比例),行列式的值为0.3.某行如有公因子k,那么可把k提出行列式记号外。
4.假如行列式某行(或列)是两个元素之和,那么可把行列式拆成两个行列式之和:5.把某行的k倍加到另一行,行列式的值不变:6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0三、行列式展开公式n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即|A|按i行展开的展开式|A|按j列展开的展开式四、行列式的公式1.上(下)三角形行列式的值等于主对角线元素的乘积;2.关于副对角线的n阶行列式的值3.两个特殊的拉普拉斯展开式:假如A和B分别是m阶和n阶矩阵,那么4.范德蒙行列式5.抽象n阶方阵行列式公式(矩阵)假设A、B都是n阶矩阵,是A的伴随矩阵,假设A可逆,是A的特征值:;;|AB|=|A||B|;;;;假设,那么,且特征值一样。
线性代数公式必背_完整归纳清晰版
线性代数必背公式(完全整理版)2010.41、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质: ①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTmβββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15) 5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论)8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。
线性代数公式大全
则其中 c ≠ 0 ,否则 c1,, cs 不全为 0,c1α1 + + csα s = 0 ,与条件α1,,α s 无关矛
盾。于是
β
=
−
c1 c
α1
−−
cs c
αs。
④当 β → α1,,α s 时,表示方式唯一 ⇔ α1 α s 无关
(表示方式不唯一 ⇔ α1 α s 相关)
⑤若 β1,, βt → α1,,α s ,并且 t > s ,则 β1,, βt 一定线性相关。
关于矩阵右上肩记号: T , k , − 1,*
i) 任何两个的次序可交换,
( ) 如 AT * = (A *)T , ( ) (A )* −1 = A−1 *等
ii) (AB)T ( ) = BT AT , AB −1 = B −1 A−1 , (AB)* = B * A * 但 (AB)k = B k Ak 不一定成立!
A2 − 2A − 3E = (A − 3E)(A + E)
无消去律(矩阵和矩阵相乘)
当 AB = 0 时 ⇒/ A = 0 或 B = 0 由 A ≠ 0 和 AB = 0 ⇒/ B = 0 由 A ≠ 0 时 AB = AC ⇒/ B = C (无左消去律) 特别的 设 A 可逆,则 A 有消去律。
各性质的逆否形式
①如果α1,α 2 ,,α s 无关,则 s ≤ n 。
②如果α1,α 2 ,,α s 有相关的部分组,则它自己一定也相关。
③如果α1 α s 无关,而 β →/ α1,,Biblioteka s ,则α1,,α s β 无关。
⑤如果 β1 βt → α1 α s , β1 βt 无关,则 t ≤ s 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 它们对应的部分组有一样的线性相关 性;
③ 它们有相同的内在线性关系. √ 两个齐次线性线性方程组与同解. √ 两个非齐次线性方程组与都有解,并且同解. √ 矩阵与的行向量组等价齐次方程组与同解(左乘可逆矩阵);
矩阵与的列向量组等价(右乘可逆矩阵). √ 关于公共解的三中处理办法:
元素即为的特征值.
施密特正交规范化 线性无关,
单位化: 技巧:取正交的基础解系,跳过施密特正交化。让第二个解向量先 与第一个解向量正交,再把第二个解向量代入方程,确定其自由变量.
例如:取,. 正定二次型 不全为零,. 正定矩阵 正定二次型对应的矩阵. √ 为正定二次型(之一成立):
1 ,; 2 的特征值全大于; 3 的正惯性指数为; 4 的所有顺序主子式全大于; 5 与合同,即存在可逆矩阵使得; 6 存在可逆矩阵,使得; 7 存在正交矩阵,使得 (大于). √ 合同变换不改变二次型的正定性. √ 为正定矩阵 ; . √ 为正定矩阵也是正定矩阵. √ 与合同,若为正定矩阵为正定矩阵 √ 为正定矩阵为正定矩阵,但不一定为正定矩阵.
: 线性方程组的矩阵式
矩阵转置 的性质: 矩阵可逆 的性质: 伴随矩阵 的性质:
向量式
(无条件 恒成立)
线性方程组解的性质: √ 设为矩阵,若一定有解,
当时,一定不是唯一解,则该向量组线性相关. 是的上限. √ 判断是的基础解系的条件:
① 线性无关; ② 都是的解; ③. √ 一个齐次线性方程组的基础解系不唯一. √ 若是的一个解,是的一个解线性无关 √ 与同解(列向量个数相同),则:
√ 若=,
√ 相似矩阵的性质:
①,从而有相同的特征值,但特征向量不一定相
同.
是关于的特征向量,是关于的特征向量.
②
③ 从而同时可逆或不可逆
④
⑤; (若均可逆);
⑥ (为整数);,
⑦
前四个都是必要条件.
√ 数量矩阵只与自己相似.
√ 实对称矩阵的性质:
① 特征值全是实数,特征向量是实向量;
② 不同特征值对应的特征向量必定正交;
② 对称性: ③ 双线性:
的特征矩阵 .
的特征多项式 .
√ 是矩阵的特征多项式
的特征方程 .
√
,称为矩阵的迹.
√ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的各元素.
√ 若,则为的特征值,且的基础解系即为属于的线性无关的特征向量.
√ 一定可分解为=、,从而的特征值为:,
.
为各行的公比,为各列的公比.
√ 正交矩阵的性质:① ;
②;
③ 正交阵的行列式等于1或-1;
④ 是正交阵,则,也是正交阵;
⑤ 两个正交阵之积仍是正交阵;
Hale Waihona Puke ⑥ 的行(列)向量都是单位正交向量组.
二次型
,即为对称矩阵,
与 合同 . 记作: ()
正惯性指数 二次型的规范形中正项项数 负惯性指数二次型的规 范形中负项项数 符号差 (为二次型的秩) √ 两个矩阵合同它们有相同的正负惯性指数他们的秩与正惯性指数分 别相等. √ 两个矩阵合同的充分条件是: √ 两个矩阵合同的必要条件是: √ 经过化为标准形. √ 二次型的标准形不是唯一的,与所作的正交变换有关,但非零系数的
√ 若的全部特征值,是多项式,则:
① 若满足的任何一个特征值必满足
②的全部特征值为;.
等矩阵的性质:
√ 设,对阶矩阵规定:为的一个多项式.
√
√
√ 的特征向量不一定是的特征向量.
√ 与有相同的特征值,但特征向量不一定相同.
与 相似
(为可逆矩阵) 记为:
与 正交相似 (为正交矩阵)
可以相似对角化 与对角阵相似. 记为: (称是的相似标准形)
是(II)的通解,两方程组有公共解可由线性表示. 即: 3 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解
中的任意常数所应满足(II)的关系式而求出公共解。 标准正交基 个维线性无关的向量,两两正交,每个向量长度为1. 向量 与 的内积
. 记为: 向量 的长度
是单位向量 . 即长度为的向量. √ 内积的性质: ① 正定性:
1 把(I)与(II)联立起来求解; 2 通过(I)与(II)各自的通解,找出公共解;
当(I)与(II)都是齐次线性方程组时,设是(I)的基础解 系, 是(II)的基础解系,则 (I)与(II)有公共解基础解系 个数少的通解可由另一个方程组的基础解系线性表示.
即: 当(I)与(II)都是非齐次线性方程组时,设是(I)的通解,
√ 可相似对角化 为的重数恰有个线性无关的特征向量. 这时,为的特
征向量拼成的矩阵,为对角阵,主对角线上的元素为的特征值.设为
对应于的线性无关的特征向量,则有:
.
:当为的重的特征值时,可相似对角化的重数 基础解系的个数.
√ 若阶矩阵有个互异的特征值可相似对角化.
√ 若可相似对角化,则其非零特征值的个数(重根重复计算).
个数是由 唯一确定的. √ 当标准形中的系数为-1或0或1时,称为二次型的规范形 . √ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数. √ 惯性定理:任一实对称矩阵与唯一对角阵合同. √ 用正交变换化二次型为标准形:
1 求出的特征值、特征向量; 2 对个特征向量正交规范化; 3 构造(正交矩阵),作变换,则新的二次型为,的主对角上的
:对于普通方阵,不同特征值对应的特征向量线性
无关;
③一定有个线性无关的特征向量.
若有重的特征值,该特征值的重数=;
④必可用正交矩阵相似对角化,即:任一实二
次型可经正交变换化为标准形;
⑤与对角矩阵合同,即:任一实二次型可经可逆
线性变换化为标准形;
⑥两个实对称矩阵相似有相同的特征值.
正交矩阵
√ 为正交矩阵的个行(列)向量构成的一组标准正交基.