二次根式章节复习教案(20200916115307)
中考数学《二次根式》复习教案
二次根式复习复习目标:1.了解二次根式的定义,掌握二次根式有意义的条件和性质。
2.会根据公式2)(a=a(a≥0)∣a∣进行计算。
3.熟练进行二次根式的乘除法运算。
4.了解最简二次根式的定义,能运用相关性质化简二次根式。
复习重点:二次根式有意义的条件和性质,二次根式的计算和化简。
复习难点:正确依据二次根式相关性质计算和化简。
复习过程:一.知识结构:三个概念:二次根式最简二次根式同类二次根式三个性质:二次根式的双重非负性2(a=a(a≥∣a∣)四种运算:加.减.乘.除二.复习过程1.二次根式的概念(1).二次根式的定义:形如a(a≥0)的式子叫做二次根式2.二次根式的识别:(1).被开方数a ≥0 (2).根指数是2例.下列各式中哪些是二次根式?哪些不是?为什么?①②③④⑤⑥⑦⑧3.二次根式的性质(1).双重非负性:a ≥0(a ≥0) (2).2)(a =a (a ≥0)(3)∣a ∣题型1:确定二次根式中被开方数所含字母的取值范围 (1).当X_____时,x -3有意义。
(2).求下列二次根式中字母的取值范围x 315x --+ 说明:二次根式被开方数不小于0,所以求二次根式中字母的取值范围常转化为不等式(组) 题型2.求下列各式的值(1)2(3)2(4)4.二次根式的乘除 (1).二次根式的乘法法则)0,0(≥≥=⋅b a ab b a例1.化简8116)1(⨯ 2000)2( 例2.计算 721)1(⋅ 15253)2(⋅)521(154)3(-⋅-xyx 11010)4(-⋅(2).二次根式的除法法则)0,0(>≥=b a b aba例3、计算4540)1(245653)2(n m n m ÷5.最简二次根式的两个条件: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;抢答:判断下列二次根式是否是最简二次根式,并说明理由。
621)6())(()5(75.0)4()3()2(50)1(2222b a b a y x bc a -++6.化简二次根式的方法:(1)如果被开方数是整数或整式时,先因数分解或因式分解,然后利用积的算术平方根的性质,将式子化简。
二次根式全章复习教学设计
二次根式全章复习重难突破一、二次根式的概念及性质1、二次根式的概念:一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号.备注:二次根式的两个要素:①必须含有,②被开方数可以是数、字母和代数式,但必须大于等于0) 2、代数式的概念:形如5,a ,a+b ,ab ,,x 3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式.3、二次根式的性质及双重非负性(1)二次根式双重非负性:a ≥0,(a ≥0); (2)二次根式的性质:(1)(a ≥0);(2).备注:1)二次根式(a ≥0)的值是非负数。
一个非负数可以写成它的算术平方根的形式,即2()(0a a a =≥). 22a 2()a 要注意区别与联系:1)a 的取值范围不同,2a 中a ≥02a a 为任意值。
2)a ≥0时,2a 2a a ;a <0时,2a 2a a -.3)二次根式有意义情况:1)单个二次根式如A有意义的条件是0≥A;2)多个二次根式相加如++⋅⋅⋅+A B N有意义的条件:≥⎧⎪≥⎪⎨⋅⋅⋅⎪⎪≥⎩ABN;3)二次根式作为分式分母时如BA有意义的条件是0>A;二、二次根式的乘除1、二次根式的乘法(1)乘法法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.备注:1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a 、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).2)该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…≥0).3)若二次根式相乘的结果能写成的形式,则应化简,如.2、积的算术平方根:(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积.备注:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足a≥0,b≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.3、二次根式的除法(1)除法法则:(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除.。
二次根式的复习教案
第16章 二次根式的复习一、教学内容与学情分析1.本课在教材、新课标中的地位与作用本课内容是二次根式章节的复习课,是学生在学完新人教版八年级教材下册所有内容的一个总结复习。
二次根式是初中数学知识体系与结构中一个不可或缺的部分,是中考直接考查的一个重点内容。
本课复习内容的教学将让学习更为系统地认识二次根式,并在学习新知的基础上得到一个升华。
2.在学生已有的知识基础上,本节课的教学其实更主要的是经历回顾、理解、巩固的过程。
本节教学内容的新知并不是真正的“新的知识点、新的知识技能、新的知识能力”,而是一种对已学知识的一种重新加工处理的能力,从已学的 知识上提炼出更精粹的东西来。
这也正是学生在这方面的缺憾,需要教师的有效引导与分析。
这更是学生的主要难点。
二.教学目标【知识与技能】(1)二次根式的性质;(2)二次根式的计算与化简;【过程方法】经历例题的讲解让学生理解和掌握二次根式的性质和计算,从此提高学生的计算正确率【情感态度与价值观】通过课堂学习,熏陶学生乐于探究、善于总结的数学学习品质.一.教学重难点教学重点:二次根式的化简和计算教学难点:二次根式的性质,特别突破()2b a -二.教学用具PPT三.教学过程例题讲解例1(1) 3131232-+; (2)()()()1313132-+--. 先引导学生观察是否是最简二次根式,不是最简二次根式要先化简,然后找同类二次根式,最后合并同类二次根式练习1 计算:(1)33162421-+⨯; (2)()()()2525252-+++(3)821212+- (4)226-3628+⨯练习2 当1313-=+=y x ,时,求代数式xy y x +-22的值重点强调格式的书写1.一般地,形如________(a ≥0)的式子叫做二次根式.注意:判断二次根式有意义的条件:被开方数是非负数,即a ≥0.练习1 (1)要使()2b a -在实数范围内有意义,x 的值可以是( ).A.4B.2C.0D.1-(2)若12-m 有意义,则m 的取值范围是 .【补充习题】1. 如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为( )A .2B .2C .22D .62. 正方形的边长是a ,它的面积与长为4,宽为3的矩形面积相等.则a = .3. 若1728+<-<n n ,n 为正整数,则n 的值为 .4. 已知113-=x ,则代数式222++x x 的值为 .5. 已知n 为正整数,若n 12为正整数,则n 的最小值为 .【课堂小测】: 1.计算:_____)2(2=- ; ()_______52=; 612÷=____________.2.若实数a ,b 满足042=-++b a ,则b a =____________. 3.若()x x -=-552,则x 的取值范围是_____________.4. 已知101=+a a ,则aa 1-=___________. 5. 计算: (1)483316122+-; (2)()32748÷- 6. 先化简再求值:当a =9时,求221a a a +-+的值.甲、乙两人的解答如下:甲:原式=()1112=-+=-+a a a a 乙:原式=()1712112=-=-+=-+a a a a a .其中, 的解答是错误的,错误的原因是 课堂小结:()2222yxy x y x ++=+()()22y x y x y x -=-+。
二次根式教案(实用7篇)
二次根式教案(实用7篇)二次根式教案第1篇一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1 说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2 把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.二次根式教案第2篇1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。
数学二次根式教案【优秀8篇】
数学二次根式教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学二次根式教案【优秀8篇】作为一名为他人授业解惑的教育工作者,就有可能用到教案,教案是备课向课堂教学转化的关节点。
第4讲《二次根式》复习课教学设计
中考专题复习《二次根式》复习课教学设计一、教材分析《二次根式》是数学北师大版八年级上册第二章的内容。
本章内容是《数学课程标准》中“数与代数”领域的重要内容,也是中考的必考内容。
它与“实数”、“整式”、“勾股定理”紧密联系,同时也是学习“解直角三角形”、“一元二次方程”、“二次函数”等内容的重要基础。
本章通过对二次根式的概念、性质和运算法则、运算规律等的探究,发展学生的思维能力,有效改变学生的学习方式,使学生掌握认识事物的一般规律。
本章内容不论在知识、数学思考方法上,还是在对学生的能力培养上都是非常重要的。
二、学情分析由于新课内容结束离综合性复习时间较长,大多数学生对本章的知识都有遗忘,因此需要一个回顾、理解、归纳、巩固的过程。
同时,随着学生知识面的拓展以及一些章节中对二次根式的应用,学生对这一章的内容也有了更多的认识。
在复习时,应该说学生还是容易接受的。
另外,本章内容与整式、勾股定理联系紧密,因此在复习本章的同时,还要注意强调知识之间相互联系。
三、复习目标1.知识与技能目标(1)理解二次根式的概念和意义,并熟练掌握二次根式的性质和运算法则。
(2)会用二次根式的意义和性质进行化简和运算、求字母的取值范围。
(3)会运用二次根式的性质及运算,解决简单的实际数学问题。
2、过程与方法目标(1)经历梳理本章考点,形成知识体系,培养学生归纳和概括能力。
(2)经历应用性质解决问题的过程,发展运算能力,体验数学的严谨性。
(3)经历本章的复习过程,渗透转化、分类讨论和类比等数学思想方法。
3、情感与态度目标(1)通过中考试题再现,吸引学生注意力,激发学生学习兴趣,增加学生学习的信心,为完成本复习课打下良好的基础。
(3)通过本章的复习过程,进一步让学生体会数学知识(二次根式)来源于实际又反过来应用于实际的辩证唯物主义思想。
四、教学重点、难点教学重点:运用二次根式的意义和性质进行求取值范围、化简和运算;梳理整章知识,形成二次根式知识体系。
二次根式教案三篇
二次根式教案三篇二次根式教案三篇二次根式教案篇1 一、内容解析本节教材是在学生学习二次根式概念的根底上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和考虑得到二次根式的两个根本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个详细问题,让学生学生根据算术平方根的意义,就详细数字进展分析^p 得出结果,再分析^p 这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析^p ,确定本节课的教学重点为:理解二次根式的性质.二、目的和目的解析1.教学目的〔1〕经历探究二次根式的性质的过程,并理解其意义;〔2〕会运用二次根式的性质进展二次根式的化简;〔3〕理解代数式的概念.2.目的解析〔1〕学生能根据详细数字分析^p 和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;〔2〕学生能灵敏运用二次根式的性质进展二次根式的化简;〔3〕学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析^p二次根式的性质是二次根式化简和运算的重要根底.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵敏运用二次根式的性质进展二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的.灵敏运用存在一定的困难,打破这一难点需要老师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵敏运用的才能.本节课的教学难点为:二次根式性质的灵敏运用.四、教学过程设计1.探究性质1问题1 你能解释以下式子的含义吗?师生活动:老师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2 根据算术平方根的意义填空,并说出得到结论的根据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的根据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:〔≥0〕.【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的才能.例2 计算〔1〕〔2〕师生活动:学生独立完成,集体订正.【设计意图】稳固二次根式的性质1,学会灵敏运用.2.探究性质2问题4 你能解释以下式子的含义吗?师生活动:老师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5 根据算术平方根的意义填空,并说出得到结论的根据.师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的根据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质:〔≥0〕【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的才能.例3 计算〔1〕〔2〕师生活动:学生独立完成,集体订正.【设计意图】稳固二次根式的性质2,学会灵敏运用.3.归纳代数式的概念问题7 回忆我们学过的式子,如 ___________〔≥0〕,这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括才能.4.综合运用〔1〕算一算:【设计意图】设计有一定综合性的题目,考察学生的灵敏运用的才能,第〔2〕、〔3〕、〔4〕小题要特别注意结果的符号.〔2〕想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维.〔3〕谈一谈你对与的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思〔1〕你知道了二次根式的哪些性质?〔2〕运用二次根式性质进展化简需要注意什么?〔3〕请谈谈发现二次根式性质的考虑过程?〔4〕想一想,到如今为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.二次根式教案篇2 活动1、提出问题一个运动场要修两块长方形草坪,第一块草坪的长是10米,宽是米,第二块草坪的长是20米,宽也是米。
人教八下数学《二次根式》复习教案
人教八下数学《二次根式》复习教案【教学目标】1. 复习二次根式的概念和性质;2. 复习二次根式的计算方法;3. 引导学生理解二次根式的实际意义和应用;4. 提高学生解决实际问题的能力。
【教学重难点】1. 二次根式的计算方法;2. 二次根式的意义和应用。
【教学准备】教材、课件、笔记、习题、工具书等。
【教学过程】一、复习导入(10分钟)1. 让学生回顾二次根式的定义;2. 复习二次根式的性质:乘法性质、开方性质等。
二、概念解释与示例演练(20分钟)1. 解释二次根式的概念:如果a>0,那么形如√a的式子就叫做二次根式;2. 给出一些简单的例子,让学生计算并写成简化形式;3. 引导学生观察和总结计算二次根式的方法。
三、题目讲解与练习(30分钟)1. 分析教材中的例题,引导学生理解二次根式的实际意义和应用;2. 讲解解答题的思路和方法,包括合并同类项、化简等;3. 给学生一些练习题,让学生独立解答,并讲解答案。
四、拓展与应用(10分钟)1. 引导学生思考二次根式的实际应用,如计算面积、体积和边长等;2. 提供相关的应用题,让学生思考如何应用二次根式解决问题。
五、总结归纳(5分钟)1. 让学生总结本节课所学的内容及知识点;2. 强调重点和难点,提醒学生进行复习。
【板书设计】二次根式的复习概念:形如√a的式子二次根式计算方法:合并同类项、化简等性质:乘法性质、开方性质等实际应用:计算面积、体积、边长等【课后作业】1. 完成教材习题;2. 思考并解答一道具体的二次根式应用题;3. 复习并总结本节课所学的知识点和解题方法。
二次根式复习教案
二次根式复习教案教案标题:二次根式复习教案一、教学目标:1. 知识目标:复习二次根式的定义、性质和运算规律。
2. 能力目标:培养学生对二次根式的理解和运用能力,提高解决实际问题的能力。
3. 情感目标:激发学生对数学的兴趣,培养学生的数学思维和创新意识。
二、教学重点和难点:1. 重点:二次根式的定义和性质,二次根式的加减乘除运算。
2. 难点:二次根式的运算规律和实际问题的应用。
三、教学内容和安排:1. 复习二次根式的定义和性质:引导学生回顾二次根式的定义,以及二次根式的性质,如同底数、同指数的二次根式可以合并为一个二次根式等。
2. 二次根式的加减运算:通过例题讲解,引导学生掌握二次根式的加减运算规律,特别是要注意化简和合并同类项。
3. 二次根式的乘除运算:通过例题讲解,引导学生掌握二次根式的乘除运算规律,特别是要注意分子分母的有理化和化简。
4. 实际问题的应用:通过实际问题的讨论和解答,引导学生将二次根式的知识应用到实际生活中,培养学生的问题解决能力。
四、教学方法和手段:1. 讲授法:通过讲解和示范,引导学生理解和掌握二次根式的定义、性质和运算规律。
2. 练习法:设计一定数量和难度的练习题,让学生巩固和应用所学知识。
3. 实践法:引导学生通过实际问题的讨论和解答,将二次根式的知识应用到实际生活中。
五、教学评价和反馈:1. 课堂练习:布置一定数量和难度的练习题,让学生在课后进行练习,及时发现和纠正错误。
2. 课堂表现:通过课堂讨论和练习的表现,及时评价和反馈学生的学习情况,鼓励优秀,帮助落后。
六、教学资源准备:1. 教学课件:准备相关的教学课件,包括二次根式的定义、性质和运算规律的示意图和例题。
2. 教学工具:准备黑板、彩色粉笔、教学实物等教学工具。
七、教学反思和改进:1. 教师要及时总结课堂教学的得失,反思教学方法和手段的有效性,不断改进教学内容和安排,提高教学质量。
2. 学生的学习情况要及时反馈给家长,与家长密切合作,共同关注学生的学习进步。
二次根式章节复习教案
第16章二次根式复习课【教学目标】1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.【教学重点】含二次根式的式子的混合运算.【教学难点】综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.【教学方法】典例解析法【教学过程】【知识回顾】 ( 填空形式,学生口答)1.二次根式:式子(≥0)叫做二次根式。
(当≥0时,≥0;当≥0时,在实数范围内有意义.)2。
最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4。
二次根式的性质: (1)()2= (≥0); (2) 5。
二次根式的运算: ⑴二次根式的加减运算:先把二次根式化成最简二次根式,然后合并同类二次根式即可。
⑵二次根式的乘除运算:=(≥0,b ≥0);【设计意图】通过对知识的梳理,让学生对本章知识有个系统的认知,理清知识点之间的联系,掌握注意的地方,加深对知识的全面理解.【例题讲解】例11。
使有意义的的取值范围是.2。
中,的取值范围是.分析:第2题的分子是二次根式,分母是含x 的多项式,因此x 的取值必须使二次根式有意义,同时使分母的值不等于零。
例2下列根式中属最简二次根式的是( )A 。
B 。
C. D.分析:B 选项根式被开方数中中含有分母,CD 选项中含有能开得尽方的因数(或式). 例3下列各式中与是同类二次根式的是( )A .2B .C .D .分析:判断是否是同类二次根式前,要对每个根式进行化简。
例4 计算:(1)=; (2)=_________。
分析:根据二次根式的性质可直接得到结论。
例5化简:(1)____; ____;(2)____;分析:逆用二次根式乘除法公式结合二次根式的性质可直接得到结论.例6计算:(1)+-- (2)=________;(3);(>0) (<0) 0 (=0);分析:第1小题首先要将它们化成最简二次根式,然后合并同类二次根式。
初中数学二次根式复习课教案
二次根式复习课教案一、教学背景二次根式属于人教版初中数学九年级上教材中“数与代数”领域,它是在学生学习了平方根、立方根等内容的基础上进行的,是对七年级上册“实数”“代数式”等内容的延伸和补充。
本章的主要内容有二次根式的概念、性质、运算和应用。
二、教学目标1、知识与技能目标(1)理解二次根式的概念,二次根式的性质及运算法则。
(2)熟练运用二次根式的性质及运算法则。
2、过程与方法目标(1)夯实二次根式的性质、运算法则(2)在解决问题的过程中,让学生学会聆听、学会思考,同时发展学生归纳和概括能力。
3、情感、态度与价值观目标培养学生勇于探索的精神,激发学生的学习兴趣和学习积极性。
三、教学重难点重点:二次根式的性质与运算法则难点:利用数形结合的思想解决问题。
四、教学设计(一)创设情境学生利用思维导图对知识点进行系统复习,各组展示。
(二)探究复习1.基础达标:1(y>0)化为最简二次根式结果是().A(y>0)B y>0)C y>0)D.以上都不对2().A.①和②B.②和③C.①和④D.③和④3. 当x 在实数范围内有意义?4.已知,求x y的值.5,求a 2004+b 2004的值.6.计算(1)(2(231⎛+ ⎝(3)(08,荆门)(4)(08,庆阳).()5()6⎛÷ ⎝2.能力提升1._________.2. 已知〉xy 0,化简二次根式_________.3.如果 , 则x 的取值范围是 。
1=-4.n m 、n 的值. (三)拓展思维如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)(四)小结通过这节课的学习,(1)谈谈你的收获;(2)提提你的疑惑。
二次根式的复习教案
二次根式的复习教案二次根式是数学中的一种运算形式,也是中学数学中的重要内容。
学生对于二次根式的理解和掌握程度直接影响到其对于数学整体的理解和应用能力。
因此,本教案将围绕二次根式的概念、性质和运算法则展开,帮助学生对二次根式有一个全面的复习和加深理解。
一、概念回顾1.二次根式的定义:如果a是正实数,那么形如√a的数就叫做二次根式。
其中,√a叫做二次根号,a叫做被开方数。
2.二次根式的简化:一个二次根式,如果被开方数a的因数中有一个是平方数,那么这个二次根式就可以简化。
3.二次根式的分解:一个二次根式,如果可以分解成两个因数的二次根式的乘积形式,那么这个二次根式就可以进行分解。
二、性质回顾1.二次根式的大小比较:如果a和b都是正实数且a<b,那么√a<√b。
2.二次根式的相加减:如果a和b都是非负实数,那么√a±√b=√(a±b)。
3. 二次根式的乘法:如果a和b都是非负实数,那么(√a)(√b)=√(ab)。
4.二次根式的除法:如果a和b都是非负实数,且b≠0,那么(√a)/(√b)=√(a/b)。
三、运算法则复习1.化简二次根式:将一个二次根式化简成最简形式。
2.合并同类项:将含有相同被开方数的二次根式合并为一个二次根式。
3.分解二次根式:将一个二次根式分解成两个因数的二次根式乘积形式。
4.有理化分母:将一个二次根式的分母有理化,即将其分母中的二次根式化简成有理数。
四、练习题设计1.计算以下二次根式的值:(1)√9;(2)√16;(3)√25;(4)√362.简化以下二次根式:(1)√8;(2)√18;(3)√32;(4)√753.计算以下表达式的值:(1)√16+√9;(2)√25-√16;(3)(2√5+√2)(√5-√2);(4)(√3+√2)²。
4.将以下二次根式分解为两个因数的乘积形式:(1)√40;(2)√98;(3)√252;(4)√725.有理化以下二次根式的分母:(1)1/√3;(2)2/(√2+√5);(3)(3+√2)/(√2-1);(4)1/(√2-√3)。
(完整版)二次根式复习教案.doc
二次根式复习课第一课时一、学习目标:1、能够比较熟练应用二次根式的性质进行化简.2、能够比较熟练进行二次根式的运算.3、会运用二次根式的性质及运算解决简单的实际问题.二、学习重、难点重点:二次根式的性质的应用,二次根式的运算,二次根式的应用. 难点:二次根式性质的应用三、知识回顾1. 下列各式是二次根式的有()个5 , 3 , 2 7 , 3 , a2, m3A.2B.3 C 。
4 D.52、x 1有意义,则 x 的范围。
x3、若2a 1 2 1 2a ,则 a 。
4、写出一个24 的同类二次根式。
( 6) 2 =______ ()0.4 = ()56 = 5、(1) 2 14( 4 )2 3 2 ( 5 )49m2= ( 6 )9c 33 2 2000g 3 22001______________四、典型例题例 1:能使等式x x 成立的 x 的取值范围是()x 2 x 2A. x 2B. x 0C.x>2D. x 2例 2:当 1≤ x≤ 5 时,2x 1x 5 _____________ 。
例 3:已知 xy<0, 化简二次根式 xy) - 2的正确结果为(xA 、 yB 、 -yC 、- yD 、- -y例 4:计算( 1) 31 2755 (2) 9a × a1 ÷ 1 a 33 5153a2a(3) 2 3 32- 1 233 1 3 1 (4)( 3 + 2 ) + ( - 2) + - 8(5)先化简再求值: a21 a22a 1,期中 a2 1a1a1第二课时一、学习目标:1、能够比较熟练应用二次根式的性质进行化简.2、能够比较熟练进行二次根式的运算.3、会运用二次根式的性质及运算解决简单的实际问题.二、学习重、难点重点:二次根式的性质的应用,二次根式的运算,二次根式的应用. 难点:二次根式性质的应用一、选择:1.下列选项中,对任意实数 a 都有意义的二次根式是( )A . a- 1B . 1- a C. (1- a)2 D.1 1- a2.下列式子中正确的是()A. 5 2 7B. a2 b2 a bC. a x b x a b xD. 6 83 4 3 2 23.已知 x、 y 为实数, y= x- 2+2- x + 4,则 y x的值等于()A . 8 B. 4 C. 6 D. 164.下列根式中,是最简二次根式的是()A. 0.2bB. 12a 12bC. x2 y2D. 5ab25.等式x 3 x 3成立的条件是()x 5 x 5A 、 x≠ 5 B、 x≥ 3 C、 x≥ 3 且 x≠ 5 D 、 x>56.若 a<0,则化简a3得()A 、a a B、a a C、a a D、a a7.若a 1 , b 5 , 则()5 5A 、 a、 b 互为相反数B、 a、 b 互为倒数C、 ab=5 D、 a=b9.若(a 1) 2 a 2 1 2a ,则|1 a | | a | ( )A、1 2a B 、 1 C 、 1 D 、以上答案都不对二、填空:、10a+4 + a+2b- 2 =0 , ab=11、若最二次根式 3 4a2 1与26a2 1 是同二次根式, a ______ 。
二次根式复习课教案
第三关:尊贵铂金 非负性的应用.
已 知 : x 4 y 13 0 , 求
x y 的值.
第四关:永恒钻石 二次根式加减乘除混合运算
(1)
12 1 32 3
2
(2) 2 3 1 2 2 2 2 2 2
的完成情况,并
适时进行指导; 进行闯关 启发学生灵活 挑战,完 应用一题多解 成后 的思想解决问 与同伴交 题,培养学生 流 学生的逻辑思
情感、态度与价值观目标:
培养学生勇于探索的精神,激发学生的学习兴趣和学习积极性.
二、教学重难点
教学重点:熟练掌握二次根式的性质及运算法则,提高运算的准确性.
教学难点:熟练应用二次根式的性质解决相关问题.
三、教学方法
游戏驱动,讲练结合. 四、教学过程
教学过程
教师活动
学生活 动
设计意图
知识点回顾
教师以提问的方式 通过回答进 引导学生复习二次 一步熟悉知 根式的相关知识点 识点
课题
二次根式
科目
数学
教者
日期
2019.11.20
授课类型
复习课
一、教学目标
知识与技能目标:
(1)进一步理解二次根式的概念,二次根式的性质及运算法则.
(2)熟练运用二次根式的性质及运算法则.
过程与方法目标:
(1)夯实二次根式的性质、运算法则.
(2)在解决问题的过程中,让学生学会聆听、学会思考,同时发展学生归纳和概括能力.
复习旧知,为接下来 的环节做准备
勇者闯关:
第一关:秩序白银
把下列各式化为最简二次根式:
1
18
0.5
8
第二关:荣耀黄金 确定二次根式中被开方数所含字母 的取值范围.
二次根式的复习教案
二次根式的复习教案教案标题:二次根式的复习教案教学目标:1. 复习二次根式的基本概念和性质。
2. 强化学生对二次根式计算和简化的能力。
3. 提高学生对二次根式在实际问题中的应用能力。
教学步骤:引入活动:1. 引入二次根式的概念:将一个非负实数a开平方得到的结果称为二次根式,通常用√a表示。
知识讲解:2. 回顾二次根式的性质:a. √a * √b = √(a * b)b. √(a / b) = √a / √b,其中b ≠ 0c. (a ± b)² = a² ± 2ab + b²d. (√a ± √b)² = a ± 2√(ab) + b示例分析与练习:3. 通过示例,解释和计算二次根式的加减乘除运算。
a. 如√2 + √3 = √(2 + 2√6 + 3) = √(5 + 2√6)b. 如√5 - √2 = √(5 - 2√10 + 2) = √(7 - 2√10)c. 如(√2 + √3)(√2 - √3) = 2 - 3 = -1d. 如(√5 + 2)(√5 - 2) = 5 - 4 = 1应用拓展:4. 将二次根式应用到实际问题中,如:问题1:甲班有10个学生,乙班有12个学生,那么两个班一共有多少学生?问题2:一个正方形的边长为√5 cm,求正方形的面积。
综合练习:5. 给学生一些综合练习题,帮助学生巩固对二次根式的计算、简化和应用能力。
概念复习与总结:6. 复习和总结二次根式的基本概念和运算规则,强调学生需要多做练习来提高能力。
扩展活动:7. 鼓励学生寻找更多关于二次根式的实际应用例子,并与同学分享。
课堂作业:8. 布置一些二次根式的作业题,要求学生综合运用所学知识解决问题。
教学资源:- 黑板/白板和书写工具- 二次根式的示例题和练习题- 教材和参考书籍这个教案的撰写目的是为了引导学生对二次根式进行复习和巩固,以提高他们的理解和应用能力。
《二次根式》单元复习课 教学设计
教学反思
这一节课的教学实施,感觉到自己在以下几个方面做得还是不错的:
1、采用小组合作教学模式,培养合作学习能力;
2、激励机制到位,学生参与率达100%;
3、大胆让学生互改互教,充分发挥了学生在教学中的主体性;
4、采用信息技术,融入与时俱进的抢红包、发弹幕环节,激发了学生的学习兴趣。
不足:
在“小菊花”知识讲堂这一块,若是可以由教师亲自拍摄一两分钟的微课,相信更能调动课堂气氛,让学生们在快乐中将知识牢记下来。
同时将微课挂在班级群上,需要复习巩固的同学可以及时查看。
二次根式教案优秀6篇
二次根式教案优秀6篇次根式教案篇一【教学目标】1.运用法则进行二次根式的乘除运算;2.会用公式化简二次根式。
【教学重点】运用进行化简或计算【教学难点】经历二次根式的乘除法则的探究过程【教学过程】一、情境创设:1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?2.计算:二、探索活动:1.学生计算;2.观察上式及其运算结果,看看其中有什么规律?3.概括:得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。
将上面的公式逆向运用可得:积的算术平方根,等于积中各因式的算术平方根的积。
三、例题讲解:1.计算:2.化简:小结:如何化简二次根式?1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;2.P62结果中,被开方数应不含能开得尽方的因数或因式。
四、课堂练习:(一).P62练习1、2其中2中(5)注意:不是积的形式,要因数分解为36×16=242.(二).P673计算(2)(4)补充练习:1.(x0,y0)2.拓展与提高:化简:1).(a0,b0)2).(y2.若,求m的取值范围。
☆3.已知:,求的值。
五、本课小结与作业:小结:二次根式的乘法法则作业:1).课课练P9-102).补充习题次根式教案篇二教材分析:本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。
本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。
通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。
另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。
学生分析:本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。
二次根式及其运算复习教案
二次根式复习课一、教材内容本节课的主要复习内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式。
二、教学目标1.知识与技能(1)理解二次根式的概念.a≥0)是一个非负数,)2=a(a≥0)(2(a≥0).a≥0,b≥0);(3a≥0,b>0)a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法利用二次根式的加减、乘(除)法的计算和化简,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的复习主要培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.三、教学重点a≥0)a≥0)是一个非负数;1.2=a(a≥0)(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1.对a≥0)2=a(a≥0(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.四、教学过程(一)、中考要求1.了解二次根式、最简二次根式、同类二次根式的概念,能利用二次根式的基本性质进行化简。
2.能用二次根式(根号内仅限于数)的运算法则进行简单的四则运算。
(二)、梳理知识(1)二次根式1.二次根式的概念;像这样一些正数的算术平方根的式子,我们就把它称二a≥0)•的式子叫做二次根式,称为二次根号.a≥0)也是二次根式。
小结:1a≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.(2)二次根式的性质1a(a≥0),a≥0a才成立.例1:填空:当a≥0;当a<0,、2.(a≥0,b≥0)(3)最简二次根式:我们把满足下述两个条件的二次根式,叫做最简二次根式1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.注意:运算结果中的二次根式,一般都要化成最简二次根式.(4)同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式注意:①化成最简二次根式后②被开方数相同(5)二次根式的乘法二次根式的乘法:算术平方根的积等于积的算术平方根,并把结果化成最简二次根式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16章二次根式复习课
【教学目标】
1. 使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子; 2 •熟练地进行二次根式的加、减、乘、除混合运算.
【教学重点】 含二次根式的式子的混合运算.
【教学难点】综合运用二次根式的性质及运算法则化简和计算含二次根式的式子. 【教学方法】典例解析法 【教学过程】
【知识回顾】( 填空形式,学生口答)
1. 二次根式: 式子.a ( a >0)叫做二次根式。
(当a > 0时,..a > 0;当a > 0时, a 在实数范围内有意义。
)
2. 最简二次根式: 必须同时满足下列条件: ⑴被开方数中 不含开方开的尽的因数或因式 ;⑵被开方数中 不含分母;⑶分母中不含根
式。
3. 同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4. 二次根式的性质: (1) ( a ) 2
=a ( a > 0);
5. 二次根式的运算: ⑴二次根式的加减运
算:
先把二次根式化成最简二次根式,然后合并同类二次根式即可。
⑵二次根式的乘除运算:
掐?祁£ = 3匕(a > 0,b > 0) ;
a
卑 a 0,b 0
\ b Vb
【设计意图】通过对知识的梳理,让学生对本章知识有个系统的认知,理清知识点之间 的联系,掌握
注意的地方,加深对知识的全面理解。
例1 1.使
有意义的的取值范围是 _________________
(2) .. a 2
a
■ a ( a > 0)
0 ( a =0); a ( a v 0)
分析:第2题的分子是二次根式,分母是含
有意义,同时使分母的值不等于零。
例2下列根式中属最简二次根式的是(
A.~1
B. £
C.
分析:B选项根式被开方数中中含有分母,的取值范围是______________ .
x的多项式,因此x的取值必须使二次根式).8 D.27
CD选项中含有能开得尽方的因数(或式)<
2. 中,
例3 下列各式中与
是同类次根式的是)
B .
D.
分析:判断是否是同类二次根式前,要对每个根式进行化简。
例4 计算:(1)(J3)2= ________ ;(2)J 4 2= ____________ 。
分析:根据二次根式的性质可直接得到结论。
例5 化简:(1). 72 _____ ; 6 12 18 ______ ;(2). 75x3y2(x 0, y 0)—;
分析:逆用二次根式乘除法公式结合二次根式的性质可直接得到结论。
例6 计算:(1 ) 12 + 18 —8 —32
(3) ___________ ;
分析:第1小题首先要将它们化成最简二次根式,然后合并同类二次根式。
第2题即可以先算括号里的运算,也可以用乘法的分配律展开来计算。
第3题利用平方差公式运算简单。
例7⑴碍面斗任耳的取值范围是【]
A. a< 2
B. a> 2 C . 2 D. a v 2
分析:指出;由于二次根式的基本性辰J乳罚司要由H的职值范围确定}即
T
I叭丿故:a-2 < 0。
1.下列根式中不是最简二次根式的是()
A. .10
B. c. 、、6 D. 、2
2._______________________ .3的倒数是。
3.下列计算正确的是()
A.
B
.
c.
D.
4.下列运算正确的是()
A■. 1.60.4 B 、 1.5 2 1.5 C 、.9 3
4
D 、、
2
\'93
5.已知等边三角形ABC的边长为3 43,则△ ABC的周长是;
6.比较大小:3Vio。
7•下列各组二次根式中是同类二次根式的是()
A. ,12 与,.1B . 18与27 C .与,,D . . 45与.54
是同类二次根式,则的a 值可以是(
)
、6 C 、7 D 、8
3 0,则 a 2
b _____________
8.已知二次根式
A 、5 B
9 •若 a 2
7b
10. 计算:(1)
2)
(3) . (4)
..48 - . 12..27
4
2•在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件
(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.
3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.
4 •通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.。