中考数学《分式及分式方程》计算题附答案

合集下载

分式方程计算题50道及答案

分式方程计算题50道及答案

分式方程计算题50道及答案1、计算:1/2 + 1/3答案:5/62、计算:2/3 + 3/6答案:13、计算:3/6 + 2/6答案:1/24、计算:3/5 - 2/5答案:1/55、计算:1/2 - 1/4答案:1/46、计算:3/8 - 1/4答案:1/47、计算:2/9 - 1/9答案:1/98、计算:3/4 x 1/3答案:1/49、计算:2/3 x 2/3答案:4/910、计算:5/6 x 1/5答案:1/611、计算:3/7 x 1/5答案:3/3512、计算:2/3 ÷ 1/2答案:4/313、计算:3/4 ÷ 1/2答案:3/214、计算:2/9 ÷ 2/3答案:1/315、计算:1/6 ÷ 1/2答案:1/316、计算:1/3 + 1/3 - 1/3答案:1/317、计算:2/3 x 2/3 - 2/3答案:2/918、计算:1/4 x 2/3 ÷ 1/2答案:1/319、计算:1/3 + 1/4 ÷ 2/3答案:7/1220、计算:2/5 - 1/5 ÷ 1/3答案:3/1521、计算:1/5 x 1/5 ÷ 1/2答案:1/2022、计算:1/3 x 1/3 - 1/3答案:1/923、计算:2/3 - 3/6 + 1/6答案:1/224、计算:1/4 + 2/3 - 1/3答案:3/425、计算:1/3 - 1/4 + 1/4答案:1/426、计算:1/2 x 3/4 ÷ 1/3答案:127、计算:1/2 ÷ 1/5 + 5/6答案:11/628、计算:2/3 x 2/3 ÷ 1/3答案:4/329、计算:1/6 + 2/3 - 1/2答案:1/330、计算:2/5 - 3/4 + 1/4答案:-3/2031、计算:1/4 x 1/5 ÷ 2/3答案:2/1532、计算:1/3 - 1/4 + 2/9答案:1/1233、计算:2/3 x 3/4 - 1/3答案:5/1234、计算:1/6 + 1/6 - 2/6答案:1/635、计算:1/5 x 5/6 ÷ 1/3答案:5/636、计算:2/3 - 1/5 + 5/6答案:11/1537、计算:1/4 x 1/4 ÷ 4/3答案:1/1238、计算:1/2 - 2/3 + 3/4答案:1/439、计算:2/3 x 3/4 ÷ 1/3答案:4/340、计算:2/9 - 1/4 + 3/4答案:5/641、计算:1/5 x 5/6 - 1/3答案:1/6答案:3/243、计算:1/8 - 1/4 + 1/2答案:3/844、计算:2/3 x 1/2 ÷ 5/6答案:2/945、计算:1/6 + 2/3 ÷ 1/2答案:5/346、计算:2/5 - 1/5 ÷ 3/4答案:5/1247、计算:1/5 x 1/5 ÷ 4/3答案:1/2048、计算:1/3 x 1/3 - 1/4答案:1/1249、计算:1/2 - 1/3 + 2/3答案:1/2答案:4/9。

分式与分式方程(34题)(解析版)—2024年中考数学真题分类汇编(全国通用)

分式与分式方程(34题)(解析版)—2024年中考数学真题分类汇编(全国通用)

分式与分式方程(34题)一、单选题1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是( )A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=2.(2024·四川雅安·中考真题)计算()013-的结果是( )A .2-B .0C .1D .43.(2024·四川巴中·中考真题)某班学生乘汽车从学校出发去参加活动,目的地距学校60km ,一部分学生乘慢车先行0.5h ,另一部分学生再乘快车前往,他们同时到达.已知快车的速度比慢车的速度每小时快20km ,求慢车的速度?设慢车的速度为km /h x ,则可列方程为( )A .60601202x x -=+B .60601202x x -=-C .60601202x x -=+D .60601202x x -=-【答案】A【分析】本题主要考查了分式方程的应用.设慢车的速度为km /h x ,则快车的速度是()20km /h x +,再根据题意列出方程即可.4.(2024·四川雅安·中考真题)已知()2110a b a b+=+¹.则a aba b +=+( )A .12B .1C .2D .3二、填空题5.(2024·湖南长沙·中考真题)要使分式619x -有意义,则x 需满足的条件是 .6.(2024·辽宁·中考真题)方程512x =+的解为 .解得:3x =,经检验:3x =是原方程的解,∴原方程的解为:3x =,故答案为:3x =.7.(2024·重庆·中考真题)计算:011(3)(2p --+= .8.(2024·重庆·中考真题)计算:023-+= .【答案】3【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算即可得到结果.【详解】解:原式=2+1=3,故答案为:3.【点睛】此题考查了有理数的运算,熟练掌握运算法则是解本题的关键.9.(2024·安徽·中考真题)若代数式14-x 有意义,则实数x 的取值范围是 .【答案】4x ¹【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解:Q 分式有意义的条件是分母不能等于0,\40x -¹\4x ¹.故答案为:4x ¹.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.10.(2024·青海·中考真题)若式子13x -有意义,则实数x 的取值范围是 .【答案】3x ¹【分析】本题主要考查了分式有意义的条件,分式有意义的条件是分母不等于零.根据分式有意义的条件列不等式解答即可.11.(2024·四川甘孜·中考真题)分式方程11x 2=-的解为 .12.(2024·内蒙古通辽·中考真题)分式方程322x x=-的解为 .î13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为 .14.(2024·黑龙江绥化·中考真题)计算:22x y xy y x x x æö--¸-=ç÷èø.15.(2024·江苏盐城·中考真题)使分式11x -有意义的x 的取值范围是 .【答案】x ≠1【详解】根据题意得:x -1≠0,即x ≠1. 故答案为:x ≠1.16.(2024·山东滨州·中考真题)若分式11x -在实数范围内有意义,则x 的取值范围是 .17.(2024·四川自贡·中考真题)计算:31211a aa a +-=++.18.(2024·江苏常州·中考真题)计算:111x x x +=++ .19.(2024·四川内江·中考真题)已知实数a ,b 满足1ab =,那么221111a b +++的值为 .三、解答题20.(2024·甘肃兰州·中考真题)先化简,再求值:7411a aa a++æö+¸ç÷+,其中4a=.21.(2024·四川资阳·中考真题)先化简,再求值:221412x xx x x+-æö-¸ç÷+,其中3x=.22.(2024·黑龙江大庆·中考真题)先化简,再求值:22391369x x x x -æö+¸ç÷--+,其中2x =-.23.(2024·黑龙江大庆·中考真题)为了健全分时电价机制,引导电动汽车在用电低谷时段充电,某市实施峰谷分时电价制度,用电高峰时段(简称峰时):7:00—23:00,用电低谷时段(简称谷时):23:00—次日7:00,峰时电价比谷时电价高0.2元/度.市民小萌的电动汽车用家用充电桩充电,某月的峰时电费为50元,谷时电费为30元,并且峰时用电量与谷时用电量相等,求该市谷时电价.24.(2024·四川遂宁·中考真题)先化简:2121121x x x x -æö-¸ç÷--+èø,再从1,2,3中选择一个合适的数作为x 的值代入求值.25.(2024·吉林长春·中考真题)先化简,再求值:32222x x x x ---,其中x26.(2024·青海·中考真题)先化简,再求值:11x y y x y x æöæö-¸-ç÷ç÷èøèø,其中2x y =-.27.(2024·四川·中考真题)化简:11x x x x +æö-¸ç÷.28.(2024·四川雅安·中考真题)(1()111525-æö-+-´-ç÷èø;(2)先化简,再求值:2221211a a a a a -+æö-¸ç÷-,其中2a =.29.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?30.(2024·四川雅安·中考真题)某市为治理污水,保护环境,需铺设一段全长为3000米的污水排放管道,为了减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成铺设任务.(1)求原计划与实际每天铺设管道各多少米?(2)负责该工程的施工单位,按原计划对工人的工资进行了初步的预算,工人每天人均工资为300元,所有工人的工资总金额不超过18万元,该公司原计划最多应安排多少名工人施工?【答案】(1)原计划与实际每天铺设管道各为40米,50米(2)该公司原计划最多应安排8名工人施工【分析】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.31.(2024·江苏常州·中考真题)书画装裱,是指为书画配上衬纸、卷轴以便张贴、欣赏和收藏,是我国具有民族传统的一门特殊艺术.如图,一幅书画在装裱前的大小是1.2m 0.8m ´,装裱后,上、下、左、右边衬的宽度分别是a m 、b m 、c m 、d m .若装裱后AB 与AD 的比是16:10,且a b =,c d =,2c a =,求四周边衬的宽度.【答案】上、下、左、右边衬的宽度分别是0.1m 0.1m 0.2m 0.2m 、、、【分析】本题考查分式方程的应用,分别表示出,AB AD 的长,列出分式方程,进行求解即可.【详解】解:由题意,得: 1.2 1.22 1.24AB c d c a =++=+=+,0.80.82AD a b a =++=+,32.(2024·四川达州·中考真题)先化简:22224x x x x x x x +æö-¸ç÷-+-èø,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.33.(2024·重庆·中考真题)计算:(1)()()22x x y x y -++;(2)22111a a a a -æö+¸ç÷+èø.【答案】(1)222x y +;34.(2024·内蒙古呼伦贝尔·中考真题)先化简,再求值:22422324x xxx x-æö+-¸+ç÷+-,其中72x=-.。

(完整版)初中数学分式习题(附答案)(最新整理)

(完整版)初中数学分式习题(附答案)(最新整理)

x 1 (x 1)(x 1)
2 x 1
2
当 x=2 时,原式= .
3
6.
7
解:设他第一次在购物中心买了 x 盒,则他在一分利超市买了
x 盒.
由题意得: 12.5
14
=0.5
5
x 7x
5
解得 x=5.
经检验,x=5 是原方程的根. 答:他第一次在购物中心买了 5 盒饼干.
终不变. 所以当 x=3,5-2 2 ,7+ 3 时,代数式的值都是 1 . 2
5.对于试题:“先化简,再求值:
x3 x 2 1
1
1
x
,其中
x=2.”小亮写出了如下解答过程:
∵ x3 1 x3 1
① x 3 x 1

x 2 1 1 x (x 1)(x 1) x 1
(x 1)(x 1) (x 1)(x 1)
1 A.
x 1
1.下列各式中,不是分式方程的是(D) x x
1 x C.
x
1
10 x 2 x
B. 1 (x 1) x 1 x
D. 1 [ 1 (x 1) 1] 1 32
| x | 5 2.如果分式 x2 5x 的值为 0,那么 x 的值是(B)
A.0
B.5
C.-5
D.±5
2x 2y
3.把分式
3. b 1Aa 1 b 1Aa 1 的值是
2(a b)
.4.当 x>
1
2
时,分式
的值为正数.
ab ab
ab
3
1 3x
5. 1 1 = 1 x 1 x
2 1 x2
.6.当分式 x 2 与 与 与 x 1

中考数学模拟试题汇编专题7分式与分式方程(含答案)

中考数学模拟试题汇编专题7分式与分式方程(含答案)

分式与分式方程一、选择题1. (2016 浙·江杭州萧山区·模拟 )下列等式成立的是()A .B .(﹣ x ﹣ 1)( 1﹣ x ) =1﹣ x 2C .D .(﹣ x ﹣ 1) 2=x 2+2x+1【考点】分式的混合运算;整式的混合运算.【分析】 利用分式的性质以及整式混合运算的计算方法逐一计算结果,即可.进一步判断得出答案【解答】解:A 、不能约分,此选项错误;B 、(﹣ x ﹣ 1)( 1﹣ x ) =﹣1+x 2,此选项错误;C 、=﹣,此选项错误;D 、(﹣ x ﹣ 1) 2=x 2+2x+1 ,此选项正确. 故选: D .【点评】 此题考查分式的混合运算, 整式的混合运算, 掌握分式的性质和整式混合运算的方法是解决问题的关键.2、( 2016 齐河三模)函数 y= 中自变量 x 的取值范围是()A 、 x ≥ 0B 、 x ≠ 2C 、 x ≠ 3D 、 x ≥0, x ≠ 2且 x ≠3答案: Dxmx1( x 1)( x 2)3、( 2016 齐河三模)若分式方程1有增根,则 m 的值为()A 、0和3B 、 1C 、1和-2D 、 3答案: D4、( 2016 齐河三模)解分式方程: + =1 .答案: 1)去分母得: 2+x ( x+2)=x 2﹣ 4,解得: x=﹣ 3,检验:当 x=﹣3 时,( x+2)( x ﹣ 2) ≠0,故 x=﹣ 3 是原方程的根.5、( 2016·天津南开区·二模)某工厂现在平均每天比原计划多生产50 台机器,现在生产 600台所需时间与原计划生产450 台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是()A.= B .=C.= D .=考点:分式方程的应用答案: B试题解析:设原计划平均每天生产x 台机器,则实际平均每天生产(x+50)台机器,由题意得,=.故选B.6、( 2016 ·天津市南开区·一模)化简的结果()A . x﹣1B . x C.D.【考点】分式的乘除法.【专题】计算题;分式.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=?=x﹣ 1,故选 A.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.7、 (2016 ·重庆铜梁巴川·一模)函数y=+中自变量x 的取值范围是()A . x≤2B. x≤2且 x≠1C. x< 2 且 x≠1 D. x≠1【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:2﹣ x≥0且 x﹣ 1≠0,解得: x≤2且 x≠1.故选: B.8、 (2016 ·庆巴南重·一模)分式方程﹣=0 的解为()A . x=3 B. x= ﹣5C. x=5 D .无解【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+2﹣ 3x+3=0 ,解得: x=5 ,经检验 x=5 是分式方程的解.故选 C1x时,我们第一步通常是去分母,即方9、 (2016 山·西大同·一模)在解分式方程+=2x-1 x-1程两边同乘以最简公分母(x-1 ),把分式方程变形为整式方程求解。

分式方程计算30题(附答案、讲解)

分式方程计算30题(附答案、讲解)

郭氏数学公益教学博客中考分式方程计算30题(附答案、讲解)一.解答题(共30小题)1.(2011•自贡)解方程:.2.(2011•孝感)解关于的方程:.3.(2011•咸宁)解方程.4.(2011•乌鲁木齐)解方程:=+1.5.(2011•威海)解方程:.6.(2011•潼南县)解分式方程:.7.(2011•台州)解方程:.8.(2011•随州)解方程:.9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:.11.(2011•攀枝花)解方程:.12.(2011•宁夏)解方程:.13.(2011•茂名)解分式方程:.14.(2011•昆明)解方程:.15.(2011•菏泽)解方程:16.(2011•大连)解方程:.17.(2011•常州)解分式方程;18.(2011•巴中)解方程:.(2)解分式方程:=+1.20.(2010•遵义)解方程:21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:.23.(2010•西宁)解分式方程:24.(2010•恩施州)解方程:25.(2009•乌鲁木齐)解方程:26.(2009•聊城)解方程:+=1 27.(2009•南昌)解方程:28.(2009•南平)解方程:29.(2008•昆明)解方程:30.(2007•孝感)解分式方程:.答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。

专题:计算题。

分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。

初三数学分式方程试题答案及解析

初三数学分式方程试题答案及解析

初三数学分式方程试题答案及解析1.分式方程的解是。

【答案】x=9。

【解析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解。

方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9。

检验:把x=9代入x(x﹣3)=54≠0。

∴原方程的解为:x=9。

故答案为:x=9。

【考点】解分式方程。

2.(7分)(1)解关于m的分式方程=-1;(2)若(1)中分式方程的解m满足不等式mx+3>0,求出此不等式的解集.【答案】(1)m=﹣2;(2)x<1.5.【解析】(1)去分母将分式方程转化为整式方程,求出m的值,检验即可;(2)将m的值代入不等式,即可求出解集.试题解析:(1)去分母得:﹣m+3=5,解得:m=﹣2,经检验m=﹣2是分式方程的解;(2)将m=﹣2代入不等式得:﹣2x+3>0,解得:x<1.5.【考点】1.解分式方程2.解一元一次不等式.3.列方程(组)解应用题:某市计划建造80万套保障性住房,用于改善百姓的住房状况.开工后每年建造保障性住房的套数比原计划增加25%,结果提前两年保质保量地完成了任务.求原计划每年建造保障性住房多少万套?【答案】8.【解析】方程的应用解题关键是找出等量关系,列出方程求解.本题利用建设任务表示出建设时间,以时间为等量关系列方程是解题关键,等量关系为:提前2年完成建设任务.试题解析:设原计划每年建造保障性住房x万套.则解得 x=8.经检验:x=8是原方程的解,且符合题意.答:原计划每年建造保障性住房8万套.【考点】分式方程的应用.4.方程的解是【答案】x=3.【解析】原式可化为:2x=3(x-1)解得:x=3经检验得x=3是原方程的根所以原方程的解为x=3.故答案是x=3.【考点】解分式方程.5.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成. (1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【答案】(1)乙工程队单独做需要80天完成;(2)甲队做了45天,乙队做了50天.【解析】(1)根据“甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成”,设乙工程队单独完成这项工作需要x天,列出方程求解即可;(2)因为甲队做其中一部分用了x天,乙队做另一部分用了y天,可得到方程,再根据x<46,y<52,得到方程组,其中x、y均为正整数,解此方程组即可得到答案.试题解析:(1)设乙工程队单独完成这项工作需要x天,由题意得,解之得x=80.···················································3分经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.·······················································4分(2)因为甲队做其中一部分用了x天,乙队做另一部分用了y天,所以,即,又x<46,y<52,·····························5分所以,解之得42<x<46,因为x、y均为正整数,所以x=45,y=50.·················································7分答:甲队做了45天,乙队做了50天.···························································8分【考点】分式方程的应用;一元一次不等式(组)的应用.6.计算(1)计算:(2)解方程:【答案】(1);(2)x = 4.【解析】(1)针对特殊角的三角函数值,负整数指数幂,二次根式化简,绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)首先去掉分母,观察可得最简公分母是x(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元二次方程,最后检验即可求解.试题解析:(1)原式.(2)去分母得 3x2–6x–x2–2x = 0,即 2x2–8x = 0,∴ x = 0或x = 4.经检验:x = 0是增根.∴原方程的解是x = 4.【考点】1.特殊角的三角函数值;2.负整数指数幂;3.二次根式化简;4.绝对值;5.解分式方程.7.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【答案】(1)100,50;(2)10.【解析】(1)方程的应用解题关键是设出未知数,找出等量关系,列出方程求解. 本题设乙队每天绿化x m2,则甲队每天绿化2x m2,等量关系为:在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题不等量关系为:这次的绿化总费用不超过8万元.试题解析:(1)设乙队每天绿化x m2,则甲队每天绿化2x m2,根据题意,得.解得:x=50.经检验,x=50.是原方程的根.2x=100.答:甲、乙两工程队每天能完成绿化的面积分别是100、50m2。

分式及分式方程练习题(附答案)

分式及分式方程练习题(附答案)

第十六章 分式单元复习一、选择题1.下列各式中,不是分式方程的是( )111..(1)1111.1.[(1)1]110232x A B x x x x x x xC D x x x -=-+=-+=--=+-2.如果分式2||55x x x -+的值为0,那么x 的值是( )A .0B .5C .-5D .±53.把分式22x yx y +-中的x ,y 都扩大2倍,则分式的值( )A .不变B .扩大2倍C .扩大4倍D .缩小2倍4.下列分式中,最简分式有( )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b -++-++----A .2个B .3个C .4个D .5个5.分式方程2114339x x x +=-+-的解是( )A .x=±2B .x=2C .x=-2D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为( )A .-13.55B - C .1 D .无法确定7.关于x 的方程233xkx x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为()A .3B .0C .±3D .无法确定8.使分式224x x +-等于0的x 值为( )A .2B .-2C .±2D .不存在9.下列各式中正确的是( )....a ba ba ba bA B a b a b a b a ba b a b a b a bC D a b a b a b b a-++--==-----++--+-+-==-+-+-10.下列计算结果正确的是( )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷= 二、填空题1.若分式||55y y--的值等于0,则y= __________ . 2.在比例式9:5=4:3x 中,x=_________________ .3.计算:1111b a b a a b a b++---=_________________ . 4.当x> __________时,分式213x--的值为正数. 5.计算:1111x x ++-=_______________ . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足_______________ . 7.已知x+1x =3,则x 2+21x = ________ . 8.已知分式212x x +-:当x= _ 时,分式没有意义;当x= _______时,分式的值为0;当x=-2时,分式的值为_______. 9.当a=____________时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是_____________.三、解答题1.计算题:2222444(1)(4);282a a a a a a a --+÷-+--222132(2)(1).441x x x x x x x --+÷+-+-2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12;(2)213(2)22x x x x x -÷-+-++,其中x=12.3.解方程:(1)1052112x x +--=2; (2)2233111x x x x +-=-+-.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵2313111(1)(1)1x x x x x x x ---=----+- ①31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: ;若不正确,错误的原因是 ;(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?第十六章 分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D )111..(1)1111.1.[(1)1]110232x A B x x x x x x x C D x x x-=-+=-+=--=+- 2.如果分式2||55x x x-+的值为0,那么x 的值是(B ) A .0 B .5 C .-5 D .±53.把分式22x y x y+-中的x ,y 都扩大2倍,则分式的值(A ) A .不变 B .扩大2倍 C .扩大4倍 D .缩小2倍4.下列分式中,最简分式有(C )322222222222212,,,,312a x y m n m a ab b x x y m n m a ab b-++-++---- A .2个 B .3个 C .4个 D .5个5.分式方程2114339x x x +=-+-的解是(B ) A .x=±2 B .x=2 C .x=-2 D .无解6.若2x+y=0,则2222x xy y xy x ++-的值为(B ) A .-13.55B -C .1D .无法确定 7.关于x 的方程233x k x x =+--化为整式方程后,会产生一个解使得原分式方程的最简公分母为0,则k 的值为(A ) A .3 B .0 C .±3 D .无法确定8.使分式224x x +-等于0的x 值为(D ) A .2 B .-2 C .±2 D .不存在9.下列各式中正确的是(C )....a b a b a b a bA B a ba b a b a b a ba ba b a b C D a b a b a b b a -++--==-----++--+-+-==-+-+- 10.下列计算结果正确的是(B )22222211..()223..()955b a a b A B a ab a b ab a a m n n xy xy C D xy x x m a a --=-÷-=-÷=÷=二、填空题1.若分式||55y y--的值等于0,则y= -5 . 2.在比例式9:5=4:3x 中,x=2027. 3.1111b a b a a b a b++---的值是 2()a b ab + . 4.当x> 13 时,分式213x--的值为正数. 5.1111x x ++-= 221x - . 6.当分式2223211x x x x x +++--与分式的值相等时,x 须满足 x ≠±1 . 7.已知x+1x =3,则x 2+21x= 7 . 8.已知分式212x x +-,当x= 2 时,分式没有意义;当x= -12 时,分式的值为0;当x=-2时,分式的值为 34 . 9.当a= -173 时,关于x 的方程23ax a x +-=54的解是x=1. 10.一辆汽车往返于相距akm 的甲、乙两地,去时每小时行mkm ,•返回时每小时行nkm ,则往返一次所用的时间是 (a a m n +)h . 三、解答题1.计算题.2222222444(1)(4);28241(2)1.(2)(4)424a a a a a a a a a a a a a a --+÷-+----==-+--+解:原式 2222132(2)(1).441(1)(1)1(1)(2)1.(2)112x x x x x x x x x x x x x x x x --+÷+-+-+----==-+--解:原式 2.化简求值.(1)(1+11x -)÷(1-11x -),其中x=-12; 解:原式=1111111122x x x x x x x x x x -+---÷==-----. 当x=-12时,原式=15. (2)213(2)22x x x x x -÷-+-++,其中x=12.解:原式=22(1)(2)(2)3121(2)(1)2211x x x x x x x x x x ---+++÷=-=-+-++--. 当x=12时,原式=43. 3.解方程.(1)1052112x x+--=2; 解:x=74. (2)2233111x x x x +-=-+-. 解:用(x+1)(x -1)同时乘以方程的两边得,2(x+1)-3(x -1)=x+3.解得 x=1.经检验,x=1是增根.所以原方程无解.4.课堂上,李老师给大家出了这样一道题:当x=3,5-22212211x x x x x -+-÷-+的值.小明一看,说:“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体的解题过程.解:原式=2(1)1(1)(1)2(1)x x x x x -++--=12. 由于化简后的代数中不含字母x ,故不论x 取任何值,所求的代数式的值始终不变.所以当x=3,5-12. 5.对于试题:“先化简,再求值:23111x x x----,其中x=2.”小亮写出了如下解答过程: ∵ 2313111(1)(1)1x x x x x x x ---=----+- ① 31(1)(1)(1)(1)x x x x x x -+--+-+ ② =x -3-(x+1)=2x -2, ③∴当x=2时,原式=2×2-2=2. ④(1)小亮的解答在哪一步开始出现错误: ① (直接填序号);(2)从②到③是否正确: 不正确 ;若不正确,错误的原因是 把分母去掉了 ;(3)请你写出正确的解答过程.解:正确的应是:23111x x x ----=312(1)(1)(1)(1)1x x x x x x x -++=-+-++ 当x=2时,原式=23. 6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多25,•问他第一次在购物中心买了几盒饼干?解:设他第一次在购物中心买了x 盒,则他在一分利超市买了75x 盒. 由题意得:12.51475x x -=0.5 解得 x=5.经检验,x=5是原方程的根.答:他第一次在购物中心买了5盒饼干.。

(完整版)初中分式及分式方程100道计算题

(完整版)初中分式及分式方程100道计算题
适用文案
分式及分式方程计算题练习
1.分式计算:
(1)3b2
bc
(
2a)2
(2)a2
6a 9 3
a
a2
16a
2a2
b
4
b2
2
b
3a 9
(3)(x2
2x 3)3
(
x 3)2
(4)
2x 6
(x 3)x2
x 6
9 x2
1 x
4 4x x2
3 x
y
1
y 2
y 5
(5)
(6)
y2
4y 3 y2
6 y 9
y 1
(7)
x y).
2x
x y
2x
2.解方程
(37)
3a3
)
3
(x
2
y
2
) (
y
x
)
2
(
y
x
x y
(40)x2
4x 4 x2
2x 11
x2
4
x
2
x

35
⑵xx2
x2x
x5x6
标准文档
适用文案
⑶2 - x
1
- 2

1
1
3
x - 3 3 - x
2x 4 2
2 x
(5)
1
1
1
1
(6)
x 4
x
8
x 7
x
5
x 7 x 1 x 6 x 2
4x 1 0,求x4
1
的值。
x4
标准文档
适用文案
7.已知
a

初中数学-《分式与分式方程》测试题含解析

初中数学-《分式与分式方程》测试题含解析

初中数学-《分式与分式方程》测试题班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分共36分) 1.在2a b -,x x 1+,5πx +,a ba b+-中,是分式的有( )A .1个B .2个C .3个D .4个2.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( ) A .y x my nx ++元 B .y x ny mx ++元 C .y x n m ++元 D .12x y m n ⎛⎫+ ⎪⎝⎭元3.当x =2时,下列分式中,值为零的是( ) A .2322+--x x x B .942--x x C .21-x D .12++x x4.下列分式是最简分式的是( ) A .11m m -- B .3xy y xy - C .22x y x y -+ D .6132mm -5.若34y x =,则x yx+的值为( ) A .1 B .47 C .54 D .746.计算⎪⎭⎫⎝⎛-÷-x x x x 11所得的正确结论是( ) A.11x - B.1 C. 11x + D.-1 7.a ÷b ×b 1÷c ×c 1÷d ×d1等于( )A .aB .222dc b a C .d a D .ab 2c 2d 28.计算22193m m m --+的结果为: ( ) A .13m + B .-13m - C .-13m + D .13m - 9.分式121x x +-的分子分母都加1,所得的分式22x x +的值比121x x +-( )A .减小了B .不变C .增大了D .不能确定 10.若241()w 1a 42a+⋅=--,则w=( ) A.a 2(a 2)+≠- B.a 2(a 2)-+≠ C.a 2(a 2)-≠ D.a 2(a 2)--≠- 11.关于x 的方式方程232x mx +=-的解是正数,则m 可能是( ) A .﹣4 B .﹣5 C .﹣6 D .﹣7 12.如果关于x 的方程2435x a x b++=的解不是负值,那么a 与b 的关系是( ) A . a >35b B . b≥35a C .5a≥3b D .5a=3b 二、填空题:(每小题3分共12分)13.化简:23410ab ba = .14.已知31=+a a ,则221a a +的值是 。

(必考题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(含答案解析)(1)

(必考题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(含答案解析)(1)

一、选择题1.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式31x +与31x x+互为“3阶分式”.设正数x ,y 互为倒数,则分式22x x y +与22y y x +互为( ) A .二阶分式B .三阶分式C .四阶分式D .六阶分式 2.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度3.下列变形不正确...的是( ) A .1a b a b a b-=-- B .1a b a b a b +=++ C .221a b a b a b +=++ D .221-=-+a b a b a b4.若关于x 的方程1044m x x x--=--无解,则m 的值是( ) A .2- B .2 C .3- D .3 5.已知x 为整数,且分式2221x x --的值为整数,满足条件的整数x 可能是( ) A .0、1、2 B .﹣1、﹣2、﹣3C .0、﹣2、﹣3D .0、﹣1、﹣2 6.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y -中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式 7.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .0x = C .1x ≠- D .2x = 8.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600 9.下列各式中,正确的是( )A .22a a b b = B .11a a b b +=+ C .2233a b a ab b = D .232131a ab b ++=-- 10.若a =1,则2933a a a -++的值为( ) A .2B .2-C .12D .12- 11.若a b ,则下列分式化简中,正确的是( )A .22a a b b +=+B .22a a b b -=-C .33a a b b =D .22a a b b= 12.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3000300052x x -=+B .3000300052x x -=C .3000300052x x -=+D .3000300052x x-= 二、填空题13.化简2242()44224x x x x x x -+÷++++的结果是_______. 14.已知5,3a b ab -==,则b a a b +的值是__________. 15.关于x 的分式方程3122m x x-=--无解,则m 的值为_____. 16.世界上最小、最轻的昆虫其质量只有0.000005用科学记数法表示0.000005是______克.17.当x _______时,分式22x x-的值为负. 18.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______. 19.如果分式126x x --的值为零,那么x =________ .20.()052019π-+- =__________三、解答题21.先化简2454111x x x x x --⎫⎛+-÷ ⎪--⎝⎭,再从22x -≤≤中取一个合适的整数x 代入求值. 22.先化简,再求值:234()22m m m m m m-+⋅-+,其中m =1.23.甲、乙两公司全体员工踊跃参与“携手并肩,共渡难关”捐款活动,甲公司共捐款10万元,乙公司共捐款14万元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A ,B 两种物资,A 种物资每箱1.5万元,B 种物资每箱1.2万元,若购买B 种物资不少于5箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A ,B 两种物资均需购买,并按整箱配送)24.(建构模型)对于两个不等的非零实数a ,b ,若分式()()x a x b x--的值为零,则x a =或x b =.因为()()()()2x a x b x a b x ab ab x a b x x x ---++==+-+,所以,关于x 的方程ab x a b x+=+的两个解分别为:1x a =,2x b =. (应用模型)利用上面建构的模型,解决下列问题: (1)若方程p x q x+=的两个解分别为11x =-,24x =.则p =___,q =___;(直接写结论)(2)已知关于x 的方程222221n n x n x +-+=+的两个解分别为1x ,()212x x x <.求12223x x -的值. 25.先化简,再求值2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中整数x 满足13x -≤<. 26.2016年12月29日,引江济淮工程正式开工.该工程供水范围涵盖安徽省12个市和河南省2个市,共55个区县.其中在我县一段工程招标时,有甲、乙两个工程队投标,从投标书上得知:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)现将该工程分为两部分,甲队做完其中一部分工程用了m 天,乙队做完其中一部分工程用了n 天,m ,n 都是正整数,且甲队用时不到20天,乙队用时不到65天,甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.请用含m 的式子表示n ,并求出该工程款总共为多少万元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题意得出xy =1,可以用1x 表示y ,代入22x x y ++22y y x +,计算结果为2即可. 【详解】由题意得:xy =1,则y =1x , 把 y =1x ,代入22x x y ++22y y x +,得: 原式=221x x x ++221x x x+=3321x x ++321x +=2 ∴22x x y +与22y y x +互为“2阶分式”, 故选A .【点睛】本题是一道新定义型题目,主要考查分式的相关计算,有一定难度,熟练掌握分式的运算法则是解题的关键.2.D解析:D【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量.【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +, 根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度,故选:D .【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系.3.C解析:C【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案.【详解】 A.=1a b a b a b a b a b --=---,故此项正确; B.=1a b a b a b a b a b ++=+++,故此项正确; C. 22a b a b ++为最简分式,不能继续化简,故此项错误; D. ()()221a b a b a b a b a b a b--==-+-+,故此项正确; 故选C .【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.4.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 5.C解析:C【分析】根据分式有意义的条件得到x ≠±1,把分式化简,根据题意解答即可.【详解】解:由题意得,x 2﹣1≠0,解得,x ≠±1,2221x x --=2(1)(1)(1)x x x -+-=21x +, 当21x +为整数时,x =﹣3、﹣2、0、1, ∵x ≠1, ∴满足条件的整数x 可能是0、﹣2、﹣3,故选:C .【点睛】本题考查的是求分式的值、分式有意义的条件,掌握分式的分母不为0是解题的关键. 6.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y -中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.7.A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】∵分式2x x -有意义, ∴x-2≠0,解得:x≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.8.A解析:A【分析】先设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,依题意得:6000600052x x-=,解得:x=600,经检验,x=600是原分式方程的解,且符合题意,∴2x=1200.故答案选:A.【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.9.C解析:C【分析】利用分式的基本性质变形化简得出答案.【详解】A.22a ab b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B.11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误;C.2233a b aab b=,从左边到右边分子和分母同时除以ab,分式的值不变,故正确;D.232131a ab b++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误.故选:C.【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.10.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 11.C解析:C【分析】根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】 ∵a b A 、22a a b b +≠+ ,故该选项错误; B 、22a a b b -≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;12.D解析:D【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解.【详解】解:设原计划每小时生产口罩x 个,则实际每小时生产口罩2x 个,依题意得:3000300052x x-= 故选:D .【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.2【分析】先约分再算加法然后把除法化为乘法进而即可求解【详解】原式=====2故答案是:2【点睛】本题主要考查分式的化简掌握分式的四则混合运算法则是解题的关键解析:2【分析】先约分,再算加法,然后把除法化为乘法,进而即可求解.【详解】原式=2(2)(2)2(2)224x x x x x x ⎡⎤+-+÷⎢⎥+++⎣⎦=()222222x x x x x -⎡⎤+÷⎢⎥+++⎣⎦ =()222222x x x x x +-⎡⎤+⋅⎢⎥++⎣⎦=()222x x x x+⋅+ =2,故答案是:2.【点睛】本题主要考查分式的化简,掌握分式的四则混合运算法则,是解题的关键.14.【分析】先利用乘法公式算出的值再根据分式的加法运算算出结果【详解】解:∵∴∴故答案为:【点睛】本题考查分式的求值解题的关键是掌握分式的加法运算法则 解析:313【分析】先利用乘法公式算出22a b +的值,再根据分式的加法运算算出结果.【详解】解:∵5a b -=,3ab =,∴()222225631a b a b ab +=-+=+=, ∴22313b a b a a b ab ++==. 故答案为:313. 【点睛】本题考查分式的求值,解题的关键是掌握分式的加法运算法则.15.-3【分析】先求解分式方程得到用m 表示的根然后再确定该分式方程的增根最后让分式方程的根等于增根并求出m 的值即可【详解】解:m+3=x-2x=m+5由的增根为x=2令m+5=2解得m=-3故填:-3【解析:-3【分析】先求解分式方程得到用m 表示的根,然后再确定该分式方程的增根,最后让分式方程的根等于增根并求出m 的值即可.【详解】 解:3122m x x-=-- 3122m x x +=-- 312m x +=- m+3=x-2x=m+5 由3122m x x-=--的增根为x=2 令m+5=2,解得m=-3.故填:-3.【点睛】本题主要考查了解分式方程以及分式方程的增根,理解增根的定义是解答本题的关键. 16.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:解析:5×10-6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000005=5×10-6,故答案是:5×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围.【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0.【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.18.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式= 11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++ 故答案为:1n n +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律. 19.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x -=,解方程即可得.【详解】由题意得:10x -=,解得1x =,分式的分母不能为零,260x ∴-≠,解得3x ≠,1x ∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键. 20.-2【分析】直接利用算术平方根的意义绝对值和零指数幂的性质分别化简得出答案【详解】原式=2−5+1=−3+1=−2故答案为:-2【点睛】点评:此题主要考查了实数运算正确化简各数是解题关键解析:-2【分析】直接利用算术平方根的意义、绝对值和零指数幂的性质分别化简得出答案.【详解】原式=2−5+1=−3+1=−2.故答案为:-2【点睛】点评:此题主要考查了实数运算,正确化简各数是解题关键.三、解答题21.22x x -+,-1(x 取-1时值为-3) 【分析】 先按照分式运算的顺序和法则化简,再选取数值代入计算即可.【详解】 解:原式2145111(2)(2)x x x x x x x ⎫⎛---=-⋅⎪ --+-⎝⎭ 2(2)11(2)(2)x x x x x --=⋅-+- 22x x -=+ 22x -≤≤且x 为整数2,1,0,1,2x ∴=-- 又当1x ≠且2x ≠±时,原分式有意义x ∴只能取1-或0①当x 0=时,原式212-==-(或②当x 1=-时,原式331-==-) 【点睛】本题考查分式的化简求值,解题关键是准确应用分式运算法则按照正确的运算顺序进行化简,代入求值时要使分式有意义.22.4m +4,8.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把m 的值代入计算即可求出值.【详解】 解:原式=(2)(2)(2)(2)3(2)(2)m m m m m m m m m +-•+--++ =[3(2)(2)]m m m m++- =3(m +2)+(m ﹣2)=3m +6+m ﹣2=4m +4,当m =1时,原式=4+4=8.【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则,正确的进行化简.23.(1)甲公司有150人,乙公司有180人;(2)有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B 种物资或购买4箱A 种物资,15箱B 种物资【分析】(1)设乙公司有x 人,则甲公司有(30)x -人,根据对话,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买A 种防疫物资m 箱,购买B 种防疫物资n 箱,根据甲公司共捐款10万元,公司共捐款14万元,列出方程,求解出4165m n =-,根据整数解,约束出m 、n 的值,即可得出方案.【详解】解:(1)设乙公司有x 人,则甲公司有()30x -人, 由題意,得10714306x x⨯=- 解得180x =. 经检验,180x =是原方程的解,30150x -=,答:甲公司有150人,乙公司有180人.(2)设购买A 种物资n 箱,购买B 种物资n 箱,由题得1.5 1.21014m n +=+,整理,得4165m n =-又5n ≥,且m ,n 为正整数, 11125m n =⎧∴⎨=⎩ 22810m n =⎧⎨=⎩ 33415m n =⎧⎨=⎩ 答:有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B 种物资或购买4箱A 种物资,15箱B 种物资.【点睛】本题考查了分式方程的应用、方案问题、二元一次方程整数解问题,找准等量关系,正确列出方程是解题的关键.24.(1)4-,3;(2)1【分析】(1)根据材料可得:p=-1×4=-4,q=-1+4=3,计算出结果;(2)将原方程变形后变为:22212121n n x n x +-++=++,未知数变为整体2x+1,根据材料中的结论可得:122n x -=,212n x += ,代入所求式子可得结论; 【详解】 解:(1)∵方程p x q x+= 的两个解分别为:121=4x x =-, , ∴p=-1×4=-4,q=-1+4=3,故答案为:-4,3. (2)由222221n n x n x +-+=+,可得 22212121n n x n x +-++=++. ∴()()()()21212121n n x n n x +-++=++-+.故212x n +=+,解得12n x +=. 或211x n +=-,解得22n x -=. ∵12x x <, ∴122n x -=,212n x +=. ∴122222221123132232n x n n n x n n -⋅--====+-+--⋅-.【点睛】本题考查了分式方程的解,弄清题中的规律是解题的关键;25.原式1x=,1x =时,原式1=;或2x =时原式12=. 【分析】根据分式的减法和除法可以化简题目中的式子,然后从-1≤x <3中选取使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】 解:2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭ =2(1)(1)11x x x x x x--++⋅+ =221x x x-+ =1x, ∵x (x+1)≠0,∴x≠0,x≠-1,∵整数x 满足-1≤x <3,∴x=1或2,当x=1时,原式=11=1,当x=2时,原式=12. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.26.(1)90天;(2)3902n m =-(50203m <<,m ,n 均为正整数),189万元. 【分析】(1)设乙队单独完成这项工程需要x 天,根据题意列出方程20112416060x ⎛⎫++= ⎪⎝⎭,求出x 的值并进行检验即可; (2)根据题意得出16090m n +=解得3902n m =-,继而得出20390652m m <⎧⎪⎨-<⎪⎩,解出m 的取值并分情况求解即可;【详解】解:(1)设乙队单独完成这项工程需要x 天,根据题意得:20112416060x ⎛⎫++= ⎪⎝⎭,解得:90x =, 经检验,90x =是所列分式方程的解,且符合题意.答:乙队单独完成这项工程需要90天.(2)解:由题意得16090m n +=整理,得3902n m =-, 20390652m m <⎧⎪⎨-<⎪⎩,解得:50203m <<, 因为m ,n 均为正整数,所以,当17m =时,64.5n =,不是整数(舍去);当18m =时,63n =,符合题意;当19m =时,61.5n =,不是整数(舍去),工程款总数为3.518263189⨯+⨯=万元.【点睛】本题考查了分式方程的工程问题,正确理解题意和工作效率和工作时间之间的关系是解题的关键;。

初中数学分式方程精选试题(含答案和解析)

初中数学分式方程精选试题(含答案和解析)

初中数学分式方程精选试题一.选择题1. (2018·湖南怀化·4分)一艘轮船在静水中的最大航速为30km/h.它以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.设江水的流速为v km/h.则可列方程为()A.=B.=C.=D.=【分析】根据“以最大航速沿江顺流航行100km所用时间.与以最大航速逆流航行80km所用时间相等.”建立方程即可得出结论.【解答】解:江水的流速为v km/h.则以最大航速沿江顺流航行的速度为(30+v)km/h.以最大航速逆流航行的速度为(30﹣v)km/h. 根据题意得..故选:C.【点评】此题是由实际问题抽象出分式方程.主要考查了水流问题.找到相等关系是解本题的关键.2.(2018•临安•3分)下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【分析】此类题目难度不大.可用验算法解答.【解答】解:A.a12÷a6是同底数幂的除法.指数相减而不是相除.所以a12÷a6=a6.错误;B.(x+y)2为完全平方公式.应该等于x2+y2+2xy.错误;C.===﹣.错误;D.正确.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n.②÷=(a≥0.b>0).3.(2018•金华、丽水•3分)若分式的值为0.则x的值是()A. 3B.C. 3或D. 0【解析】【解答】解:若分式的值为0.则.解得.故答案为:A.【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时.则分子为零.分母不能为0.5.(2018·黑龙江哈尔滨·3分)方程=的解为()A.x=﹣1 B.x=0 C.x=D.x=1【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x.解得:x=1.经检验x=1是分式方程的解.故选:D.【点评】此题考查了解分式方程.利用了转化的思想.解分式方程注意要检验.6.(2018·黑龙江龙东地区·3分)已知关于x的分式方程=1的解是负数.则m的取值范围是()A.m≤3B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零.再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3.∵关于x的分式方程=1的解是负数.∴m﹣3<0.解得:m<3.当x=m﹣3=﹣1时.方程无解.则m≠2.故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解.正确得出分母不为零是解题关键.7.(2018•贵州黔西南州•4分)施工队要铺设1000米的管道.因在中考期间需停工2天.每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米.所列方程正确的是()A.=2 B.=2C.=2 D.=2【分析】设原计划每天施工x米.则实际每天施工(x+30)米.根据:原计划所用时间﹣实际所用时间=2.列出方程即可.【解答】解:设原计划每天施工x米.则实际每天施工(x+30)米. 根据题意.可列方程:﹣=2.故选:A.【点评】本题考查了由实际问题抽象出分式方程.关键是读懂题意.找出合适的等量关系.列出方程.8.(2018•海南•3分)分式方程=0的解是()A.﹣1 B.1 C.±1D.无解【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1.得:x2﹣1=0.解得:x=1或x=﹣1.当x=1时.x+1≠0.是方程的解;当x=﹣1时.x+1=0.是方程的增根.舍去;所以原分式方程的解为x=1.故选:B.【点评】本题主要考查分式方程的解.解题的关键是熟练掌握解分式方程的步骤.9.(2018湖南张家界3.00分)若关于x的分式方程=1的解为x=2.则m的值为()A.5 B.4 C.3 D.2【分析】直接解分式方程进而得出答案.【解答】解:∵关于x的分式方程=1的解为x=2.∴x=m﹣2=2.解得:m=4.故选:B.【点评】此题主要考查了分式方程的解.正确解方程是解题关键.二.填空题1. (2018·湖北襄阳·3分)计算﹣的结果是.【分析】根据同分母分式加减运算法则计算即可.最后要注意将结果化为最简分式.【解答】解:原式===.故答案为:.【点评】本题考查了分式的加减.归纳提炼:分式的加减运算中.如果是同分母分式.那么分母不变.把分子直接相加减即可;如果是异分母分式.则必须先通分.把异分母分式化为同分母分式.然后再相加减.2. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.3. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.4. (2018•湖州•4分)当x=1时.分式的值是.【分析】将x=1代入分式.按照分式要求的运算顺序计算可得.【解答】解:当x=1时.原式==.故答案为:.【点评】本题主要考查分式的值.在解答时应从已知条件和所求问题的特点出发.通过适当的变形、转化.才能发现解题的捷径.5. (2018•嘉兴•4分.)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%.若设甲每小时检测个.则根据题意,可列出方程:________.【答案】【解析】【分析】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据甲检测300个比乙检测200个所用的时间少.列出方程即可.【解答】若设甲每小时检测个.检测时间为.乙每小时检测个.检测时间为.根据题意有:.故答案为:【点评】考查分式方程的应用.解题的关键是找出题目中的等量关系.7.(2018·黑龙江哈尔滨·3分)函数y=中.自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式.解不等式即可.【解答】解:由题意得.x﹣4≠0.解得.x≠4.故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围.掌握分式分母不为0是解题的关键.8.(2018·黑龙江齐齐哈尔·3分)若关于x的方程+=无解.则m的值为﹣1或5或﹣.【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解答】解:去分母得:x+4+m(x﹣4)=m+3.可得:(m+1)x=5m﹣1.当m+1=0时.一元一次方程无解.此时m=﹣1.当m+1≠0时.则x==±4.解得:m=5或﹣.综上所述:m=﹣1或5或﹣.故答案为:﹣1或5或﹣.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.9.(2018•广西贵港•3分)若分式的值不存在.则x的值为﹣1 .【分析】直接利用分是有意义的条件得出x的值.进而得出答案.【解答】解:若分式的值不存在.则x+1=0.解得:x=﹣1.故答案为:﹣1.【点评】此题主要考查了分式有意义的条件.正确把握分式有意义的条件:分式有意义的条件是分母不等于零是解题关键.11.(2018•贵州铜仁•4分)分式方程=4的解是x= ﹣9 .【分析】分式方程去分母转化为整式方程.求出整式方程的解得到x 的值.经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8.解得:x=﹣9.经检验x=﹣9是分式方程的解.故答案为:﹣912. (2018湖南长沙3.00分)化简:= 1 .【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减.分母不变.把分子相加减计算即可.【解答】解:原式==1.故答案为:1.【点评】本题考查了分式的加减法法则.解题时牢记定义是关键.13.(2018湖南湘西州4.00分)要使分式有意义.则x的取值范围为x≠﹣2 .【分析】根据根式有意义的条件即可求出答案.【解答】解:由题意可知:x+2≠0.∴x≠﹣2故答案为:x≠﹣2【点评】本题考查分式有意义的条件.解题的关键是正确理解分式有意义的条件.本题属于基础题型.14. (2018•达州•3分)若关于x的分式方程=2a无解.则a 的值为.【分析】直接解分式方程.再利用当1﹣2a=0时.当1﹣2a≠0时.分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3).整理得:(1﹣2a)x=﹣3a.当1﹣2a=0时.方程无解.故a=;当1﹣2a≠0时.x==3时.分式方程无解.则a=1.故关于x的分式方程=2a无解.则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解.正确分类讨论是解题关键.15. (2018•遂宁•4分)A.B两市相距200千米.甲车从A市到B市.乙车从B市到A市.两车同时出发.已知甲车速度比乙车速度快15千米/小时.且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时.则根据题意.可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时.则根据题意.可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程.正确表示出两车所用时间是解题关键.三.解答题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·5分)化简:•.【分析】先将分子、分母因式分解.再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法.解题的关键是掌握分式乘除运算顺序和运算法则.2. (2018·湖北随州·6分)先化简.再求值:.其中x为整数且满足不等式组.【分析】根据分式的除法和加法可以化简题目中的式子.由x为整数且满足不等式组可以求得x的值.从而可以解答本题.【解答】解:===.由得.2<x≤3.∵x是整数.∴x=3.∴原式=.【点评】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解.解答本题的关键是明确分式的化简求值的计算方法.3. (2018·湖北襄阳·6分)正在建设的“汉十高铁”竣工通车后.若襄阳至武汉段路程与当前动车行驶的路程相等.约为325千米.且高铁行驶的速度是当前动车行驶速度的2.5倍.则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.【分析】设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意列出方程.求出方程的解即可.【解答】解:设高铁的速度为x千米/小时.则动车速度为0.4x千米/小时.根据题意得:﹣=1.5.解得:x=325.经检验x=325是分式方程的解.且符合题意.则高铁的速度是325千米/小时.【点评】此题考查了分式方程的应用.弄清题中的等量关系是解本题的关键.4.(2018•内蒙古包头市•3分)化简;÷(﹣1)= ﹣.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣.故答案为:﹣.【点评】本题主要考查分式的混合运算.解题的关键是掌握分式混合运算顺序和运算法则.2.(2018•内蒙古包头市•10分)某商店以固定进价一次性购进一种商品.3月份按一定售价销售.销售额为2400元.为扩大销量.减少库存.4月份在3月份售价基础上打9折销售.结果销售量增加30件.销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元.那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据数量=总价÷单价结合4月份比3月份多销售30件.即可得出关于x的分式方程.解之经检验即可得出结论;(2)设该商品的进价为y元.根据销售利润=每件的利润×销售数量.即可得出关于y的一元一次方程.解之即可得出该商品的进价.再利用4月份的利润=每件的利润×销售数量.即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元.则4月份这种商品的售价为0.9x元.根据题意得:=﹣30.解得:x=40.经检验.x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元.根据题意得:(40﹣a)×=900.解得:a=25.∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.6.(2018•山东烟台市•6分)先化简.再求值:(1+)÷.其中x满足x2﹣2x﹣5=0.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把已知等式变形后代入计算即可求出值.【解答】解:原式=•=•=x(x﹣2)=x2﹣2x.由x2﹣2x﹣5=0.得到x2﹣2x=5.则原式=5.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.7.(2018•山东东营市•8分)小明和小刚相约周末到雪莲大剧院看演出.他们的家分别距离剧院1200m和2000m.两人分别从家中同时出发.已知小明和小刚的速度比是3:4.结果小明比小刚提前4min到达剧院.求两人的速度.【分析】设小明的速度为3x米/分.则小刚的速度为4x米/分.根据时间=路程÷速度结合小明比小刚提前4min到达剧院.即可得出关于x 的分式方程.解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分.则小刚的速度为4x米/分. 根据题意得:﹣=4.解得:x=25.经检验.x=25是分式方程的根.且符合题意.∴3x=75.4x=100.答:小明的速度是75米/分.小刚的速度是100米/分.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.8.(2018•山东济宁市•7分)先化简.再求值:﹣÷(﹣).其中a=﹣.【分析】首先计算括号里面的减法.然后再计算除法.最后再计算减法.化简后.再代入a的值可得答案.【解答】解:原式=﹣÷[﹣].=﹣÷[﹣].=﹣÷.=﹣•.=﹣.=﹣.当a=﹣时.原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值.关键是掌握化简求值.一般是先化简为最简分式或整式.再代入求值.9. (2018•达州•6分)化简代数式:.再从不等式组的解集中取一个合适的整数值代入.求出代数式的值.【分析】直接将=去括号利用分式混合运算法则化简.再解不等式组.进而得出x的值.即可计算得出答案.【解答】解:原式=×﹣×=3(x+1)﹣(x﹣1)=2x+4..解①得:x≤1.解②得:x>﹣3.故不等式组的解集为:﹣3<x≤1.把x=﹣2代入得:原式=0.【点评】此题主要考查了分式的化简求值以及不等式组解法.正确掌握分式的混合运算法则是解题关键.10. (2018•遂宁•8分)先化简.再求值•+.(其中x=1.y=2)【分析】根据分式的运算法则即可求出答案.【解答】解:当x=1.y=2时.原式=•+=+==﹣3【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.11.(2018•资阳•7分)先化简.再求值:÷(﹣a).其中a=﹣1.b=1.【分析】先根据分式混合运算顺序和运算法则化简原式.再将A.b的值代入计算可得.【解答】解:原式=÷=•=.当a=﹣1.b=1时.原式====2+.【点评】本题主要考查分式的化简求值.解题的关键是掌握分式混合运算顺序和运算法则.12.(2018•乌鲁木齐•10分)某校组织学生去9km外的郊区游玩.一部分学生骑自行车先走.半小时后.其他学生乘公共汽车出发.结果他们同时到达.己知公共汽车的速度是自行车速度的3倍.求自行车的速度和公共汽车的速度分别是多少?【分析】设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h.根据时间=路程÷速度结合乘公共汽车比骑自行车少用小时.即可得出关于x的分式方程.解之经检验即可得出结论.【解答】解:设自行车的速度为xkm/h.则公共汽车的速度为3xkm/h. 根据题意得:﹣=.解得:x=12.经检验.x=12是原分式方程的解.∴3x=36.答:自行车的速度是12km/h.公共汽车的速度是36km/h.【点评】本题考查了分式方程的应用.找准等量关系.正确列出分式方程是解题的关键.13.(2018•临安•6分)(1)化简÷(x﹣).(2)解方程:+=3.【分析】(1)先计算括号内分式的减法.再计算除法即可得;(2)先去分母化分式方程为整式方程.解整式方程求解的x值.检验即可得.【解答】解:(1)原式=÷(﹣)=÷=•=;(2)两边都乘以2x﹣1.得:2x﹣5=3(2x﹣1).解得:x=﹣.检验:当x=﹣时.2x﹣1=﹣2≠0.所以分式方程的解为x=﹣.【点评】本题主要考查分式的混合运算与解分式方程.解题的关键是掌握解分式方程和分式混合运算的步骤.14.(2018•嘉兴•4分)化简并求值()•.其中a=1.b=2.【答案】原式= =a-b当a=1.b=2时.原式=1-2=-1【考点】利用分式运算化简求值【解析】分式的化简当中.可先运算括号里的.或都运用乘法分配律计算都可16. (2018•贵州安顺•10分)先化简.再求值:.其中.【答案】..【解析】分析:先化简括号内的式子.再根据分式的除法进行计算即可化简原式.然后将x=-2代入化简后的式子即可解答本题.详解:原式=.∵.∴.舍.当时.原式.点睛:本题考查分式的化简求值.解题的关键是明确分式化简求值的方法.17.(2018•广西桂林•8分)某校利用暑假进行田径场的改造维修.项目承包单位派遣一号施工队进场施工.计划用40天时间完成整个工程:当一号施工队工作5天后.承包单位接到通知.有一大型活动要在该田径场举行.要求比原计划提前14天完成整个工程.于是承包单位派遣二号与一号施工队共同完成剩余工程.结果按通知要求如期完成整个工程.(1)若二号施工队单独施工.完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工.完成整个工程需要多少天?【答案】(1)60天;(2)24天.【解析】分析:(1)设二号施工队单独施工需要x天.根据题意可知一号施工队5天工作总量与一号施工队和二号施工队合作工作总量之和=1列出方程求解即可;(2)根据工作总量÷工作效率=工作时间求解即可.详解:(1)设二号施工队单独施工需要x天.依题可得解得x=60.经检验.x=60是原分式方程的解.∴由二号施工队单独施工.完成整个工期需要60天.(2)由题可得(天).∴若由一、二号施工队同时进场施工.完成整个工程需要24天.点睛:本题考查了列分式方程解应用题.灵活运用和掌握工作总量÷工作效率=工作时间是解题关键.18.(2018•广西南宁•6分)解分式方程:﹣1=.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论依次计算可得.【解答】解:两边都乘以3(x﹣1).得:3x﹣3(x﹣1)=2x.解得:x=1.5.检验:x=1.5时.3(x﹣1)=1.5≠0.所以分式方程的解为x=1.5.【点评】本题主要考查解分式方程.解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.19. 2018·黑龙江大庆·4分)解方程:﹣=1.【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2.求出方程的解.再代入x(x+3)进行检验即可.【解答】解:两边都乘以x(x+3).得:x2﹣(x+3)=x(x+3).解得:x=﹣.检验:当x=﹣时.x(x+3)=﹣≠0.所以分式方程的解为x=﹣.20. (2018·黑龙江哈尔滨·7分)先化简.再求代数式(1﹣)÷的值.其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=4cos30°+3tan45°时.所以a=2+3原式=•=【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.21(2018·黑龙江龙东地区·5分)先化简.再求值:(1﹣)÷.其中a=sin30°.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=sin30°时.所以a=原式=•=•==﹣1【点评】本题考查分式的运算.解题的关键是熟练运用分式的运算法则.本题属于基础题型.22..(2018·湖北省恩施·8分)先化简.再求值:•(1+)÷.其中x=2﹣1.【分析】直接分解因式.再利用分式的混合运算法则计算得出答案.【解答】解:•(1+)÷=••把x=2﹣1代入得.原式===.【点评】此题主要考查了分式的化简求值.正确进行分式的混合运算是解题关键.23.(2018•福建A卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.24.(2018•福建B卷•8分)先化简.再求值:(﹣1)÷.其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子.然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===.当m=+1时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确分式化简求值的方法.25.(2018•广东•6分)先化简.再求值:•.其中a=.【分析】原式先因式分解.再约分即可化简.继而将a的值代入计算.【解答】解:原式=•=2a.当a=时.原式=2×=.【点评】本题主要考查分式的化简求值.解题的关键是熟练掌握分式混合运算顺序和运算法则.26.(2018•广东•7分)某公司购买了一批A.B型芯片.其中A型芯片的单价比B型芯片的单价少9元.已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条.且购买的总费用为6280元.求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x ﹣9)元/条.根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.即可得出关于x的分式方程.解之经检验后即可得出结论;(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据总价=单价×数量.即可得出关于a的一元一次方程.解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条.则A型芯片的单价为(x﹣9)元/条.根据题意得:=.解得:x=35.经检验.x=35是原方程的解.∴x﹣9=26.答:A型芯片的单价为26元/条.B型芯片的单价为35元/条.(2)设购买a条A型芯片.则购买(200﹣a)条B型芯片.根据题意得:26a+35(200﹣a)=6280.解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用.解题的关键是:(1)找准等量关系.正确列出分式方程;(2)找准等量关系.正确列出一元一次方程.27.(2018•广西北海•6分)解分式方程:【答案】 x = 1.5【考点】解分式方程【解答】解:方程左右两边同乘3(x -1).得3x - 3(x -1) = 2x3x - 3x + 3 = 2x2x = 3x = 1.5检验:当x = 1.5时 . 3(x -1) ≠ 0所以.原分式方程的解为 x = 1.5 .【点评】根据解分式的一般步骤进行去分母.然后解一元一次方程,最后记得检验即可.28.(2018•广西贵港•10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、代入三角函数值.再计算加减可得;(2)分式方程去分母转化为整式方程.求出整式方程的解得到x的值.经检验即可得到分式方程的解.【解答】解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2).得:4+(x+2)(x﹣2)=x+2. 整理.得:x2﹣x﹣2=0.解得:x1=﹣1.x2=2.检验:当x=﹣1时.(x+2)(x﹣2)=﹣3≠0.当x=2时.(x+2)(x﹣2)=0.所以分式方程的解为x=﹣1.【点评】此题考查了实数的运算与解分式方程.解分式方程的基本思想是“转化思想”.把分式方程转化为整式方程求解.解分式方程一定注意要验根.29.(2018•贵州黔西南州•12分)(2)先化简(1﹣)•.再在1.2.3中选取一个适当的数代入求值.【分析】(2)根据分式的减法和乘法可以化简题目中的式子.再从1.2.3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(2)(1﹣)•===. 当x=2时.原式=.【点评】本题考查分式的化简求值.解答本题的关键是明确它们各自的计算方法.31.(2018年湖南省娄底市)先化简.再求值:( +)÷.其中x=.【分析】原式括号中两项通分并利用同分母分式的加法法则计算.同时利用除法法则变形.约分得到最简结果.把x的值代入计算即可求出值.【解答】解:原式=•=.当x=时.原式==3+2.【点评】此题考查了分式的化简求值.熟练掌握运算法则是解本题的关键.31.(2018湖南省邵阳市)(8分)某公司计划购买A.B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料.且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A.B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A.B两种型号的机器人共20台.要求每小时搬运材料不得少于2800kg.则至少购进A型机器人多少台?【分析】(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论.(2)设购进A型机器人a台.根据每小时搬运材料不得少于2800kg 列出不等式并解答.【解答】解:(1)设B型机器人每小时搬运x千克材料.则A型机器人每小时搬运(x+30)千克材料.根据题意.得=.解得x=120.经检验.x=120是所列方程的解.当x=120时.x+30=150.答:A型机器人每小时搬运150千克材料.B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台.则购进B型机器人(20﹣a)台.根据题意.得150a+120(20﹣a)≥2800.解得a≥.∵a是整数.∴a≥14.答:至少购进A型机器人14台.【点评】本题考查了分式方程的运用.一元一次不等式的运用.解决问题的关键是读懂题意.找到关键描述语.进而找到所求的量的数量关。

专题04 分式与分式方程-2022年中考数学真题分项汇编(全国通用)(第2期)(解析版)

专题04 分式与分式方程-2022年中考数学真题分项汇编(全国通用)(第2期)(解析版)

专题04 分式与分式方程一.选择题1.(2022·广西玉林)若x 是非负整数,则表示22242(2)x x x x --++的值的对应点落在下图数轴上的范围是( )A .①B .②C .③D .①或②【答案】B【分析】先对分式进行化简,然后问题可求解. 【详解】解:22242(2)x x x x --++ =()()222224(2)2x x x x x +--++ =()2222442x x x x +-++ =()222(2)x x ++=1;故选B .【点睛】本题主要考查分式的运算,熟练掌握分式的减法运算是解题的关键.2.(2022·黑龙江绥化)有一个容积为243m 的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟,设细油管的注油速度为每分钟x 3m ,由题意列方程,正确的是( ) A .1212304x x += B .1515244x x += C .3030242x x += D .1212302x x+= 【答案】A【分析】由粗油管口径是细油管的2倍,可知粗油管注水速度是细油管的4倍.可设细油管的注油速度为每分钟x 3m ,粗油管的注油速度为每分钟4x 3m ,继而可得方程,解方程即可求得答案.【详解】解:∵细油管的注油速度为每分钟x 3m ,∵粗油管的注油速度为每分钟4x 3m , ∵1212304x x+=.故选:A . 【点睛】此题考查了分式方程的应用,准确找出数量关系是解题的关键.3.(2022·山东威海)试卷上一个正确的式子(11a b a b ++-)÷★=2a b +被小颖同学不小心滴上墨汁.被墨汁遮住部分的代数式为( )A .a a b -B .a b a -C .a a b +D .224a a b - 【答案】A【分析】根据分式的混合运算法则先计算括号内的,然后计算除法即可. 【详解】解:11a b a b ⎛⎫+÷ ⎪+-⎝⎭∵=2a b + ()()a b a b a b a b -++÷+-∵=2a b+ ∵=()()22a a b a b a b ÷+-+ =a a b-,故选A . 【点睛】题目主要考查分式的混合运算,熟练掌握运算法则是解题关键.4.(2022·黑龙江)已知关于x 的分式方程23111x m x x --=--的解是正数,则m 的取值范围是( ) A .4m >B .4m <C .4m >且5m ≠D .4m <且1m ≠ 【答案】C【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,根据分式方程的解为正数得到40m ->且410m --≠,即可求解.【详解】方程两边同时乘以(1)x -,得231x m x -+=-,解得4x m =-,关于x 的分式方程23111x m x x--=--的解是正数, 0x ∴>,且10x -≠,即40m ->且410m --≠,4m ∴>且5m ≠,故选:C .【点睛】本题考查了分式方程的解,涉及解分式方程和分式方程分母不为0,熟练掌握知识点是解题的关键. 5.(2022·广西)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x 米,根据题意可列方程( )A .1.482.413x x -=-B .1.482.413x x +=+C .1.4282.4213x x -=-D .1.4282.4213x x +=+ 【答案】D【分析】设边衬的宽度为x 米,则整幅图画宽为(1.4+2x )米, 整幅图画长为(2.4+2x )米,根据整幅图画宽与长的比是8:13,列出方程即可.【详解】解:设边衬的宽度为x 米,根据题意,得1.4282.4213x x +=+,故选:D . 【点睛】本题考查分式方程的应用,根据题意找出等量关系是解题的关键.6.(2022·海南)分式方程2101x -=-的解是( ) A .1x =B .2x =-C .3x =D .3x =- 【答案】C【分析】按照解分式方程的步骤解答即可. 【详解】解:2101x -=- 2-(x -1)=02-x +1=0-x =-3x =3检验,当x =3时,x -1≠0,故x =3是原分式方程的解.故答案为C .【点睛】本题主要考查了解分式方程,解分式方程的基本步骤为去分母、去括号、移项、合并同类项、系数化为1,以及检验,特别是检验是解分式方程的关键.7.(2022·内蒙古通辽)若关于x 的分式方程:121222k x x --=--的解为正数,则k 的取值范围为( ) A .2k < B .2k <且0k ≠ C .1k >-D .1k >-且0k ≠【答案】B【分析】先解方程,含有k 的代数式表示x ,在根据x 的取值范围确定k 的取值范围.【详解】解:∵121222k x x--=--, ∵()22121x k --+=-,解得:2x k =-,∵解为正数,∵20k ->,∵2k <,∵分母不能为0,∵2x ≠,∵22k -≠,解得0k ≠,综上所述:2k <且0k ≠,故选:B .【点睛】本题考查解分式方程,求不等式的解集,能够熟练地解分式方程式解决本题的关键.8.(2022·贵州铜仁)下列计算错误的是( )A .|2|2-=B .231-⋅=a a aC .2111a a a -=+-D .()323a a = 【答案】D【分析】根据绝对值,同底数幂的乘法,负整数指数幂,分式的性质,幂的乘方计算法则求解即可.【详解】解:A 、|2|2-=,计算正确,不符合题意;B 、2311aa a a --=⋅=,计算正确,不符合题意; C 、()()2111111a a a a a a +--==+--,计算正确,不符合题意; D 、()326a a =,计算错误,符合题意;故选D . 【点睛】本题主要考查了绝对值,同底数幂的乘法,负整数指数幂,分式的性质,幂的乘方计算法则,熟知相关知识是解题的关键.9.(2022·广西贵港)据报道:芯片被誉为现代工业的掌上明珠,芯片制造的核心是光刻技术,我国的光刻技术水平已突破到28nm .已知91nm 10m -=,则28nm 用科学记数法表示是( )A .92810m -⨯B .92.810m -⨯C .82.810m -⨯D .102.810m -⨯【答案】C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:∵91nm 10m -=,∵28nm=2.8×10-8m .故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.(2022·山东潍坊)观察我国原油进口月度走势图,2022年4月原油进口量比2021年4月增加267万吨,当月增速为6.6%(计算方法:267100% 6.6%4036⨯≈).2022年3月当月增速为14.0%-,设2021年3月原油进口量为x 万吨,下列算法正确的是( )A .4271100%14.0%4271x -⨯=- B .4271100%14.0%4271x -⨯=- C .4271100%14.0%x x -⨯=- D .4271100%14.0%x x-⨯=- 【答案】D【分析】根据题意列式即可.【详解】解:设2021年3月原油进口量为x 万吨,则2022年3月原油进口量比2021年3月增加(4271-x )万吨, 依题意得:4271100%14.0%x x-⨯=-,故选:D . 【点睛】本题考查了列分式方程,关键是找出题目蕴含的数量关系.11.(2022·辽宁营口)分式方程322x x =-的解是( ) A .2x =B .6x =-C .6x =D .2x =- 【答案】C 【分析】先去分母,去括号,移项,合并同类项得出答案,最后检验即可. 【详解】解:322x x =-, 去分母,得3(2)2x x -=, 去括号,得362x x -=,移项,得326x x -=,所以6x =.经检验,6x =是原方程的解.故选:C .【点睛】本题主要考查了解分式方程,掌握解分式方程的步骤是解题的关键.12.(2022·湖北恩施)一艘轮船在静水中的速度为30km/h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km/h ,则符合题意的方程是( )A .144963030v v =+-B .1449630v v =-C .144963030v v =-+D .1449630v v=+ 【答案】A【分析】先分别根据“顺流速度=静水速度+江水速度”、“逆流速度=静水速度-江水速度”求出顺流速度和逆流速度,再根据“沿江顺流航行144km 与逆流航行96km 所用时间相等”建立方程即可得.【详解】解:由题意得:轮船的顺流速度为(30)km/h v +,逆流速度为(30)km/h v -, 则可列方程为144963030v v=+-, 故选:A .【点睛】本题考查了列分式方程,正确求出顺流速度和逆流速度是解题关键.13.(2022·山东临沂)将5kg 浓度为98%的酒精,稀释为75%的酒精.设需要加水kg x ,根据题意可列方程为( )A .0.9850.75x ⨯=B .0.9850.755x ⨯=+ C .0.7550.98x ⨯= D .0.7550.985x ⨯=- 【答案】B【分析】利用酒精的总质量不变列方程即可.【详解】设需要加水kg x , 由题意得0.9850.755x⨯=+, 故选:B .【点睛】本题考查了分式方程的实际应用,准确理解题意,找到等量关系是解题的关键.14.(2022·黑龙江哈尔滨)方程233x x =-的解为( ) A .3x =B .9x =-C .9x =D .3x =-【答案】C【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】解:233x x =- 去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.15.(2022·江苏无锡)方程213x x =-的解是( ). A .3x =-B .1x =-C .3x =D .1x = 【答案】A【分析】根据解分式方程的基本步骤进行求解即可.先两边同时乘最简公分母(3)x x -,化为一元一次方程;然后按常规方法,解一元一次方程;最后检验所得一元一次方程的解是否为分式方程的解.【详解】解:方程两边都乘(3)x x -,得23x x =-解这个方程,得3x =-检验:将3x =-代入原方程,得 左边13=-,右边13=-,左边=右边. 所以,3x =-是原方程的根.故选:A .【点睛】本题考查解分式方程,熟练掌握解分式方程的基本步骤和验根是解题的关键.16.(2022·山东青岛)我国古代数学家祖冲之推算出π的近似值为355113,它与π的误差小于0.0000003.将0.0000003用科学记数法可以表示为( )A .7310-⨯B .60.310-⨯C .6310-⨯D .7310⨯【答案】A 【分析】绝对值较小的数的科学记数法的一般形式为:a ×10-n ,在本题中a 应为3,10的指数为-7.【详解】解:0.00000037310故选A【点睛】本题考查的是用科学记数法表示绝对值较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 由原数左边起第一个不为零的数字前面的0的个数决定.17.(2022·黑龙江牡丹江)函数y x 的取值范围是【 】 A .x≥1且x≠3B .x≥1C .x≠3D .x >1且x≠3 【答案】A【详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0x 10x 1{{x 1x 30x 3-≥≥⇒⇒≥-≠≠且x 3≠.故选A .考点:函数自变量的取值范围,二次根式和分式有意义的条件.二.填空题18.(2022·湖南)有一组数据:13123a =⨯⨯,25234a =⨯⨯,37345a =⨯⨯,⋯,21(1)(2)n n a n n n +=++.记123n n S a a a a =+++⋯+,则12S =__. 【答案】201182【分析】通过探索数字变化的规律进行分析计算. 【详解】解:13111311123222212a ===⨯+-⨯⨯⨯+; 2551113123424222222a ===⨯+-⨯⨯⨯+; 3771113134560232232a ===⨯+-⨯⨯⨯+; ⋯,()()2111131122122n n a n n n n n n +==⨯+-⨯++++,当12n =时, 原式11111113111122312231323414⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++++⋅⋅⋅-⨯++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭201182=, 故答案为:201182. 【点睛】本题考查分式的运算,探索数字变化的规律是解题关键.19.(2022·黑龙江牡丹江)某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务 .设乙车间每天生产x 个,可列方程为___________ . 【答案】40050010x x =+ 【分析】设乙车间每天生产x 个,根据甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务可列出方程.【详解】解:设乙车间每天生产x 个,则40050010x x =+. 故答案为:40050010x x =+. 【点睛】本题考查理解题意的能力,关键设出生产个数,以时间作为等量关系列分式方程.20.(2022·湖南长沙)分式方程253x x =+的解是_____________ . 【答案】x =2【详解】解:两边同乘x (x +3),得2(x +3)=5x ,解得x =2,经检验x =2是原方程的根;故答案为:x =2.【点睛】考点:解分式方程.21.(2022·黑龙江哈尔滨)在函数53x y x =+中,自变量x 的取值范围是___________. 【答案】35x ≠- 【分析】根据分式中分母不能等于零,列出不等式530x +≠,计算出自变量x 的范围即可.【详解】根据题意得:530x +≠∵53x ≠- ∵35x ≠- 故答案为:35x ≠-【点睛】本题考查了函数自变量的取值范围,分式有意义的条件,分母不为零,解答本题的关键是列出不等式并正确求解.22.(2022·四川广元)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为_____.【答案】3.4×10-10【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂.【详解】100.00000000034 3.410-=⨯故答案为:103.410-⨯.【点睛】本题考查用科学记数法表示绝对值小于1的数,一般形式为a ×10-n ,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的 0的个数决定.23.(2022·湖南郴州)若23a b b -=,则a b=________. 【答案】53 【分析】由分式的运算法则进行计算,即可得到答案. 【详解】解:23a b b -= ()32a b b ∴-=,332,a b b ∴-= 35,a b ∴=53a b ∴=; 故答案为:53. 【点睛】本题考查了分式的运算法则,解题的关键是掌握运算法则进行计算.24.(2022·山东青岛)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程.设小亮训练前的平均速度为x 米/分,那么x 满足的分式方程为__________.【答案】300030003(125%)x x-=+ 【分析】根据比赛时小亮的平均速度比训练前提高了25%,可得比赛时小亮平均速度为(1+25%)x 米/分,根据比赛时所用时间比训练前少用3分钟列出方程.【详解】解:∵比赛时小亮的平均速度比训练前提高了25%,小亮训练前的平均速度为x 米/分, ∵比赛时小亮平均速度为(1+25%)x 米/分, 根据题意可得300030003(125%)x x -=+, 故答案为:300030003(125%)x x-=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 25.(2022·北京)方程215x x=+的解为___________. 【答案】x =5【分析】观察可得最简公分母是x (x +5),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,再进行检验即可得解. 【详解】解:215x x =+ 方程的两边同乘x (x +5),得:2x =x +5, 解得:x =5, 经检验:把x =5代入x (x +5)=50≠0. 故原方程的解为:x =5【点睛】此题考查了分式方程的求解方法,注意掌握转化思想的应用,注意解分式方程一定要验根,26.(2022·内蒙古包头)计算:222a b ab a b a b-+=--___________. 【答案】-a b ##b a -+【分析】分母相同,分子直接相加,根据完全平方公式的逆用即可得.【详解】解:原式=2222()a b ab a b a b a b a b+--==---, 故答案为:-a b .【点睛】本题考查了分式的加法,解题的关键是掌握完全平方公式.27.(2022·山东威海)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.【答案】1【分析】根据程序分析即可求解.【详解】解:∵输出y 的值是2,∵上一步计算为121x=+或221x =- 解得1x =(经检验,1x =是原方程的解),或32x =当10x =>符合程序判断条件,302x =>不符合程序判断条件 故答案为:1 【点睛】本题考查了解分式方程,理解题意是解题的关键.28.(2022·黑龙江齐齐哈尔)若关于x 的分式方程2122224x m x x x ++=-+-的解大于1,则m 的取值范围是______________.【答案】m >0且m ≠1【分析】先解分式方程得到解为1x m =+,根据解大于1得到关于m 的不等式再求出m 的取值范围,然后再验算分母不为0即可.【详解】解:方程两边同时乘以()()22x x +-得到:22(2)2x x x m ,整理得到:1x m =+,∵分式方程的解大于1,∵11m +>,解得:0m >,又分式方程的分母不为0,∵12m 且12m ,解得:1m ≠且3m ≠-, ∵m 的取值范围是m >0且m ≠1.【点睛】本题考查分式方程的解法,属于基础题,要注意分式方程的分母不为0这个隐藏条件. 29.(2022·广西)当x =______时,分式22x x +的值为零. 【答案】0【分析】根据分式值为零,分子等于零,分母不为零得2x =0,x +2≠0求解即可.【详解】解:由题意,得2x =0,且x +2≠0,解得:x =0,故答案为:0.【点睛】本题考查分式值为零的条件,熟练掌握分式值为零的条件“分子为零,分母不为零”是解题的关键.30.(2022·湖南永州)解分式方程2101x x -=+去分母时,方程两边同乘的最简公分母是______. 【答案】()1x x +【分析】根据解分式方程的方法中确定公分母的方法求解即可. 【详解】解:分式方程2101x x -=+的两个分母分别为x ,(x +1), ∴最简公分母为:x (x +1),故答案为:x (x +1).【点睛】题目主要考查解分式方程中确定公分母的方法,熟练掌握解分式方程的步骤是解题关键. 31.(2022·湖南岳阳)分式方程321x x =+的解为x =______. 【答案】2【分析】去分母,移项、合并同类项,再对所求的根进行检验即可求解. 【详解】解:321x x =+, 322=+x x ,2x =,经检验2x =是方程的解.故答案为:2.【点睛】本题主要考查解分式方程,熟练掌握分式方程的解法,注意对所求的根进行检验是解题的关键.32.(2022·四川内江)对于非零实数a ,b ,规定a ∵b =11a b-,若(2x ﹣1)∵2=1,则x 的值为 _____. 【答案】56【分析】根据题意列出方程,解方程即可求解.【详解】解:由题意得:11212x --=1, 等式两边同时乘以2(21)x -得,2212(21)x x -+=-, 解得:56x =, 经检验,x =56是原方程的根, ∵x =56, 故答案为:56. 【点睛】本题考查了解分式方程,掌握分式方程的一般解法是解题的关键.三.解答题33.(2022·黑龙江牡丹江)先化简,再求值:23224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,在﹣2,0,1,2四个数中选一个合适的代入求值.【答案】28x +,10.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x =1代入计算即可求出值.【详解】解:原式=()()()()2322422x x x x x x x x +---⋅-+ =()()()()()242222x x x x x x x +-+⋅-+=2(x +4)=2x +8当x =-2,0,2时,分式无意义当x =1时,原式=10.【点睛】本题主要考查了分式的化简和代入求值,关键是代入的时候要根据分式有意义的条件选择合适的值代入.34.(2022·湖南)先化简2121(1)1221a a a a a ---÷+--+,再从1,2,3中选一个适当的数代入求值. 【答案】31a -,32【分析】先根据分式的混合运算的法则进行化简后,再根据分式有意义的条件确定a 的值,代入计算即可.【详解】解:原式()2221121a a a a a --=⋅+---2111a a =+-- 31a =-; 因为1a =,2时分式无意义,所以3a =,当3a =时,原式32=. 【点睛】本题考查分式的化简与求值,掌握分式有意义的条件以及分式混合运算的方法是正确解答的关键.35.(2022·辽宁营口)先化简,再求值:25244111a a a a a a +++⎛⎫+-÷ ⎪++⎝⎭,其中11|2|2a -⎛⎫=-- ⎪⎝⎭.【答案】22a a -+,15. 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,再利用算术平方根、绝对值、负整数指数幂计算出a 的值,代入计算即可求出值. 【详解】解:25244111a a a a a a +++⎛⎫+-÷ ⎪++⎝⎭ 22(1)52(2)11a a a a a +--+=÷++ 22411(2)a a a a -+=⋅++ 2(2)(2)11(2)a a a a a +-+=⋅++ =22a a -+,当11|2|23223a -⎛⎫-- =+⎪-⎭=⎝时, 原式=3232-+=15. 【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.还考查了算术平方根、绝对值、负整数指数幂.36.(2022·黑龙江哈尔滨)先化简,再求代数式21321211x x x x x -⎛⎫-÷ ⎪--+-⎝⎭的值,其中2cos451x =︒+.【答案】11x -,2【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据特殊角三角函数值求出x ,继而代入计算可得. 【详解】解:原式22131(1)(1)2x x x x x ⎡⎤---=-⋅⎢⎥--⎣⎦ 2(1)(3)1(1)2x x x x ----=⋅- 221(1)2x x -=⋅- 11x =-∵211x ==∵原式===.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则以及特殊角三角函数值.37.(2022·内蒙古赤峰)先化简,再求值:221111a a a a -⎛⎫+÷ ⎪+-⎝⎭,其中114cos 452a -⎛⎫= ⎪⎝⎭︒. 【答案】33a -;3【分析】由分式的加减乘除运算法则进行化简,然后求出a 的值,再代入计算,即可得到答案. 【详解】解:221111a a a a -⎛⎫+÷ ⎪+-⎝⎭ =1211(1)(1)a a a a a a ++-÷+-+ =3(1)(1)1a a a aa -+⨯+ =33a -;∵114cos 452422a -︒=-⎛⎫= ⎪⎭=⎝, 把2a =代入,得原式=3233⨯-=.【点睛】本题考查了分式的加减乘除混合运算,二次根式的性质,负整数指数幂,特殊角的三角函数值等知识,解题的关键是熟练掌握运算法则,正确的进行解题.38.(2022·黑龙江大庆)先化简,再求值:222a ab a b b ⎛⎫--÷ ⎪⎝⎭.其中2,0a b b =≠. 【答案】a a b +,23【分析】根据分式的减法和除法可以化简题目中的式子,然后将2a b =代入化简后的式子即可解答本题. 【详解】222a ab a b b ⎛⎫--÷ ⎪⎝⎭=222a ab a b bb b ⎛⎫--÷ ⎪⎝⎭ =222a ab a b b b--÷ =()()()a a b b b a b a b -+- =a a b+ 当2,0a b b =≠时,原式=222233b b b b b ==+. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式减法和除法的运算法则和计算方法.39.(2022·四川雅安)(1)计算:2+|﹣4|﹣(12)﹣1;(2)化简:(1+2a a -)÷22444a a a --+,并在﹣2,0,2中选择一个合适的a 值代入求值. 【答案】(1)5;(2)2,2a 当0a =时,分式的值为1.【分析】(1)先计算二次根式的乘方运算,求解绝对值,负整数指数幂的运算,再合并即可;(2)先计算括号内的分式的加法运算,同步把除法转化为乘法运算,再约分可得化简后的结果,再结合分式有意义的条件可得0,a = 从而可得分式的值.【详解】解(1)2+|﹣4|﹣(12)﹣1 3425=(2)(1+2a a -)÷22444a a a --+ 222222a a aaa a2222a a a 22a =+ 2a ≠且2,a ≠-当0a =时,原式2 1.2 【点睛】本题考查的是实数的混合运算,二次根式的乘法运算,分式的化简求值,负整数指数幂的含义,掌握以上基础运算是解本题的关键.40.(2022·湖北鄂州)先化简,再求值:21a a +﹣11a +,其中a =3. 【答案】1a -,2 【分析】先根据同分母分式的减法计算法则化简,然后代值计算即可.【详解】解:2111a a a -++ 2=11a a -+ ()()11=1a a a +-+ 1a =-,当3a =时,原式312=-=.【点睛】本题主要考查了分式的化简求值,熟知同分母分式的减法计算法则是解题的关键.41.(2022·福建)先化简,再求值:2111a a a -⎛⎫+÷ ⎪⎝⎭,其中1a =.【答案】11a -,2. 【分析】根据分式的混合运算法则化简,再将a 的值代入化简之后的式子即可求出答案. 【详解】解:原式()()111a a a aa+-+=÷ ()()111a a a a a +=⋅+- 11a =-.当1a 时,原式2=. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.42.(2022·贵州黔东南)(1)计算:()03π12 1.572-⎛⎫-- ⎪⎝⎭; (2)先化简,再求值:2221111202220221x x x x x x ++-⎛⎫÷-+ ⎪---⎝⎭,其中cos60x =︒.【答案】(1)(2)2-【分析】(1)先每项化简,再加减算出最终结果即可;(2)先因式分解,化除为乘,通分,化简;再带入数值计算即可.【详解】(1)30(1)|2( 1.57)2π--+-31221(1)=++--1221=-++-=;(2)222111(1)202220221x x x x x x ++-÷-+--- 2(1)2022112022(1)(1)1x x x x x x x +-+-=⋅--+-- 111x x x x +=--- 11x =-∵1cos 602x ︒==, ∵原式=12112==--.【点睛】本题考查了实数的混合运算,分式的化简求值,二次根式的性质,特殊角的三角函数值,零指数幂和负整数指数幂的意义,熟练掌握各知识点是解答本题的关键.43.(2022·湖南永州)先化简,再求值:2121x x x xx -+⎛⎫÷- ⎪⎝⎭,其中1x =. 【答案】1x -【分析】先将括号内的分式进行合并,将分式的分子分母进行因式分解,并约分即可,再代入求值即可. 【详解】解:原式2121x x x x-+-=÷ ()()111x x x x x +-=⋅+ 1x =-当1x =时,原式11=-【点睛】本题考查分式的混合运算,因式分解,能够熟练掌握运算顺序是解决本题的关键.44.(2022·广西梧州)解方程:24133x x -=-- 【答案】5x =【分析】先方程两边同时乘以(3)x -,化成整式方程求解,然后再检验分母是否为0即可.【详解】解:方程两边同时乘以(3)x -得到:324x -+=,解出:5x =,当5x =时分式方程的分母不为0,∵分式方程的解为:5x =.【点睛】本题考查了分式方程的解法,属于基础题,计算过程中细心即可.45.(2022·广西玉林)解方程:1122x x x x -=--. 【答案】1x =-【分析】两边同时乘以公分母()1x -,先去分母化为整式方程,计算出x ,然后检验分母不为0,即可求解. 【详解】1122x x x x -=--,()112x x =-, 解得1x =-,经检验1x =-是原方程的解,故原方程的解为:1x =-【点睛】本题考查解分式方程,注意分式方程要检验.46.(2022·广东)先化简,再求值:211a a a -+-,其中5a =. 【答案】21a +,11【分析】利用平方差公式约分,再合并同类项可;【详解】解:原式=()()111211a a a a a a a +-+=++=+-, a =5代入得:原式=2×5+1=11;【点睛】本题考查了分式的化简求值,掌握平方差公式是解题关键.47.(2022·内蒙古通辽)先化简,再求值:242a a a a ⎛⎫--÷ ⎪⎝⎭,请从不等式组104513a a +>⎧⎪-⎨≤⎪⎩ 的整数解中选择一个合适的数求值.【答案】22a a +,3【分析】根据分式的加减运算以及乘除运算法则进行化简,然后根据不等式组求出a 的值并代入原式即可求出答案. 【详解】解:242a a a a ⎛⎫--÷ ⎪⎝⎭ 2242a a a a -=⋅- ()()2222a a a a a +-=⋅- 22a a =+,104513a a +>⎧⎪⎨-≤⎪⎩①②, 解不等式①得:1a >-解不等式②得:2a ≤,∵12a -<≤,∵a 为整数,∵a 取0,1,2,∵0,20a a ≠-≠,∵a =1,当a =1时,原式21213=+⨯=.【点睛】本题考查分式的化简求值,解一元一次不等式组,解题的关键是熟练运用分式的加减运算法则以及乘除运算法则,本题属于基础题型.48.(2022·山东聊城)先化简,再求值:244422a a a a a a --⎛⎫÷-- ⎪-⎝⎭,其中112sin 452a -⎛⎫=︒+ ⎪⎝⎭.【答案】2a a -1 【分析】运用分式化简法则:先算括号里,再算括号外,然后把a ,b 的值代入化简后的式子进行计算即可解答. 【详解】解:()()()222244422222a a a a a a a a a a a a +---⎛⎫÷--=⨯- ⎪--⎝⎭- 22222a a a a a +=-=---,∵112sin 452222a -⎛⎫=︒+== ⎪⎝⎭,代入得:原式1=;故答案为:2a a -1. 【点睛】本题考查了分式的化简求值,熟练掌握因式分解是解题的关键.49.(2022·山东潍坊)(12103时,小亮的计算过程如下:解:2103= 41627316+-+=- 2=-小莹发现小亮的计算有误,帮助小亮找出了3个错误.请你找出其他错误,参照①~③的格式写在横线上,并依次标注序号:①224-=;②10(1)1-=-;③66-=-;____________________________________________________________________________.请写出正确的计算过程.(2)先化简,再求值:22213369x x x x x x -⎛⎫-⋅ ⎪-++⎝⎭,其中x 是方程2230x x --=的根. 【答案】(1)⑤(-2)-2=14,⑥(-2)0=1;28;(2)13x +,12. 【分析】(1)根据乘方、绝对值、特殊角的三角函数值、立方根、负整数指数幂、零指数幂的法则计算即可;(2)先把括号内通分,接着约分得到原式=13x +,然后利用因式分解法解方程x 2-2x -3=0得到x 1=3,x 2=-1,则利用分式有意义的条件把x =-1代入计算即可.【详解】(1)其他错误,有:⑤(-2)-2=14,⑥(-2)0=1, 正确的计算过程:2103= 41627111--++=-+ =28;(2)22213369x x x x x x -⎛⎫-⋅ ⎪-++⎝⎭ 223(3)(3)(3)x x x x x x x -+-=⋅-+ 23(3)(3)(3)x x x x x x +-=⋅-+ =13x +, ∵x 2-2x -3=0,∵(x -3)(x +1)=0,x -3=0或x +1=0,∵x 1=3,x 2=-1,∵x =3分式没有意义,∵x 的值为-1,当x =-1时,原式=113-+=12. 【点睛】本题考查了实数的运算,解一元二次方程---因式分解法,分式的化简求值.也考查了特殊角的三角函数值、立方根、负整数指数幂、零指数幂.50.(2022·辽宁锦州)先化简,再求值:2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭,其中|1x =+.【答案】11x -,2 【分析】根据分式的运算法则“除以一个数等于乘以它的倒数”把除法改写成乘法;利用平方差公式和完全平方公式将分式的分子分母分别因式分解;约分化简后,求x 的值;去掉绝对值符号时注意正负,正数的绝对值是他本身,负数的绝对值是它的相反数,最后将x 的值代入原式.【详解】解:原式=2233111211x x x x x x --⎛⎫÷-+ ⎪-++-⎝⎭=23(1)11()(1)(1)311x x x x x x x x -+-⨯-++---- =111x x x x +--- =11x -|1x =+1∴原式【点睛】此题考查了分式的混合运算,熟练地掌握分式的混合运算法则和用公式法进行因式分解是解题的关键.注意最后求值的结果要分母有理化.51.(2022·四川广安)先化简:2242(2)244x x x x x x -++÷--+,再从0、1、2、3中选择一个适合的数代人求值. 【答案】x ;1或者3【分析】根据分式的混合运算法则即可进行化简,再根据分式有意义的条件确定x 可以选定的值,代入化简后的式子即可求解. 【详解】2242(2)244x x x x x x -++÷--+ 224(2)(2)44222[]x x x x x x x x+--+⨯=+--- 2244(2)2(2)x x x x x +--=-⨯-222x x x x=-⨯- x =根据题意有:0x ≠,20x -≠,故0x ≠,2x ≠,即在0、1、2、3中,当x =1时,原式=x =1;当x =3时,原式=x =3.【点睛】本题主要考查了运用分式的混合运算法则将分式的化简并求值、分式有意义的条件等知识,熟练掌握分式的混合运算法则是解题的关键.52.(2022·广西贵港)为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?【答案】(1)绳子的单价为7元,实心球的单价为30元(2)购买绳子的数量为30条,购买实心球的数量为10个【分析】(1)设绳子的单价为x 元,则实心球的单价为(23)x +元,根据“84元购买绳子的数量与360元购买实心球的数量相同”列出分式方程,解分式方程即可解题;(2)根据“总费用为510元,且购买绳子的数量是实心球数量的3倍”列出一元一次方程即可解题.(1)解:设绳子的单价为x 元,则实心球的单价为(23)x +元, 根据题意,得:8436023x x =+, 解分式方程,得:7x =,经检验可知7x =是所列方程的解,且满足实际意义,∵2330x +=,答:绳子的单价为7元,实心球的单价为30元.(2)设购买实心球的数量为m 个,则购买绳子的数量为3m 条,根据题意,得:7330510m m ⨯+=,解得10m =∵330m =答:购买绳子的数量为30条,购买实心球的数量为10个.【点睛】本题考查分式方程和一元一次方程的应用,根据题目中的等量关系列出方程是解题的关键. 53.(2022·辽宁)2022年3月23日“天官课堂”第二课在中国空间站开讲了,精彩的直播激发了学生探索科学奥秘的兴趣.某中学为满足学生的需求,充实物理兴趣小组的实验项目,决定购入A 、B 两款物理实验套装,其中A 款套装单价是B 款套装单价的1.2倍,用9900元购买的A 款套装数量比用7500元购买的B 款套装数量多5套.求A 、B 两款套装的单价分别是多少元.【答案】A 款套装的单价是180元、B 款套装的单价是150元.【分析】设B 款套装的单价是x 元,则A 款套装的单价是1.2x 元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设B 款套装的单价是x 元,则A 款套装的单价是1.2x 元, 由题意得:9900750051.2x x=+, 解得:x =150,经检验,x =150是原方程的解,且符合题意,∵1.2x =180.答:A 款套装的单价是180元、B 款套装的单价是150元.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,正确列出分式方程.54.(2022·贵州贵阳)国发(2022)2号文发布后,贵州迎来了高质量快速发展,货运量持续增加.某物流公司有两种货车,已知每辆大货车的货运量比每辆小货车的货运量多4吨,且用大货车运送80吨货物所需车辆数与小货车运送60吨货物所需车辆数相同.每辆大、小货车货运量分别是多少吨?【答案】每辆大货车货运量是16吨,每辆小货车货运量是12吨【分析】设小货车货运量x 吨,则大货车货运量()4x +,根据题意,列出分式方程,解方程即可求解.【详解】解:设小货车货运量x 吨,则大货车货运量()4x +,根据题意,得,80604x x=+, 解得12x =,经检验,12x =是原方程的解,412416x +=+=吨,答:每辆大货车货运量是16吨,每辆小货车货运量是12吨.【点睛】本题考查了分式方程的应用,根据题意列出方程是解题的关键.。

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04.分式与分式方程一、单选题1.(2021·河北中考真题)由1122c c +⎛⎫- ⎪+⎝⎭值的正负可以比较12c A c +=+与12的大小,下列正确的是( )A .当2c =-时,12A =B .当0c 时,12A ≠C .当2c <-时,12A > D .当0c <时,12A <【答案】C 【分析】先计算1122c c +⎛⎫- ⎪+⎝⎭的值,再根c 的正负判断1122c c +⎛⎫- ⎪+⎝⎭的正负,再判断A 与12的大小即可.【详解】解:11=224+2c cc c +-+,当2c =-时,20c +=,A 无意义,故A 选项错误,不符合题意; 当0c 时,04+2c c=,12A =,故B 选项错误,不符合题意; 当2c <-时,04+2c c>,12A >,故C 选项正确,符合题意; 当20c -<<时,04+2c c <,12A <;当2c <-时,04+2c c>,12A >,故D 选项错误,不符合题意; 故选:C .【点睛】本题考查了分式的运算和比较大小,解题关键是熟练运用分式运算法则进行计算,根据结果进行准确判断.2.(2021·湖南中考真题)为响应习近平总书记“坚决打赢关键核心技术攻坚战”的号召,某科研团队最近攻克了7nm 的光刻机难题,其中1nm 0.000000001m =,则7nm 用科学记数法表示为( ) A .80.710m ⨯ B .8710m -⨯C .80.710m -⨯D .9710m -⨯【答案】D【分析】由题意易得nm 0.000000007m 7=,然后根据科学记数法可直接进行求解. 【详解】解:由题意得:nm 0.000000007m 7=, ∴7nm 用科学记数法表示为9710m -⨯;故选D .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.3.(2021·四川眉山市·中考真题)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a + B .1a a+ C .1a a- D .21a a + 【答案】B【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简. 【详解】解:原式()()()()221111111=11a a a a a aa a a a a a+-+--++⨯=⨯=--故答案是:B . 【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则.4.(2021·天津中考真题)计算33a ba b a b---的结果是( ) A .3 B .33a b +C .1D .6aa b- 【答案】A【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a b a b -=-,3()a b a b-=-3=.故选A . 【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键. 5.(2021·山东临沂市·中考真题)计算11()()a b b a-÷-的结果是( )A .ab-B .a bC .b a-D .b a【答案】A【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】解:11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab ab b b a a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab a b ab -⨯-=a b-故选A . 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 6.(2021·江西中考真题)计算11a a a+-的结果为( ) A .1 B .1- C .2a a+D .2a a- 【答案】A【分析】直接利用同分母分式的减法法则计算即可. 【详解】解:11111a a aa a a a++--===.故选:A . 【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解题的关键.7.(2021·江苏扬州市·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x -C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断.【详解】解:A 、当x =-1时,x +1=0,故不合题意;B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意;D 、当x =-1时,()210x +=,故不合题意;故选C . 【点睛】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 8.(2021·湖北恩施土家族苗族自治州·中考真题)分式方程3111x x x +=--的解是( ) A .1x = B .2x =-C .34x =D .2x =【答案】D【分析】先去分母,然后再进行求解方程即可. 【详解】解:3111x x x +=-- 去分母:13x x +-=,∴2x =, 经检验:2x =是原方程的解;故选D .【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 9.(2021·湖南怀化市·中考真题)定义12a b a b ⊗=+,则方程342x ⊗=⊗的解为( ) A .15x =B .25x =C .35x =D .45x =【答案】B【分析】根据新定义,变形方程求解即可 【详解】∵12a b a b ⊗=+,∴342x ⊗=⊗变形为1123242x ⨯+=⨯+,解得25x = ,经检验25x =是原方程的根,故选B 【点睛】本题考查了新定义问题,根据新定义把方程转化一般的分式方程,并求解是解题的关键10.(2021·山东临沂市·中考真题)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( ) A .10010020.53x x =+ B .10021000.53x x += C .10021003 1.5x x += D .10010021.53x x =+ 【答案】D【分析】根据清扫100m 2所用的时间A 型机器人比B 型机器人多用40分钟列出方程即可.【详解】解:设A 型扫地机器人每小时清扫x m 2,由题意可得:10010021.53x x =+,故选D . 【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系. 11.(2021·四川成都市·中考真题)分式方程21133x x x-+=--的解为( ) A .2x = B .2x =-C .1x =D .1x =-【答案】A【分析】直接通分运算后,再去分母,将分式方程化为整式方程求解. 【详解】解:21133x x x -+=--,21133x x x --=--,2113x x --=-,213x x --=-,解得:2x =, 检验:当2x =时,32310x -=-=-≠,2x ∴=是分式方程的解,故选:A .【点睛】本题考查了解分式方程,解题的关键是:去分母化为整式方程求解,最后需要对解进行检验.12.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5 B .8C .12D .15【答案】B【分析】先计算不等式组的解集,根据“同大取大”原则,得到562a+<解得7a <,再解分式方程得到5=2a y +,根据分式方程的解是正整数,得到5a >-,且5a +是2的倍数,据此解得所有符合条件的整数a 的值,最后求和. 【详解】解:()322225x x a x ⎧-≥+⎨-<-⎩①②解不等式①得,6x ≥,解不等式②得,5+2ax >不等式组的解集为:6x ≥562a+∴<7a ∴< 解分式方程238211y a y y y +-+=--得238211y a y y y +--=--2(38)2(1)y a y y ∴+--=-整理得5=2a y +, 10,y -≠ 则51,2a +≠ 3,a ∴≠- 分式方程的解是正整数,502a +∴>5a ∴>-,且5a +是2的倍数,57a ∴-<<,且5a +是2的倍数,∴整数a 的值为-1, 1, 3, 5, 11358∴-+++=故选:B .【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.13.(2021·重庆中考真题)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( )A .5-B .4-C .3-D .2-【答案】B【分析】先将分式方程化为整式方程,得到它的解为64x a =+,由它的解为正数,同时结合该分式方程有解即分母不为0,得到40a +>且43a +≠,再由该一元一次不等式组有解,又可以得到20a -<,综合以上结论即可求出a 的取值范围,即可得到其整数解,从而解决问题.【详解】解:331122ax x x x--+=--,两边同时乘以(2x -),3213ax x x -+-=-,()46a x +=, 由于该分式方程的解为正数,∴64x a =+,其中4043a a +>+≠,;∴4a >-,且1a ≠-;∵关于y 的元一次不等式组32122y y y a -⎧≤-⎪⎨⎪+>⎩①②有解,由①得:0y ≤;由②得:2y a >-;∴20a -<,∴2a <综上可得:42a -<<,且1a ≠-;∴满足条件的所有整数a 为:32,0,1--,;∴它们的和为4-;故选B . 【点睛】本题涉及到含字母参数的分式方程和含字母参数的一元一次不等式组等内容,考查了解分式方程和解一元一次不等式组等相关知识,要求学生能根据题干中的条件得到字母参数a 的限制不等式,求出a 的取值范围进而求解,本题对学生的分析能力有一定要求,属于较难的计算问题.14.(2020·辽宁朝阳市·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( ) A .807250405x x ⨯=⨯+ B .807240505x x ⨯=⨯+ C .728040505x x ⨯=⨯- D .728050405x x⨯=⨯- 【答案】B【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.【详解】设班级共有x 名学生,依据题意列方程得,807240505x x ⨯=⨯+故选:B . 【点睛】本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.15.(2020·四川绵阳市·中考真题)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( ) A .1.2小时 B .1.6小时C .1.8小时D .2小时【答案】C【分析】设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时,根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x-km/h ,根据“各匀速行驶一半路程”列出方程求解即可. 【详解】解:设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时, 根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x -km/h ,根据题意得:()1803803x xxx-=-,解得:x 1=1.8或x 2=9, 经检验:x 1=1.8或x 2=9是原方程的解,x 2=9不合题意,舍去,故答案为:C .【点睛】本题考查了分式方程的应用,解决本题的关键是正确理解题意,熟练掌握速度时间和路程之间的关系,找到题意中的等量关系.16.(2020·黑龙江鹤岗市·中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤- B .12k -≥C .12k >-D .12k <-【答案】A【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【详解】解:方程433x kx x-=--两边同时乘以(3)x -得:4(3)x x k --=-, ∴412x x k -+=-,∴312x k -=--,∴43kx =+,∵解为非正数,∴403k+≤,∴12k ≤-,故选:A .【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.17.(2020·湖北荆门市·中考真题)已知关于x 的分式方程2322(2)(3)x kx x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( ) A .正数 B .负数C .零D .无法确定【答案】A【分析】先解出关于x 的分式方程得到x=63k-,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解.【详解】关于x 的分式方程2322(2)(3)x k x x x +=+--+得x=217k -, ∵41x -<<-∴21471k --<<-解得-7<k <14 ∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13, 又∵分式方程中x≠2且x≠-3∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数,故选A . 【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法.18.(2020·四川广元市·中考真题)按照如图所示的流程,若输出的=6M -,则输入的m 为( )A .3B .1C .0D .-1【答案】C【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m 的值,从而可以解答本题. 【详解】解:当m 2-2m≥0时,661m =--,解得m=0, 经检验,m=0是原方程的解,并且满足m 2-2m≥0,当m 2-2m <0时,m -3=-6,解得m=-3,不满足m 2-2m <0,舍去.故输入的m 为0.故选:C . 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.(2020·四川成都市·中考真题)已知2x =是分式方程311k x x x -+=-的解,那么实数k 的值为( ) A .3 B .4C .5D .6【答案】B【分析】将2x =代入原方程,即可求出k 值. 【详解】解:将2x =代入方程311k x x x -+=-中,得231221k +=--解得:4k = .故选:B . 【点睛】本题考查了方程解的概念.使方程左右两边相等的未知数的值就是方程的解.“有根必代”是这类题的解题通法.20.(2020·四川遂宁市·中考真题)关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m +3=0,解得:m =﹣3,故选:D .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 21.(2020·浙江金华市·中考真题)分式52x x +-的值是零,则x 的值为( ) A .5 B .5- C .2-D .2【答案】B【分析】利用分式值为零的条件可得50x +=,且20x -≠,再解即可. 【详解】解:由题意得:50x +=,且20x -≠,解得:5x =-,故选:B .【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.22.(2020·湖北孝感市·中考真题)已知1x =,1y =,那么代数式()32x xy x x y --的值是( )A .2BC .4D .【答案】D【分析】先按照分式四则混合运算法则化简原式,然后将x 、y 的值代入计算即可.【详解】解:()32x xy x x y --=()()()x x y x y x x y +--11D . 【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键. 23.(2020·河北中考真题)若ab ,则下列分式化简正确的是( )A .22a ab b+=+B .22a a b b -=-C .22a a b b=D .1212aa b b = 【答案】D【分析】根据a≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题. 【详解】∵a≠b ,∴22a a b b +≠+,选项A 错误;22a ab b-≠-,选项B 错误; 22a a b b ≠,选项C 错误;1212a ab b =,选项D 正确;故选:D . 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 24.(2020·贵州贵阳市·中考真题)当1x =时,下列分式没有意义的是( )A .1x x+B .1x x -C .1x x-D .1x x + 【答案】B【分析】由分式有意义的条件分母不能为零判断即可. 【详解】1xx -,当x=1时,分母为零,分式无意义.故选B. 【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件. 25.(2019·河北中考真题)如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④【答案】B【分析】将所给分式的分母配方化简,再利用分式加减法化简,据x 为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111xx x -=++.又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②.故选B . 【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.26.(2019·湖南娄底市·中考真题)2018年8月31日,华为正式发布了全新一代自研手机SoC 麒麟980,这款号称六项全球第一的芯片,随着华为Mate 20系列、荣耀Magic 2相继搭载上市,它的强劲性能、出色能效比、卓越智慧、顶尖通信能力,以及为手机用户带来的更强大、更丰富、更智慧的使用体用,再次被市场和消费者所认可.麒麟980是全球首颗()97110nm nm m -=手机芯片.7nm 用科学记数法表示为( ) A .8710m -⨯ B .9710m -⨯C .80.710m -⨯D .10710m -⨯【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】7nm 用科学记数法表示为9710m -⨯.故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.27.(2019·湖北孝感市·中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是( ) A .5- B .5C .6-D .6【答案】C【分析】解方程组求出x 、y 的值,对所求式子进行化简,然后把x 、y 的值代入进行计算即可. 【详解】1249x y x y +=⎧⎨+=⎩①②,2②-①×得,27y =,解得72y =,把72y =代入①得,712x +=,解得52x =-, ∴222222()()()x xy y x y x y x y x y -+-=-+-572261x y x y ---===-+,故选C. 【点睛】本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键. 28.(2019·北京中考真题)如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3B .-1C .1D .3【答案】D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值. 【详解】解:原式=()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭2()()()()m n m n m n m n m m n m m n ⎡⎤+-=+⋅+-⎢⎥--⎣⎦ 3()()3()()mm n m n m n m m n =⋅+-=+-1m n +=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.29.(2019·四川中考真题)一辆货车送上山,并按原路下山.上山速度为a 千米/时,下山速度为b 千米/时.则货车上、下山的平均速度为( )千米/时. A .1()2a b + B .aba b+ C .2a bab+ D .2aba b+ 【答案】D【分析】平均速度=总路程÷总时间,设单程的路程为s ,表示出上山下山的总时间,把相关数值代入化简即可.【详解】解:设上山的路程为x 千米,则上山的时间x a 小时,下山的时间为xb小时, 则上、下山的平均速度22xabxxa b ab=++千米/时.故选D .【点睛】本题考查了列代数式以及分式的化简,得到平均速度的等量关系是解决本题的关键,得到总时间的代数式是解决本题的突破点.30.(2019·湖南益阳市·中考真题)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( ) A .x+2=3 B .x ﹣2=3 C .x ﹣2=3(2x ﹣1) D .x+2=3(2x ﹣1)【答案】C【分析】最简公分母是2x ﹣1,方程两边都乘以(2x ﹣1),即可把分式方程便可转化成一元一次方程. 【详解】方程两边都乘以(2x ﹣1),得x ﹣2=3(2x ﹣1),故选C .【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.31.(2019·广东中考真题)定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .25【答案】B【分析】根据新定义运算得到一个分式方程,求解即可.【详解】根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-,则25m =-,经检验,25m =-是方程的解,故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键. 二、填空题32.(2021·四川资阳市·中考真题)若210x x +-=,则33x x-=_________. 【答案】3【分析】先由210x x +-=可得21x x -=,再运用分式的减法计算33x x-,然后变形将21x x -=代入即可解答.【详解】解:∵210x x +-=∴21x x -=∴()2231333333x x x x x x x x---====.故填:3. 【点睛】本题主要考查了代数式的求值、分式的减法等知识点,灵活对等式进行变形成为解答本题的关键.33.(2021·四川南充市·中考真题)若3n m n m +=-,则2222m n n m+=_________ 【答案】174【分析】先根据3n m n m +=-得出m 与n 的关系式,代入2222m n n m+化简即可; 【详解】解:∵3n mn m+=-,∴()3n m n m +=-,∴2n m =, ∴22222222417+=44m n m m n m m m +=故答案为:174 【点睛】本题考查了分式的混合运算,得出2n m =是解决本题的关键.34.(2021·四川达州市·中考真题)若分式方程22411x a x ax x --+-=-+的解为整数,则整数a =___________. 【答案】±1【分析】直接移项后通分合并同类项,化简、用a 来表示x ,再根据解为整数来确定a 的值. 【详解】解:22411x a x a x x --+-=-+,22411x a x ax x --+-=-+ (2)(1)(2)(1)4(1)(1)x a x a x x x x -+---=-+整理得:2x a=若分式方程22411x a x ax x --+-=-+的解为整数, a 为整数,当1a =±时,解得:2x =±,经检验:10,10x x -≠+≠成立;当2a =±时,解得:1x =±,经检验:分母为0没有意义,故舍去; 综上:1a =±,故答案是:±1.【点睛】本题考查了分式方程,解题的关键是:化简分式方程,最终用a 来表示x ,再根据解为整数来确定a 的值,易错点,容易忽略对根的检验.35.(2021·湖南常德市·中考真题)分式方程1121(1)x x x x x ++=--的解为__________. 【答案】3x =【分析】直接利用通分,移项、去分母、求出x 后,再检验即可.【详解】解:1121(1)x x x x x ++=--通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-, 30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠,∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.36.(2021·湖南衡阳市·中考真题)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵. 【答案】500【分析】设原计划每天植树x 棵,则实际每天植树()125%x +,根据工作时间=工作总量÷工作效率,结合实际比原计划提前3天完成,准确列出关于x 的分式方程进行求解即可.【详解】解:设原计划每天植树x 棵,则实际每天植树()125%x +,6000600031.25x x-=,400x =,经检验,400x =是原方程的解, ∴实际每天植树400 1.25500⨯=棵,故答案是:500.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,准确列出分式方程. 37.(2021·四川凉山彝族自治州·中考真题)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-,解得3x m =+, ∵x 为正数,∴m +3>0,解得m >-3.∵x ≠1,∴m +3≠1,即m ≠-2. ∴m 的取值范围是m >-3且m ≠-2.故答案为:m >-3且m ≠-2.【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键. 38.(2020·内蒙古呼和浩特市·中考真题)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解. 【详解】解:∵()222x x x x -=-,∴分式22x x -与282x x -的最简公分母是()2x x -, 方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-, 移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4. 【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法. 39.(2020·山东潍坊市·中考真题)若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x -(x -2)=m+3,当增根为x=2时,6=m+3 ∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 40.(2020·湖北黄冈市·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________. 【答案】1x y- 【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.【详解】解:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭()()y x y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()y y x y x y x y=÷+-+()()yx y x y x y y +=⋅+-1x y=-,故答案为:1x y -. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 41.(2020·山东滨州市·中考真题)观察下列各式:1234523101526,,,,,357911a a a a a =====, 根据其中的规律可得n a =________(用含n 的式子表示).【答案】()12121n n n ++-+【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n 项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n 2+1,偶数项的分子是n 2-1,即第n 项的分子是n 2+(-1)n+1;依此即可求解.【详解】解:由分析得21(1)21n n n a n ++-=+,故答案为:21(1)21n n n a n ++-=+ 【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.42.(2020·山东济宁市·中考真题)已知m+n=-3.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是____________. 【答案】1m n -+,13【分析】先计算括号内的,再将除法转化为乘法,最后将m+n=-3代入即可.【详解】解:原式=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=()2m n m n m m ⎡⎤++÷-⎢⎥⎢⎥⎣⎦=()2m n m m m n ⎡⎤+⨯-⎢⎥+⎢⎥⎣⎦=1m n -+,∵m+n=-3,代入,原式=13. 【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的运算法则.43.(2019·江西中考真题)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:_____________________.【答案】66111.2x x+= 【分析】设小明通过AB 时的速度是x 米/秒,根据题意列出分式方程解答即可. 【详解】解:设小明通过AB 时的速度是x 米/秒,可得:66111.2x x +=,故答案为66111.2x x+=, 【点睛】此题考查由实际问题抽象分式方程,关键是根据题意列出分式方程解答.三、解答题44.(2021·湖北随州市·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 【答案】22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可. 【详解】解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点睛】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键.45.(2021·山东菏泽市·中考真题)先化简,再求值:22221244m n n m m n m mn n--+÷--+,其中m ,n 满足32m n =-. 【答案】3nm n+;-6. 【分析】先变除法为乘法,后因式分解,化简计算,后变形32nm =-代入求值即可【详解】∵22221244m n n m m n m mn n--+÷--+=2(2)12()()m n m n m n n m n m --+⨯--+=21m n n m --+=3n m n +, ∵32m n =-,∴32nm =-,∴原式=332nn n -+= -6. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的基本顺序,基本计算方法是解题的关键. 46.(2021·湖北宜昌市·中考真题)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值. 【答案】11x -,1或12【分析】先根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 【详解】解:原式21(1)(1)(1)1x x x x =⋅+--+-11x =-.∵x 2﹣1≠0,∴当2x =时,原式1=.或当3x =时,原式12=.(选择一种情况即可) 【点睛】本题考查了分式的化简求值,要了解使分式有意义的条件,熟练掌握分式的运算法则是解题的关键.47.(2021·四川达州市·中考真题)化简求值:231041244a a a a a --⎛⎫⎛⎫-÷ ⎪ ⎪--+⎝⎭⎝⎭,其中a 与2,3构成三角形的三边,且a 为整数. 【答案】24a -+,-2【分析】先根据分式的混合运算法则进行化简,再根据三角形三边关系确定a 的取值范围,把不合题意的a 的值舍去,最后代入求值即可求解.【详解】解:原式()22231024a a a a a ---+=⋅--()()224224a a a a ---=⋅--24a =-+; ∵2,3,a 为三角形的三边,∴3232a -<<+,∴15a <<,∵a 为整数,∴2a =,3或4,由原分式得20a -≠,40a -≠,∴2a ≠且4a ≠,∴3a =, ∴原式=242342a -+=-⨯+=-.【点睛】本题考查了分式的化简求值,正确进行分式的化简是解题关键,在把a 的值代入求值是要注意所求的a 的值保证原分式有意义.48.(2021·湖南株洲市·中考真题)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中2x =. 【答案】12x -+,2-【分析】先对分式进行化简,然后根据二次根式的运算进行求值即可.【详解】解:原式=()()223231222222x x x x x x x x x -⋅-=-=-+++-++,把2x =代入得:原式=2=-. 【点睛】本题主要考查分式的化简求值及二次根式的运算,熟练掌握分式的化简求值及二次根式的运算是解题的关键.49.(2021·四川成都市·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a . 【答案】13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++13a =+,当3=a时,原式=== 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.50.(2021·四川资阳市·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 【答案】原式=13. 【分析】利用分式的混合运算法则进行化简,再将3x =代入原式,即可求解.【详解】解:原式=()()()22111111x x x x x x ⎡⎤+--⋅⎢⎥+--⎢⎥⎣⎦=211111x x x x x +-⎛⎫-⋅ ⎪--⎝⎭=211x x x x -⋅-=1x303x x -=∴= 将3x =代入原式,原式=13.【点睛】本题主要考查分式的混合运算.需要掌握分式的混合运算法则、完全平方公式、平方差公式、同分母分式相加减等相关知识.进行分式的混合运算时,要细心. 51.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∵2x y -=,∴1121y x x y xy xy---===,∴2xy =-, ∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.52.(2021·四川遂宁市·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值.【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--=2232m m m m-⋅-=32m m --=, ∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5, ∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.53.(2021·江苏连云港市·中考真题)解方程:214111x x x +-=--. 【答案】无解。

初中数学分式与分式方程真题练习及答案解析

初中数学分式与分式方程真题练习及答案解析

初中数学分式与分式方程真题练习一.选择题(共10小题)1.(2015•南昌)下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1 D.+=﹣12.(2015•山西)化简﹣的结果是()A.B.C.D.3.(2015•台湾)将甲、乙、丙三个正分数化为最简分数后,其分子分别为6、15、10,其分母的最小公倍数为360.判断甲、乙、丙三数的大小关系为何?()A.乙>甲>丙B.乙>丙>甲C.甲>乙>丙D.甲>丙>乙4.(2015•厦门)2﹣3可以表示为()A. 22÷25B. 25÷22C. 22×25D.(﹣2)×(﹣2)×(﹣2)5.(2015•枣庄)关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣16.(2015•齐齐哈尔)关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0C.a≠5D.a≠5且a≠07.(2015•荆州)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1C.m>﹣1且m≠1D.m≥﹣1且m≠18.(2015•南宁)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A. 1﹣B. 2﹣C. 1+或1﹣D. 1+或﹣19.(2015•营口)若关于x的分是方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=310.(2015•茂名)张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=二.填空题(共9小题)11.(2015•上海)如果分式有意义,那么x的取值范围是.12.(2015•常德)使分式的值为0,这时x=.13.(2015•梅州)若=+,对任意自然数n都成立,则a=,b;计算:m=+++…+=.14.(2015•黄冈)计算÷(1﹣)的结果是.15.(2015•安徽)已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是(把所有正确结论的序号都选上).16.(2015•毕节市)关于x的方程x2﹣4x+3=0与=有一个解相同,则a=.17.(2015•黑龙江)关于x的分式方程﹣=0无解,则m=.18.(2015•湖北)分式方程﹣=0的解是.19.(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.三.解答题(共10小题)20.(2015•宜昌)化简:+.21.(2015•南充)计算:(a+2﹣)•.22.(2015•重庆)计算:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣)÷.23.(2015•枣庄)先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.24.(2015•烟台)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.25.(2015•河南)先化简,再求值:÷(﹣),其中a=+1,b=﹣1.26.(2015•黔东南州)先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.27.(2015•哈尔滨)先化简,再求代数式:(﹣)÷的值,其中x=2+tan60°,y=4sin30°.28.(2015•广元)先化简:(﹣)÷,然后解答下列问题:(1)当x=3时,求原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?29.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?参考答案:一.选择题(共10小题)1.(2015•南昌)下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1 D.+=﹣1考点:分式的乘除法;幂的乘方与积的乘方;单项式乘单项式;分式的加减法.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C、原式约分得到结果,即可做出判断;D、原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.解答:解:A、原式=8a4,错误;B、原式=﹣3a3b5,错误;C、原式=a﹣1,错误;D、原式===﹣1,正确;故选D.点评:此题考查了分式的乘除法,幂的乘方与积的乘方,单项式乘单项式,以及分式的加减法,熟练掌握运算法则是解本题的关键.2.(2015•山西)化简﹣的结果是()A.B.C.D.考点:分式的加减法.专题:计算题.分析:原式第一项约分后,利用同分母分式的减法法则计算,即可得到结果.解答:解:原式=﹣=﹣==,故选A.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.3.(2015•台湾)将甲、乙、丙三个正分数化为最简分数后,其分子分别为6、15、10,其分母的最小公倍数为360.判断甲、乙、丙三数的大小关系为何?()A.乙>甲>丙B.乙>丙>甲C.甲>乙>丙D.甲>丙>乙考点:分式的混合运算.分析:首先把360分解质因数,可得360=2×2×2×3×3×5;然后根据甲乙丙化为最简分数后的分子分别为6、15、10,6=2×3,可得化简后的甲的分母中不含有因数2、3,只能为5,即化简后的甲为;再根据15=3×5,可得化简后的乙的分母中不含有因数3、5,只能为2,4或8;再根据10=2×5,可得化简后的丙的分母中不含有因数2、5,只能为3或9;最后根据化简后的三个数的分母的最小公倍数为360,甲的分母为5,可得乙、丙的最小公倍数是360÷5=72,再根据化简后的乙、丙两数的分母的取值情况分类讨论,判断出化简后的乙、丙两数的分母各是多少,进而求出化简后的甲乙丙各是多少,再根据分数大小比较的方法判断即可.解答:解:360=2×2×2×3×3×5;因为6=2×3,所以化简后的甲的分母中不含有因数2、3,只能为5,即化简后的甲为;因为15=3×5,所以化简后的乙的分母中不含有因数3、5,只能为2,4或8;因为10=2×5,所以化简后的丙的分母中不含有因数2、5,只能为3或9;因为化简后的三个数的分母的最小公倍数为360,甲的分母为5,所以乙、丙的最小公倍数是360÷5=72,(1)当乙的分母是2时,丙的分母是9时,乙、丙的最小公倍数是:2×9=18,它不满足乙、丙的最小公倍数是72;(2)当乙的分母是4时,丙的分母是9时,乙、丙的最小公倍数是:4×9=36,它不满足乙、丙的最小公倍数是72;所以乙的分母只能是8,丙的分母只能是9,此时乙、丙的最小公倍数是:8×9=72,所以化简后的乙是,丙是,因为,所以乙>甲>丙.故选:A.点评:(1)此题主要考查了最简分数的特征,以及几个数的最小公倍数的求法,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是分别求出化简后的甲、乙、丙的分母各是多少,进而求出化简后的甲乙丙各是多少.(2)此题还考查了分数大小比较的方法,要熟练掌握.4.(2015•厦门)2﹣3可以表示为()A. 22÷25B. 25÷22C. 22×25D.(﹣2)×(﹣2)×(﹣2)考点:负整数指数幂;有理数的乘方;同底数幂的乘法;同底数幂的除法.分析:根据负整数指数幂、同底数幂的除法,即可解答.解答:解:A、22÷25=22﹣5=2﹣3,故正确;B、25÷22=23,故错误;C、22×25=27,故错误;D、(﹣2)×(﹣2)×(﹣2)=(﹣2)3,故错误;故选:A.点评:本题考查了负整数指数幂、同底数幂的除法,解决本题的关键是熟记负整数指数幂、同底数幂的除法的法则.5.(2015•枣庄)关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣1考点:分式方程的解.专题:计算题.分析:将分式方程化为整式方程,求得x的值然后根据解为正数,求得a的范围,但还应考虑分母x+1≠0即x≠﹣1.解答:解:分式方程去分母得:2x﹣a=x+1,解得:x=a+1,根据题意得:a+1>0且a+1+1≠0,解得:a>﹣1且a≠﹣2.即字母a的取值范围为a>﹣1.故选:B.点评:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.6.(2015•齐齐哈尔)关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0C.a≠5D.a≠5且a≠0考点:分式方程的解.分析:先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程=有解”,即x≠0且x≠2建立不等式即可求a的取值范围.解答:解:=,去分母得:5(x﹣2)=ax,去括号得:5x﹣10=ax,移项,合并同类项得:(5﹣a)x=10,∵关于x的分式方程=有解,∴5﹣a≠0,x≠0且x≠2,即a≠5,系数化为1得:x=,∴≠0且≠2,即a≠5,a≠0,综上所述:关于x的分式方程=有解,则字母a的取值范围是a≠5,a≠0,故选:D.点评:此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.7.(2015•荆州)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1C.m>﹣1且m≠1D.m≥﹣1且m≠1考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出m的范围即可.解答:解:去分母得:m﹣1=2x﹣2,解得:x=,由题意得:≥0且≠1,解得:m≥﹣1且m≠1,故选D点评:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.8.(2015•南宁)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A. 1﹣B. 2﹣C. 1+或1﹣D. 1+或﹣1考点:解分式方程.专题:新定义.分析:根据x与﹣x的大小关系,取x与﹣x中的最大值化简所求方程,求出解即可.解答:解:当x<﹣x,即x<0时,所求方程变形得:﹣x=,去分母得:x2+2x+1=0,即x=﹣1;当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解.故选D.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(2015•营口)若关于x的分是方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3考点:分式方程的增根.分析:方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.解答:解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=2,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选A.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.(2015•茂名)张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=考点:由实际问题抽象出分式方程.分析:根据每小时张三比李四多加工5个零件和张三每小时加工这种零件x个,可知李四每小时加工这种零件的个数,根据张三加工120个这种零件与李四加工100个这种零件所用时间相等,列出方程即可.解答:解:设张三每小时加工这种零件x个,则李四每小时加工这种零件(x﹣5)个,由题意得,=,故选B.点评:本题考查的是列分式方程解应用题,根据题意准确找出等量关系是解题的关键.二.填空题(共9小题)11.(2015•上海)如果分式有意义,那么x的取值范围是x≠﹣3.考点:分式有意义的条件.分析:根据分式有意义的条件是分母不为0,列出算式,计算得到答案.解答:解:由题意得,x+3≠0,即x≠﹣3,故答案为:x≠﹣3.点评:本题考查的是分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.(2015•常德)使分式的值为0,这时x=1.考点:分式的值为零的条件.专题:计算题.分析:让分子为0,分母不为0列式求值即可.解答:解:由题意得:,解得x=1,故答案为1.点评:考查分式值为0的条件;需考虑两方面的情况:分子为0,分母不为0.13.(2015•梅州)若=+,对任意自然数n都成立,则a=,b﹣;计算:m=+++…+=.考点:分式的加减法.专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a与b 的值即可;原式利用拆项法变形,计算即可确定出m的值.解答:解:=+=,可得2n(a+b)+a﹣b=1,即,解得:a=,b=﹣;m=(1﹣+﹣+…+﹣)=(1﹣)=,故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(2015•黄冈)计算÷(1﹣)的结果是.考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=÷=•=,故答案为:.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(2015•安徽)已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是①③④(把所有正确结论的序号都选上).考点:分式的混合运算;解一元一次方程.分析:按照字母满足的条件,逐一分析计算得出答案,进一步比较得出结论即可.解答:解:①∵a+b=ab≠0,∴+=1,此选项正确;X k B 1 . c o m②∵a=3,则3+b=3b,b=,c=,∴b+c=+=6,此选项错误;③∵a=b=c,则2a=a2=a,∴a=0,abc=0,此选项正确;④∵a、b、c中只有两个数相等,不妨a=b,则2a=a2,a=0,或a=2,a=0不合题意,a=2,则b=2,c=4,∴a+b+c=8,此选项正确.其中正确的是①③④.故答案为:①③④.点评:此题考查分式的混合运算,一元一次方程的运用,灵活利用题目中的已知条件,选择正确的方法解决问题.16.(2015•毕节市)关于x的方程x2﹣4x+3=0与=有一个解相同,则a=1.考点:分式方程的解;解一元二次方程-因式分解法.分析:利用因式分解法求得关于x的方程x2﹣4x+3=0的解,然后分别将其代入关于x 的方程=,并求得a的值.解答:解:由关于x的方程x2﹣4x+3=0,得(x﹣1)(x﹣3)=0,∴x﹣1=0,或x﹣3=0,解得x1=1,x2=3;当x1=1时,分式方程=无意义;当x2=3时,=,解得a=1,经检验a=1是原方程的解.故答案为:1.点评:本题考查了一元二次方程的解、分式方程的解.解分式方程时,注意:分式的分母不为零.17.(2015•黑龙江)关于x的分式方程﹣=0无解,则m=0或﹣4.考点:分式方程的解.分析:分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答:解:方程去分母得:m﹣(x﹣2)=0,解得:x=2+m,∴当x=2时分母为0,方程无解,即2+m=2,∴m=0时方程无解.当m=﹣2时分母为0,方程无解,即2+m=﹣2,∴m=﹣4时方程无解.综上所述,m的值是0或﹣4.故答案为:0或﹣4.点评:本题考查了分式方程无解的条件,是需要识记的内容.18.(2015•湖北)分式方程﹣=0的解是15.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣5﹣10=0,解得:x=15,经检验x=15是分式方程的解.故答案为:15.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程﹣=15.考点:由实际问题抽象出分式方程.分析:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,根据题意可得,实际比原计划少用15天完成任务,据此列方程即可.解答:解:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,由题意得,﹣=15.故答案为:﹣=15.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.三.解答题(共10小题)20.(2015•宜昌)化简:+.考点:分式的加减法.分析:首先约分,然后根据同分母分式加减法法则,求出算式+的值是多少即可.解答:解:+====1.点评:此题主要考查了分式的加减法,要熟练掌握,解答此题的关键是要明确:(1)同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.(2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减法.21.(2015•南充)计算:(a+2﹣)•.考点:分式的混合运算.分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可.解答:解:(a+2﹣)•=[﹣]×=×=﹣2a﹣6.点评:此题主要考查了分式的混合运算,正确进行通分运算是解题关键.22.(2015•重庆)计算:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣)÷.考点:分式的混合运算;整式的混合运算.专题:计算题.分析:(1)原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=2xy﹣y2+x2+2xy+y2=4xy+x2;(2)原式=•=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23.(2015•枣庄)先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.考点:分式的化简求值;解一元二次方程-因式分解法.分析:通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答.解答:解:原式=÷=•=﹣,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=﹣=﹣.点评:本题综合考查了分式的混合运算及因式分解同时考查了一元二次方程的解法.在代入求值时,要使分式有意义.24.(2015•烟台)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解答:解:原式=÷=•=,当x=2时,原式=4.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.(2015•河南)先化简,再求值:÷(﹣),其中a=+1,b=﹣1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=•=,当a=+1,b=﹣1时,原式=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.26.(2015•黔东南州)先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.考点:分式的化简求值;解一元二次方程-因式分解法.分析:首先根据运算顺序和分式的化简方法,化简÷,然后应用因数分解法解一元二次方程,求出m的值是多少;最后把求出的m的值代入化简后的算式,求出算式÷的值是多少即可.解答:解:÷==∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,解得x1=﹣3,x2=1,∵m是方程x2+2x﹣3=0的根,∴m1=﹣3,m2=1,∵m+3≠0,∴m≠﹣3,∴m=1,所以原式===点评:(1)此题主要考查了分式的化简求值问题,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了解一元二次方程﹣因式分解法,要熟练掌握,解答此题的关键是要明确因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.27.(2015•哈尔滨)先化简,再求代数式:(﹣)÷的值,其中x=2+tan60°,y=4sin30°.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=•=,当x=2+,y=4×=2时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.28.(2015•广元)先化简:(﹣)÷,然后解答下列问题:(1)当x=3时,求原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?考点:分式的化简求值.分析:(1)这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分子、分母先因式分解,约分后再做减法运算;做除法时要注意先把除法运算转化为乘法运算,然后约分化为最简形式,再将x=3代入计算即可;(2)如果=1,求出x=0,此时除式=0,原式无意义,从而得出原代数式的值不能等于﹣1.解答:解:(1)(﹣)÷=[﹣]•=(﹣)•=•=.当x=3时,原式==2;(2)如果=1,那么x+1=x﹣1,解得x=0,当x=0时,除式=0,原式无意义,故原代数式的值不能等于﹣1.点评:本题考查了分式的化简求值.解这类题的关键是利用分解因式的方法化简分式,熟练掌握运算顺序与运算法则是解题的关键.29.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?考点:分式方程的应用.专题:应用题.分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.。

中考数学复习《分式方程》测试题(含答案)

中考数学复习《分式方程》测试题(含答案)

中考数学复习《分式方程》测试题(含答案)一、选择题(每题4分,共20分)1.解分式方程2x -1+x +21-x =3时,去分母后变形为(D) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1)C .2-(x +2)=3(1-x )D .2-(x +2)=3(x -1)2.[2015·天津]分式方程2x -3=3x 的解为(D) A .x =0 B .x =5C .x =3D .x =9【解析】 去分母得2x =3x -9,解得x =9,经检验x =9是分式方程的解.3.[2015·常德]分式方程2x -2+3x2-x =1的解为(A)A .x =1B .x =2C .x =13D .x =0【解析】 去分母得2-3x =x -2,解得x =1,经检验x =1是分式方程的解.4.[2015·遵义]若x =3是分式方程a -2x -1x -2=0的根,则a 的值是(A)A .5B .-5C .3D .-3【解析】 ∵x =3是分式方程a -2x -1x -2=0的根,∴a -23-13-2=0,∴a -23=1,∴a -2=3,∴a =5.5.[2014·福州]某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是(A)A.600x +50=450x B.600x -50=450x C.600x =450x +50 D.600x =450x -50 【解析】 根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器所需时间=原计划生产450台所需时间.二、填空题(每题4分,共20分)6.[2015·淮安]方程1x -3=0的解是__x =13__.7.[2015·巴中]分式方程3x +2=2x的解x =__4__. 8.[2015·江西样卷]小明周三在超市花10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多花了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x 袋牛奶,则根据题意列得方程为__10x =12x +2+0.5__. 9.[2015·河南模拟]若关于未知数x 的分式方程a x -2+3=x +12-x有增根,则a 的值为__-3__.【解析】 分式方程去分母,得a +3x -6=-x -1,解得x =-a +54,∵分式方程有增根,∴x =2,∴-a +54=2,解得a =-3.10.[2015·黄冈中学自主招生]若关于x 的方程ax +1x -1-1=0的解为正数,则a 的取值范围是__a <1且a ≠-1__.【解析】 解方程得x =21-a ,即21-a>0,解得a <1, 当x -1=0时,x =1,代入得a =-1,此为增根,∴a ≠-1,∴a <1且a ≠-1.三、解答题(共26分)11.(10分)(1)[2014·黔西南]解方程:1x -2=4x 2-4; (2)[2014·滨州]解方程:2-2x +13=1+x 2.解:(1)x +2=4,x =2,把x =2代入x 2-4,x 2-4=0,所以方程无解;(2)去分母,得12-2(2x +1)=3(1+x ),去括号,得12-4x -2=3+3x ,移项、合并同类项,得-7x =-7,系数化为1,得x =1.12.(8分)[2015·济南]济南与北京两地相距480 km ,乘坐高铁列车比乘坐普通快车能提前4 h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.解:设普通快车的速度为x km/h ,由题意得480x -4803x =4,解得x =80,经检验,x =80是原分式方程的解,3x =3×80=240.答:高铁列车的平均行驶速度是240 km/h.13.(8分)[2015·扬州]扬州建城2 500年之际,为了继续美化城市,计划在路旁栽树1 200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?解:设原计划每天种树x 棵,则实际每天栽树的棵数为(1+20%)x ,由题意得1 200x - 1 200(1+20%)x=2, 解得x =100,经检验,x =100是原分式方程的解,且符合题意.答:原计划每天种树100棵.14.(10分)[2015·连云港]在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6 000元购买的门票张数,现在只花费了4 800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.解:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x -80)元,根据题意,得6 000x =4 800x -80,解得x =400.经检验,x =400是原方程的根.答:每张门票的原定票价为400元;(2)设平均每次降价的百分率为y ,根据题意,得400(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去).答:平均每次降价10%.15.(12分)[2015·泰安]某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7 800元,乙种款型共用了6 400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店按进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?解:(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,依题意有7 8001.5x +30=6 400x ,解得x =40,经检验,x =40是原分式方程的解,且符合题意,1.5x =60.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)6 40040=160,160-30=130(元),130×60%×60+160×60%×(40÷2)+160×[(1+60%)×0.5-1]×(40÷2) =4 680+1 920-640=5 960(元).答:售完这批T 恤衫商店共获利5 960元.16.(12分)[2015·宁波]宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共6 600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?【解析】 (1)首先设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得等量关系:种植A ,B 两种花木共6 600棵,根据等量关系列出方程;(2)首先设安排a 人种植A 花木,由题意得等量关系:a 人种植A 花木所用时间=(26-a )人种植B 花木所用时间,根据等量关系列出方程.解:(1)设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得 x +2x -600=6 600,解得x =2 400,2x -600=4 200,答:B 花木数量为2 400棵,则A 花木数量是4 200棵;(2)设安排a 人种植A 花木,由题意得4 20060a = 2 40040(26-a ),解得a =14,经检验,a =14是原分式方程的解,26-a=26-14=12,答:安排14人种植A花木,12人种植B花木.。

初三解分式方程练习题及答案

初三解分式方程练习题及答案

初三解分式方程练习题及答案精品文档初三解分式方程练习题及答案一(解答题1(解方程:2(解关于的方程:3(解方程4(解方程:5(解方程:6(解分式方程:7(解方程:8(解方程:9(解分式方程:10(解方程:11(解方程:12(解方程:13(解分式方程:( ( ( ( ( ( ( ( ( =+1( ( ( (14(解方程:15(解方程: (解不等式组16(解方程:17(?解分式方程( ( ; ?解不等式组18(解方程:19(计算:|,2|+解分式方程:1 / 15精品文档20(解方程:21(解方程:22(解方程:23(解分式方程:24(解方程:25(解方程:26(解方程:( ( +1),+tan60?; 0,1=+1( +=1 ( +=127(解方程:28(解方程:29(解方程:30(解分式方程:(答案与评分标准一(解答题1(解方程:(考点:解分式方程。

专题:计算题。

分析:方程两边都乘以最简公分母y,得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验(解答:解:方程两边都乘以y,得2 / 15精品文档2y+y=,2222y+y,y=3y,4y+1,3y=1,解得y=,检验:当y=时,y=×=,?0,?y=是原方程的解,?原方程的解为y=(点评:本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(解分式方程一定注意要验根(2(解关于的方程:(考点:解分式方程。

专题:计算题。

分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解( 解答:解:方程的两边同乘,得x=+2,整理,得5x+3=0,3 / 15精品文档解得x=,(检验:把x=,代入?0(?原方程的解为:x=,(点评:本题考查了解分式方程(解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(解分式方程一定注意要验根(3(解方程(考点:解分式方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考《分式及分式方程》计算题、答案一.解答题(共30小题)1.(2011•自贡)解方程:.2.(2011•孝感)解关于的方程:.3.(2011•咸宁)解方程.4.(2011•乌鲁木齐)解方程:=+1.5.(2011•威海)解方程:.6.(2011•潼南县)解分式方程:.7.(2011•台州)解方程:.8.(2011•随州)解方程:.9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:.11.(2011•攀枝花)解方程:.12.(2011•宁夏)解方程:.13.(2011•茂名)解分式方程:.14.(2011•昆明)解方程:.15.(2011•菏泽)(1)解方程:(2)解不等式组.16.(2011•大连)解方程:.17.(2011•常州)①解分式方程;②解不等式组.18.(2011•巴中)解方程:.19.(2011•巴彦淖尔)(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.20.(2010•遵义)解方程:21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:.23.(2010•西宁)解分式方程:24.(2010•恩施州)解方程:25.(2009•乌鲁木齐)解方程:26.(2009•聊城)解方程:+=127.(2009•南昌)解方程:28.(2009•南平)解方程:29.(2008•昆明)解方程:30.(2007•孝感)解分式方程:.答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。

专题:计算题。

分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。

专题:计算题。

分析:观察可得最简公分母是(x+3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x+3)(x﹣1),得x(x﹣1)=(x+3)(x﹣1)+2(x+3),整理,得5x+3=0,解得x=﹣.检验:把x=﹣代入(x+3)(x﹣1)≠0.∴原方程的解为:x=﹣.点评:本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.3.(2011•咸宁)解方程.考点:解分式方程。

专题:方程思想。

分析:观察可得最简公分母是(x+1)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:两边同时乘以(x+1)(x﹣2),得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)解这个方程,得x=﹣1.(7分)检验:x=﹣1时(x+1)(x﹣2)=0,x=﹣1不是原分式方程的解,∴原分式方程无解.(8分)点评:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.4.(2011•乌鲁木齐)解方程:=+1.考点:解分式方程.专题:计算题。

分析:观察可得最简公分母是2(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程两边同乘2(x﹣1),得2=3+2(x﹣1),解得x=,检验:当x=时,2(x﹣1)≠0,∴原方程的解为:x=.点评:本题主要考查了解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根,难度适中.5.(2011•威海)解方程:.考点:解分式方程.专题:计算题。

分析:观察可得最简公分母是(x﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣1)(x+1),得3x+3﹣x﹣3=0,解得x=0.检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.∴原方程的解为:x=0.点评:本题考查了分式方程和不等式组的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)不等式组的解集的四种解法:大大取大,小小取小,大小小大中间找,大大小小找不到.6.(2011•潼南县)解分式方程:.考点:解分式方程。

分析:观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘(x+1)(x﹣1),得x(x﹣1)﹣(x+1)=(x+1)(x﹣1)(2分)化简,得﹣2x﹣1=﹣1(4分)解得x=0(5分)检验:当x=0时(x+1)(x﹣1)≠0,∴x=0是原分式方程的解.(6分)点评:本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.7.(2011•台州)解方程:.考点:解分式方程。

专题:计算题。

分析:先求分母,再移项,合并同类项,系数化为1,从而得出答案.解答:解:去分母,得x﹣3=4x (4分)移项,得x﹣4x=3,合并同类项,系数化为1,得x=﹣1(6分)经检验,x=﹣1是方程的根(8分).点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.8.(2011•随州)解方程:.考点:解分式方程。

专题:计算题。

分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘以x(x+3),得2(x+3)+x2=x(x+3),2x+6+x2=x2+3x,∴x=6检验:把x=6代入x(x+3)=54≠0,∴原方程的解为x=6.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根.9.(2011•陕西)解分式方程:.考点:解分式方程。

专题:计算题。

分析:观察两个分母可知,公分母为x﹣2,去分母,转化为整式方程求解,结果要检验.解答:解:去分母,得4x﹣(x﹣2)=﹣3,去括号,得4x﹣x+2=﹣3,移项,得4x﹣x=﹣2﹣3,合并,得3x=﹣5,化系数为1,得x=﹣,检验:当x=﹣时,x﹣2≠0,∴原方程的解为x=﹣.点评:本题考查了分式方程的解法.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.10.(2011•綦江县)解方程:.考点:解分式方程。

专题:计算题。

分析:观察分式方程的两分母,得到分式方程的最简公分母为(x﹣3)(x+1),在方程两边都乘以最简公分母后,转化为整式方程求解.解答:解:方程两边都乘以最简公分母(x﹣3)(x+1)得:3(x+1)=5(x﹣3),解得:x=9,检验:当x=9时,(x﹣3)(x+1)=60≠0,∴原分式方程的解为x=9.点评:解分式方程的思想是转化即将分式方程转化为整式方程求解;同时要注意解出的x要代入最简公分母中进行检验.11.(2011•攀枝花)解方程:.考点:解分式方程。

专题:方程思想。

分析:观察可得最简公分母是(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x+2)(x﹣2),得2﹣(x﹣2)=0,解得x=4.检验:把x=4代入(x+2)(x﹣2)=12≠0.∴原方程的解为:x=4.点评:考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.12.(2011•宁夏)解方程:.考点:解分式方程。

专题:计算题。

分析:观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程两边同乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3(x﹣1),展开、整理得﹣2x=﹣5,解得x=2。

5,检验:当x=2.5时,(x﹣1)(x+2)≠0,∴原方程的解为:x=2。

5.点评:本题主要考查了分式方程都通过去分母转化成整式方程求解,检验是解分式方程必不可少的一步,许多同学易漏掉这一重要步骤,难度适中.13.(2011•茂名)解分式方程:.考点:解分式方程。

专题:计算题。

分析:观察可得最简公分母是(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边乘以(x+2),得:3x2﹣12=2x(x+2),(1分)3x2﹣12=2x2+4x,(2分)x2﹣4x﹣12=0,(3分)(x+2)(x﹣6)=0,(4分)解得:x1=﹣2,x2=6,(5分)检验:把x=﹣2代入(x+2)=0.则x=﹣2是原方程的增根,检验:把x=6代入(x+2)=8≠0.∴x=6是原方程的根(7分).点评:本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.(2011•昆明)解方程:.考点:解分式方程。

分析:观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣2),得3﹣1=x﹣2,解得x=4.检验:把x=4代入(x﹣2)=2≠0.∴原方程的解为:x=4.点评:本题考查了分式方程的解法:(1)解分式方程的基本思想是“转化思想",把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.15.(2011•菏泽)(1)解方程:(2)解不等式组.考点:解分式方程;解一元一次不等式组.分析:(1)观察方程可得最简公分母是:6x,两边同时乘最简公分母可把分式方程化为整式方程来解答;(2)先解得两个不等式的解集,再求公共部分.解答:(1)解:原方程两边同乘以6x,得3(x+1)=2x•(x+1)整理得2x2﹣x﹣3=0(3分)解得x=﹣1或检验:把x=﹣1代入6x=﹣6≠0,把x=代入6x=9≠0,∴x=﹣1或是原方程的解,故原方程的解为x=﹣1或(6分)(若开始两边约去x+1由此得解可得3分)(2)解:解不等式①得x<2(2分)解不等式②得x>﹣1(14分)∴不等式组的解集为﹣1<x<2(6分)点评:本题考查了分式方程和不等式组的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)不等式组的解集的四种解法:大大取大,小小取小,大小小大中间找,大大小小找不到.16.(2011•大连)解方程:.考点:解分式方程。

相关文档
最新文档