七年级数学期末复习题

合集下载

人教七年级数学期末试卷

人教七年级数学期末试卷

一、选择题(每题3分,共30分)1. 下列各数中,是正数的是()A. -3B. 0C. 2D. -52. 若a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a + 1 < b + 1D. a - 1 > b - 13. 下列图形中,是轴对称图形的是()A. 矩形B. 正方形C. 三角形D. 梯形4. 在一次函数y = kx + b中,k和b的值分别为()A. 斜率和截距B. 截距和斜率C. 斜率和y轴截距D. x轴截距和斜率5. 下列各式中,完全平方公式正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^26. 下列各数中,是有理数的是()A. √2B. πC. 0.1010010001...D. 37. 若一个等腰三角形的底边长为8cm,腰长为6cm,则该三角形的周长为()A. 20cmB. 22cmC. 24cmD. 26cm8. 下列各式中,正确表示圆的面积公式的是()A. S = πr^2B. S = 2πrC. S = πrD. S = πr^2 + 2πr9. 若一个长方体的长、宽、高分别为4cm、3cm、2cm,则该长方体的体积为()A. 24cm^3B. 26cm^3C. 28cm^3D. 30cm^310. 下列各式中,正确表示正方体的体积公式的是()A. V = a^3B. V = a^2C. V = 2a^2D. V = a二、填空题(每题5分,共25分)11. 若a < b,则a - b < 0。

12. 一个圆的半径为5cm,则该圆的直径为______cm。

13. 若一次函数y = kx + b的图像经过点(2, 3),则k + b = ______。

人教版七年级数学上册期末复习专题:计算题(含答案)

人教版七年级数学上册期末复习专题:计算题(含答案)

人教版七年级数学上册期末复习专题:计算题(含答案)1.计算:25.7+(-7.3)+(-13.7)+7.3.2.计算:(-72)+37-(-22)+(-17)3.3.计算:√.25.4.计算:4+(-2)×2-(-36)÷4.5.计算:(-1+2.75)×(-24)+(-1)。

6.计算:(5.5-2.2)×(4.5+3.8)。

7.计算:(3.5+2.7)÷(1.2-0.8)。

8.计算:(√9+√16)×(√25-√36)。

9.化简:-4ab-9ab-2b2+8.10.化简:3a-2-3a+15.11.化简:4a2b-5ab2-3a2b+4ab2.12.化简:3ab-13ba-4.13.化简:-ab2-2a2b+2ab2-3a2b。

14.化简:3a2b-2ab2+6ab2-2a2b-5ab2.15.化简:(a-b)2.16.化简:2y+2y-4y。

17.解方程:5x-4=-9x+3.18.解方程:4-4x+12=18-2x。

19.解方程:3x-7x+7=3-2x-6.20.解方程:2x+3=5x-4.21.解方程:5x+2=3x+10.22.解方程:2(x-3)+5=3(x+2)-2.23.解方程:(x+2)(x-3)=0.24.解方程:2x-5=3x+2.25.计算:180°-87°19′42″。

26.计算:118°12′-(37°37′×2)。

27.计算:34°25′20″×3+35°42′。

28.计算:10°9′24″÷6.参考答案:1.原式=12.4.2.原式=-30.3.原式=-7.4.原式=-1.5.原式=-60.25.6.原式=29.43.7.原式=16.8.原式=-11.9.原式=-13ab-2b2.10.原式=13.11.原式=a2b-ab2.12.原式=16a2b-5.5ab2+4.13.原式=-ab2-5a2b。

七年级数学期末真题必刷常考60题(30个考点专练)(原卷版)

七年级数学期末真题必刷常考60题(30个考点专练)(原卷版)

期末真题必刷常考60题(30个考点专练)一.正数和负数(共2小题)1.(2022秋•市中区期末)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,他从A处出发去看望B、C、D处的其他甲虫,规定:向上向右走均为正,向下向左走均为负,如果从A到B记为A→B{1,4},从B到A记为:B→A{﹣1,﹣4},其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C { ,},C→B{ ,};(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程.(3)若图中另有两个格点M、N,且M→A{1﹣a,b﹣3},M→N{6﹣a,b﹣2},则A→N应记为什么?直接写出你的答案.2.(2022秋•黄埔区校级期末)“十一”黄金周期间,某风景区在8天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日5日6日7日8日1.2﹣0.20.8﹣0.40.60.2■﹣1.2人数变化(单位:万人)(1)10月1日至5日这五天中每天到该风景区游客人数最多的是10月日;(2)若9月30日的游客人数为2万人,求10月1日至6日这六天的游客总人数是多少?(3)若9月30日的游客人数为2万人,10月8日到该风景区的游客人数与9月30日的游客人数持平,那么表中“■”表示的数应该是多少?二.数轴(共3小题)3.(2022秋•广州期末)如图,点O,A,B,C在数轴上的位置如图所示,O为原点,AC =2,OA=OB,若点C所表示的数为a,则点B所表示的数为()A.﹣a+2B.﹣a﹣2C.a+2D.a﹣24.(2023春•杨浦区期末)在数轴上,如果点A所表示的数是﹣1,那么到点A距离等于4个单位的点所表示的数是.5.(2022秋•清苑区期末)有理数a,b在数轴上对应的点如图所示,若b﹣a=3,且|a|=2|b|,则a的值是.三.绝对值(共2小题)6.(2022秋•桐柏县校级期末)如果,那么|1﹣m|﹣|m﹣2|=.7.(2022秋•丰泽区校级期末)若用点A、B、C分别表示有理数a、b、c,如图:(1)判断下列各式的符号:a+b0;c﹣b0;c﹣a0(2)化简|a+b|﹣|c﹣b|﹣|c﹣a|四.有理数大小比较(共1小题)8.(2022秋•邹城市校级期末)比较大小:﹣﹣(﹣).五.有理数的加减混合运算(共1小题)9.(2022秋•昌图县期末)把﹣(﹣3)﹣4+(﹣5)写成省略括号的代数和的形式,正确的是()A.3﹣4﹣5B.﹣3﹣4﹣5C.3﹣4+5D.﹣3﹣4+5六.有理数的乘法(共1小题)10.(2022秋•黔西南州期末)绝对值小于3的所有整数的积是.七.有理数的乘方(共1小题)11.(2022秋•金华期末)下列对于式子(﹣3)2的说法,错误的是()A.指数是2B.底数是﹣3C.幂为﹣9D.表示2个﹣3相乘八.有理数的混合运算(共2小题)12.(2022秋•滕州市校级期末)如图所示的程序图,当输入﹣1时,输出的结果是.13.(2023秋•萧县期中).九.列代数式(共6小题)14.(2022秋•岳阳期末)菜场上西红柿每千克a元,白菜每千克b元,学校食堂买20kg西红柿,30kg白菜共需元.15.(2022秋•阳曲县期末)下面是用棋子摆成的“小屋子”.摆第1个这样的“小屋子”需要5枚棋子,摆第2个这样的“小屋子”需要11枚棋子,摆第n个这样的“小屋子”需要枚棋子.16.(2022秋•惠安县期末)x表示一个两位数,y表示一个三位数,把x放在y的左边组成一个五位数,则这个五位数表示为.17.(2022秋•方城县期末)如图,有一种塑料杯子的高度是10cm,两个以及三个这种杯子叠放时高度如图所示,第n个这种杯子叠放在一起的高度是cm(用含n 的式子表示).18.(2022秋•东城区期末)如图(图中长度单位:m),阴影部分的面积是m2.19.(2022秋•连山区期末)国庆前夕,我国首个空间实验室“天宫一号”顺利升空,同学们倍受鼓舞,开展了火箭模型制作比赛,如图为火箭模型的截面图,下面是梯形,中间是长方形,上面是三角形.(1)用a、b的代数式表示该截面的面积S;(2)当a=2.2cm,b=2.8cm时,求这个截面的面积.一十.代数式求值(共2小题)20.(2022秋•泰山区期末)按图中程序运算,如果输入﹣1,则输出的结果是()A.1B.3C.5D.7 21.(2022秋•肃州区期末)|x﹣1|+|y+3|=0,则x+y=.一十一.同类项(共2小题)22.(2022秋•南昌期末)若a m﹣2b n+7与﹣3a4b4是同类项,则m﹣n的值为.23.(2022秋•东洲区期末)若﹣x6y2m与x n+2y4是同类项,那么n+m的值为.一十二.合并同类项(共2小题)24.(2022秋•海港区校级期末)下列运算正确的是()A.3a﹣2a=1B.a+a2=a3C.3a+2b=5ab D.7ab﹣6ba=ab25.(2022秋•凤凰县期末)下列计算正确的是()A.7x+x=7x2B.5y﹣3y=2C.4x+3y=7xy D.3x2y﹣2x2y=x2y一十三.去括号与添括号(共1小题)26.(2022秋•温州期末)﹣(a﹣b)去括号得()A.a﹣b B.﹣a﹣b C.﹣a+b D.a+b一十四.整式的加减(共3小题)27.(2022秋•甘肃期末)教材中“整式的加减”一章的知识结构如图所示,则A和B分别代表的是()A.整式,合并同类项B.单项式,合并同类项C.系数,次数D.多项式,合并同类项28.(2022秋•离石区期末)小文在做多项式减法运算时,将减去2a2+3a﹣5误认为是加上2a2+3a﹣5,求得的答案是a2+a﹣4(其他运算无误),那么正确的结果是()A.﹣a2﹣2a+1B.﹣3a2+a﹣4C.a2+a﹣4D.﹣3a2﹣5a+6 29.(2022秋•新抚区期末)下列运算中,正确的是()A.3a+b=3ab B.﹣3a2﹣2a2=﹣5a4C.﹣3a2b+2a2b=﹣a2b D.﹣2(x﹣4)=﹣2x﹣8一十五.整式的加减—化简求值(共2小题)30.(2022秋•邻水县期末)先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.31.(2022秋•南昌期末)如果关于x、y的代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x所取的值无关,试化简代数式,再求值.一十六.等式的性质(共4小题)32.(2022秋•开福区期末)下列变形中,不正确的是()A.若a﹣3=b﹣3,则a=bB.若,则a=bC.若a=b,则D.若ac=bc,则a=b33.(2022秋•嘉陵区校级期末)下列运用等式的性质对等式进行的变形中,错误的是()A.若a=b,则=B.若a=b,则ac=bcC.若a(x2+1)=b(x2+1),则a=bD.若x=y,则x﹣3=y﹣334.(2022秋•榕城区期末)根据等式的性质,下列变形正确的是()A.若,则a=bB.若,则3x+4x=1C.若ab=bc,则a=cD.若4x=a,则x=4a35.(2022秋•定陶区期末)下列利用等式的性质,错误的是()A.由a=b,得到1﹣2a=1﹣2bB.由ac=bc,得到a=bC.由,得到a=bD.由a=b,得到一十七.一元一次方程的定义(共1小题)36.(2022秋•越秀区校级期末)下列方程中,一元一次方程共有()①;②;③x﹣22=﹣3;④x=0.A.1个B.2个C.3个D.4个一十八.一元一次方程的解(共4小题)37.(2022秋•垫江县期末)若关于x的方程3x﹣7=2x+a的解与方程4x+3a=7a﹣8的解互为相反数,则a的值为()A.﹣2.5B.2.5C.1D.﹣1.2 38.(2022秋•阳春市期末)若x=1是方程ax+2x=1的解,则a的值是()A.﹣1B.1C.2D.﹣39.(2022秋•孝南区期末)关于x的一元一次方程mx+1=2的解为x=﹣1,则m=.40.(2023春•衡南县期末)已知x=﹣1是方程2x+m=1的解,则m的值为.一十九.解一元一次方程(共2小题)41.(2022秋•利川市期末)下列解一元一次方程的过程正确的是()A.方程x﹣2(3﹣x)=1去括号得x﹣6+2x=1B.方程3x+2=2x﹣2移项得3x﹣2x=﹣2+2C.方程去分母得2x+1﹣1=3xD.方程分母化为整数得42.(2022秋•滕州市校级期末)已知代数式6x﹣12与4+2x的值互为相反数,那么x的值等于.二十.由实际问题抽象出一元一次方程(共2小题)43.(2022秋•昆都仑区校级期末)为做好疫情防控工作,学校把一批口罩分给值班人员,如果每人分3个,则剩余20个;如果每人分4个,则还缺25个,设值班人员有x人,下列方程正确的是()A.3x+20=4x﹣25B.3x﹣25=4x+20C.4x﹣3x=25﹣20D.3x﹣20=4x+2544.(2022秋•榆次区校级期末)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设共有x人,则可列方程为()A.8x+3=7x﹣4B.8x﹣3=7x+4C.=D.二十一.一元一次方程的应用(共2小题)45.(2022秋•姑苏区校级期末)如图,在数轴上,O为原点,点A对应的数为2,点B对应的数为﹣12.在数轴上有两动点C和D,它们同时向右运动,点C从点A出发,速度为每秒4个单位长度,点D从点B出发,速度为每秒6个单位长度,设运动时间为t秒,当点O,C,D中,其中一点正好位于另外两点所确定线段的中点时,t的值为.46.(2022秋•五常市期末)“幻方”最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为.二十二.认识立体图形(共1小题)47.(2022秋•沈河区校级期末)若一个棱柱有12个顶点,且所有侧棱长的和为30cm,则每条侧棱长为cm.二十三.点、线、面、体(共1小题)48.(2022秋•陈仓区期末)数学老师可以用粉笔在黑板上画出图形,这个现象说明.二十四.展开图折叠成几何体(共1小题)49.(2022秋•清苑区期末)在学习《展开与折叠》这一课时,老师让同学们将准备好的正方体或长方体沿某些棱剪开,展开成平面图形.其中,阿中同学不小心多剪了一条棱,把一个长方体纸盒剪成了图①、图②两部分.根据你所学的知识,回答下列问题:(1)阿中总共剪开了几条棱?(2)现在阿中想将剪断的图②重新粘贴到图①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,他有几种粘贴方法?请在图①上画出粘贴后的图形(画出一种即可);(3)已知图③是阿中剪开的图①的某些数据,求这个长方体纸盒的体积.二十五.专题:正方体相对两个面上的文字(共2小题)50.(2022秋•达川区校级期末)如图是一个正方体纸盒的展开图,正方体的各面标有数1,2,3,﹣3,A,B,相对面上的两个数互为相反数,则A=.51.(2022秋•新会区期末)一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是,B的对面是,C的对面是;(直接用字母表示)(2)若A=m+n,B=|m﹣1|,D=(3+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.二十六.直线、射线、线段(共2小题)52.(2022秋•罗湖区期末)直线、线段、射线的位置如图所示,下图中能相交的是()A.B.C.D.53.(2022秋•兴山县期末)如图,已知四个点A、B、C、D,根据下列要求画图:(1)画线段AB;(2)画∠CDB;(3)找一点P,使P既在直线AD上,又在直线BC上.二十七.两点间的距离(共4小题)54.(2022秋•罗湖区期末)如图,C是线段AB的中点,D是线段AC的中点,已知线段CD=3cm,则线段AB=cm.55.(2022秋•禹城市期末)如图,已知点C为线段AB上一点,AC=12cm,CB=8cm,D、E分别是AC、AB的中点.求:(1)求AD的长度;(2)求DE的长度;(3)若M在直线AB上,且MB=6cm,求AM的长度.56.(2022秋•清苑区期末)课上,老师提出问题:如图,点O是线段AB上一点,C,D分别是线段AO,BO的中点,当AB=10时,求线段CD的长度.(1)下面是小明根据老师的要求进行的分析及解答过程,请你补全解答过程;思路方法解答过程知识要素未知线段已知线段…因为C,D分别是线段AO,BO的中点,所以CO =AO,DO =.因为AB=10,所以CD=CO+DO=AO+==.线段中点的定义线段的和、差等式的性质…(2)小明进行题后反思,提出新的问题:如果点O运动到线段AB的延长线上,CD的长度是否会发生变化?请你帮助小明作出判断并说明理由.57.(2022秋•甘肃期末)阅读感悟:数学课上,老师给出了如下问题:如图1,一条直线上有A、B、C、D四点,线段AB=8cm,点C为线段AB的中点,线段BD=2.5cm,请你补全图形,并求CD的长度.以下是小华的解答过程:解:如图2,因为线段AB=8cm,点C为线段AB的中点,所以BC=AB=cm.因为BD=2.5cm,所以CD=BC﹣BD=cm.小斌说:我觉得这个题应该有两种情况,小华只考虑了点D在线段AB上,事实上,点D还可以在线段AB的延长线上.完成以下问题:(1)请填空:将小华的解答过程补充完整;(2)根据小斌的想法,请你在备用图中画出另一种情况对应的示意图,并求出此时CD 的长度.二十八.度分秒的换算(共1小题)58.(2022秋•秦都区校级期末)角度换算:26.8°=°′.二十九.角的计算(共1小题)59.(2022秋•大足区期末)如图,已知∠AOB=120°,OC是∠AOB内的一条射线,且∠AOC:∠BOC=1:2.(1)求∠AOC的度数;(2)过点O作射线OD,若∠AOD=∠AOB,求∠COD的度数.三十.作图—基本作图(共1小题)60.(2022秋•鄄城县期末)已知线段a,b,点A,P位置如图所示.(1)画射线AP,请用圆规在射线AP上依次截取AB=a,BC=b;(保留作图痕迹,不写作法)(2)在(1)所作图形中,若M,N分别为AB,BC的中点,在图形中标出点M,N的位置,再求出当a=4,b=2时,线段MN的长.。

七年级数学上册《盈亏问题》6道经典题及答案,期末复习必备!

七年级数学上册《盈亏问题》6道经典题及答案,期末复习必备!

(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;到甲商场购买所花的费用为:150×100+100(a﹣100/10)=100a+14000(元)到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.4、某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.5、某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.解:设这个月的石油价格相对上个月的增长率为x. 根据题意得:(1+x)(1-5%)=1+14%解得x=1/2=20%答:这个月的石油价格相对上个月的增长率为20%.6、北山超市销售茶壶茶杯,茶壶每只定价20元,茶杯每只4元.超市在“双十一”期间开展促销活动,向顾客提供两种优惠方案:①买一只茶壶赠一只茶杯;②茶壶和茶杯都按定价的90%付款。

现某顾客要到该超市购买茶壶5只,茶杯x只(茶杯数多于5只)。

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题

2023-2024年人教版七年级上册数学期末专题复习:一元一次方程应用题1.某中学学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/时.(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员骑车的路程是多少千米?2.某开发公司生产出若干件新产品,需要精加工后才能投放市场,现有甲、乙两个工厂每天分别能加工这种产品16件和24件,已知甲单独加工这批产品比乙单独加工这批产品要多用20天,又知若由甲厂单独做,公司需付甲厂每天加工费用80元;若由乙厂单独做,公司需付乙厂每天加工费用120元。

(1)求这批新产品共有多少件?(2)若公司董事会制定了如下方案:可以由每个工厂单独完成,也可以由两个工厂合作完成,但在加工过程中,公司需派一名工程师到工厂进行技术指导,并由公司为其提供每天10元的午餐补助,请你帮助公司选择一种既省时又省钱的加工方案,并通过计算说明理由.3.某中学将举行“歌唱祖国”主题歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张、小红旗1面,恰好全部分完,请问贴纸和小红旗各多少袋?某校七年级(1)和(2)班共105人去游玩,其中七(1)班40多人不足50人,经计算,如果两个班都以班为单位购票,则一共应付1401元.(1)两班各有多少人?(2)如果两班联合起来,作为一个团体购票,能省多少钱?7.某中学举行校运会,初一(1)班同学准备用卡纸制成乒乓球拍和小旗作道具.若一张卡纸可以做3个球拍或6面小旗,用21张卡纸,刚好能够让每位同学拿一个球拍和一面小旗.(1)应用多少张卡纸做球拍,多少张卡纸做小旗?(2)若每个人的工作效率都相同,一个人完成道具制作要6个小时,先安排2个人做半小时,再增加几个人做1小时可以刚好完成?8.一段道路,甲工程队单独铺设需10天完成,乙工程队单独铺设需15天完成.(1)若两队自始至终合作铺设, 天可以完成;(2)实际由甲工程队先单独铺设几天后,为了加快进度,余下的部分由甲乙两个工程队合作完成,共用8天铺设完成了这段道路.甲工程队先铺设了几天道路?9. “双十二”期间,某个体商户在网上购进某品牌A 、B 两款羽绒服来销售,若购进3件A 和4件B 需支付2400元,若购进1件A 和1件B 则需支付700元.(1)求A 、B 两款羽绒服在网上的售价分别是每件多少元?(2)若个体商户把网上购买的A 、B 两款羽绒服各10件,均按每件600元进行销售,销售一段时间后,把剩下的羽绒服按6折销售完,若总获利为3800元,求个体商户打折销售的羽绒服是多少件?10.下雪了,学校七年级准备为同学们定制一批冬帽,现有甲、乙两个工厂都想加工这 批冬帽,已知甲工厂每天能加工这种冬帽20件,乙工厂每天能加工这种冬帽30件,且单独加工这批冬帽甲厂比乙厂要多用16天.(1)求这批冬帽共有多少件?(2)为了尽快完成这批冬帽,若先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工了,由乙工厂单独完成剩余部分,为此乙工厂每天的生产速度也提高20%.已知乙工厂的全部工作时间是甲工厂工作时间的2倍还少2天,求乙工厂共加工多少天?11.一个长方形的周长为26cm ,这个长方形的长减少1cm ,宽增加2cm ,就可成为一个正方形.(1)设长方形的长为cm x ,请列出关于x 的方程.(2)说明8x =是(1)中所列方程的解,而10x =不是它的解.(3)设长方形的宽是cm y ,请列出关于y 的方程.(1)若小泮购买了25千克的柑橘,则他需要付多少元?(2)若小钱一次购买柑橘共付了200元,则小钱购买柑橘多少千克?(3)小王分两次共购买了柑橘90千克,第二次购买的数量要多于第一次购买的数量,共付出376元,请问小王第一次、第二次分别购买柑橘多少千克?14.某校开展劳动教育,在植树节当天组织植树活动,该校七年级共有120人参加活动,分成树苗保障组和种植组,种植组的人数是树苗保障组人数的2倍.(1)求树苗保障组的人数;(2)已知种植点有甲、乙两处,种植组在甲处有a人.①用含a的代数式表示种植组在乙处的人数;a ,树苗保障组人员在运送完树苗后全部去支援种植组,使在甲处种植的人数②若46是乙处种植人数的2倍,问应调往甲、乙两处各多少人?15.甲、乙两地相距72km ,一辆工程车和一辆洒水车上午6时同时从甲地出发,分别以1km/h v 、2km/h v 的速度匀速驶往乙地.工程车到达乙地后停留了2h ,沿原路以原速返回,中午12时到达甲地,此时洒水车也恰好到达乙地.(1)1v =______,2=v ______;(2)求出发多长时间后,两车相遇?(3)求出发多长时间后,两车相距30km ?(直接写出答案)______16.某同学进入初中后,家长为他买了一个电话手表.现从某电信运营商那里了解到,有两种电话卡,A 类卡收费标准如下:无月租,每通话1分钟交费0.6元;B 类卡收费标准如下:月租费15元,每通话1分钟交费0.3元.(1)若每月平均通话时间为100分钟,他应该选择哪类卡?(2)如果这位同学这个月预交话费120元,按A 、B 两类卡收费标准分别可以通话多长时间?(3)根据一个月的通话时间,你认为选择哪种卡更实惠?17.用80m 的篱笆围成一个长方形场地.(1)如果长比宽多6m ,求这个长方形的面积;(2)如果一边靠墙,墙长为32m ,长比宽多11m (长边与墙平行),这样设计是否可行?请说明理由.18.请列一元一次方程解决下面的问题:某超市计划购进甲、乙两种型号的钢笔共900支,这两种钢笔的进价、售价如下表:(1)如果进货款恰好为28500元,那么可以购进甲、乙两种型号的钢笔各多少支?(2)售完这批钢笔一共可以获利多少元钱?参考答案:1.(1)2小时(2)20千米2.(1)这批新产品共有960件.(2)甲、乙合作同时完成时,既省钱又省时间,理由见解析.3.(1)每袋国旗图案贴纸和每袋小红旗的价格各是15和20元(2)购买贴纸40袋,购买小红旗50袋4.(1)买卡合算,小张能节省400元(2)这台冰箱的进价是2480元5.(1)第一批购进文具盒40个,则第二批购进文具盒30个.(2)第二批文具盒中按标价售出的有7个.6.(1)七年级(1)班47人,(2)班58人(2)两个班联合起来,作为一个团体购票,可省351元7.(1)用14张卡纸做球拍,7张卡纸做小旗;(2)再增加3个人做1小时可以刚好完成8.(1)6(2)5天9.(1)A、B两款羽绒服在网上的售价分别是每件400元,300元(2)个体商户打折销售的羽绒服是5件10.(1)这批冬帽共有960件(2)乙工厂共加工22天(2)售完这批钢笔一共可以获利7500元钱。

2022--2023学年人教版数学七年级下册期末复习——不等式与不等式组应用

2022--2023学年人教版数学七年级下册期末复习——不等式与不等式组应用

人教版数学七下期末复习——不等式与不等式组应用一、选择题1.某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为( )A.3×5+3×0.8x≤27B.3×5+3×0.8x≥27C.3×5+3×0.8(x−5)≤27D.3×5+3×0.8(x−5)≥272.满足其和小于13的三个连续正整数有( )A.一组B.二组C.三组D.四组3.菏泽曹县是国内汉服生产基地之一,某厂家计划在一周内制作1200件汉服,该厂家在最初两天里每天制作150件,后来想在剩下的时间内超额完成计划,则以后每天至少生产汉服( )A.179件B.180件C.181件D.182件4.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量.若设原来每天能生产x辆,则关于x的不等式为( )A.15x>20(x+6)B.15(x+6)≥20xC.15x>20(x−6)D.15(x+6)>20x5.某抢险地段实行爆破,操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过( )A.66厘米B.76厘米C.86厘米D.96厘米6.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则所打折扣至多是( )A.六折B.七折C.八折D.九折7.现用甲、乙两种运输车将46t抗旱物资运往灾区,甲种运输车载重5t,乙种运输车载重4t,安排车辆不超过10辆,则甲种运输车至少应安排( )A.4辆B.5辆C.6辆D.7辆8.在芦山地震抢险中,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( )A.10人B.11人C.12人D.13人二、填空题9.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,请写出原来每天生产汽车x辆应满足的不等式.10.某射击运动爱好者在一次比赛中共射击10次,前6次射击共中55环(环数均是整数,最高10环).如果他想取得超过89环的成绩,那么第7次射击不能少于环.11.国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm,某厂家生产符合该规定的行李箱,已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm12.某工厂为在规定期限内完成2160个零件的加工任务,安排了15名工人每人每天加工x个零件(x为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成加工任务,由此可知x的值至少为.13.将不足40只鸡放人若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只.则有鸡只.三、解答题14.为传承读书日理念,鼓励学生们多读书,好读书,读好书,某校图书馆计划从书店购买A,B两类图书供学生使用.已知A类图书每本50元,B类图书每本80元.(1) 若购买A类图书的数量是B类图书数量的2倍,购买A类图书比购买B类图书多花500元,求购买A类图书和B类图书分别花了多少元;(2) 为了响应“书香进校园”的号召,该校决定再次从该书店购进A,B两类图书共50本,此时恰逢书店对这两类图书的售价进行调整:A类图书售价比第一次购买时提高了8%,B类图书按第一次购买时售价的9折出售,如果该校此次购买这两类图书的总费用不超过3240元,且B类图书的数量比A类图书的数量多,那么该校此次如何购买才能使得总费用最少?15.某汽车贸易公司销售A,B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元.该公司销售2台A型车和5台B型车,可获利3.1万元;销售1台A型车和2台B型车,可获利1.3万元.(1) 销售1台A型、1台B型新能源汽车的利润各是多少万元?(2) 该公司准备用不超过300万元资金,采购A,B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?16.某工厂为贯彻落实“绿水青山就是金山银山”的发展理念,投资组建了日废水处理量为x吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.(1) 求该车间的日废水处理量x;(2) 为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.17.某小区积极创建环保示范社区,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,已知温馨提示牌的价格为每个30元,垃圾箱的价格为每个90元,共需购买温馨提示牌和垃圾箱共100个.(1) 若规定温馨提示牌和垃圾箱的个数之比为1:4,求所需的购买费用;(2) 若该小区至多安放48个温馨提示牌,且费用不超过6300元,请列举出所有的购买方案,并说明理由.18.某校举行“庆祝十一”文艺汇演,安排师生表演12个歌唱类节目,8个舞蹈类节目和若干个小品类节目.已知在歌唱,舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟,6分钟和8分钟,预计节目间主持用时共用15分钟.若汇演从20:00开始,22:30之前结束,问小品类节目最多能有多少个?19.今年史上最长的寒假结束后,学生复学,某学校为了增强学生体质,鼓励学生在不聚集的情况下加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元.(1) 求购买一根跳绳和一个毽子分别需要多少元;(2) 某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买跳绳的方案.20.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话(如图所示):(1) 结合两人的对话内容,求小明原计划购买文具袋多少个?(2) 学校决定,再次购买钢笔和签字笔共50支作为补充奖品.两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给子8折优惠,那么小明最多可购买钢笔多少支?。

七年级数学期末试卷及答案

七年级数学期末试卷及答案

【导语】虽然在学习的过程中会遇到许多不顺⼼的事,但古⼈说得好——吃⼀堑,长⼀智。

多了⼀次失败,就多了⼀次教训;多了⼀次挫折,就多了⼀次经验。

没有失败和挫折的⼈,是永远不会成功的。

本篇⽂章是©⽆忧考⽹为您整理的《七年级数学期末试卷及答案》,供⼤家借鉴。

【篇⼀】 ⼀、选择题(每⼩题4分,共40分) 1.﹣4的绝对值是() A.B.C.4D.﹣4 考点:绝对值. 分析:根据⼀个负数的绝对值是它的相反数即可求解. 解答:解:﹣4的绝对值是4. 故选C. 点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运⽤到实际运算当中. 绝对值规律总结:⼀个正数的绝对值是它本⾝;⼀个负数的绝对值是它的相反数;0的绝对值是0. 2.下列各数中,数值相等的是()A.32与23B.﹣23与(﹣2)3C.3×22与(3×2)2D.﹣32与(﹣3)2 考点:有理数的乘⽅. 分析:根据乘⽅的意义,可得答案. 解答:解:A32=9,23=8,故A的数值不相等; B﹣23=﹣8,(﹣2)3=﹣8,故B的数值相等; C3×22=12,(3×2)2=36,故C的数值不相等; D﹣32=﹣9,(﹣3)2=9,故D的数值不相等; 故选:B. 点评:本题考查了有理数的乘⽅,注意负数的偶次幂是正数,负数的奇次幂是负数. 3.0.3998四舍五⼊到百分位,约等于()A.0.39B.0.40C.0.4D.0.400 考点:近似数和有效数字. 分析:把0.3998四舍五⼊到百分位就是对这个数百分位以后的数进⾏四舍五⼊. 解答:解:0.3998四舍五⼊到百分位,约等于0.40. 故选B. 点评:本题考查了四舍五⼊的⽅法,是需要识记的内容. 4.如果是三次⼆项式,则a的值为()A.2B.﹣3C.±2D.±3 考点:多项式. 专题:计算题. 分析:明⽩三次⼆项式是多项式⾥⾯次数的项3次,有两个单项式的和.所以可得结果. 解答:解:因为次数要有3次得单项式, 所以|a|=2 a=±2. 因为是两项式,所以a﹣2=0 a=2 所以a=﹣2(舍去). 故选A. 点评:本题考查对三次⼆项式概念的理解,关键知道多项式的次数是3,含有两项. 5.化简p﹣[q﹣2p﹣(p﹣q)]的结果为()A.2pB.4p﹣2qC.﹣2pD.2p﹣2q 考点:整式的加减. 专题:计算题. 分析:根据整式的加减混合运算法则,利⽤去括号法则有括号先去⼩括号,再去中括号,最后合并同类项即可求出答案. 解答:解:原式=p﹣[q﹣2p﹣p+q], =p﹣q+2p+p﹣q, =﹣2q+4p, =4p﹣2q. 故选B. 点评:本题主要考查了整式的加减运算,解此题的关键是根据去括号法则正确去括号(括号前是﹣号,去括号时,各项都变号). 6.若x=2是关于x的⽅程2x+3m﹣1=0的解,则m的值为()A.﹣1B.0C.1D. 考点:⼀元⼀次⽅程的解. 专题:计算题. 分析:根据⽅程的解的定义,把x=2代⼊⽅程2x+3m﹣1=0即可求出m的值. 解答:解:∵x=2是关于x的⽅程2x+3m﹣1=0的解, ∴2×2+3m﹣1=0, 解得:m=﹣1. 故选:A. 点评:本题的关键是理解⽅程的解的定义,⽅程的解就是能够使⽅程左右两边相等的未知数的值. 7.某校春季运动会⽐赛中,⼋年级(1)班、(5)班的竞技实⼒相当,关于⽐赛结果,甲同学说:(1)班与(5)班得分⽐为6:5;⼄同学说:(1)班得分⽐(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的⽅程组应为() A.B. C.D. 考点:由实际问题抽象出⼆元⼀次⽅程组. 分析:此题的等量关系有:(1)班得分:(5)班得分=6:5;(1)班得分=(5)班得分×2﹣40. 解答:根据(1)班与(5)班得分⽐为6:5,有: x:y=6:5,得5x=6y; 根据(1)班得分⽐(5)班得分的2倍少40分,得x=2y﹣40. 可列⽅程组为. 故选:D. 点评:列⽅程组的关键是找准等量关系.同时能够根据⽐例的基本性质对等量关系①把⽐例式转化为等积式. 8.下⾯的平⾯图形中,是正⽅体的平⾯展开图的是() A.B.C.D. 考点:⼏何体的展开图. 分析:由平⾯图形的折叠及正⽅体的展开图解题. 解答:解:选项A、B、D中折叠后有⼀⾏两个⾯⽆法折起来,⽽且缺少⼀个底⾯,不能折成正⽅体. 故选C. 点评:熟练掌握正⽅体的表⾯展开图是解题的关键. 9.如图,已知∠AOB=∠COD=90°,⼜∠AOD=170°,则∠BOC的度数为()A.40°B.30°C.20°D.10° 考点:⾓的计算. 专题:计算题. 分析:先设∠BOC=x,由于∠AOB=∠COD=90°,即∠AOC+x=∠BOD+x=90°,从⽽易求∠AOB+∠COD﹣∠AOD,即可得x=10°. 解答:解:设∠BOC=x, ∵∠AOB=∠COD=90°, ∴∠AOC+x=∠BOD+x=90°, ∴∠AOB+∠COD﹣∠AOD=∠AOC+x+∠BOD+x﹣(∠AOC+∠BOD+x)=10°, 即x=10°. 故选D. 点评:本题考查了⾓的计算、垂直定义.关键是把∠AOD和∠AOB+∠COD表⽰成⼏个⾓和的形式. 10.⼩明把⾃⼰⼀周的⽀出情况⽤如图所⽰的统计图来表⽰,则从图中可以看出() A.⼀周⽀出的总⾦额 B.⼀周内各项⽀出⾦额占总⽀出的百分⽐ C.⼀周各项⽀出的⾦额 D.各项⽀出⾦额在⼀周中的变化情况 考点:扇形统计图. 分析:根据扇形统计图的特点进⾏解答即可. 解答:解:∵扇形统计图是⽤整个圆表⽰总数⽤圆内各个扇形的⼤⼩表⽰各部分数量占总数的百分数.通过扇形统计图可以很清楚地表⽰出各部分数量同总数之间的关系, ∴从图中可以看出⼀周内各项⽀出⾦额占总⽀出的百分⽐. 故选B. 点评:本题考查的是扇形统计图,熟知从扇形图上可以清楚地看出各部分数量和总数量之间的关系是解答此题的关键. ⼆、填空题(每⼩题5分,共20分) 11.在(﹣1)2010,(﹣1)2011,﹣23,(﹣3)2这四个数中,的数与最⼩的数的差等于17. 考点:有理数⼤⼩⽐较;有理数的减法;有理数的乘⽅. 分析:根据有理数的乘⽅法则算出各数,找出的数与最⼩的数,再进⾏计算即可. 解答:解:∵(﹣1)2010=1,(﹣1)2011=﹣1,﹣23=﹣8,(﹣3)2=9, ∴的数是(﹣3)2,最⼩的数是﹣23, ∴的数与最⼩的数的差等于=9﹣(﹣8)=17. 故答案为:17. 点评:此题考查了有理数的⼤⼩⽐较,根据有理数的乘⽅法则算出各数,找出这组数据的值与最⼩值是本题的关键. 12.已知m+n=1,则代数式﹣m+2﹣n=1. 考点:代数式求值. 专题:计算题. 分析:分析已知问题,此题可⽤整体代⼊法求代数式的值,把代数式﹣m+2﹣n化为含m+n的代数式,然后把m+n=1代⼊求值. 解答:解:﹣m+2﹣n=﹣(m+n)+2, 已知m+n=1代⼊上式得: ﹣1+2=1. 故答案为:1. 点评:此题考查了学⽣对数学整体思想的掌握运⽤及代数式求值问题.关键是把代数式﹣m+2﹣n化为含m+n的代数式. 13.已知单项式与﹣3x2n﹣3y8是同类项,则3m﹣5n的值为﹣7. 考点:同类项. 专题:计算题. 分析:由单项式与﹣3x2n﹣3y8是同类项,可得m=2n﹣3,2m+3n=8,分别求得m、n的值,即可求出3m﹣5n的值. 解答:解:由题意可知,m=2n﹣3,2m+3n=8, 将m=2n﹣3代⼊2m+3n=8得, 2(2n﹣3)+3n=8, 解得n=2, 将n=2代⼊m=2n﹣3得, m=1, 所以3m﹣5n=3×1﹣5×2=﹣7. 故答案为:﹣7. 点评:此题主要考查学⽣对同类项得理解和掌握,解答此题的关键是由单项式与﹣3x2n﹣3y8是同类项,得出m=2n﹣3,2m+3n=8. 14.已知线段AB=8cm,在直线AB上有⼀点C,且BC=4cm,M是线段AC的中点,则线段AM的长为2cm或6cm. 考点:两点间的距离. 专题:计算题. 分析:应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上. 解答:解:①当点C在线段AB的延长线上时,此时AC=AB+BC=12cm,∵M是线段AC的中点,则AM=AC=6cm; ②当点C在线段AB上时,AC=AB﹣BC=4cm,∵M是线段AC的中点,则AM=AC=2cm. 故答案为6cm或2cm. 点评:本题主要考查两点间的距离的知识点,利⽤中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选⽤它的不同表⽰⽅法,有利于解题的简洁性.同时,灵活运⽤线段的和、差、倍、分转化线段之间的数量关系也是⼗分关键的⼀点. 三、计算题(本题共2⼩题,每⼩题8分,共16分) 15. 考点:有理数的混合运算. 专题:计算题. 分析:在进⾏有理数的混合运算时,⼀是要注意运算顺序,先算⾼⼀级的运算,再算低⼀级的运算,即先乘⽅,后乘除,再加减.同级运算按从左到右的顺序进⾏.有括号先算括号内的运算.⼆是要注意观察,灵活运⽤运算律进⾏简便计算,以提⾼运算速度及运算能⼒. 解答:解:, =﹣9﹣125×﹣18÷9, =﹣9﹣20﹣2, =﹣31. 点评:本题考查了有理数的综合运算能⼒,解题时还应注意如何去绝对值. 16.解⽅程组:. 考点:解⼆元⼀次⽅程组. 专题:计算题. 分析:根据等式的性质把⽅程组中的⽅程化简为,再解即可. 解答:解:原⽅程组化简得 ①+②得:20a=60, ∴a=3, 代⼊①得:8×3+15b=54, ∴b=2, 即. 点评:此题是考查等式的性质和解⼆元⼀次⽅程组时的加减消元法. 四、(本题共2⼩题,每⼩题8分,共16分) 17.已知∠α与∠β互为补⾓,且∠β的⽐∠α⼤15°,求∠α的余⾓. 考点:余⾓和补⾓. 专题:应⽤题. 分析:根据补⾓的定义,互补两⾓的和为180°,根据题意列出⽅程组即可求出∠α,再根据余⾓的定义即可得出结果. 解答:解:根据题意及补⾓的定义, ∴, 解得, ∴∠α的余⾓为90°﹣∠α=90°﹣63°=27°. 故答案为:27°. 点评:本题主要考查了补⾓、余⾓的定义及解⼆元⼀次⽅程组,难度适中. 18.如图,C为线段AB的中点,D是线段CB的中点,CD=1cm,求图中AC+AD+AB的长度和. 考点:两点间的距离. 分析:先根据D是线段CB的中点,CD=1cm求出BC的长,再由C是AB的中点得出AC及AB的长,故可得出AD的长,进⽽可得出结论. 解答:解:∵CD=1cm,D是CB中点, ∴BC=2cm, ⼜∵C是AB的中点, ∴AC=2cm,AB=4cm, ∴AD=AC+CD=3cm, ∴AC+AD+AB=9cm. 点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键. 五、(本题共2⼩题,每⼩题10分,共20分) 19.已知,A=a3﹣a2﹣a,B=a﹣a2﹣a3,C=2a2﹣a,求A﹣2B+3C的值. 考点:整式的加减. 专题:计算题. 分析:将A、B、C的值代⼊A﹣2B+3C去括号,再合并同类项,从⽽得出答案. 解答:解:A﹣2B+3C=(a3﹣a2﹣a)﹣2(a﹣a2﹣a3)+3(2a2﹣a), =a3﹣a2﹣a﹣2a+2a2+2a3+6a2﹣3a, =3a3+7a2﹣6a. 点评:本题考查了整式的加减,解决此类题⽬的关键是熟记去括号法则,熟练运⽤合并同类项的法则,这是各地中考的常考点. 20.⼀个两位数的⼗位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与⼗位数字对调之后组成的两位数.求这个两位数. 考点:⼀元⼀次⽅程的应⽤. 专题:数字问题;⽅程思想. 分析:先设这个两位数的⼗位数字和个位数字分别为x,7﹣x,根据题意列出⽅程,求出这个两位数. 解答:解:设这个两位数的⼗位数字为x,则个位数字为7﹣x, 由题意列⽅程得,10x+7﹣x+45=10(7﹣x)+x, 解得x=1, ∴7﹣x=7﹣1=6, ∴这个两位数为16. 点评:本题考查了数字问题,⽅程思想是很重要的数学思想. 六.(本题满分12分) 21.取⼀张长⽅形的纸⽚,如图①所⽰,折叠⼀个⾓,记顶点A落下的位置为A′,折痕为CD,如图②所⽰再折叠另⼀个⾓,使DB沿DA′⽅向落下,折痕为DE,试判断∠CDE的⼤⼩,并说明你的理由. 考点:⾓的计算;翻折变换(折叠问题). 专题:⼏何图形问题. 分析:根据折叠的原理,可知∠BDE=∠A′DE,∠A′DC=∠ADC.再利⽤平⾓为180°,易求得∠CDE=90°. 解答:解:∠CDE=90°. 理由:∵∠BDE=∠A′DE,∠A′DC=∠ADC, ∴∠CDA′=∠ADA′,∠A′DE=∠BDA, ∴∠CDE=∠CDA′+∠A′DE, =∠ADA′+∠BDA, =(∠ADA′+∠BDA′), =×180°, =90°. 点评:本题考查⾓的计算、翻折变换.解决本题⼀定明⽩对折的两个⾓相等,再就是运⽤平⾓的度数为180°这⼀隐含条件. 七.(本题满分12分) 22.为了“让所有的孩⼦都能上得起学,都能上好学”,国家⾃2007年起出台了⼀系列“资助贫困学⽣”的政策,其中包括向经济困难的学⽣免费提供教科书的政策.为确保这项⼯作顺利实施,学校需要调查学⽣的家庭情况.以下是某市城郊⼀所中学甲、⼄两个班的调查结果,整理成表(⼀)和图(⼀): 类型班级城镇⾮低保 户⼝⼈数农村户⼝⼈数城镇户⼝ 低保⼈数总⼈数 甲班20550 ⼄班28224 (1)将表(⼀)和图(⼀)中的空缺部分补全. (2)现要预定2009年下学期的教科书,全额100元.若农村户⼝学⽣可全免,城镇低保的学⽣可减免,城镇户⼝(⾮低保)学⽣全额交费.求⼄班应交书费多少元?甲班受到国家资助教科书的学⽣占全班⼈数的百分⽐是多少? (3)五四青年节时,校团委免费赠送给甲、⼄两班若⼲册科普类、⽂学类及艺术类三种图书,其中⽂学类图书有15册,三种图书所占⽐例如图(⼆)所⽰,求艺术类图书共有多少册? 考点:条形统计图. 分析:(1)由统计表可知:甲班农村户⼝的⼈数为50﹣20﹣5=25⼈;⼄班的总⼈数为28+22+4=54⼈; (2)由题意可知:⼄班有22个农村户⼝,28个城镇户⼝,4个城镇低保户⼝,根据收费标准即可求解; 甲班的农村户⼝的学⽣和城镇低保户⼝的学⽣都可以受到国家资助教科书,可以受到国家资助教科书的总⼈数为25+5=30⼈,全班总⼈数是50⼈,即可求得; (3)由扇形统计图可知:⽂学类图书有15册,占30%,即可求得总册数,则求出艺术类图书所占的百分⽐即可求解. 解答:解: (1)补充后的图如下: (2)⼄班应交费:28×100+4×100×(1﹣)=2900元; 甲班受到国家资助教科书的学⽣占全班⼈数的百分⽐:×100%=60%; (3)总册数:15÷30%=50(册), 艺术类图书共有:50×(1﹣30%﹣44%)=13(册). 点评:本题考查的是条形统计图和扇形统计图的综合运⽤.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表⽰出每个项⽬的数据;扇形统计图直接反映部分占总体的百分⽐⼤⼩. ⼋、(本题满分14分) 23.如图所⽰,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数. (2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数. (3)如果(1)中∠BOC=β(β为锐⾓),其他条件不变,求∠MON的度数. (4)从(1)(2)(3)的结果你能看出什么规律? (5)线段的计算与⾓的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计⼀道以线段为背景的计算题,并写出其中的规律来? 考点:⾓的计算. 专题:规律型. 分析:(1)⾸先根据题中已知的两个⾓度数,求出⾓AOC的度数,然后根据⾓平分线的定义可知⾓平分线分成的两个⾓都等于其⼤⾓的⼀半,分别求出⾓MOC和⾓NOC,两者之差即为⾓MON的度数; (2)(3)的计算⽅法与(1)⼀样. (4)通过前三问求出的⾓MON的度数可发现其都等于⾓AOB度数的⼀半. (5)模仿线段的计算与⾓的计算存在着紧密的联系,也在已知条件中设计两条线段的长,设计两个中点,求中点间的线段长. 解答:解:(1)∵∠AOB=90°,∠BOC=30°, ∴∠AOC=90°+30°=120°, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=60°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC=15° ∴∠MON=∠MOC﹣∠NOC=45°; (2)∵∠AOB=α,∠BOC=30°, ∴∠AOC=α+30°, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=+15°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC=15° ∴∠MON=∠MOC﹣∠NOC=; (3)∵∠AOB=90°,∠BOC=β, ∴∠AOC=90°+β, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=+45°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC= ∴∠MON=∠MOC﹣∠NOC=45°; (4)从(1)(2)(3)的结果可知∠MON=∠AOB; (5) ①已知线段AB的长为20,线段BC的长为10,点M是线段AC的中点,点N是线段BC的中点,求线段MN的长; ②若把线段AB的长改为a,其余条件不变,求线段MN的长; ③若把线段BC的长改为b,其余条件不变,求线段MN的长; ④从①②③你能发现什么规律. 规律为:MN=AB. 点评:本题考查了学会对⾓平分线概念的理解,会求⾓的度数,同时考查了学会归纳总结规律的能⼒,以及会根据⾓和线段的紧密联系设计实验的能⼒. 【篇⼆】 ⼀、选择题(每题3分,共30分) 1.﹣2的相反数是()A.﹣B.﹣2C.D.2 2.据平凉市旅游局统计,2015年⼗⼀黄⾦周期间,平凉市接待游客38万⼈,实现旅游收⼊16000000元.将16000000⽤科学记数法表⽰应为()A.0.16×108B.1.6×107C.16×106D.1.6×106 3.数轴上与原点距离为5的点表⽰的是()A.5B.﹣5C.±5D.6 4.下列关于单项式的说法中,正确的是()A.系数、次数都是3B.系数是,次数是3C.系数是,次数是2D.系数是,次数是3 5.如果x=6是⽅程2x+3a=6x的解,那么a的值是()A.4B.8C.9D.﹣8 6.绝对值不⼤于4的所有整数的和是()A.16B.0C.576D.﹣1 7.下列各图中,可以是⼀个正⽅体的平⾯展开图的是() A.B.C.D. 8.“⼀个数⽐它的相反数⼤﹣4”,若设这数是x,则可列出关于x的⽅程为()A.x=﹣x+(﹣4)B.x=﹣x+4C.x=﹣x﹣(﹣4)D.x﹣(﹣x)=4 9.⽤⼀个平⾯去截:①圆锥;②圆柱;③球;④五棱柱,能得到截⾯是圆的图形是()A.①②③B.①②④C.②③④D.①③④ 10.某商店有两个进价不同的计算器都卖了64元,其中⼀个盈利60%,另⼀个亏损20%,在这次买卖中,这家商店()A.不赔不赚B.赚了32元C.赔了8元D.赚了8元 ⼆、填空题(每题3分,共30分) 11.﹣3的倒数的绝对值是. 12.若a、b互为倒数,则2ab﹣5=. 13.若a2mb3和﹣7a2b3是同类项,则m值为. 14.若|y﹣5|+(x+2)2=0,则xy的值为. 15.两点之间,最短;在墙上固定⼀根⽊条⾄少要两个钉⼦,这是因为. 16.时钟的分针每分钟转度,时针每分钟转度. 17.如果∠A=30°,则∠A的余⾓是度;如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的⼤⼩关系是. 18.如果代数式2y2+3y+5的值是6,求代数式4y2+6y﹣3的值是. 19.若规定“*”的运算法则为:a*b=ab﹣1,则2*3=. 20.有⼀列数,前五个数依次为,﹣,,﹣,,则这列数的第20个数是. 三、计算和解⽅程(16分) 21.计算题(8分) (1) (2)(2a2﹣5a)﹣2(﹣3a+5+a2) 22.解⽅程(8分) (1)4x﹣1.5x=﹣0.5x﹣9(2)1﹣=2﹣. 四、解答题(44分) 23.(6分)先化简,再求值:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3),其中. 24.(7分)⼀个⾓的余⾓⽐它的补⾓的⼤15°,求这个⾓的度数. 25.(7分)如图,∠AOB为直⾓,∠AOC为锐⾓,且OM平分∠BOC,ON平分∠AOC,求∠MON的度数. 26.(7分)⼀项⼯程由甲单独做需12天完成,由⼄单独做需8天完成,若两⼈合作3天后,剩下部分由⼄单独完成,⼄还需做多少天? 27.(7分)今年春节,⼩明到奶奶家拜年,奶奶说过年了,⼤家都长了⼀岁,⼩明问奶奶多⼤岁了.奶奶说:“我现在的年龄是你年龄的5倍,再过5年,我的年龄是你年龄的4倍,你算算我现在的年龄是多少?”聪明的同学,请你帮帮⼩明,算出奶奶的岁数. 28.(10分)某市电话拨号上⽹有两种收费⽅式,⽤户可以任选其⼀:A、计时制:0.05元/分钟;B、⽉租制:50元/⽉(限⼀部个⼈住宅电话上⽹).此外,每种上⽹⽅式都得加收通信费0.02元/分钟. (1)⼩玲说:两种计费⽅式的收费对她来说是⼀样的.⼩玲每⽉上⽹多少⼩时? (2)某⽤户估计⼀个⽉内上⽹的时间为65⼩时,你认为采⽤哪种⽅式较为合算?为什么? 参考答案 ⼀、选择题(每题3分,共30分) 题号12345678910 答案DBCDBBCAAD ⼆、填空题(每题3分,共30分) 11.1/3;12.﹣3;13.1;14.﹣32;15.线段;两点确定⼀条直线; 16.6度;0.5度;17.60度;∠2=∠3;18.﹣1;19.5;20.﹣20/21. 三、计算和解⽅程(16分) 21.(1)1/12;(2)a-10;22.(1)x=-3;(2)x=1 四、解答题(44分) 23.解:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3) =-6x+9x2﹣3﹣9x2+x﹣3 =-5x﹣6----------------------------------------------------------------------------4分 当时,-5x﹣6=-5×(-1/3)-6=-13/3---------------------------------------2分 24.解:设这个⾓的度数为x,则它的余⾓为(90°﹣x),补⾓为(180°﹣x),--------2分 依题意,得:(90°﹣x)﹣(180°﹣x)=15°,-------------------------------------------4分 解得x=40°.--------------------------------------------------------------------------------------6分 答:这个⾓是40°.----------------------------------------------------------------------------7分 25.解:∵OM平分∠BOC,ON平分∠AOC, ∴∠MOC=∠BOC,∠NOC=∠AOC,------------------------------------------------------2分 ∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)-----------------------------------------4分 =(∠BOA+∠AOC﹣∠AOC) =∠BOA =45°.----------------------------------------------------------------------------------------------6分 故∠MON的度数为45°.-------------------------------------------------------------------------7分 26.解:设⼄还需做x天.-----------------------------------------------------------------------1分 由题意得:++=1,-------------------------------------------------------------------------4分 解之得:x=3.------------------------------------------------------------------------------------6分 答:⼄还需做3天.------------------------------------------------------------------------------7分 27.解:设⼩明现在的年龄为x岁,则奶奶现在的年龄为5x岁,根据题得,--------------1分 4(x+5)=5x+5,---------------------------------------------------------------------------------3分 解得:x=15,-------------------------------------------------------------------------------------5分 经检验,符合题意,5x=15×5=75(岁).------------------------------------------------------6分 答:奶奶现在的年龄为75岁.------------------------------------==--------------------------7分 28.解:(1)设⼩玲每⽉上⽹x⼩时,根据题意得------------------------------------------1分 (0.05+0.02)×60x=50+0.02×60x,--------------------------------------------------------------2分 解得x=.-----------------------------------------------------------------------------------------5分 答:⼩玲每⽉上⽹⼩时;--------------------------------------------------------------------6分 (2)如果⼀个⽉内上⽹的时间为65⼩时, 选择A、计时制费⽤:(0.05+0.02)×60×65=273(元),----------------------------------8分 选择B、⽉租制费⽤:50+0.02×60×65=128(元). 所以⼀个⽉内上⽹的时间为65⼩时,采⽤⽉租制较为合算.--------------------------------10分 【篇三】 ⼀、选择题:每⼩题3分,共30分。

七年级数学上册期末高频试题必杀(90题)含答案

七年级数学上册期末高频试题必杀(90题)含答案

七年级数学上册期末高频试题必杀(90题)含答案一.选择题1.﹣3的相反数是()A.﹣B.C.﹣3D.3【答案】D【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:D.2.﹣3的倒数为()A.﹣B.C.3D.﹣3【答案】A【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选:A.3.﹣3的绝对值是()A.3B.﹣3C.D.﹣【答案】A【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.4.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【答案】B【解答】解:4 400 000 000=4.4×109,故选:B.5.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.﹣a<﹣b<a<bC.﹣b<a<﹣a<b D.﹣b<b<﹣a<a【答案】C【解答】解集:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a<b;在a和﹣b两个负数中,绝对值大的反而小,则﹣b<a.因此,﹣b<a<﹣a<b.故选:C.6.如果|a|=﹣a,下列成立的是()A.a>0B.a<0C.a≥0D.a≤0【答案】D【解答】解:如果|a|=﹣a,即一个数的绝对值等于它的相反数,则a≤0.故选:D.7.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)【答案】C【解答】解:A、0.05019≈0.1(精确到0.1),所以此选项正确;B、0.05019≈0.05(精确到百分位),所以此选项正确;C、0.05019≈0.050(精确到千分位),所以此选项错误;D、0.05019≈0.0502(精确到0.0001),所以此选项正确;本题选择错误的,故选:C.8.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或2【答案】D【解答】解:x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选:D.9.下列各组数中,互为相反数的是()A.2与B.﹣1与(﹣1)2C.(﹣1)2与1D.2与|﹣2|【答案】B【解答】解:∵2与互为倒数,不是互为相反数,故选项A错误,∵(﹣1)2=1,∴﹣1与(﹣1)2互为相反数,故选项B正确,∵(﹣1)2=1,∴(﹣1)2与1不是互为相反数,故选项C错误,∵|﹣2|=2,∴2与|﹣2|不是互为相反数,故选项D错误,故选:B.10.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg【答案】B【解答】解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3﹣(﹣0.3)=0.6kg.故选:B.11.下列说法不正确的是()A.0既不是正数,也不是负数B.一个有理数不是整数就是分数C.1是绝对值最小的数D.0的绝对值是0【答案】C【解答】解;A、0既不是正数,也不是负数,故A正确;B、有理数分为整数和分数,故B正确;c、0是绝对值最小的数,故C错误;D、|0|=0,故D正确;故选:C.12.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A.24.70千克B.25.30千克C.24.80千克D.25.51千克【答案】C【解答】解:“25±0.25千克”表示合格范围在25上下0.25的范围内的是合格品,即24.75到25.25之间的合格,因为24.75<24.80<25.25,故只有24.80千克合格.故选:C.13.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣4B.﹣1C.0D.4【答案】B【解答】解:∵|m﹣3|+(n+2)2=0,∴m﹣3=0且n+2=0,∴m=3,n=﹣2.则m+2n=3+2×(﹣2)=﹣1.故选:B.14.绝对值大于2且小于5的所有的整数的和是()A.7B.﹣7C.0D.5【答案】C【解答】解:因为绝对值大于2而小于5的整数为±3,±4,故其和为﹣3+3+(﹣4)+4=0.故选:C.15.如果收入80元记作+80元,那么支出20元记作()A.+20元B.﹣20元C.+100元D.﹣100元【答案】B【解答】解:“正”和“负”相对,所以如果+80元表示收入80元,那么支出20元表示为﹣20元.故选:B.16.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.7a+a=7a2D.3x2y﹣2yx2=x2y【答案】D【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母部分不变,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.17.单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5B.﹣1,6C.﹣3π,6D.﹣3,7【答案】C【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选:C.18.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1B.4C.7D.9【答案】C【解答】解:由题意得:x+2y=3,∴2x+4y+1=2(x+2y)+1=2×3+1=7.故选:C.19.一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3B.﹣x2+x﹣1C.﹣x2+5x﹣3D.x2﹣5x﹣13【答案】C【解答】解:由题意得:这个多项式=3x﹣2﹣(x2﹣2x+1),=3x﹣2﹣x2+2x﹣1,=﹣x2+5x﹣3.故选:C.20.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(6a+15)cm2C.(6a+9)cm2D.(3a+15)cm2【答案】B【解答】解:矩形的面积是:(a+4)2﹣(a+1)2=(a+4+a+1)(a+4﹣a﹣1)=3(2a+5)=6a+15(cm2).故选:B.21.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b【答案】B【解答】解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b.故选:B.22.多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3B.2,﹣3C.5,﹣3D.2,3【答案】A【解答】解:多项式1+2xy﹣3xy2的次数是3,最高次项是﹣3xy2,系数是﹣3;故选:A.23.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元.A.4m+7n B.28mn C.7m+4n D.11mn【答案】A【解答】解:∵一个足球需要m元,买一个篮球需要n元.∴买4个足球、7个篮球共需要(4m+7n)元.故选:A.24.下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c【答案】B【解答】解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选:B.25.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【答案】A【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.26.右图是“大润发”超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元【答案】C【解答】解:设洗发水的原价为x元,由题意得:0.8x=19.2,解得:x=24.故选:C.27.下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=5【答案】D【解答】解:A、由7x=4x﹣3移项得7x﹣4x=﹣3,故错误;B、由=1+去分母得2(2x﹣1)=6+3(x﹣3),故错误;C、由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x+9=1,故错误;D、正确.故选:D.28.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5【答案】D【解答】解:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x=z,则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.29.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0B.x=3C.x=﹣3D.x=2【答案】A【解答】解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.30.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排x名工人生产螺钉,则下面所列方程正确的是()A.1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.2×1000(26﹣x)=800x【答案】C【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选:C.31.解方程1﹣,去分母,得()A.1﹣x﹣3=3x B.6﹣x﹣3=3x C.6﹣x+3=3x D.1﹣x+3=3x 【答案】B【解答】解:方程两边同时乘以6得6﹣x﹣3=3x.故选:B.32.已知关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.2B.﹣2C.D.﹣【答案】A【解答】解:由题意得:x=m,∴4x﹣3m=2可化为:4m﹣3m=2,可解得:m=2.故选:A.33.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣2【答案】B【解答】解:设长方形的长为xcm,则宽是(13﹣x)cm,根据等量关系:长方形的长﹣1cm=长方形的宽+2cm,列出方程得:x﹣1=(13﹣x)+2,故选:B.34.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B 港相距x千米.根据题意,可列出的方程是()A.B.C.D.【答案】A【解答】解:设A港和B港相距x千米,可得方程:.故选:A.35.下列运用等式的性质,变形正确的是()A.若x=y,则x﹣5=y+5B.若a=b,则ac=bcC.若,则2a=3b D.若x=y,则【答案】B【解答】解:A、根据等式性质1,x=y两边同时加5得x+5=y+5;B、根据等式性质2,等式两边都乘以c,即可得到ac=bc;C、根据等式性质2,等式两边同时乘以2c应得2a=2b;D、根据等式性质2,a≠0时,等式两边同时除以a,才可以得=.故选:B.36.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A.3(x﹣2)=2x+9B.3(x+2)=2x﹣9C.+2=D.﹣2=【答案】A【解答】解:设有x辆车,则可列方程:3(x﹣2)=2x+9.故选:A.37.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54B.6C.﹣10D.﹣18【答案】B【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选:B.38.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为()A.60°B.75°C.90°D.95°【答案】C【解答】解:∠ABC+∠DBE+∠DBC=180°,且∠ABC+∠DBE=∠DBC;故∠CBD=90°.故选:C.39.下列各图经过折叠不能围成一个正方体的是()A.B.C.D.【答案】D【解答】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.40.如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段【答案】C【解答】解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.故选:C.41.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69°B.111°C.141°D.159°【答案】C【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.42.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90°B.120°C.160°D.180°【答案】D【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故选:D.43.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A.35°B.70°C.110°D.145°【答案】C【解答】解:∵射线OC平分∠DOB.∴∠BOD=2∠BOC,∵∠COB=35°,∴∠DOB=70°,∴∠AOD=180°﹣70°=110°,故选:C.44.如图是一个正方体的展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.梦B.的C.国D.中【答案】A【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.故选:A.45.下列图形中,是圆锥侧面展开图的是()A.B.C.D.【答案】B【解答】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.46.在时刻8:30,时钟上的时针和分针之间的夹角为()A.85°B.75°C.70°D.60°【答案】B【解答】解:8:30,时针指向8与9之间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,∴此时刻分针与时针的夹角正好是2×30°+15°=75°.故选:B.47.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC 等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm 【答案】C【解答】解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选:C.48.如图所示,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线()A.A→C→D→B B.A→C→F→BC.A→C→E→F→B D.A→C→M→B【答案】B【解答】解:根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.二.填空题49.根据如图所示的程序计算,若输入x的值为1,则输出y的值为.【解答】解:依据题中的计算程序列出算式:12×2﹣4.由于12×2﹣4=﹣2,﹣2<0,∴应该按照计算程序继续计算,(﹣2)2×2﹣4=4,∴y=4.故答案为:4.50.比较大小:(用“>或=或<”填空).【解答】解:∵>,∴<;故答案为:<.51.如果a、b互为倒数,c、d互为相反数,且m=﹣1,则代数式2ab﹣(c+d)+m2=.【解答】解:∵ab=1,c+d=0,m=﹣1,∴2ab﹣(c+d)+m2=2﹣0+1=3.52.点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.【解答】解:设点A表示的数是x.依题意,有x+7﹣4=0,解得x=﹣3.故答案为:﹣353.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是,最小的积是.【解答】解:在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积必须为正数,即(﹣5)×(﹣3)×5=75,最小的积为负数,即(﹣5)×(﹣3)×(﹣2)=﹣30.故答案为:75;﹣30.32.定义a※b=a2﹣b,则(1※2)※3=.【解答】解:根据题意可知,(1※2)※3=(1﹣2)※3=﹣1※3=1﹣3=﹣2.故答案为:﹣2.54.按照如图所示的操作步骤,若输入的值为3,则输出的值为.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.55.在数轴上与表示﹣2的点距离3个单位长度的点表示的数是.【解答】解:在数轴上与表示﹣2的点距离3个单位长度的点表示的数是﹣2+3=1或﹣2﹣3=﹣5.56.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w,则+=(直接写出答案).【解答】解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.故答案为:0.57.若单项式2x2y m与x n y3是同类项,则m+n的值是.【解答】解:由同类项的定义可知n=2,m=3,则m+n=5.故答案为:5.58.若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m=.【解答】解:原式=3a2﹣6ab﹣3b2﹣a2﹣mab﹣2b2=2a2﹣(6+m)ab﹣5b2,由于多项式中不含有ab项,故﹣(6+m)=0,∴m=﹣6,故填空答案:﹣6.59.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水m3.【解答】解:设该用户居民五月份实际用水x立方米,故20×2+(x﹣20)×3=64,故x=28.故答案是:28.60.我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,则x=0.3+x,解得x=,即=.仿此方法,将化成分数是.【解答】解:法一:设x=0.45…,则x=0.45+1/100 x,解得x=45/99=5/11法二:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,99x=45解方程得:x==.故答案为:.61.如图,三角板的直角顶点在直线l上,若∠1=40°,则∠2的度数是.【解答】解:如图,三角板的直角顶点在直线l上,则∠1+∠2=180°﹣90°=90°,∵∠1=40°,∴∠2=50°.故答案为50°.62.如图,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在点C′、D′的位置上,EC交AD于G,已知∠EFG=56°,那么∠BEG=.【解答】解:∵长方形ABCD中,AD∥BC,∴∠CEF=∠EFG=56°,∴∠CEF=∠FEG=56°,∴∠BEG=180°﹣∠CEF﹣∠FEG=180°﹣56°﹣56°=68°.故答案是:68°.63.把15°30′化成度的形式,则15°30′=度.【解答】解:∵30′=0.5度,∴15°30′=15.5度;故答案为:15.5.64.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是.【解答】解:能解释这一实际应用的数学知识是:两点确定一条直线,故答案为:两点确定一条直线.三.解答题65.计算(1);(2).【解答】(1)解:,=,=﹣7+18﹣12,=﹣1;(2)解:,=,=,=.66.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6.67.有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.【解答】解:(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,当y=﹣1时,原式=﹣2×(﹣1)3=2.因为化简的结果中不含x,所以原式的值与x值无关.68.已知A=y2﹣ay﹣1,B=2y2+3ay﹣2y﹣1,且多项式2A﹣B的值与字母y的取值无关,求a的值.【解答】解:2A﹣B=2(y2﹣ay﹣1)﹣(2y2+3ay﹣2y﹣1)=2y2﹣2ay﹣2﹣2y2﹣3ay+2y+1=(2﹣5a)y﹣1,∵多项式与字母y的取值无关,∴2﹣5a=0,2=5a,a=.69.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?【解答】解:(1)根据题意:规定向东为正,向西为负:则(+15)+(﹣4)+(+13)+(﹣10)+(﹣12)+(+3)+(﹣13)+(﹣17)=﹣25千米,故小王在出车地点的西方,距离是25千米;(2)这天下午汽车走的路程为|+15|+|﹣4|+|+13|+|﹣10|+|﹣12|+|+3|+|﹣13|+|﹣17|=87,若汽车耗油量为0.4升/千米,则87×0.4=34.8升,故这天下午汽车共耗油34.8升.70.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:﹣3﹣2﹣1.501 2.5与标准质量的差值(单位:千克)筐数142328(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)【解答】解:(1)最重的一筐超过2.5千克,最轻的差3千克,求差即可2.5﹣(﹣3)=5.5(千克),故最重的一筐比最轻的一筐重5.5千克;(2)列式1×(﹣3)+4×(﹣2)+2×(﹣1.5)+3×0+1×2+8×2.5=﹣3﹣8﹣3+2+20=8(千克),故20筐白菜总计超过8千克;(3)用(2)的结果列式计算2.6×(25×20+8)=1320.8≈1321(元),故这20筐白菜可卖1321(元).71.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a 0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.72.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km2km﹣4km﹣3km10km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km 的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?【解答】解:(1)5+2+(﹣4)+(﹣3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的南边10千米处.(2)(5+2+|﹣4|+|﹣3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5﹣3)×1.8]+10+[10+(4﹣3)×1.8]+10+[10+(10﹣3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.73.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款元(用含x的代数式表示);若该客户按方案②购买,需付款元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?【解答】解:(1)方案①需付费为:200×20+(x﹣20)×40=(40x+3200)元;方案②需付费为:(200×20+40x)×0.9=(3600+36x)元;(2)当x=30元时,方案①需付款为:40x+3200=40×30+3200=4400元,方案②需付款为:3600+36x=3600+36×30=4680元,∵4400<4680,∴选择方案①购买较为合算.74.某市为鼓励市民节约用水,特制定如下的收费标准:若每月每户用水不超过10立方米,则按3元/立方米的水价收费,并加收0.2元/立方米的污水处理费;若超过10立方米,则超过的部分按4元/立方米的水价收费,污水处理费不变.(1)若小华家5月份的用水量为8立方米,那么小华家5月份的水费为元;(2)若小华家6月份的用水量为15立方米,那么小华家6月份的水费为元;(3)若小华家某个月的用水量为a(a>10)立方米,求小华家这个月的水费(用含a的式子表示).【解答】解:(1)由题意,得8×(3+0.2)=25.6(元)故答案是:25.6;(2)由题意,得10(3+0.2)+(15﹣10)(4+0.2)=53(元)故答案是:53;(3)3×10+4(a﹣10)+0.2a=4.2a﹣10.∴小华家这个月的水费为(4.2a﹣10)元75.小王家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米k元,木地板的价格为每平方米2k元,那么小王一共需要花多少钱?【解答】解:(1)木地板的面积为2b(5a﹣3a)+3a(5b﹣2b﹣b)=2b•2a+3a•2b=4ab+6ab=10ab(平方米);地砖的面积为5a•5b﹣10ab=25ab﹣10ab=15ab(平方米);(2)15ab•k+10ab•2k=15abk+20abk=35abk(元),答:小王一共需要花35abk元钱.76.为了提高业主的宜居环境,在某居民区的建设中,因地制宜规划修建一个广场(图中阴影部分).(1)用含m、n的代数式表示该广场的周长;(2)用含m、n的代数式表示该广场的面积;(3)当m=6,n=8时,求出该广场的周长和面积.【解答】解:(1)C=6m+4n;(2)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(3)把m=6,n=8,代入周长6m+4n=6×6+4×8=68,把m=6,n=8,代入面积3.5mn=3.5×6×8=168.77.小明房间窗户的装饰物如图所示,它们由两个四分之一圆组成(半径相同).(1)请用代数式表示装饰物的面积(结果保留π);(2)请用代数式表示窗户能射进阳光部分面积(结果保留π);(3)若a=1,b=,请求出窗户能射进阳光的面积的值(取π=3)【解答】解:(1)装饰物的面积=•π•(b)2=πb2;(2)窗户能射进阳光部分面积=ab﹣πb2;(3)a=1,b=,ab﹣πb2=1×﹣×3×()2=.所以窗户能射进阳光的面积为.78.新学期,两摞规格相同的数学课本整齐的叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:(1)每本书的高度为cm,课桌的高度为cm;(2)当课本数为x(本)时,请写出同样叠放在桌面上的一摞数学课本高出地面的距离(用含x的代数式表示);(3)桌面上有55本与题(1)中相同的数学课本,整齐叠放成一摞,若有18名同学各从中取走1本,求余下的数学课本高出地面的距离.【解答】解:(1)书的厚度为:(88﹣86.5)÷(6﹣3)=0.5cm;课桌的高度为:86.5﹣3×0.5=85cm.故答案为:0.5;85;(2)∵x本书的高度为0.5x,课桌的高度为85,∴高出地面的距离为85+0.5x(cm).故答案为:(85+0.5x)cm;(3)当x=55﹣18=37时,85+0.5x=103.5cm.故余下的数学课本高出地面的距离是103.5cm.79.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物每满100元返购物券30元销售(不足100元不返券,购物券全场通用).但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?【解答】解:(1)设书包单价为x元,则随身听的单价为(4x﹣8)元.根据题意,得4x﹣8+x=452,解得:x=92,4x﹣8=4×92﹣8=360.答:书包单价为92元,随身听的单价为360元.(2)在超市A购买随身听与书包各一件需花费现金:452×80%=361.6(元).因为361.6<400,所以可以选择超市A购买.在超市B可花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计花费现金:360+2=362(元).因为362<400,所以也可以选择在B超市购买.因为362>361.6,所以在超市A购买更省钱.80.张新和李明相约到图书城去买书,请你根据他们的对话内容(如图),求出李明上次所买书籍的原价.【解答】解:设李明上次购买书籍的原价和是x元,由题意得:0.8x+20=x﹣12,解得:x=160.答:李明上次购买书籍的原价和是160元.81.“五•一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?【解答】解:设哥哥追上弟弟需要x小时.由题意得:6x=2+2x,解这个方程得:.∴弟弟行走了=1小时30分<1小时45分,未到外婆家,答:哥哥能够追上.82.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?【解答】解:设应先安排x人工作,根据题意得:+=1化简可得:+=1,即:x+2(x+2)=10解可得:x=2答:应先安排2人工作.83.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)【解答】解:设支援拔草的有x人,由题意得:31+x=2[18+(20﹣x)].84.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB 的中点,求DE的长.【解答】解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.85.如图B、C两点把线段AD分成2:3:4三部分,M是AD的中点,CD=8,求MC的长.【解答】解:设AB=2x,BC=3x,CD=4x,∴AD=9x,MD=x,则CD=4x=8,x=2,MC=MD﹣CD=﹣4x==×2=1.86.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.【解答】解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°,∴∠EOC=2x=72°,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.87.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线AB;(2)画射线AC;(3)连接BC并延长BC到E,使得CE=AB+BC;(4)在线段BD上取点P,使P A+PC的值最小.【解答】解:如图所画:(1)(2)(3)(4).89.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.90.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠BOC=∠AOB=45°,∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°,∠BOD=3∠DOE,∴∠DOE=15°,∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°,故答案为75°.。

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)(满分: 120分考试时间: 120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数: 0 −5 −(−7) −|−8| (−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+a<0 aa<0 则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6a时水位变化记为+6a 那么水位下降6a时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1 −2 0 3中最小的数是()A.−1B.−2C.0D.37. 若a和a都是4次多项式则a+a一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段aa 则aa盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()/A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a a的点在数轴上的位置如图所示下列结论错误的是()/A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −112的倒数是________ ________的绝对值是1 ________的立方是8.12. 在月球表面白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a.则月球表面昼夜的温差为________∘a.13. 若|a|=5 a=−2 且aa>0 则a+a=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负): (+4, −8) (−5, +6) (−3, +2) (+1, −7) 则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下: +8 −3 +12 −7 −10 −3 −8 +1 0 +10.1这10名同学中最高分数是多少?最低分数是多少?2这10名同学的平均成绩是多少.(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆3本周实际销售总量达到了计划数量没有?4该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为: (单位: 海里)+80 −40 +60 +75 −65 −80 此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18.(10分)请画一条数轴然后在数轴上把下列各数表示出来: 312−4 −2120 −1 1 并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20.(10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位: 元)分别为+2 −3 +2 +1 −2 −1 0 −2. 当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线aa分别交a轴a轴于点aa,0和点a0,a且a a满足a2+4a+4+|2a+a|=0./(1)a=________ a=________.(2)点a在直线aa的右侧且∠aaa=45∘:①若点a在a轴上则点a的坐标为_________②若△aaa为直角三角形求点a的坐标.22.(10分)问: 该服装店在售完这30件a恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解: ∵0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∴负数共有2个.故选a.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据aa<0 结合乘法法则易知a a异号而a+a<0 根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解: ∵aa<0a a b异号又a a+b<0∴负数的绝对值大于正数的绝对值.故选a.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解: 1958000用科学记数法可表示为1.958×106.故选a.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6a时水位变化记作−6a.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2 a正确3的倒数是3a正确(−3)−(−5)=−3+5=2 a正确−11 0 4这三个数中最小的数是−11 a错误.故选a.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1 |−2|=2 根据负数的绝对值越大这个数就越小得到−2<−1 而0大于任何负数小于任何正数则有理数−1 −2 0 3的大小关系为−2<−1<0<3.【解答】解: ∵|−1|=1 |−2|=2a −2<−1∴有理数−1 −2 0 3的大小关系为−2<−1<0<3.故选a.7.【答案】C【考点】多项式的项与次数【解析】若a和a都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解: 若a和a都是4次多项式则a+a的结果的次数一定是次数不高于4次的整式.故选a.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段aa 则线段aa盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段aa起点在整点时覆盖16个数②当线段aa起点不在整点即在两个整点之间时覆盖15个数.故选a.9.【答案】C【考点】有理数大小比较数轴【解析】根据a a两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解: ∵a a两点在数轴上的位置可知: −1<a<0 a>1 |a|<|a|a a−b<0a+b>0b−1>0故a a a错误故a正确.故选a.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a −1 0 1 a的大小关系然后根据正实数都大于0 负实数都小于0 正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解: 根据实数a a在数轴上的位置可得a<−1<0<1<aa 1<|a|<|b|a 选项A错误a 1<−a<ba 选项B正确a 1<|a|<ba 选项C正确a −b<a<−1∴选项D正确.故选D.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−2,±1,23【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解. 【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解: 白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a所以月球表面昼夜的温差为:127∘a−(−183∘a)=310∘a.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5 a=−2 且aa>0 可知a=−5 代入原式计算即可.【解答】解: ∵|a|=5 a=−2 且aa>0∴a+a=−5−2=−7.故答案为: −7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解: 由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为: 12.三解答题(本题共计8 小题共计78分)15.【答案】解:1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:14−3−5+300=296.故答案为: 296.221+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解: 如图:/用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:/用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解: (1)原式=0.75+0.25+18+78=1+1=2. (2)原式=−8+6+2+15=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解: (1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解: (+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法: 同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值. 相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质: 偶次方非负数的性质: 绝对值【解析】解: (1)由题意得得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+a=0解得a=−2 a=4. 故答案为:−2 4.【解答】解:(1)由题意得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+b=0解得a=−2 a=4.故答案为: −2 4.(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).22.【答案】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答: 该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

2022-2023学年人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)一.选择题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入80元记作+80元,则﹣50元表示()A.收入50元B.收入30元C.支出50元D.支出30元2.下列式子简化不正确的是()A.+(﹣5)=﹣5B.﹣(﹣0.5)=0.5C.﹣(+1)=1D.﹣|+3|=﹣33.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.104.下列结论中不正确的是()A.最小的正整数为1B.最大的负整数为﹣1C.绝对值最小的有理数为0D.倒数等于它本身的数为15.﹣的倒数的绝对值是()A.﹣2021B.C.2021D.﹣6.在算式3﹣|﹣1□2|中的“□”里,选择一个运算符号,使得算式的值最大()A.+B.﹣C.×D.÷7.以下说法,正确的是()A.数据475301精确到万位可表示为480000B.王平和李明测量同一根钢管的长,按四舍五入法得到结果分别是0.80米和0.8米,这两个结果是相同的C.近似数1.5046精确到0.01,结果可表示为1.50D.小林称得体重为42千克,其中的数据是准确数8.有一种放射性物质,它的质量缩减为原来的一半所用的时间是一个不变的量﹣﹣120年,它的质量由96克变为6克,所需要的时间是()A.240年B.480年C.600年D.960年二.填空题9.如果规定从原点出发,向南走为正,那么﹣100m表示的意义是.10.(﹣2)2|﹣3|(用“>”或“<”填空).11.在﹣5,,0,1.6这四个有理数中,整数是.12.在数轴上,如果点A所表示的数是﹣2,那么到点A距离等于3个单位的点所表示的数是.13.计算:﹣32×(﹣2)3=.14.计算(﹣9)÷×的结果是.15.计算:=.16.在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚战取得了全面胜利,现行标准下98990000农村贫困人口全部脱贫,将数据98990000用科学记数法表示为.17.把有理数130542按四舍五入法精确到千位的近似值为.18.某公交车原坐有22人,经过4个站点时上下车情况如下(上车为正,下车为负):(+4,﹣8),(﹣5,+6),(﹣3,+2),(+1,﹣7),则车上还有人.三.解答题19.把下列各数分别填在相应的大括号里.13,,﹣31,0.21,﹣3.14,0,21%,,﹣2020.负有理数:{…};正分数:{…};非负整数:{…}.20.(每题要写出必要的解题步骤)(1)(﹣3.1)+(6.9)(2)90﹣(﹣3)(3)(4)﹣7+13﹣6+20(5)(﹣2)4+3×(﹣1)6﹣(﹣2)(6)﹣8721+53﹣1279+43(7)(8).21.请把下面不完整的数轴补充完整,并在数轴上标出下列各数:﹣,﹣(﹣2),3,﹣150%,|﹣0.5|.22.某服装店购进10件羊毛衫,实际销售情况如表所示:(售价超出成本为正,不足记为负)件数(件)32212钱数(元/件)﹣10﹣20+20+30+40(1)这批羊毛衫销售中,最高售价的一件与最低售价的一件相差多少元?(2)通过计算求出这家服装店在这次销售中盈利或者亏损多少元?23.小明觉得像0.0000057这样的数写起来很麻烦,当他学习了科学记数法以后,发现0.0000057==,所以发明了一种“类科学记数法”,类比科学记数法,将0.0000057写成5.7÷106.(1)将下列各数用“类科学记数法”表示,0.02=;0.000407=;(2)若一个数0.0……035用“类科学记数法”表示为3.5÷106,则原数中“0”的个数为;(3)比较大小:9÷1081÷107,0.000106 9.8÷105;(4)纳米是长度度量单位.1纳米=1.0÷109米,一种病毒的直径平均为200纳米.200纳米这个数据用“类科学记数法”可表示为米.24.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+(b﹣4)2=0.(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以3个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=2时,甲小球到原点的距离=;乙小球到原点的距离=;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由若能,请求出甲,乙两小球到原点的距离相等时t的值.③若当甲和乙开始运动时,挡板也从原点以1个单位/秒的速度向右运动,直接写出甲,乙两小球到挡板的距离相等时t的值.参考答案一.选择题1.解:根据题意,若收入80元记作+80元,则﹣50元表示支出50元.故选:C.2.解:A、+(﹣5)=﹣5,计算正确,故此选项不合题意;B、﹣(﹣0.5)=0.5,计算正确,故此选项不合题意;C、﹣(+1)=﹣1,原计算错误,故此选项符合题意;D、﹣|+3|=﹣3,计算正确,故此选项不合题意;故选:C.3.解:AB=4﹣(﹣6)=10.故选:D.4.解:最小的正整数为1,是正确的;最大的负整数为﹣1于是正确的;绝对值最小的有理数为0,其它数的绝对值都大于0,因此选项C是正确的;倒数等于它本身的数为±1,因此选项D是错误的;故选:D.5.解:﹣的倒数为﹣2021,﹣2021的绝对值为2021,故选:C.6.解:在算式3﹣|﹣1□2|中的“□”里,要使得算式的值最大,就要使﹣1□2的绝对值最小,∴选择的运算符号是÷.故选:D.7.解:A、数据475301精确到万位可表示为4.8×105,所以A选项错误;B、0.80m精确到0.01m,而0.8m精确到0.1m,所以B选项错误;C、近似数1.5046精确到0.01,结果可表示为1.50,所以C选项正确;D、小林称得体重为42千克,其中的数据是近似数.故选:C.8.解:减少一半为一个半衰期,设经过x个半衰期,根据题意,得:96×=6,,x=4,一个半衰期120年.所以需要的时间是4×120=480(年).故选:B.二.填空题9.解:如果规定从原点出发,向南走为正,那么﹣100m表示的意义是向北走100米.故答案为:向北走100米.10.解:∵(﹣2)2=4,|﹣3|=3,∴(﹣2)2>|﹣3|.故答案为:>.11.解:在﹣5,,0,1.6这四个有理数中,在,1.6是分数,﹣5、0是整数.故答案是:﹣5、0.12.解:﹣2+3=1,﹣2﹣3=﹣5,则A表示的数是:1或﹣5.故答案为:1或﹣513.解:﹣32×(﹣2)3=﹣9×(﹣8)=72.故答案为:72.14.解:(﹣9)÷×=(﹣9)××=﹣6×=﹣4,故答案为:﹣4.15.解:原式=﹣×(﹣)==10.故答案为:10.16.解:98990000=9.899×107,故答案为:9.899×107.17.解:130542≈1.31×105(精确到千位),故答案为:1.31×105.18.解:由题意,得22+4+(﹣8)+6+(﹣5)+2+(﹣3)+1+(﹣7)=12(人),故答案为:12三.解答题19.解:负有理数:{,﹣31,﹣3.14,﹣2020…};正分数:{0.21,21%,…};非负整数:{13,0…}.故答案为:,﹣31,﹣3.14,﹣2020;0.21,21%,;13,0.20.解:(1)(﹣3.1)+(6.9),=+(6.9﹣3.1),=3.8;(2)90﹣(﹣3),=90+3,=93;(3)(﹣)×8=﹣6;(4)﹣7+13﹣6+20,=﹣13+33,=20;(5)(﹣2)4+3×(﹣1)6﹣(﹣2),=16+3×1+2,=16+3+2,=21;(6)﹣8721+53﹣1279+43,=﹣8721﹣1279+53+43,=﹣10000+97,=﹣9903;(7)﹣22×(﹣)+8÷(﹣2)2,=﹣4×(﹣)+8÷4,=2+2,=4;(8)﹣12+3×(﹣2)3+(﹣6)÷(﹣)2,=﹣1+3×(﹣8)+(﹣6)×9,=﹣1﹣24﹣54,=﹣79.21.解:数轴补充完整如下图所示:22.解:(1)40﹣(﹣20)=60(元),答:最高售价的一件与最低售价的一件相差60元;(2)3×(﹣10)+2×(﹣20)+2×20+1×30+2×40=80(元),答:该这家服装店在这次销售中是盈利了,盈利80元.23.解:(1)0.02=2÷102,0.000407=4.07÷104,故答案为:2÷102;4.07÷104;(2)∵3.5÷106=0.0000035,∴原数中“0”的个数为6个,故答案为:6;(3)9÷108=0.00000009,1÷107=0.0000007,∵0.00000009<0.0000007,∴9÷108<1÷107,9.8÷105=0.000098,∵0.000106>0.000098,∴0.000106>9.8÷105,故答案为:<;>;(4)∵1纳米=1.0÷109米,∴200纳米=200×1.0÷109=2.0÷107米,故答案为:2.0÷107.24.解:(1)∵|a+2|+|b﹣4|=0,∴a=﹣2,b=4,∴点A表示的数为﹣2,点B表示的数为4,故答案为:﹣2,4;(2)①当t=1时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动1个单位,此时,甲小球到原点的距离=2+1=3,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动3个单位,此时,乙小球到原点的距离=4﹣3=1,当t=2时,∵一小球甲从点A处以1个单位/秒的速度向左运动,∴甲小球1秒钟向左运动2个单位,此时,甲小球到原点的距离=2+2=4,∵一小球乙从点B处以3个单位/秒的速度也向左运动,∴乙小球1秒钟向左运动6个单位,此时,乙小球到原点的距离=3×2﹣4=2,故答案为:3,1,4,2;②当0<t≤2时,得t+2=4﹣2t,解得t=;当t>2时,得t+2=2t﹣4,解得t=6;故当t=秒或t=6秒时,甲乙两小球到原点的距离相等;(3)B碰到挡板需要4÷(3+1)=1(秒),A碰到挡板需要2÷2=1(秒),∴t=1时,甲,乙两小球到挡板的距离相等,①都向左运动时,则2+t+t=4﹣3t﹣t,即6t=2,解得t=,②反弹时,则t﹣1+t﹣1=(3﹣1)(t﹣1),即2t=2t,∴当t≥1时,甲,乙两小球到挡板的距离相等,∴t值为或t≥1时,甲,乙两小球到挡板的距离相等.。

人教版七年级数学上册期末综合复习测试题(含答案)精选全文完整版

人教版七年级数学上册期末综合复习测试题(含答案)精选全文完整版

可编辑修改精选全文完整版人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有一项符合题目要求。

1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B.C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A .一B .起C .向D .来7.时钟的分针从8点整转到8点20分,分针旋转了( )度. A .20B .120C .90D .1508.直线、线段、射线的位置如图所示,下图中能相交的是( )A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( )A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( ) A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。

人教版七年级上册数学 压轴题 期末复习试卷及答案

人教版七年级上册数学 压轴题 期末复习试卷及答案

人教版七年级上册数学压轴题期末复习试卷及答案一、压轴题1.数轴上A、B两点对应的数分别是-4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点。

1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=16,AC=5,BE=11.2)当线段CE运动到点A在C、E之间时。

①设AF长为x,BE=2x-4;②BE与CF成反比例关系。

3)当点C运动到数轴上表示数-14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),则t=6时,P、Q两点间的距离为1个单位长度。

2.综合与探究问题背景:数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC、∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数。

特例探究:“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线。

其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上。

按图3方式摆放时,∠AOC和∠BOD相等。

1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为60°,图3中∠MON的度数为90°。

发现感悟:解决完图2、图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论。

XXX:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠XXX和∠NOD的和,这样就能求出∠XXX的度数。

XXX:设∠BOD为x°,我们就能用含x的式子分别表示出∠XXX和∠MOC度数,这样也能求出∠XXX的度数。

2)请你根据他们的谈话内容,求出图1中∠MON的度数为45°。

类比拓展:受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠XXX的度数。

2022-2023学年上学期七年级数学期末复习冲刺卷(06)

2022-2023学年上学期七年级数学期末复习冲刺卷(06)

2022-2023学年上学期七年级数学期末复习冲刺卷(06)(考试时间:120分钟试卷满分:120分)一、选择题(本题共10小题,每小题3分,共30分)。

1.下列各对数,互为相反数的一对是()A.3与﹣B.2与﹣3C.﹣3与3D.3与2.有理数a、b在数轴上的对应点的位置如图所示,则化简|a+b|的结果正确的是()A.a+b B.a﹣b C.﹣a+b D.﹣a﹣b3.已知﹣x3y2与3y2x n是同类项,则n的值为()A.2B.3C.5D.2或34.下列式子中,正确的是()A.﹣1+2=﹣1B.﹣2×(﹣3)=﹣6 C.(﹣1)2=2D.3÷(﹣)=﹣95.下列图形通过折叠能围成一个三棱柱的是()A.B.C.D.6.如图是一个小正方体的表面展开图,把展开图折叠成小正方体后,有“开”字一面的相对面上的字是()A.我B.爱C.教D.育7.如图,是一副特制的三角板,用它们可以画出一些特殊角.在下列选项中,不能画出的角度是()A.18°B.55°C.63°D.117°8.一个两位数的个位数字是x,十位数字是y,这个两位数可表示为()A.xy B.x+y C.x+10y D.10x+y9.将一件商品按进价提高30%后标价,又以九折优惠卖出,结果每件仍获利34元,这件商品的进价是多少元?若设这种商品每件的进价是x元,那么所列方程为()A.30%(1+90%)x=34B.x﹣90%(1+30%)x=34C.90%(1+30%)x﹣x=34D.90%(1﹣30%)x﹣x=3410.如图1是AD∥BC的一张纸条,按图1→图2→图3,把这一纸条先沿EF折叠并压平,再沿BF折叠并压平,若图3中∠CFE=24°,则图2中∠AEF的度数为()A.120°B.108°C.112°D.114°二、填空题(本题共7题,每小题4分,共28分)。

2022-2023学年上学期七年级数学期末复习冲刺卷(08)

2022-2023学年上学期七年级数学期末复习冲刺卷(08)

2022-2023学年上学期七年级数学期末复习冲刺卷(08)一.选择题(共10小题,满分20分,每小题2分)1.(2分)与﹣2020互为倒数的是( )A .12020B .−12020C .2020D .﹣20202.(2分)下列计算正确的是( )A .3a +2b =5abB .6y ﹣3y =3C .7a +a =7a 2D .3x 2y ﹣2yx 2=x 2y3.(2分)下列方程中,是一元一次方程的是( )A .x 2+3=0B .x +3=y +2C .1x =4D .x =04.(2分)下列生活中的实例,可以用“两点之间线段最短”来解释的是( )A .小狗看到远处的食物,总是径直奔向食物B .从一条河道能向集镇引一条最短的水渠C .把一根木条固定到墙上需要两颗钉子D .经过刨平木板上的两个点,能弹出一条笔直的墨线5.(2分)某花店新开张,第一天售出月季x 盆,第二天比第一天多售出7盆,第三天比第二天的3倍少10盆,则第三天售出月季( )盆.A .3x ﹣31B .3x +11C .3x ﹣9D .3x ﹣36.(2分)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示.若b +d =0,则下列结论正确的是( )A .b +c >0B .a c >1C .ad >bcD .|a |>|b |7.(2分)下列几何体中,侧面展开图是矩形的是( )A .B .C .D .8.(2分)一件标价为200元的服装以8折销售,仍可获利40元,该服装的成本价是( )A .140元B .120元C .100元D .80元9.(2分)从上午9点整到下午3点整,时针与分针位置重叠的次数为( )A .4B .5C .6D .710.(2分)如图,直线AB 、CD 相交于点O ,过O 作OE ⊥AB ,且OD 平分∠BOE ,则∠AOD 的度数是( )A .120°B .125°C .130°D .135°二.填空题(共8小题,满分16分,每小题2分)11.(2分)单项式−53x 4y 3的次数是 .12.(2分)2008年北京奥运会圣火传递的里程约为137 000km ,可用科学记数法表示为 km .13.(2分)已知一个角是35°,则这个角的余角是 度.14.(2分)若﹣2x 2y b 与12x a y 3是同类项,则a ﹣b = . 15.(2分)已知(k ﹣1)x |k |+4=0是一元一次方程,则k = . 16.(2分)已知线段AB =6cm ,在直线AB 上画线BC ,使BC =11cm ,则线段AC = cm .17.(2分)同一平面内两条直线若相交.则公共点的个数为 个.18.(2分)10个棱长为acm 的正方体摆成如图的形状,这个图形的表面积是 .三.解答题(共8小题,满分64分,每小题8分)19.(8分)计算:(1)(−81)÷94×49÷(−16);(2)−42−3×22×(13−12)÷(−113).20.(8分)解方程:(1)2(x ﹣1)=2﹣5(x +2);(2)5x+12−7x+24=1.21.(8分)已知:A =2a 2+3ab ﹣2a ,B =a 2﹣ab +1,(1)求A ﹣2B ;(2)当b =25时,求A ﹣2B 的值.22.(6分)如图,是由若干个完全相同的小正方体组成的一个几何体.从左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.23.(8分)规定符号(a ,b )表示a ,b 两个数中较小的一个,规定符号[a ,b ]表示两个数中较大的一个.例如(2,1)=1,[2,1]=2.(1)计算:(﹣2,3)+[−23,−34].(2)若(p ,p +2)﹣[﹣2q ﹣1,﹣2q +1]=1,试求代数式(p +2q )3﹣3p ﹣6q 的值.(3)若(m ,m ﹣2)+3[﹣m ,﹣m ﹣1]=﹣5,求m 的值.24.(8分)根据图中对话列方程解决问题:求小明今年的年龄.25.(8分)如图,OB是∠AOC内部的一条射线,OM是∠AOB内部的一条射线,ON是∠BOC内部的一条射线.(1)如图1,OM、ON分别是∠AOB、∠BOC的角平分线,已知∠AOB=30°,∠MON=70°,求∠BOC 的度数;(2)如图2,若∠AOC=140°,∠AOM=∠NOC=14∠AOB,且∠BOM:∠BON=3:2,求∠MON的度数.26.(10分)已知线段AB=8a(a是常数),点C和点F为直线AB上两点,点E在线段AB上,CE=3AE,CF=3BF.(1)若点C恰好是线段AB的中点,点F在线段BC上,则EF=(用含a的代数式表示);(2)若点C在点B的右侧,EF的长是否是定长,若是定长,请求出这个定长;若不是,请说明理由.答案与解析一.选择题(共10小题,满分20分,每小题2分)1.(2分)与﹣2020互为倒数的是()A.12020B.−12020C.2020D.﹣2020【分析】根据倒数的定义解决此题.【解答】解:根据倒数的定义,﹣2020和−12020互为倒数.故选:B.【点评】本题主要考查倒数,熟练掌握倒数的定义是解决本题的关键.2.(2分)下列计算正确的是()A.3a+2b=5ab B.6y﹣3y=3C.7a+a=7a2D.3x2y﹣2yx2=x2y【分析】根据合并同类项法则逐一判断即可.【解答】解:A.3a与2b不是同类项,所以不能合并,故本选项不合题意;B.6y﹣3y=3y,故本选项不合题意;C.7a+a=8a,故本选项不合题意;D.3x2y﹣2yx2=x2y,正确,故本选项符合题意.故选:D.【点评】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.3.(2分)下列方程中,是一元一次方程的是()A.x2+3=0B.x+3=y+2C.1x=4D.x=0【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、x2+3=0是一元二次方程,故A错误;B、x+3=y+2是二元一次方程,故B错误;C、1x=1是分式方程,故C错误;D、x=0是一元一次方程,故D正确.故选:D.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.(2分)下列生活中的实例,可以用“两点之间线段最短”来解释的是()A.小狗看到远处的食物,总是径直奔向食物B.从一条河道能向集镇引一条最短的水渠C .把一根木条固定到墙上需要两颗钉子D .经过刨平木板上的两个点,能弹出一条笔直的墨线【分析】两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.简单说成:两点之间线段最短.【解答】解:A .小狗看到远处的食物,总是径直奔向食物,可以用“两点之间,线段最短”来解释,符合题意;B .从一条河道能向集镇引一条最短的水渠,可以用“垂线段最短”来解释,不符合题意;C .用两个钉子就可以把木条固定在墙上,可以用“两点确定一条直线”来解释,不符合题意;D ,经过刨平木板上的两个点,能弹出一条笔直的墨线,可以用“两点确定一条直线”来解释,不符合题意. 故选:A .【点评】本题考查的是线段的性质,掌握两点之间线段最短是解题的关键.5.(2分)某花店新开张,第一天售出月季x 盆,第二天比第一天多售出7盆,第三天比第二天的3倍少10盆,则第三天售出月季( )盆.A .3x ﹣31B .3x +11C .3x ﹣9D .3x ﹣3【分析】第二天的销售量为(m +7)盆,(m +7)的3倍少10可表示为3(m +7)﹣10,然后化简即可得到第三天的销售量.【解答】解:依题意有,第三天的销售量为:3(x +7)﹣10=3x +11.故选:B .【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.本题的关键是用x 表示出第二天的销售量.6.(2分)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示.若b +d =0,则下列结论正确的是( )A .b +c >0B .a c >1C .ad >bcD .|a |>|b |【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【解答】解:∵b +d =0,由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、∵b +d =0,∴b +c <0,故A 不符合题意;B 、a c <0, 故B 不符合题意;C 、ad <bc <0,故C不符合题意;D、|a|>|b|=|d|,故D正确;故选:D.【点评】本题考查了实数与数轴,有理数的运算,利用数轴上的点表示的数右边的总比左边的大得出a<b <0<c<d是解题关键.7.(2分)下列几何体中,侧面展开图是矩形的是()A.B.C.D.【分析】根据几何体的展开图:圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;六棱锥的侧面展开图是六个三角形;棱台的侧面展开图是四个梯形,可得答案.【解答】解:A、侧面展开图是矩形,故A正确;B、侧面展开图是扇形,故B错误;C、侧面展开图是三角形,故C错误;D、侧面展开图是梯形,故D错误.故选:A.【点评】本题考查了几何体的展开图,记住常用几何体的侧面展开图是解题关键.8.(2分)一件标价为200元的服装以8折销售,仍可获利40元,该服装的成本价是()A.140元B.120元C.100元D.80元【分析】设该服装的成本价为x元,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设该服装的成本价为x元,根据题意得:200×80%﹣x=40,解得:x=120,则该服装的成本价是120元,故选:B.【点评】此题考查了一元一次方程的应用,弄清题意是解本题的关键.9.(2分)从上午9点整到下午3点整,时针与分针位置重叠的次数为()A.4B.5C.6D.7【分析】根据时针行走1小时,分钟需要转1周,从上午9点整到下午3点整时针行走6小时,因为12点时,两针重合,12点到13点两针没有重合,其它时间段1个小时内重合1次,即时针与分针位置重叠的次数为5.【解答】解:从上午9点整到下午3点整,时针与分针位置重叠的次数为5.故选:B.【点评】考查钟表分针所转过的角度计算.钟表里的分钟与时针的转动问题基本上与行程问题中的两人追及问题非常相似.10.(2分)如图,直线AB、CD相交于点O,过O作OE⊥AB,且OD平分∠BOE,则∠AOD的度数是()A.120°B.125°C.130°D.135°【分析】先根据垂直的定义得:∠BOE=90°,由角平分线的定义得∠DOE=45°,最后根据邻补角的定义可得结论.【解答】解:∵OE⊥AB,∴∠BOE=90°,∵OD平分∠BOE,∴∠DOB=12∠BOE=45°,∴∠AOD=180°﹣∠DOB=180°﹣45°=135°.故选:D.【点评】此题主要考查了邻补角,垂直定义和角平分线的性质,关键是掌握垂直得直角,邻补角互补.二.填空题(共8小题,满分16分,每小题2分)11.(2分)单项式−53x4y3的次数是7.【分析】单项式中所有字母的指数和叫单项式的次数.【解答】解:单项式−53x4y3的次数是7,故答案为:7【点评】本题主要考查的是单项式的概念,掌握单项式的次数的概念是解题的关键.12.(2分)2008年北京奥运会圣火传递的里程约为137000km,可用科学记数法表示为1.37×105km.【分析】大于10时科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【解答】解:137 000km =1.37×105km .【点评】将一个绝对值较大的数写成科学记数法a ×10n 的形式时,其中1≤|a |<10,n 为比整数位数少1的数.13.(2分)已知一个角是35°,则这个角的余角是 55 度.【分析】两个角相加等于90°,则这两个角互为余角.【解答】解:已知角是35°,故其余角=90°﹣35°=55°,故答案为:55.【点评】本题考查了余角的基本性质,牢记两个角相加等于90°,则这两个角互为余角是解题关键.14.(2分)若﹣2x 2y b 与12x a y 3是同类项,则a ﹣b = ﹣1 . 【分析】根据同类项的概念求出a 、b ,计算即可.【解答】解:∵﹣2x 2y b 与12x a y 3是同类项, ∴a =2,b =3,∴a ﹣b =2﹣3=﹣1,故答案为:﹣1.【点评】本题考查的是同类项的概念,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.15.(2分)已知(k ﹣1)x |k |+4=0是一元一次方程,则k = ﹣1 . 【分析】根据一元一次方程的定义得出k ﹣1≠0且|k |=1,再求出即可.【解答】解:∵(k ﹣1)x |k |+4=0是一元一次方程, ∴k ﹣1≠0且|k |=1,解得:k =﹣1,故答案为:﹣1.【点评】本题考查了绝对值和一元一次方程的定义,能根据一元一次方程的定义得出k ﹣1≠0和|k |=1是解此题的关键.16.(2分)已知线段AB =6cm ,在直线AB 上画线BC ,使BC =11cm ,则线段AC = 17或5 cm .【分析】分点C 在AB 的延长线上和C 在BA 的延长线上两种情况计算即可.【解答】解:如图1,当点C 在AB 的延长线上时,AC =AB +BC =17cm ,如图2,点C 在BA 的延长线上时,AC =BC ﹣AB =5cm ,故答案我:17或5.【点评】本题考查的是两点间的距离的计算,正确运用数形结合思想、分情况讨论思想是解题的关键.17.(2分)同一平面内两条直线若相交.则公共点的个数为1个.【分析】根据相交线的定义可得答案.【解答】解:同一平面内两条直线若相交.则公共点的个数为1个,故答案为:1.【点评】此题主要考查了相交线定义,关键是掌握在同一平面内,两条直线的位置关系有两种:平行和相交(重合除外).18.(2分)10个棱长为acm的正方体摆成如图的形状,这个图形的表面积是36a2(cm2).【分析】计算这个组合体的主视图、左视图、俯视图面积和的2倍即可.【解答】解:这个组合体的主视图的面积为6a2(cm2),这个组合体的左视图的面积为6a2(cm2),这个组合体的俯视图的面积为6a2(cm2),所以这个组合体的表面积为(6a2+6a2+6a2)×2=36a2(cm2),故答案为:36a2(cm2).【点评】本题考查简单组合体的表面积,理解表面积的意义以及与该组合体的三视图的关系是解决问题的前提.三.解答题(共8小题,满分64分,每小题8分)19.(8分)计算:(1)(−81)÷94×49÷(−16);(2)−42−3×22×(13−12)÷(−113).【分析】(1)原式从左到右依次计算即可得到结果;(2)原式先算括号中的减法,再算外边的乘方,乘除,以及加减即可得到结果.【解答】解:(1)原式=81×49×49×116=1;(2)原式=﹣16﹣3×4×(−16)×(−34)=﹣16﹣12×16×34=﹣16−32=﹣1712. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(8分)解方程:(1)2(x ﹣1)=2﹣5(x +2);(2)5x+12−7x+24=1.【分析】(1)方程去括号,移项,合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x 系数化为1,即可求出解.【解答】解:(1)去括号得:2x ﹣2=2﹣5x ﹣10,移项得:2x +5x =2﹣10+2,合并得:7x =﹣6,解得:x =−67;(2)去分母得:2(5x +1)﹣(7x +2)=4,去括号得:10x +2﹣7x ﹣2=4,移项得:10x ﹣7x =4﹣2+2,合并得:3x =4,解得:x =43.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并,把未知数系数化为1,求出解.21.(8分)已知:A =2a 2+3ab ﹣2a ,B =a 2﹣ab +1,(1)求A ﹣2B ;(2)当b =25时,求A ﹣2B 的值.【分析】(1)把A 与B 代入A ﹣2B 中,去括号合并即可得到结果;(2)把b 的值代入计算即可求出值.【解答】解:(1)A ﹣2B =(2a 2+3ab ﹣2a )﹣2(a 2﹣ab +1)=2a 2+3ab ﹣2a ﹣2a 2+2ab ﹣2=5ab ﹣2a ﹣2;(2)当b =25时,A ﹣2B =5a ×25−2a ﹣2=2a ﹣2a ﹣2=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.(6分)如图,是由若干个完全相同的小正方体组成的一个几何体.从左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.【分析】从左面看:共有3列,从左往右分别有3,2,1个小正方形;从上面看:共分3列,从左往右分别有3,2,1个小正方形.据此可画出图形.【解答】解:如图所示:【点评】本题考查作图﹣三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.(8分)规定符号(a,b)表示a,b两个数中较小的一个,规定符号[a,b]表示两个数中较大的一个.例如(2,1)=1,[2,1]=2.(1)计算:(﹣2,3)+[−23,−34].(2)若(p,p+2)﹣[﹣2q﹣1,﹣2q+1]=1,试求代数式(p+2q)3﹣3p﹣6q的值.(3)若(m,m﹣2)+3[﹣m,﹣m﹣1]=﹣5,求m的值.【分析】(1)根据定义得出(﹣2,3),)[−23,−34]表示的数,再根据有理数的加法法则计算即可;(2)根据定义可得p+2q=2,将(p+2q)3﹣3p﹣6q后两项提出3后代入即可求解;(3)根据定义可得关于m的一元一次方程,再解方程即可求出m的值.【解答】解:(1)由题意可知:(﹣2,3)+[−23,−34].=﹣2+(−2 3)=−83;(2)∵(p,p+2)﹣[﹣2q﹣1,﹣2q+1]=1,∴p﹣(﹣2q+1)=1,p+2q﹣1=1,p+2q=2,∴(p+2q)3﹣3p﹣6q=(p+2q)3﹣3(p+2q)=23﹣3×2=2;(3)根据题意得:m﹣2+3×(﹣m)=﹣5,解得m=3 2.【点评】本题考查的是有理数的大小比较,合并同类项,代数式求值,根据题中给出的定义理解(a,b)与[a,b]表示的意思是解答此题的关键.24.(8分)根据图中对话列方程解决问题:求小明今年的年龄.【分析】设小明今年的年龄为x岁.根据等量关系爸爸的年龄是小明的年龄的3倍,构建方程即可解决问题.【解答】解:设小明今年的年龄为x岁.由题意:(x+26)=3x,解得x=13,答:小明今年的年龄为13岁.【点评】本题考查一元一次方程的应用,解题的关键是性质寻找等量关系,构建方程解决问题.25.(8分)如图,OB是∠AOC内部的一条射线,OM是∠AOB内部的一条射线,ON是∠BOC内部的一条射线.(1)如图1,OM、ON分别是∠AOB、∠BOC的角平分线,已知∠AOB=30°,∠MON=70°,求∠BOC 的度数;(2)如图2,若∠AOC=140°,∠AOM=∠NOC=14∠AOB,且∠BOM:∠BON=3:2,求∠MON的度数.【分析】(1)根据角平分线的定义可得∠AOM=∠BOM=12∠AOB=15°,∠BON=∠CON=12∠BOC,再由∠MON=70°=∠BON+∠BOM,求出∠BON,再由角平分线的定义求出答案;(2)设∠AOM=∠NOC=α,由∠AOM=∠NOC=14∠AOB,可得∠AOB=4α,进而得出∠BOM=3α,由∠BOM:∠BON=3:2可得∠BON=2α,由∠AOC=140°列方程求出α,进而求出答案.【解答】解:(1)如图1,∵OM、ON分别是∠AOB、∠BOC的角平分线,∴∠AOM=∠BOM=12∠AOB=15°,∠BON=∠CON=12∠BOC,∵∠MON=70°=∠BON+∠BOM,∴∠BON=70°﹣15°=55°,∴∠BOC=2∠BON=110°;(2)如图2,由于∠AOM=∠NOC=14∠AOB,设∠AOM=∠NOC=α,则∠AOB=4α,∴∠BOM=∠AOB﹣∠AOM=4α﹣α=3α,又∵∠BOM:∠BON=3:2,∴∠BON=2α,∵∠AOC=140°=∠AOB+∠BON+∠NOC,∴140°=4α+2α+α,∴α=20°,∴∠MON=∠BOM+∠BON=3α+2α=5α=100°.【点评】本题考查角平分线,理解角平分线的定义以及图形中角的和差关系是正确解答的关键.26.(10分)已知线段AB=8a(a是常数),点C和点F为直线AB上两点,点E在线段AB上,CE=3AE,CF=3BF.(1)若点C恰好是线段AB的中点,点F在线段BC上,则EF=6a(用含a的代数式表示);(2)若点C在点B的右侧,EF的长是否是定长,若是定长,请求出这个定长;若不是,请说明理由.【分析】(1)首先根据中点的定义和线段之间的比例得到CE=3a,CF=3a,进而可得EF的长;(2)分两种情况:①当点F在点B的右侧时,②当点F在点B的左侧时,再根据线段的和差可得结论.【解答】解:(1)如图,∵AB=8a,点C是线段AB的中点,∴AC=BC=12AB=4a,∵CE=3AE,CF=3BF,∴CE=34AC=3a,CF=34CB=3a,∴EF=CE+CF=3a+3a=6a,故答案为:6a;(2)如图,当点F在点B的右侧时,∵CE=3AE,CF=3BF,∴CE=34AC,CF=34CB,∴EF=CE﹣CF=34AC−34CB=34AB=6a(a是常数),此时EF的长是定值;如图,当点F在点B的左侧时,设BC=b,∵CE=3AE,CF=3BF,∴CE=34AC=6a+34b,CF=32CB=32b,∴EF=CE﹣CF=34AC−32CB=6a+34b−32b=6a−34b.此时EF的长随b的变化而变化,不是定值.综上,当点F在点B的左侧时,EF的长是定值6a;当点F在点B的左侧时,EF的长不是定值.【点评】本题考查两点间的距离,根据线段的和差得到各线段之间的关系是解题关键.。

初中七年级上册数学期末试卷【含答案】

初中七年级上册数学期末试卷【含答案】

初中七年级上册数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个等腰三角形的底边长为10厘米,腰长为13厘米,那么这个三角形的周长是多少?A. 32厘米B. 36厘米C. 42厘米D. 46厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 一个正方形的面积是81平方厘米,那么它的边长是多少?A. 9厘米B. 10厘米C. 11厘米D. 12厘米二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。

()2. 一个等边三角形的三个角都是60度。

()3. 两个负数相乘的结果是正数。

()4. 一个数的平方根只有一个。

()5. 任何数乘以0都等于0。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 一个正方形的周长是36厘米,那么它的边长是______厘米。

3. 如果一个数的平方是49,那么这个数是______。

4. 两个质数相乘得到的结果是______数。

5. 一个等腰三角形的底边长是8厘米,腰长是10厘米,那么这个三角形的周长是______厘米。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 请解释什么是质数。

3. 请说明什么是等腰三角形。

4. 请简述正方形的性质。

5. 请解释什么是负数。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

2. 一个等边三角形的边长是12厘米,求这个三角形的面积。

3. 一个数的平方是64,求这个数的平方根。

4. 两个负数相加,和是正数还是负数?请举例说明。

5. 一个数的立方是27,求这个数的平方。

六、分析题(每题5分,共10分)1. 请分析并解释为什么两个质数相乘得到的结果是合数。

学科网七年级数学期末试卷

学科网七年级数学期末试卷

一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 3.14B. -2/5C. √2D. 02. 下列各数中,有最小正整数的是()A. -2B. -1/2C. 0D. 13. 下列各数中,有最大整数的是()A. -1B. 1/2C. 0D. 24. 下列各数中,绝对值最小的是()A. -3B. -2C. 1D. 05. 下列各数中,正数和负数的和为0的是()A. 1和-1B. 2和-2C. 3和-3D. 4和-46. 下列各数中,两个数的积为正数的是()A. -1和-1B. 1和-1C. -1和1D. 2和37. 下列各数中,两个数的商为正数的是()A. -1和-1B. 1和-1C. -1和1D. 2和38. 下列各数中,两个数的和为0的是()A. -1和1B. 1和-1C. -1和-1D. 1和19. 下列各数中,两个数的差为0的是()A. -1和1B. 1和-1C. -1和-1D. 1和110. 下列各数中,两个数的积为负数的是()A. -1和-1B. 1和-1C. -1和1D. 2和3二、填空题(每题3分,共30分)11. -5的相反数是______,绝对值是______。

12. 2/3的倒数是______,绝对值是______。

13. |5|+|-3|=______。

14. (-2)-(-4)=______。

15. 3/4÷(-2/3)=______。

16. (-3)×(-2)=______。

17. 5-(-2)=______。

18. |5-(-3)|=______。

19. 3/4×(-2/3)=______。

20. (-1/2)+(-3/4)=______。

三、解答题(每题10分,共30分)21. 简化下列各数:(1)-3×(-5)×(-2)(2)4×(-2/3)×(-1/4)22. 解下列方程:(1)3x+5=2x-1(2)2(x-3)=5x+423. 判断下列各题的正误,并说明理由:(1)|a|<|b|,则a<b(2)a²>b²,则a>b四、应用题(每题10分,共20分)24. 小明和小红两个班级进行篮球比赛,小明班级得分为60分,小红班级得分为80分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学期末复习题距离期末考试越来越近了,考前我们要系统全面地将这学期所学知识进行回顾。

为了帮助考生顺利通过考试,下文整理了这篇七年级数学期末复习题以供大家参考!一.选择题(共12小题,每小题4分,共48分)1.(南宁)如图所示,将平面图形绕轴旋转一周,得到的几何体是()A. B. C. D.2.(厦门)已知方程|x|=2,那么方程的解是()A . x=2B .x=﹣2 C. x1=2,x2=﹣2 D. x=43.(南昌)在下列表述中,不能表示代数式4a的意义的是()A. 4的a倍B. a的4倍C. 4个a相加D. 4个a相乘4.(滨州)把方程变形为x=2,其依据是()A. 等式的性质1B. 等式的性质2C. 分式的基本性质D. 不等式的性质15.(南宁)如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作()A. ﹣3mB. 3mC. 6mD. ﹣6m6.(沈阳)0这个数是()A.正数B.负数C.整数D.无理数7.(乐山)苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A.(a+b)元B.(3a+2b)元C.(2a+3b)元D.5(a+b)元8.(眉山)方程3x﹣1=2的解是()A.x=1B.x=﹣1C.x=﹣D.x=9.(达州)如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.①⑤B.②④C.③⑤D.②⑤10.(晋江市)已知关于x的方程2x﹣a﹣5=0的解是x=﹣2,则a的值为()A.1B.﹣1C.9D.﹣911.(宁波)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱12.(无锡)已知△ABC的三条边长分别为3,4,6,在△ABC 所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.6条B.7条C.8条D.9条二.填空题(共6小题,每小题4分,共24分)13.(南昌)一个正方体有 _________ 个面.14.(邵阳)请写出一个方程的解是2的一元一次方程:_________ .15.(贵港)若超出标准质量0.05克记作+0.05克,则低于标准质量0.03克记作 _________ 克.16.(咸宁)体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y元.则代数式500﹣3x﹣2y表示的实际意义是 _________ .17.(天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于 _________ ;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明) _________ .18.(宁德)若,则 = _________ .三.解答题(共8小题,19-20每题7分,21-24每题10分,25-26每题12分,共78分)19.(吉林)已知关于x的方程3a﹣x= +3的解为2,求代数式(﹣a)2﹣2a+1的值.20.(柳州)解方程:3(x+4)=x.21.(连云港)计算:(1)2(﹣5)+22﹣3 .22.(2009杭州)如果a,b,c是三个任意的整数,那么在,,这三个数中至少会有几个整数?请利用整数的奇偶性简单说明理由.23.(2009杭州)在杭州市中学生篮球赛中,小方共打了10场球.他在第6,7,8,9场比赛中分别得了:22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高,如果他所参加的10场比赛的平均得分超过18分.(1)用含x的代数式表示y;(2)小方在前5场比赛中,总分可达到的最大值是多少;(3)小方在第10场比赛中,得分可达到的最小值是多少? 24.(无锡)(1)如图1,Rt△ABC中,B=90,AB=2BC,现以C为圆心、CB长为半径画弧交边AC于D,再以A为圆心、AD 为半径画弧交边AB于E.求证: = .(这个比值叫做AE与AB的黄金比.)(2)如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图2中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC.(注:直尺没有刻度!作图不要求写作法,但要求保留作图痕迹,并对作图中涉及到的点用字母进行标注)25.(凉山州)如图所示,图①~图④都是平面图形(1)每个图中各有多少个顶点?多少条边?这些边围出多少个区域?请将结果填入表格中.(2)根据(1)中的结论,推断出一个平面图形的顶点数、边数、区域数之间有什么关系.26.(乐山)阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离;在解题中,我们会常常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为2,即该方程的x=例2:解不等式|x﹣1|2.如图,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1,3,则|x﹣1|2的解为x﹣1或x例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x 的值.在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在﹣2的左边,可得x=﹣3.故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为 _________ ;(2)解不等式|x﹣3|+|x+4|(3)若|x﹣3|﹣|x+4|a对任意的x都成立,求a的取值范围. 参考答案一.选择题(共12小题)1.A2.解:因为|x|=x,所以方程|x|=2化为整式方程为:x=2和﹣x=2,解得x1=2,x2=﹣2,故选C.3.解:A、4的a倍用代数式表示4a,故本选项正确;B、a的4倍用代数式表示4a,故本选项正确;C、4个a相加用代数式表示a+a+a+a=4a,故本选项正确;D、4个a相乘用代数式表示aaaa=a4,故本选项错误;故选:D.4.解:把方程变形为x=2,其依据是等式的性质2;故选:B.5.解:因为上升记为+,所以下降记为﹣,所以水位下降3m时水位变化记作﹣3m.故选:A6.解:A、0不是正数也不是负数,故A错误;B、0不是正数也不是负数,故B错误;C、是整数,故C正确;D、0是有理数,故D错误;故选:C7.解:买单价为a元的苹果2千克用去2a元,买单价为b 元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选:C.8.解:方程3x﹣1=2,移项合并得:3x=3,解得:x=1.故选:A9.解:分析原图可得:原图由②⑤两种图案组成.故选:D.10.解:将x=﹣2代入方程得:﹣4﹣a﹣5=0,解得:a=﹣9.故选:D11.解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.12.(解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时,都能得到符合题意的等腰三角形.故选:B.二.填空题(共6小题)13.(南昌)一个正方体有 6 个面.14.(邵阳)请写出一个方程的解是2的一元一次方程: x﹣2=0 .15.(贵港)若超出标准质量0.05克记作+0.05克,则低于标准质量0.03克记作﹣0.03 克.16.(咸宁)体育委员小金带了500元钱去买体育用品,已知一个足球x元,一个篮球y元.则代数式500﹣3x﹣2y表示的实际意义是体育委员买了3个足球、2个篮球后剩余的经费 .解:∵买一个足球x元,一个篮球y元,3x表示体育委员买了3个足球,2y表示买了2个篮球,代数式500﹣3x﹣2y:表示体育委员买了3个足球、2个篮球,剩余的经费.故答案为:体育委员买了3个足球、2个篮球后剩余的经费.17.(天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于 11 ;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明) 如图所示: .解:(Ⅰ)AC2+BC2=( )2+32=11;故答案为:11;(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求.18.(宁德)若,则 = .三.解答题(共8小题)19.(吉林)已知关于x的方程3a﹣x= +3的解为2,求代数式(﹣a)2﹣2a+1的值.解:∵x=2是方程3a﹣x= +3的解,3a﹣2=1+3解得:a=2,原式=a2﹣2a+1=22﹣22+1=1.20.(柳州)解方程:3(x+4)=x.解:去括号得:3x+12=x,移项合并得:2x=﹣12,解得:x=﹣6.21.(连云港)计算:(1)2(﹣5)+22﹣3 .解:原式=﹣10+4﹣32=﹣10+4﹣6=﹣12.22.(2009杭州)如果a,b,c是三个任意的整数,那么在,,这三个数中至少会有几个整数?请利用整数的奇偶性简单说明理由.解:至少会有一个整数.根据整数的奇偶性:两个整数相加除以2可以判定三种情况:奇数+偶数=奇数,如果除以2,不等于整数.奇数+奇数=偶数,如果除以2,等于整数.偶数+偶数=偶数,如果除以2,等于整数.故讨论a,b,c 的四种情况:全是奇数:则a+b除以2,b+c除以2,c+a除以2 全是整数全是偶数:则a+b除以2,b+c除以2,c+a除以2 全是整数一奇两偶:则a+b除以2,b+c除以2,c+a除以2 一个整数一偶两奇:则a+b除以2,b+c除以2,c+a除以2 一个整数综上所述,所以至少会有一个整数.23.(2009杭州)在杭州市中学生篮球赛中,小方共打了10场球.他在第6,7,8,9场比赛中分别得了:22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高,如果他所参加的10场比赛的平均得分超过18分.(1)用含x的代数式表示y;(2)小方在前5场比赛中,总分可达到的最大值是多少;(3)小方在第10场比赛中,得分可达到的最小值是多少?解:(1) = ;(2)由题意有y= x,解得x17,所以小方在前5场比赛中总分的最大值应为175﹣1=84分;(3)又由题意,小方在这10场比赛中得分至少为1810+1=181分,设他在第10场比赛中的得分为S,则有84+(22+15+12+19)+S181,解得S29,所以小方在第10场比赛中得分的最小值应为29分24.(无锡)(1)如图1,Rt△ABC中,B=90,AB=2BC,现以C 为圆心、CB长为半径画弧交边AC于D,再以A为圆心、AD 为半径画弧交边AB于E.求证: = .(这个比值叫做AE与AB的黄金比.)(2)如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图2中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC.(注:直尺没有刻度!作图不要求写作法,但要求保留作图痕迹,并对作图中涉及到的点用字母进行标注)(1)证明:∵Rt△ABC中,B=90,AB=2BC,设AB=2x,BC=x,则AC= x,AD=AE=( ﹣1)x,(2)解:底与腰之比均为黄金比的等腰三角形,如图:25.(凉山州)如图所示,图①~图④都是平面图形(1)每个图中各有多少个顶点?多少条边?这些边围出多少个区域?请将结果填入表格中.(2)根据(1)中的结论,推断出一个平面图形的顶点数、边数、区域数之间有什么关系.解:(1)图序顶点数边数区域数① 4 6 3② 8 12 5③ 6 9 4④ 10 15 6(2)解:由(1)中的结论得:设顶点数为n,则边数=n+ = ;区域数= +1.26.(乐山)阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离;在解题中,我们会常常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为2,即该方程的x=例2:解不等式|x﹣1|2.如图,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1,3,则|x﹣1|2的解为x﹣1或x例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x 的值.在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在﹣2的左边,可得x=﹣3.故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为 1或﹣7 ;(2)解不等式|x﹣3|+|x+4|(3)若|x﹣3|﹣|x+4|a对任意的x都成立,求a的取值范围. 解:(1)根据绝对值得意义,方程|x+3|=4表示求在数轴上与﹣3的距离为4的点对应的x的值为1或﹣7.(3分)(2)∵3和﹣4的距离为7,因此,满足不等式的解对应的点3与﹣4的两侧.当x在3的右边时,如图,易知x4.(5分)当x在﹣4的左边时,如图,易知x﹣5.(7分)原不等式的解为x4或x﹣5(8分)(3)原问题转化为:a大于或等于|x﹣3|﹣|x+4|最大值.(9分)当x3时,|x﹣3|﹣|x+4|应该恒等于﹣7,当﹣4当x﹣4时,|x﹣3|﹣|x+4|=7,即|x﹣3|﹣|x+4|的最大值为7.(11分)故a7.(12分)。

相关文档
最新文档