2018一轮复习步步高高中物理第一章 第2讲
新步步高高考物理(全国用)大一轮复习讲义课件:第一章 运动的描述 匀变速直线运动 45分钟章末验收卷
√
1 2 3 4 5 6 7 8 9 10 11 12 13
5.如图甲所示,一维坐标系中有一质量为m=2 kg的物块静置于x轴上的 某位置(图中未画出),t=0时刻,物块在外力作用下沿x轴开始运动,如 图乙为其位置坐标和速率平方关系图象的一部分. 下列说法正确的是 答案 解析 A.物块做匀加速直线运动且加速度大小为1 m/s2 B.t=4 s时物块位于x=4 m处
A.两物体在t1时刻加速度相同
B.两物体在t2时刻运动方向均改变
√C.两物体在t3时刻相距最远,在t4时刻相遇
D.0~t4时间内甲物体的平均速度大于乙物体的平均速度
1 2 3 4 5 6 7 8 9 10 11 12 13
7.如图所示,直线和抛物线(开口向上)分别为汽车a和b的位移—时间图 象,则 答案 解析
时间(s) 0 1 2 3 4 5 6 7 8 9 10 11 12 速度(m/s) 0 2.0 4.0 5.0 5.0 5.0 5.0 5.0 4.0 3.0 2.0 1.0 0
则前5 s内电梯通过的位移大小为 答案 解析
A.19.25 m
√B.18.75 m
C.18.50 m
D.17.50 m
1 2 3 4 5 6 7 8 9 10 11 12 13
车在不同路况下的“全力自动刹车”的加速度大小取4~6 m/s2之间的某一
值,则“全力自动刹车”的最长时间为答案 解析
5 A.3 s
25 B. 3 s
√C.2.5 s
D.12.5 s
1 2 3 4 5 6 7 8 9 10 11 12 13
3.电梯从低楼层到达高楼层经过启动、匀速运行和制动三个过程,启动 和制动可看做是匀变速直线运动.电梯竖直向上运动过程中速度的变化情 况如下表:
新步步高高考物理(全国用)大一轮复习讲义课件:第二章 相互作用 专题强化二
4
盘查拓展点
生活中平衡问题的实例分析 力的平衡问题在日常生活中有许多实例,解答的关键是要建立正确的物 理模型,选择合适的的解题方法,一般按以下步骤进行:
【典例】 一般教室门上都安装一种暗锁,这种暗锁由外壳A、骨架B、弹 簧C(劲度系数为k)、锁舌D(倾角θ=45°)、锁槽E以及连杆、锁头等部件 组成,如图甲所示.设锁舌D的侧面与外壳A和锁槽E之间的动摩擦因数均为 μ,最大静摩擦力Ffm由Ffm=μFN(FN为正压力)求得.有一次放学后,当某同 学准备关门时,无论用多大的力, 也不能将门关上(这种现 象称为自锁),此刻暗锁 所处的状态的俯视图如 图乙所示,P为锁舌D与 锁槽E之间的接触点,弹 簧由于被压缩而缩短了x.
1 2 3 4 5 6 7 8 9 10 11
2.(多选)如图所示,粗糙水平面上有一长木板,一个人站在木板上用力F 向右推箱子,木板、人、箱子均处于静止状态.三者的质量均为m,下列 说法正确的是 答案 A.箱子受到的摩擦力方向向右
√B.人受到的摩擦力方向向右 √C.箱子对木板的摩擦力方向向右
D.若水平面光滑,人用同样大小的力F推箱子,能使长木板在水平面上 滑动
√A.B对A的摩擦力大小为Ff,方向向左
B.A和B保持静止,C匀速运动
√C.A保持静止,B和C一起匀速运动 √D.C受到地面的摩擦力大小为F-Ff
1 2 3 4 5 6 7 8 9 10 11
√D.支持力小于(M+m)g
Ff
mg
2
命题点二
动态平衡问题
1.共点力的平衡 (1)平衡状态:物体处于 静止 或 匀速直线运动 状态,称为平衡状态. (2)平衡条件:物体所受合力 为零 ,即 F合=0 .若采用正交分解法求平 衡问题,则平衡条件是 Fx合=0,Fy合=0 . (3)常用推论: ①二力平衡:二力等大反向. ②三力平衡:任意两个力的合力与第三个力等大反向. ③多力平衡:其中任意一个力与其余几个力的合力等大反向.
【步步高】高考物理大一轮复习讲义 第二章 章末限时练(含解析) 新人教版
《步步高》高考物理(人教版通用)大一轮复习讲义第二章章末限时练(满分:100分时间:90分钟)一、选择题(每小题4分,共40分)1.某物体在n个共点力的作用下处于静止状态,若把其中一个力F1的方向沿顺时针方向转过90°,而保持其大小不变,其余力保持不变,则此时物体所受的合力大小为( )A.F1 B.2F1C.2F1D.0答案 B解析物体受n个力处于静止状态,则其中(n-1)个力的合力一定与剩余的那个力等大反向,故除F1以外的其他各力的合力大小等于F1,且与F1方向相反,故当F1转过90°后,物体受到的合力大小应为2F1,选项B正确.2.如图1甲所示为实验室常用的弹簧测力计,弹簧的一端与有挂钩的拉杆相连,另一端固定在外壳上的O点,外壳上固定一个圆环,整个外壳重为G,弹簧及拉杆的质量忽略不计.现将该弹簧测力计用如图乙、丙的两种方式固定在地面上,并分别用相同的力F0(F0>G)竖直向上拉弹簧测力计,则稳定后弹簧测力计的读数分别为( )图1A.乙图读数为F0-G,丙图读数为F0B.乙图读数为F0,丙图读数为F0-GC.乙图读数为F0-G,丙图读数为F0+GD.乙图读数为F0,丙图读数为F0答案 B解析弹簧测力计的读数应是弹簧中的弹力大小.在图乙中,F0与弹簧拉力是一对作用力与反作用力,大小一定相等.在图丙中,由共点力的平衡知F0=F弹+G,所以F弹=F0-G,选项B正确.3.如图2所示,固定的斜面上叠放着A、B两木块,木块A与B的接触面是水平的,水平力F作用于木块A,使木块A、B保持静止,且F≠0.则下列描述正确的是( )A.B可能受到3个或4个力作用图2B.斜面对木块B的摩擦力方向可能沿斜面向下C.A对B的摩擦力可能为0D.A、B整体可能受三个力作用答案BD解析对A、B整体,一定受到重力G、斜面支持力F N、水平力F,如图(a),这三个力可能使整体平衡,因此斜面对A、B整体的静摩擦力可能为0,可能沿斜面向上,也可能沿斜面向下,B、D正确;对木块A,受力如图(b),水平方向受力平衡,因此一定受到B对A的静摩擦力F f A,由牛顿第三定律可知,C错;对木块B,受力如图(c),其中斜面对B的摩擦力F f可能为0,因此木块B可能受4个或5个力作用,A错.4.帆船航行时,遇到侧风需要调整帆面至合适的位置,保证船能有足够的动力前进.如图3是帆船航行时的俯视图,风向与船航行方向垂直,关于帆面的a、b、c、d四个位置,可能正确的是( )A.a B.b 图3C.c D.d答案 B5.一轻杆AB,A端用铰链固定于墙上,B端用细线挂于墙上的C点,并在B端挂一重物,细线较长使轻杆位置如图4甲所示时,杆所受的压力大小为F N1,细线较短使轻杆位置如图乙所示时,杆所受的压力大小为F N2,则有( )图4A.F N1>F N2B.F N1<F N2C.F N1=F N2D.无法比较答案 C解析轻杆一端被铰链固定在墙上,杆上的弹力方向沿杆的方向.由牛顿第三定律可知:杆所受的压力与杆对B点细线的支持力大小相等,方向相反.对两种情况下细线与杆接触点B受力分析,如图甲、乙所示,由图中几何关系可得:F N1AB=mgAC,F N2AB=mgAC,故F N1=F N2,选项C正确.6.如图5所示,光滑水平地面上放有截面为14圆周的柱状物体A,A与墙面之间放一光滑的圆柱形物体B,对A施加一水平向左的力F,整个装置保持静止.若将A的位置向左移动稍许,整个装置仍保持平衡,则( ) 图5A.水平外力F增大B.墙对B的作用力减小C.地面对A的支持力减小D.A对B的作用力减小答案BD解析对物体B的受力分析如图所示,A的位置左移,θ角减小,F N1=G tan θ,F N1减小,B项正确;F N=Gcos θ,F N减小,D项正确;以A、B为一个整体受力分析,F N1=F,所以水平外力F减小,A项错误;地面对A的支持力等于两个物体的重力之和,所以该力不变,C项错误.7.如图6所示,一辆质量为M的汽车沿水平面向右运动,通过定滑轮将质量为m的重物A缓慢吊起.在吊起重物的过程中,关于绳子的拉力F T、汽车对地面的压力F N和汽车受到的摩擦力F f随细绳与水平方向的夹角θ变化的图象中正确的是 ( ) 图6答案 AC解析 因为绳子跨过定滑轮,故绳子张力等于重物A 的重力,A 正确;由牛顿第三定律可知,汽车对地面的压力大小等于地面对汽车的支持力,故以汽车为研究对象,受力分析得F N =Mg -F T sin θ,取θ=0时,F N =Mg ,B 错误;因为缓慢吊起重物,汽车可视为处于平衡状态,故有F f =F T cos θ,故C 对,D 错.8.如图7所示,A 、B 两物体叠放在水平地面上,A 物体质量m =20 kg ,B 物体质量M =30 kg.处于水平位置的轻弹簧一端固定于墙壁,另一端与A 物体相连,弹簧处于自然状态,其劲度系数为250 N/m ,A 与 图7B 之间、B 与地面之间的动摩擦因数为μ=0.5.现有一水平推力F 作用于物体B 上推着B 缓慢地向墙壁移动,当移动0.2 m 时,水平推力F 的大小为(g 取10 m/s 2) ( ) A .350 NB .300 NC .250 ND .200 N答案 B解析 由题意可知F f A max =μmg =100 N .当A 向左移动0.2 m 时,F 弹=k Δx =50 N ,F 弹<F f A max ,即A 、B 间未出现相对滑动,对整体受力分析可知,F =F f B +F 弹=μ(m +M )g +k Δx =300 N ,B 选项正确.9.如图8所示,左侧是倾角为30°的斜面、右侧是圆弧面的物体固定 在水平地面上,圆弧面底端切线水平,一根两端分别系有质量为m 1、m 2的小球的轻绳跨过其顶点上的小滑轮.当它们处于平衡状 图8态时,连结m 2小球的轻绳与水平线的夹角为60°,不计一切摩擦,两小球可视为质点.两小球的质量之比m 1∶m 2等于( )A .2∶ 3B .2∶3C.3∶2D .1∶1答案 A解析 对m 2受力分析如图所示 进行正交分解可得F N cos 60°=F T cos 60° F T sin 60°+F N sin 60°=m 2g解得F T =m 2g3对m 1球受力分析可知,F T =m 1g sin 30°=12m 1g可知m 1∶m 2=2∶3,选项A 正确.10.如图9所示,不计质量的光滑小滑轮用细绳悬挂于墙上的O 点,跨过滑轮的细绳连接物块A 、B ,A 、B 都处于静止状态,现将物 块B 移至C 点后,A 、B 仍保持静止,下列说法中正确的是( )图9A .B 与水平面间的摩擦力增大B .绳子对B 的拉力增大C .悬于墙上的绳所受拉力不变D .A 、B 静止时,图中α、β、θ三角始终相等 答案 AD解析 因为将物块B 移至C 点后,A 、B 仍保持静止,所以绳中的拉力大小始终等于A 的重力,通过定滑轮,绳子对B 的拉力大小也等于A 的重力,而B 移至C 点后,右侧绳子与水平方向的夹角减小,对B 进行受力分析可知,B 受到水平面的静摩擦力增大,所以选项A 正确,B 错误;对滑轮受力分析可知,悬于墙上的绳所受拉力等于两边绳的合力,由于两边绳子的夹角变大,两边绳的合力将减小,选项C 错误;由几何关系可知α、β、θ三角始终相等,选项D 正确. 二、非选择题(共60分)11.(6分)为测定木块P 和木板Q 间的动摩擦因数,某同学设计了一个实验,图10为实验装置示意图,其中各物体的接触面均水平,该同学在实验中的主要操作有:图10A .用弹簧测力计测出木块P 的重力为G P =6.00 N ;B .用弹簧测力计测出木板Q 的重力为G Q =9.25 N ;C .用手按住木块和木板,按图10装置安装好器材;D .松开木块和木板让其运动,待弹簧测力计指针稳定时再读数. (1)上述操作中多余的步骤是________.(填步骤序号)(2)在听取意见后,该同学按正确方法操作,稳定时弹簧测力计的 指针位置如图11所示,其示数为______ N .根据该同学的测量数据,可求得木块P 和木板Q 间的动摩擦因数为______. 图11 答案 (1)B (2)2.10 0.35解析 (1)要做好本题,需理解实验原理.无论木板怎样滑动,弹簧测力计的示数总与P 木块的滑动摩擦力相等,且这个值是稳定的,故可用F =μF N =μmg 求解μ,所以步骤B 是多余的.(2)由读数的估读规则可知,弹簧测力计的读数为2.10 N ,由F =μF N =μmg ,可知μ=F mg=0.35. 12.(8分)某同学做“验证力的平行四边形定则”实验的情况如图12甲所示,其中A 为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB 和OC 为细绳,图乙是在白纸上根据实验结果画出的图.图12(1)实验中用弹簧测力计测量力的大小时,下列使用方法中正确的是________.A.拿起弹簧测力计就进行测量读数B.拉橡皮筋的拉力大小不能超过弹簧测力计的量程C.测量前检查弹簧指针是否指在零刻线,用标准砝码检查示数正确后,再进行测量读数D.应尽量避免弹簧、指针、拉杆与刻度板间的摩擦(2)关于此实验的下列说法中正确的是________.A.同一次实验中,O点位置不允许变动B.实验中,只需记录弹簧测力计的读数和O点的位置C.实验中,把橡皮筋的另一端拉到O点时,两个弹簧测力计之间的夹角必须取90°D.实验中,要始终将其中一个弹簧测力计沿某一方向拉到最大量程,然后调节另一弹簧测力计拉力的大小和方向,把橡皮筋另一端拉到O点(3)图乙中的F与F′两力中,方向一定沿AO方向的是________.(4)本实验采用的科学方法是________.A.理想实验法B.等效替代法C.逆向思维法D.建立物理模型法答案(1)BCD (2)A (3)F′(4)B13.(10分)如图13所示,一根质量不计的横梁A端用铰链固定在墙壁上,B端用细绳悬挂在墙壁上的C点,使得横梁保持水平状态.已知细绳与竖直墙壁之间的夹角为60°,当用另一段轻绳在B点悬挂一个质量为M=6 kg的重物时,求轻杆对B点的弹力和绳BC的拉力大小.(g取10 m/s2) 图13答案60 3 N 120 N解析设杆对B点的弹力为F1,因横梁A端用铰链固定,故F1的方向沿杆方向,绳BC对B点的拉力为F2,由于B点静止,B点所受的向下的拉力大小恒定为重物的重力,根据受力平衡的特点,杆的弹力F 1与绳BC对B点的拉力F2的合力一定竖直向上,大小为Mg,如图所示.根据以上分析可知弹力F1与拉力F2的合力大小F=G=Mg=60 N由几何知识可知F1=F tan 60°=60 3 NF2=Fsin 30°=120 N即轻杆对B点的弹力为60 3 N,绳BC的拉力为120 N.14.(10分)如图14所示,质量为m1=5 kg的滑块,置于一粗糙的斜面上,用一平行于斜面的大小为30 N的力F推滑块,滑块沿斜面向上匀速运动,斜面体质量m2=10 kg,且始终静止,取g=10 m/s2,求:图14(1)斜面对滑块的摩擦力.(2)地面对斜面体的摩擦力和支持力.答案(1)5 N (2)15 3 N 135 N解析(1)用隔离法:对滑块受力分析,如图甲所示,在平行斜面的方向上:F=m1g sin 30°+F f,F f=F-m1g sin 30°=(30-5×10×0.5) N=5 N.(2)用整体法:因两个物体均处于平衡状态,故可以将滑块与斜面体当作一个整体来研究,其受力如图乙所示,由图乙可知:在水平方向上有F f地=F cos 30°=15 3 N;在竖直方向上,有F N地=(m1+m2)g-F sin30°=135 N.15.(13分)如图15所示,A、B两物体叠放在水平地面上,已知A、B的质量分别为m A=10 kg,m B=20 kg,A、B之间、B与地面之间的动摩擦因数均为μ=0.5.一轻绳一端系住物体A,另一端系于墙上,绳与竖直方向的夹角为37°,今欲用外力将物体B匀速向右图15拉出,求所加水平拉力F的大小,并画出A、B的受力分析图.(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)答案160 N 见解析图解析A、B的受力分析如图甲、乙所示对A应用平衡条件,有F T sin 37°=F f1=μF N1F T cos 37°+F N1=m A g联立得F N1=3m A g4μ+3=60 N,F f1=μF N1=30 N对B应用平衡条件,有F N1=F N1′,F f1=F f1′F=F f1′+F f2=F f1+μF N2=F f1+μ(F N1′+m B g)=160 N16.(13分)如图16所示,在光滑的水平杆上穿两个重均为2 N的球A、B,在两球之间夹一弹簧,弹簧的劲度系数为10 N/m,用两条等长的线将球C与A、B相连,此时弹簧被压短了10 cm,两条线的夹角为60°,求:(1)杆对A球的支持力为多大?图16(2)C球的重力为多大?答案(1)(2+3) N (2)2 3 N解析(1)A、C球的受力情况分别如图甲、乙所示:甲乙其中F=kx=1 N对于A球,由平衡条件得:F=F T sin 30°F N=G A+F T cos 30°解得:F N=(2+3) N(2)由(1)可得两线的张力都为:F T=2 N对于C球,由平衡条件得:2F T cos 30°=G C解得:G C=2 3 N。
2018年高考物理《步步高》(全国通用
2018年高考物理《步步高》(全国通用•含答案及详细解析)一轮微专题复习题(10套“微专题”题+1套章末综合练习题,共11套题)第二章牛顿运动定律1.考点及要求:(1)牛顿运动定律(Ⅱ);(2)牛顿运动定律的应用(Ⅱ).2.方法与技巧:作用力与反作用力的关系可总结为“三同、三异、三无关”.三同:同大小、同变化、同消失.三异:异体、异向、异效.三无关:与物体的种类无关、与物体的状态无关,与是否与其他物体相互作用无关.1.(对惯性的理解)(多选)伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.早期物理学家关于惯性有下列说法,其中正确的是() A.物体抵抗运动状态变化的性质是惯性B.没有力的作用,物体只能处于静止状态C.行星在圆周轨道上保持匀速率运动的性质是惯性D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动2.(对牛顿第一定律的研究)伽利略对“自由落体运动”和“运动和力的关系”的研究,开创了科学实验和逻辑推理相结合的重要科学研究方法.图1中a、b分别表示这两项研究中实验和逻辑推理的过程,对这两项研究,下列说法正确的是() 图1 A.图a通过对自由落体运动的研究,合理外推得出小球在斜面上做匀变速运动B.图a中先在倾角较小的斜面上进行实验,可“冲淡”重力,使时间测量更容易C.图b中完全没有摩擦阻力的斜面是实际存在的,实验可实际完成中完全没有摩擦阻力的斜面是实际存在的,实验可实际完成D.图b的实验为“理想实验”,通过逻辑推理得出物体的运动需要力来维持的实验为“理想实验”,通过逻辑推理得出物体的运动需要力来维持3.(对牛顿第三定律的理解)牛顿在总结C·雷恩、J·沃利斯和C·惠更斯等人的研究结果后,提出了著名的牛顿第三定律,阐述了作用力和反作用力的关系,从而与牛顿第一和第二定律形成了完整的牛顿力学体系.下列关于作用力和反作用力的说法正确的是() A.物体先对地面产生压力,然后地面才对物体产生支持力.物体先对地面产生压力,然后地面才对物体产生支持力B.物体对地面的压力和地面对物体的支持力互相平衡.物体对地面的压力和地面对物体的支持力互相平衡C.人推车前进,人对车的作用力大于车对人的作用力.人推车前进,人对车的作用力大于车对人的作用力D.物体在地面上滑行,不论物体的速度多大,物体对地面的摩擦力与地面对物体的摩擦力始终大小相等始终大小相等4.(牛顿第三定律在受力分析中的应用)电视台体育频道讲解棋局节目中棋盘竖直放置,棋盘由磁石做成,棋子都可视为被磁石吸引的小磁体,若某棋子静止,则() A.棋盘面可选足够光滑的材料.棋盘面可选足够光滑的材料B.棋盘对棋子的作用力比棋子对棋盘的作用力大.棋盘对棋子的作用力比棋子对棋盘的作用力大C.棋盘对棋子的作用力比棋子的重力大.棋盘对棋子的作用力比棋子的重力大D.若棋盘对棋子的磁力越大,则对其摩擦力也越大.若棋盘对棋子的磁力越大,则对其摩擦力也越大5.一物体受绳子的拉力作用由静止开始前进,先做加速运动,然后改为匀速运动,再改做减速运动,则下列说法中正确的是() A.加速前进时,绳子拉物体的力大于物体拉绳子的力.加速前进时,绳子拉物体的力大于物体拉绳子的力B.减速前进时,绳子拉物体的力小于物体拉绳子的力.减速前进时,绳子拉物体的力小于物体拉绳子的力C.只有匀速前进时,绳子拉物体的力才与物体拉绳子的力大小相等.只有匀速前进时,绳子拉物体的力才与物体拉绳子的力大小相等D.不管物体如何前进,绳子拉物体的力与物体拉绳子的力大小总相等.不管物体如何前进,绳子拉物体的力与物体拉绳子的力大小总相等6.伽利略利用如图2所示的装置做如下实验:小球从左侧斜面上的O点由静止释放后运动至右侧斜面上升.斜面上先后铺垫三种粗糙程度逐渐减小的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3.对比三次实验结果,可直接得到的结论是() 图2 A.如果斜面光滑,小球可以上升到比O′点更高的位置′点更高的位置B.如果小球不受力,它将一直保持匀速运动或静止状态.如果小球不受力,它将一直保持匀速运动或静止状态C.小球受到斜面的阻力越小,其上升的位置越高.小球受到斜面的阻力越小,其上升的位置越高D.自由落体运动是匀变速直线运动.自由落体运动是匀变速直线运动7.一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱与杆的总质量为M ,环的质量为m ,如图3所示,已知环沿杆匀加速下滑时,杆对环的摩擦力大小为f ,则此时箱对地面的压力大小为多少?则此时箱对地面的压力大小为多少?图3 答案解析1.AD [物体保持原来匀速直线运动状态或静止状态的性质叫惯性,即物体抵抗运动状态变化的性质,则A 项正确.没有力的作用,物体可能保持匀速直线运动状态或静止状态,则B 错.行星在圆周轨道上保持匀速率运动是由于受到改变运动状态的向心力作用,其运动状态是不断变化的,则C 错.D 项符合惯性定义,是正确的.]2.B [图a 是先在倾角较小的斜面上进行实验,“冲淡”重力,使时间测量更容易,A 项错误,B 项正确;完全没有摩擦阻力的斜面并不存在,C 项错;图b 中实验通过逻辑推理得出物体的运动不需要力来维持,D 项错.]3.D [由牛顿第三定律可知,作用力和反作用力同时产生,同时消失,选项A 错误;压力和支持力作用在两个不同的物体上,而平衡力是作用在同一个物体上,选项B 错误;作用力与反作用力等大反向,故人对车的作用力等于车对人的作用力,选项C 错误;物体对地面的摩擦力大小等于地面对物体的摩擦力,选项D 正确.]4.C [根据竖直方向上二力平衡知:f 静=G ,则G 应不超过最大静摩擦力,有f 静<f m =μF N ,F N 一定,要使棋子不滑下,应增大最大静摩擦力,为此应增大μ,棋盘面应选取较粗糙的材料,故A 错误;棋盘对棋子的作用力与棋子对棋盘的作用力是一对作用力与反作用力,大小相等,方向相反.故B 错误;棋盘对棋子的摩擦力与重力大小相等,棋盘对棋子的作用力是支持力与摩擦力的合力,所以比棋子的重力大,故C 正确;棋盘对棋子的静摩擦力与棋子的重力平衡,棋盘对棋子的磁力增大,摩擦力大小不变,故D 错误.]5.D [绳子拉物体的力与物体拉绳子的力是一对作用力和反作用力,大小相等,方向相反,与物体的运动状态和作用效果无关,与物体的运动状态和作用效果无关,加速前进、加速前进、匀速前进或减速前进时,匀速前进或减速前进时,绳子拉物体的力都绳子拉物体的力都等于物体拉绳子的力,故A 、B 、C 错误,D 正确.]6.C [在此实验中,若斜面光滑,只有重力做功,机械能守恒,小球最高只能上升到O ′位置,A 项错误.此实验说明小球受到的阻力越小,机械能损失越少,上升的位置越高,但不能直接说明小球不受力时,它将一直保持匀速运动或静止状态,更不能直接说明自由落体运动是匀变速直线运动,所以C项正确,B、D两项错误.]7.f+Mg解析箱子在竖直方向上受力情况如图所示,其受重力Mg、地面对它的支持力F N及环对它的摩擦力f′,由牛顿第三定律知f′=f. 由于箱子处于平衡状态,可得:F N=f′+Mg=f+Mg. 根据牛顿第三定律,箱子对地面的压力大小等于地面对箱子的弹力大小,则F N′=F N=f+Mg. 1.考点及要求:(1)牛顿运动定律(Ⅱ);(2)牛顿运动定律的应用(Ⅱ).2.方法与技巧:(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理;(2)弹簧(或橡皮绳):此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成是不变的.间,在瞬时问题中,其弹力的大小往往可以看成是不变的.1.(弹簧模型)如图1所示,质量均为m的木块A和B用一轻弹簧相连,竖直放在光滑的水平面上,木块A上放有质量为2m的木块C,三者均处于静止状态.现将木块C迅速移开,若重力加速度为g,则在木块C移开的瞬间() 图1 A.木块B对水平面的压力迅速变为2mgB.弹簧的弹力大小为mgC.木块A的加速度大小为2gD.弹簧的弹性势能立即减小.弹簧的弹性势能立即减小2.(杆模型)如图2所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为() 图2 A.233g B.0 C.g D.33g3. 3. ((多选)如图3所示,A、B两物块质量均为m,用一轻弹簧相连,将A用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B物块恰好与水平桌面接触,此时轻弹簧的伸长量为x,现将悬绳剪断,则下列说法正确的是() 图3 A.悬绳剪断瞬间A物块的加速度大小为2gB.悬绳剪断瞬间A物块的加速度大小为gC.悬绳剪断后A物块向下运动距离2x时速度最大时速度最大D.悬绳剪断后A物块向下运动距离x时加速度最小时加速度最小4.如图4所示,质量为M的框架放在水平地面上,一轻弹簧上端固定在框架上,下端连接一个质量为m的小球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零瞬间,小球的加速度大小为( ) 图4 A .gB.M -m m g C .0 D.M +m m g5.(多选)如图5所示,弹簧p 和细绳q 的上端固定在天花板上,下端用小钩钩住质量为m的小球C ,弹簧、细绳和小钩的质量均忽略不计.静止时p 、q 与竖直方向的夹角均为60°60°..下列判断正确的有( ) 图5 A .若p 和球突然脱钩,则脱钩后瞬间q 对球的拉力大小为mgB .若p 和球突然脱钩,则脱钩后瞬间球的加速度大小为32g C .若q 和球突然脱钩,则脱钩后瞬间p 对球的拉力大小为12mgD .若q 和球突然脱钩,则脱钩后瞬间球的加速度大小为g6. (多选多选)如图6所示,在动摩擦因数μ=0.2的水平面上,质量m =2 kg 的物块与水平轻弹簧相连,物块在与水平方向成θ=45°角的拉力F 作用下处于静止状态,此时水平面对物块的弹力恰好为零,g 取10 m/s 2,以下说法正确的是( ) 图6 A .此时轻弹簧的弹力大小为20 N B .当撤去拉力F 的瞬间,物块的加速度大小为8 m/s 2,方向向左,方向向左C .若剪断弹簧,则剪断的瞬间物块的加速度大小为8 m/s 2,方向向右,方向向右D .若剪断弹簧,则剪断的瞬间物块的加速度为0 7.物块A 1和A 2、B 1和B 2质量均为m ,A 1、A 2用刚性轻杆相连,B 1、B 2用轻质弹簧连接,两个装置都放在水平支托物上,处于平衡状态,个装置都放在水平支托物上,处于平衡状态,如图如图7所示.今突然迅速地撤去支托物,让物块下落,在撤去支托物的瞬间,A 1、A 2受到的合力分别为F A 1和F A 2,B 1、B 2受到的合力分别为F B 1和F B 2,则( ) 图7 A .F A 1=0,F A 2=2mg ,FB 1=0,F B 2=2mgB .F A 1=mg ,F A 2=mg ,F B 1=0,F B 2=2mgC .F A 1=0,F A 2=2mg ,F B 1=mg ,F B 2=mgD .F A 1=mg ,F A 2=mg ,F B 1=mg ,F B 2=mg答案解析1.C 2.A [撤离木板之前,小球处于三力平衡状态,木板对小球的弹力大小等于233mg .当木板突然撤离的瞬间,木板的弹力消失,突然撤离的瞬间,木板的弹力消失,但小球的重力不变,但小球的重力不变,但小球的重力不变,弹簧的弹力也不变,重力与弹簧的弹簧的弹力也不变,重力与弹簧的弹力的合力大小依旧等于木板对小球的弹力233mg ,根据牛顿第二定律有233mg =ma ,得a =233g ,选项A 正确.] 3.AC [剪断悬绳前,对B 受力分析,B 受到重力和弹簧的弹力,知弹力F =mg ,剪断瞬间,对A 分析,A 的合力为F 合=mg +F =2mg ,根据牛顿第二定律,得a =2g ,故选项A 正确,B 错误.弹簧开始处于伸长状态,弹簧开始处于伸长状态,弹力弹力F =mg =kx .当向下压缩,mg =F ′=kx ′时,速度最大,x ′=x ,所以下降的距离为2x ,选项C 正确,D 错误.]4.D [以框架为研究对象进行受力分析可知,当框架对地面压力为零时,其重力与弹簧对其弹力平衡,即F =Mg ,故可知弹簧处于压缩状态,再以小球为研究对象分析受力可知F+mg =ma ,联立可解得,小球的加速度大小为a =M +m m g ,故选项D 正确.] 5.BD [原来p 、q 对球的拉力大小均为mg .p 和球脱钩后,球将开始沿圆弧运动,将q 受的力沿法向和切线正交分解,如图甲,得F -mg cos 60°=m v 2r =0,即F =12mg ,合力为mg sin 60°=ma ,故a =32g ,选项A 错误,B 正确;q 和球突然脱钩后瞬间,p 的拉力未来得及改变,仍为mg ,因此合力为mg ,如图乙,球的加速度大小为g .故选项C 错误,D 正确.] 6.AB [物块在重力、拉力F 和弹簧的弹力作用下处于静止状态,由平衡条件得kx =F cos θ,mg =F sin θ,解得弹簧的弹力kx =mg tan 45°=20 20 N N ,故选项A 正确;撤去拉力F 的瞬间,由牛顿第二定律得kx -μmg =ma 1,解得a 1=8 m/s 2,方向向左,故选项B 正确;剪断弹簧的瞬间,弹簧的弹力消失,则F cos θ=ma 2,解得a 2=10 m/s 2,方向向右,故选项C 、D 错误.] 7.B [撤去支托物的瞬间,由于轻杆是刚体(认为无形变),所以弹力马上发生变化,A 1、A 2立即做自由落体运动,轻杆与A 1、A 2间弹力为零,所以F A 1=F A 2=mg ;撤去支托物前,由平衡条件知弹簧弹力大小为mg ,撤去支托物的瞬间,弹簧的形变因物块静止的惯性而不能马上改变,弹力仍保持原值,所以B 1受的合力F B 1=0,B 2受的合力F B 2=2mg ,故选项B 正确.]1.考点及要求:(1)牛顿运动定律的应用(Ⅱ);(2)匀变速直线运动的公式(Ⅱ).2.方法与技巧:(1)抓住两个分析:受力分析和运动过程分析;(2)解决动力学问题时对力的处理方法:合成法和正交分解法;(3)求解加速度是解决问题的关键.求解加速度是解决问题的关键.1.(已知运动分析受力)如图1所示,一物体从倾角为30°的斜面顶端由静止开始下滑,s 1段光滑,s 2段有摩擦,已知s 2=2s 1,物体到达斜面底端的速度刚好为零,求s 2段的动摩擦因数μ.(g 取10 m/s 2) 图1 2.(已知受力分析运动)如图2所示,在质量为m B =30 30 kg kg 的车厢B 内紧靠右壁,放一质量m A =20 kg 的小物体A (可视为质点),对车厢B 施加一水平向右的恒力F ,且F =120 N ,使之从静止开始运动.测得车厢B 在最初t =2.0 s 内移动s =5.0 m ,且这段时间内小物块未与车厢壁发生过碰撞.车厢与地面间的摩擦忽略不计.车厢壁发生过碰撞.车厢与地面间的摩擦忽略不计.图2 (1)计算B 在2.0 s 的加速度;的加速度;(2)求t =2.0 s 末A 的速度大小;的速度大小;(3)求t =2.0 s 内A 在B 上滑动的距离.上滑动的距离.3.如图3甲所示,在风洞实验室里,一根足够长的固定的均匀直细杆与水平方向成θ=37°角,质量m =1 1 kgkg 的小球穿在细杆上且静止于细杆底端O 处,开启送风装置,有水平向右的恒定风力F 作用于小球上,在t 1=2 s 时刻风停止.小球沿细杆运动的部分v -t 图象如图乙所示,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,忽略浮力.求:,忽略浮力.求:图3 (1)小球在0~2 s 内的加速度a 1和2~5 s 内的加速度a 2;(2)小球与细杆间的动摩擦因数μ和水平风力F 的大小.的大小.4.如图4所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .g 取10 m/s 2. 图4 (1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5 s 时离地面的高度h . (2)当无人机悬停在距离地面高度H =100 m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落地面时的速度v . (3)在无人机从离地高度H =100 m 处坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地,求飞行器从开始下落到恢复升力的最长时间t 1.答案解析1.32解析 设物体的质量为m ,在s 1段物体做匀加速直线运动,在s 2段物体做匀减速运动,在s 1段由牛顿第二定律得: mg sin θ=ma 1,解得a 1=g sin θ=5 m/s 2 在s 2段:μmg cos θ-mg sin θ=ma 2,解得a 2=μg cos θ-g sin θ 设s 1段结束时的速度为v ,根据运动学方程,在s 1段:v 2=2a 1s 1在s 2段:v 2=2a 2s 2,又s 2=2s 1解得:μ=322.(1)2.5 m /s 2 (2)4.5 m/s (3)0.5 m 解析 (1)设t =2.0 s 内车厢的加速度为a B ,由s =12a B t 2得 a B =2.5 m/s 2(2)对B ,由牛顿第二定律:F -f =m B a B ,得f =45 N 对A ,据牛顿第二定律得A 的加速度大小为a A =2.25 m/s 2所以t =2.0 s 末A 的速度大小为:v A =a A t =4.5 m/s. (3)在t =2.0 s 内A 运动的位移为s A =12a A t 2=4.5 m , A 在B 上滑动的距离Δs =s -s A =0.5 m. 3.(1)15 m /s 2,方向沿杆向上,方向沿杆向上10 m/s 2,方向沿杆向下,方向沿杆向下 (2)0.5 50 N 解析 (1)取沿细杆向上的方向为正方向,由题图可知,在0~2 s 内,a 1=Δv 1Δt 1=15 m/s 2(方向沿杆向上) 在2~5 s 内,a 2=Δv 2Δt 2=-10 m/s 2(“-”表示方向沿杆向下). (2)有风力F 时的上升过程,由牛顿第二定律,有 F cos θ-μ(mg cos θ+F sin θ)-mg sin θ=ma 1,停风后的上升阶段,由牛顿第二定律,有-μmg cos θ-mg sin θ=ma 2, 联立解得μ=0.5,F =50 N. 4.(1)75 m (2)40 m/s (3)535 5 s s 解析 (1)由牛顿第二定律:F -mg -f =ma 得a =6 m/s 2高度h =12at 2 解得h =75 m (2)下落过程中mg -f =ma 1 a 1=8 m/s 2落地时v 2=2a 1H 解得v =40 m/s (3)恢复升力后向下减速运动过程F -mg +f =ma 2 a 2=10 m/s 2设恢复升力时的速度为v m ,则有v 2m 2a 1+v 2m2a 2=H 得v m =4053 m/s 由v m =a 1t 1 解得t 1=553 s 1.考点及要求:超重和失重(Ⅰ).2.方法与技巧:(1)从受力的角度判断,当物体所受向上的拉力(或支持力)大于重力时物体处于超重状态,小于重力时处于失重状态,等于零时处于完全失重状态;(2)从加速度的角度判断,当物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态.下的加速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态.1.(对超重和失重的理解)小明家住十层,他乘电梯从一层直达十层.则下列说法正确的是( ) A .他始终处于超重状态.他始终处于超重状态B .他始终处于失重状态.他始终处于失重状态C .他先后处于超重、平衡、失重状态.他先后处于超重、平衡、失重状态D .他先后处于失重、平衡、超重状态.他先后处于失重、平衡、超重状态2.(超重和失重的分析)如图1所示,四个质量、形状相同的斜面体放在粗糙的水平面上,将四个质量相同的物块放在斜面顶端,因物块与斜面的摩擦力不同,四个物块运动情况不同,放上A 物块后A 物块匀加速下滑,B 物块获一初速度后匀速下滑,C 物块获一初速度后匀减速下滑,放上D 物块后D 物块静止在斜面上,四个斜面体均保持静止.四种情况下斜面对地面的压力依次为F 1、F 2、F 3、F 4,则它们的大小关系是( ) 图1 A .F 1=F 2=F 3=F 4B .F 1>F 2>F 3>F 4C .F 1<F 2=F 4<F 3D .F 1=F 3<F 2<F 43.在德国首都柏林举行的世界田径锦标赛女子跳高决赛中,克罗地亚选手弗拉西奇以2.04 m 的成绩获得冠军.弗拉西奇的身高约为1.93 m ,忽略空气阻力,g 取10 m/s 2,如图2所示.则下列说法正确的是( ) 图2 A .弗拉西奇在下降过程中处于完全失重状态.弗拉西奇在下降过程中处于完全失重状态B .弗拉西奇起跳以后在上升的过程中处于超重状态.弗拉西奇起跳以后在上升的过程中处于超重状态C .弗拉西奇起跳时地面对她的支持力等于她所受的重力.弗拉西奇起跳时地面对她的支持力等于她所受的重力D .弗拉西奇起跳时的初速度大约为3 m/s 4.(多选)2013年12月2日1时30分,“嫦娥三号”探测器由长征三号乙运载火箭从西昌卫星发射中心成功发射;12月14日21时,“嫦娥三号”到达距月球表面4 4 mm 处,关闭所有发动机,首次实现软着陆.12月15日晚,“嫦娥三号”着陆器和巡视器顺利互拍成像,“嫦娥三号”任务取得圆满成功.则下列说法正确的是( ) A .发射初期,“嫦娥三号”处于超重状态.发射初期,“嫦娥三号”处于超重状态B .发射初期,“嫦娥三号”处于失重状态.发射初期,“嫦娥三号”处于失重状态C .从距月球表面4 m 处到着陆的过程中,“嫦娥三号”处于失重状态处到着陆的过程中,“嫦娥三号”处于失重状态D .从距月球表面4 m 处到着陆的过程中,“嫦娥三号”处于超重状态处到着陆的过程中,“嫦娥三号”处于超重状态5.如图3所示,物体A 被平行于斜面的细线拴在斜面的上端,整个装置保持静止状态,斜面被固定在台秤上,物体与斜面间无摩擦,被固定在台秤上,物体与斜面间无摩擦,装置稳定后,当细线被烧断,装置稳定后,当细线被烧断,装置稳定后,当细线被烧断,物体下滑时与静止时物体下滑时与静止时比较,台秤的示数( ) 图3 A .增加.增加B .减小.减小C .不变.不变D .无法确定.无法确定6.如图4所示,质量为M 的木楔ABC 静置于粗糙水平面上,在斜面顶端将一质量为m 的物体,以一定的初速度从A 点沿平行斜面的方向推出,物体m 沿斜面向下做减速运动,在减速运动过程中,下列说法中正确的是( ) 图4 A .地面对木楔的支持力大于(M +m )gB .地面对木楔的支持力小于(M +m )gC .地面对木楔的支持力等于(M +m )gD .地面对木楔的摩擦力为0 7.举重运动员在地面上能举起120 120 kg kg 的重物,而在运动着的升降机中却只能举起100 100 kg kg 的重物,求升降机运动的加速度;若在以2.5 m /s 2的加速度加速下降的升降机中,此运动员能举起质量多大的重物?(取g =10 m/s 2) 答案解析1.C [小明乘坐电梯从一层直达十层过程中,一定是先向上加速,再向上匀速,最后向上减速,减速,运动过程中加速度方向最初向上,运动过程中加速度方向最初向上,运动过程中加速度方向最初向上,中间为零,最后向下,因此先后对应的状态应该是中间为零,最后向下,因此先后对应的状态应该是超重、平衡、失重三个状态,C 对.] 2.C [设物块和斜面的总重力为G . A 物块匀加速下滑,加速度沿斜面向下,具有竖直向下的分加速度,存在失重现象,则F 1<G ;B 物块匀速下滑,合力为零,斜面体保持静止状态,合力也为零,则系统的合力也为零,故F 2=G . C 物块匀减速下滑,加速度沿斜面向上,具有竖直向上的分加速度,存在超重现象,则F 3>G ;D 物块静止在斜面上,合力为零,斜面体保持静止状态,合力也为零,则系统的合力也为零,故F 4=G .故有F 1<F 2=F 4<F 3,故C 正确,A 、B 、D 错误.] 3.A [在上升和下降过程中,弗拉西奇的加速度等于重力加速度,处于完全失重状态,选项A 正确,选项B 错误;弗拉西奇起跳时地面对她的支持力大于她所受的重力,选项C 错误;弗拉西奇在上升的过程中做竖直上抛运动,由运动学公式v 20=2gh可得初速度v 0=2gh=20×(2.04-1.932)m /s≈4.6 m/s ,选项D 错误.] 4.AC [发射初期,“嫦娥三号”加速上升,加速度向上,处于超重状态;从距月球表面4 m 处到着陆的过程中,关闭所有发动机,“嫦娥三号”加速度为重力加速度,处于失重状态,选项A 、C 正确,B 、D 错误.]5.B [细线被烧断物体沿斜面下滑时不受摩擦力,物体A 将加速下滑,则物体A 的加速度沿竖直向下方向的分量不为0,A 处于失重状态,故台秤的示数将减小,选项B 正确.] 6.A [物体m 沿斜面向下做减速运动,加速度方向沿斜面向上,则其沿竖直向上的方向有分量,系统处于超重状态,故A 正确,B 、C 错误;物体加速度沿水平方向的分量向右,说明地面对木楔的摩擦力方向水平向右,故D 错误.]7.2 m/s 2,方向向上,方向向上160 kg 解析 运动员在地面上能举起m 0=120 kg 的重物,则运动员能发挥的向上的最大支撑力 F =m 0g =1 200 N. 在运动着的升降机中只能举起m 1=100 100 kgkg 的重物,可见该重物超重了,升降机应具有向上的加速度,设此加速度为a 1,对重物由牛顿第二定律得F -m 1g =m 1a 1,解得a 1=2 2 m m /s 2.当升降机以a 2=2.5 m/s 2的加速度加速下降时,重物失重.设此时运动员能举起的重物质量为m 2,对重物由牛顿第二定律得m 2g -F =m 2a 2,解得m 2=160 kg. 1.考点及要求:(1)图象(Ⅱ);(2)牛顿运动定律(Ⅱ);(3)力的合成与分解(Ⅱ).2.方法与技巧:。
高2021届高2018级版步步高3-5高中物理第一章 1
1碰撞[学习目标] 1.知道什么是碰撞, 会通过实验探究碰撞前后物体动能的变化.2.掌握弹性碰撞和非弹性碰撞.一、碰撞的定义做相对运动的两个(或几个)物体相遇而发生相互作用, 在很短的时间内, 它们的运动状态会发生显著变化, 这一过程叫做碰撞.二、碰撞的分类1.弹性碰撞:碰撞前后两滑块的总动能不变.2.非弹性碰撞:碰撞后两滑块的总动能减少了.3.完全非弹性碰撞:两物体碰后粘在一起, 以相同的速度运动.三、弹性碰撞和非弹性碰撞的区分1.从形变的角度:发生弹性碰撞的两物体碰后能够恢复原状, 而发生非弹性碰撞的两物体碰后不能恢复原状.2.从动能的角度:发生弹性碰撞的两物体碰撞前后总动能不变, 发生非弹性碰撞的两物体碰撞后的总动能减少, 在完全非弹性碰撞中动能损失最多.[即学即用]判断下列说法的正误.(1)两物体碰撞, 它们的速度将发生变化.(√)(2)在做“探究碰撞前后物体动能的变化”的实验中, 气垫导轨应水平放置.(√)(3)任何碰撞的两物体, 碰撞后总动能一定减少.(×)(4)完全非弹性碰撞中动能的减少最多.(√)一、碰撞中的动能变化及碰撞分类[导学探究]某实验小组用课本中“探究碰撞前后物体动能的变化”的实验方案, 探究碰撞前后物体动能的变化.探究中分别得到了两组数据, 如下表所示:m1与静止的m2碰撞, 碰后分开(表一)m1与静止的m2碰撞, 碰后粘在一起(表二)计算这两个表格中滑块碰撞前后的总动能.通过比较, 你有什么发现?答案①0.016 5②0.015 1③0.008 8④0.004 5从表一的数据可以看出:在实验误差允许范围内, 两滑块碰撞前后的总动能几乎相等.从表二的数据可以看出:两滑块碰撞前后的总动能并不相等, 碰撞后总动能减少了.[知识深化]1.碰撞的特点(1)相互作用时间短.(2)作用力变化快.(3)作用力峰值大.因此其他外力可以忽略不计.2.碰撞中能量的特点:碰撞过程中, 一般伴随机械能的损失, 即:E k1′+E k2′≤E k1+E k2.3.碰撞的类型及区分(1)弹性碰撞:两个物体碰撞后形变能够完全恢复, 碰撞后没有动能转化为其他形式的能, 即碰撞前后两物体构成的系统的动能相等.(2)非弹性碰撞:两个物体碰撞后形变不能完全恢复, 该过程有动能转化为其他形式的能, 总动能减少.(3)完全非弹性碰撞(非弹性碰撞的特例):两物体碰撞后粘在一起以共同的速度运动, 该碰撞过程动能损失最多.例1一个质量为2 kg的小球A以v0=3 m/s的速度与一个静止的、质量为1 kg的小球B正碰, 试根据以下数据, 分析碰撞性质:(1)碰后小球A 、B 的速度均为2 m/s ;(2)碰后小球A 的速度为1 m /s, 小球B 的速度为4 m/s. 答案 (1)完全非弹性碰撞 (2)弹性碰撞 解析 碰前系统的动能E k0=12m A v 02=9 J.(1)碰后小球A 、B 速度均为2 m/s, 碰后系统的动能E k =12m A v A 2+12m B v B 2=(12×2×22+12×1×22) J =6 J <E k0, 故该碰撞为完全非弹性碰撞.(2)当碰后v A ′=1 m /s, v B ′=4 m/s 时, 碰后系统的动能E k ′=12m A v A ′2+12m B v B ′2=(12×2×12+12×1×42) J =9 J =E k0, 故该碰撞为弹性碰撞.针对训练 如图1所示, 有A 、B 两物体, m 1=3m 2, 以相同的速率v 相向运动, 碰撞后A 静止, B 以2v 的速率反弹, 那么A 、B 的碰撞为( )图1A.弹性碰撞B.非弹性碰撞C.完全非弹性碰撞D.无法判断答案 A解析 设m 1=3m , m 2=m碰撞前总动能E k =12m 1v 12+12m 2v 22=2m v 2碰撞后总动能E k ′=12m 1v 1′2+12m 2v 2′2=0+12×m (2v )2=2m v 2因为碰撞前后总动能不变, 故为弹性碰撞, A 项正确. 二、碰撞模型的拓展例2如图2所示, 物体A静止在光滑的水平面上, A的左边固定有轻质弹簧, 与A质量相等的物体B以速度v向A运动并与弹簧发生碰撞.A、B始终沿同一直线运动, 则A、B组成的系统动能损失最大的时刻是()图2A.A开始运动时B.A的速度等于v时C.B的速度等于零时D.A和B的速度相等时答案 D解析方法一:B和A(包括弹簧)的作用, 可以看成广义上的碰撞, 两物体(包括弹簧)碰后粘在一起或碰后具有共同速度时, 其动能损失最多, 故选D.方法二:B与弹簧作用后, A加速, B减速, 当A、B速度相等时, 弹簧最短、弹性势能最大, 系统动能损失最多, 故D正确.两物体通过弹簧的相互作用可以看成广义上的碰撞, 当弹簧最短(两物体速度相等)时相当于完全非弹性碰撞;当弹簧完全恢复原状(两物体分离)时相当于弹性碰撞.1.(碰撞的特点)(多选)关于碰撞的特点, 下列说法正确的是()A.碰撞过程的时间极短B.碰撞时, 质量大的物体对质量小的物体作用力大C.碰撞时, 质量大的物体对质量小的物体的作用力和质量小的物体对质量大的物体的作用力大小相等D.碰撞时, 质量小的物体对质量大的物体作用力大答案AC2.(碰撞中能量损失的可能性)(多选)两个物体发生碰撞()A.碰撞过程中, 系统的总动能一定减小B.碰撞过程中, 系统的总动能可能不变C.碰撞过程中, 系统的总动能可能增大D.碰撞过程中, 系统的总动能可能减小答案BD3.(碰撞问题分析)(多选)如图3甲所示, 在光滑水平面上的两个小球发生正碰, 小球的质量分别为m1和m2, 取向右为正方向, 图乙为它们碰撞前后的x-t图像.已知m1=0.1 kg, m2=0.3 kg, 由此可以判断, 下列说法正确的是()图3A.碰前m 2静止, m 1向右运动B.碰后m 2和m 1都向右运动C.此碰撞为弹性碰撞D.此碰撞为非弹性碰撞 答案 AC解析 由题图乙可以看出, 碰前m 1位移随时间均匀增加, m 2位移不变, 结合题图甲可知m 2静止, m 1向右运动, 故A 正确;碰后一个位移增大, 一个位移减小, 说明运动方向不一致, 故B 错误;由题图乙可以计算出碰前m 1的速度v 1=4 m /s, 碰后m 1的速度v 1′=-2 m /s, 碰前m 2的速度v 2=0, 碰后m 2的速度v 2′=2 m/s, 又m 1=0.1 kg, m 2=0.3 kg, 则碰撞过程中系统损失的动能ΔE k =12m 1v 12-12m 1v 1′2-12m 2v 2′2=0, 故C 正确, D 错误.4.(碰撞问题分析)质量为1 kg 的A 球以3 m /s 的速度与质量为2 kg 的静止的B 球发生碰撞, 碰后两球均以1 m/s 的速度一起运动, 则两球的碰撞属于________碰撞, 碰撞过程中动能减少了________ J. 答案 完全非弹性 3解析 由于两球碰后速度相同, 没有分离, 因此两球的碰撞属于完全非弹性碰撞, 在碰撞过程中减少的动能为ΔE k =12m A v 2-12(m A +m B )v ′2=(12×1×32-12×3×12) J =3 J.。
2018版新步步高高考物理(全国用)大一轮复习讲义课件:第二章相互作用第2讲
质量为m的物块静止于斜面上,逐渐增大斜面的倾角θ,直到θ等于某特定
值φ时,物块达到“欲动未动”的临界状态,此时的摩擦力为最大静摩擦力,
物块m的平衡方程为FN-Gcos φ=0,Ffm-Gsin φ=0.
又Ffm=μFN, 解得μ=tan φ, φ称为摩擦角, 只与静摩
的侧面推压木柴的力约为
d A. l F
分析 答案
√
l B.dF
解析
l C.2dF
d D.2lF
d l l = ,得推压木柴的力 F 1=F2= F. F F1 d
题组阶梯突破
7.(多选)生活中拉链在很多衣服上得到应用, 图是衣服上拉链的一部分, 当 我们把拉链拉开的时候, 拉头与拉链接触处呈三角形, 使很难直接分开的拉 链很容易地拉开, 关于其中的物理原理, 以下说法正确的是 答案 A.拉开拉链的时候,三角形的物体增大了拉拉链的拉力 B.拉开拉链的时候,三角形的物体将拉力分解为两个较大的分力 √ C.拉开拉链的时候,三角形的物体将拉力分解为方向不同的两个 √ 分力 D.以上说法都不正确
其合力随夹角的增大而减小,当两力反向时,合力最小;当两力同向时,
合力最大.
(2)三个共点力的合成.
①最大值:三个力共线且同向时,其合力最大,为F1+F2+F3.
②最小值:任取两个力,求出其合力的范围,如果第三个力在这个范围
之内,则三个力的合力的最小值为零,如果第三个力不在这个范围内,
则合力的最小值为最大的一个力减去另外两个较小的力的大小之和.
深度思考
判断下列说法是否正确.
(1)两个力的合力一定大于任一个分力.( × )
(2)合力与分力是等效替代关系,因此受力分析时不能重复分析.( √ )
【新步步高】2018版浙江高考物理《选考总复习》第一章第2讲匀变速直线运动的研究
√
D.铁锤和羽毛同时落地,运动的加速度相同,但不等于物体在地球上的 重力加速度g
解析
3
4
4.(2015· 浙江 9 月选考样题· 4)质量为 m 的物体从高为 h 处自由下落,开始 h 的3用时为 t,则( )
√
A.物体落地所用的时间为 3t C.物体落地时的速度为 6gt
h 1 2 解析 由3=2gt 1 则 h=2gt′2 得 t′= 3t. 落地速度 v=gt′= 3gt.
C.x1∶x2=1∶4,v1∶v2=1∶ 2
解析
1 2 由 x=2at 知 x1∶x2=12∶(22-12)=1∶3.
由 v2=2ax 得 v1∶v2=1∶ 2.
解析
命题点二 自由落体运动
例2
比萨斜塔是世界建筑史上的一大奇迹.如图4所示,已知斜塔第一层
离地面的高度h1=6.8m,为了测量塔的总高度,在塔顶无初速度释放一 个小球,小球经过第一层到达地面的时间t1=0.2s,重力加速度g取10m/s2, 不计空气阻力.求:
1
2
3
4
5
6
3.(多选)以36 km/h的速度行驶的列车从坡顶开始匀加速下坡,在坡路上 的加速度等于0.2 m/s2.经过30 s到达坡底,则( A.到达坡底的速度为42 m/s )
√
B.到达坡底的速度为16 m/s C.坡的长度为500 m D.坡的长度为390 m
√
1
2
3
4
5
6
4.已知杭州地区的重力加速度为9.8 m/s2,在此地区物体做自由落体运动 的说法中,正确的是( )
答案
,即它的速度应该是均匀变化的.
空气阻力 3.日常生活中常会见到,较重的物体下落得比较快,这是由于_________
步步高高考物理一轮复习配套第课时PPT学习教案
性.
(3)在某个方向上看其分子排列比较整齐,但从另一 方向看,分子的排列是 杂乱无章的.
第8页/共33页
基础再现·深度思考
第2课时
再现·深度思考 本 课 栏 目
探究·突破考点 开 关
4.饱和汽 湿度 (1)饱和汽与未饱和汽 ①饱和汽:与液体处于动态平衡的蒸汽. ②未饱和汽:没有达到饱和状态的蒸汽. (2)饱和汽压 ①定义:饱和汽所具有的压强. ②特点:液体的饱和汽压与温度有关,温度越高, 饱和汽压越大,且饱和汽压与饱和汽的体积无关.
第20页/共33页
课堂探究·突破考点
Байду номын сангаас
第2课时
再现·深度思考 本 课 栏 目
探究·突破考点 开 关
跟踪训练 2 一气象探测气球,在充有压强为 76.0 cmHg、温度为 27.0 ℃
的氦气时,体积为 3.50 m3.在上升至海拔 6.50 km 高空的过程中,气球
内氦气压强逐渐减小到此高度上的大气压 36.0 cmHg,气球内部因启动
解得 m′=0.1 kg.
答案 (1)6.5 mL (2)0.1 kg
第19页/共33页
课堂探究·突破考点
第2课时
再现·深度思考 本 课 栏 目
探究·突破考点 开 关
方法突破 应用实验定律及状态方程解题的 一般步骤 (1)明确研究对象,即一定质量的某理想气体; (2)确定气体在始末状态的参量 p1、V1、T1 及 p2、V2、T2; (3)由气体实验定律或状态方程列式求解. (4)讨论结果的合理性.
第3页/共33页
基础再现·深度思考
第2课时
2.三个实验定律
玻意耳定律
查理定律
盖·吕萨克定律
再现·深度思考 本 课 栏 目
步步高高考物理一轮复习配套课件第一章 专题一 运动图象、追及相遇问题
75 m,则 C 正确,D 错误.
B . 0 ~ 10 s 、 10 s ~ 15 s 内 都在 做 加 速度 逐 渐 减 小 的变 速 运动
Ff ma
C
t
t
【解析指导】
x ——v-t 图中的面积 实线所包围的面积为x 虚线所包围的面积为
t
B. v 2 x
t
C. v 2 x
v t 2
t
D.
x 2x v t t
v tx 2
2x v t
课堂探究
【突破训练 3】 如图 7 所示,两物体由高度相同、路径不同的 光滑斜面由静止下滑,物体通过两条路径的长度相等,通过 C 点前后速度大小不变,且到达最低点 B、D 时两点的速度 大小相等,则下列说法正确的是 A.物体沿 AB 斜面运动时间较短 B.物体沿 ACD 斜面运动时间较短 C.物体沿两个光滑斜面运动时间相等 D.无法确定 解析 由于两斜面光滑, 且物体通过 C 点前后速度大小不变, 两物体到达斜面最低点的速度大小相等,而且两物体运动路 程相等,故可利用速度 —时间图象进行分析比较.从图中可 以看出,沿 ACD 运动时,起始阶段加速度较大,故其速度图 象起始阶段斜率较大,且二者末速度相等,为了保证最后速 度大小一样且包围的面积(路程 )一样,可以看到通过 AB 的时间 t1 大于通过 ACD 的时间 t2,所以沿 ACD 斜面运动时间较短,故 B 正确. 图7 ( B )
在v- t图象中,t2时刻丙、丁速度相等.故两者相距最远, C选项正确.
新步步高高考物理(全国用)大一轮复习讲义课件:第二章 相互作用 第1讲
2.在图中,a、b(a、b均处于静止状态)间一定有弹力的是 答案
√
3.(粤教版必修1P74第9题改编)(多选)关于摩擦力,有人总结了四条“不
一定”,其中说法正确的是 答案
√A.摩擦力的方向不一定与物体的运动方向相同 √B.静摩擦力的方向不一定与运动方向共线 √C.受静摩擦力或滑动摩擦力的物体不一定静止或运动
4.重心:物体的每一部分都受重力作用,可认为重力集中作用于一点即 物体的重心. (1)影响重心位置的因素:物体的几何形状;物体的 质量 分布. (2)不规则薄板形物体重心的确定方法: 悬挂 法.注意:重心的位置不一 定在物体上.
二、弹力 1.弹性形变:撤去外力作用后能够 恢复原状 的形变. 2.弹力: (1)定义:发生 形变 的物体由于要恢复原状而对与它接触的物体产生的 作用力. (2)产生条件: ①物体间直接接触; ②接触处发生 形变 . (3)方向:总是与施力物体形变的方向 相反 .
答案 瓶子受到与纸条运动方向一致的滑动摩擦力
2
命题点一
重力、弹力的分析与计算
1.弹力有无的判断“三法” 假设将与研究对象接触的物体解除接触,判断研究对象的运
思 动状态是否发生改变.若运动状态不变,则此处不存在弹力;
假路 若运动状态改变,则此处一定存在弹力
设 图中细线竖直、斜面光滑,因去掉斜面体,小球
与竖直方向成α角的细绳拴接一小球.当小车和小球相
对静止,一起在水平面上运动时,下列说法正确的是
A.细绳一定对小球有拉力的作用 Nhomakorabea答案
B.轻弹簧一定对小球有弹力的作用
C.细绳不一定对小球有拉力的作用,但是轻弹簧对小球一定有弹力
√D.细绳不一定对小球有拉力的作用,轻弹簧对小球也不一定有弹力
高2021届高2018级版步步高3-5高中物理课件第一章 3 课时2
[知识深化] 1.火箭喷气属于反冲类问题,是动量守恒定律的重要应用. 2.分析火箭类问题应注意的三个问题 (1)火箭在运动过程中,随着燃料的燃烧,火箭本身的质量不断减小,故在应 用动量守恒定律时,必须取在同一相互作用时间内的火箭和喷出的气体为 研究对象.注意反冲前、后各物体质量的变化. (2)明确两部分物体初、末状态的速度的参考系是否为同一参考系,如果 不是同一参考系要设法予以调整,一般情况要转换成对地的速度. (3)列方程时要注意初、末状态动量的方向.
面而言的.
例3 有一只小船停在静水中,船上一人从船头走到船尾.如果人的质量m =60 kg,船的质量M=120 kg,船长为l=3 m,则船在水中移动的距离是多少? (水的阻力不计) 答案 1 m
解析 答案
总结提升
“人船模型”是利用平均动量守恒求解的一类问题,解决这类问题应 明确: (1)适用条件: ①系统由两个物体组成且相互作用前静止,系统总动量为零; ②在系统内发生相对运动的过程中至少有一个方向的动量守恒(如水 平方向或竖直方向). (2)画草图:解题时要画出各物体的位移关系草图,找出各长度间的关系, 注意两物体的位移是相对同一参考系的位移.
动火箭 C.火箭吸入空气,然后向后排出,空气对火箭的反作用力推动火箭 D.火箭燃料燃烧发热,加热周围空气,.(人船模型的迁移)质量为m、半径为R的小球,放在半径
为2R、质量为2m的大空心球内,大球开始静止在光滑水
平面上.当小球从如图2所示的位置无初速度沿内壁滚到
最低点时,大球移动的距离是
2.人船模型的特点
(1)两物体满足动量守恒定律:m1 v 1-m2 v 2=0. (2)运动特点:人动船动,人停船停,人快船快,人慢船慢,人左船右;
人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质
《步步高》高三物理一轮复习-第1讲-电场的力的性质(人教版)省公开课一等奖全国示范课微课金奖PPT课
第16页
3.几个经典电场电场线(如图6-1-3所表示).
图6-1-3
第17页
第18页
考点一 电场强度了解与应用
电场强度三个表示式比较
表示式 比较
E=Fq
E=krQ2
E=Ud
公式 意义
电场强度定 真空中点电荷电 匀强电场中E与
义式
场强度决定式 U关系式
第19页
适用 条件
一切电场
①真空; ②点电荷
图6-1-4
Eb,方向与ab连线成60°角.则关于a、b两点场强大小及
电势高低,以下说法中正确是
( ).
A.Ea=3Eb,φa<φb C.Ea=2Eb,φa>φb
B.Ea=E3b,φa>φb D.Ea=E2b,φa<φb
第21页
解析 通过作图找出点电荷 Q 的位置, 并设 a、b 间距为 2l,则 a、b 两点距点 电荷的距离分别为 3l 和 l,如图所示; 根据点电荷周围的场强公式 E=kQr2∝
后做负功
D.负试探电荷在a点含有电势能比在b点含有电势能小
第34页
解析 两个点电荷之间连线上场强不为零,A选项错误; 负试探电荷从a点向b点移动过程中,电场力方向向右,电 场力一直做负功,电势能增大,C选项错误,D选项正确; 从a点到b点过程中,电场强度先变小后变大,故电场力先 减小后增大,B选项正确. 答案 BD
匀强电场
由电场本
决定 原因
身决定,
由场源电荷Q和场源电荷 由电场本身决定,d
到该点距离r共同决定
为沿电场方向距离
与q无关
相同点
矢量,恪守平行四边形定则,单位:1 N/C= 1 V/m
第20页
【步步高】2018版浙江省高考物理《选考总复习》文档讲义:第一章实验1用打点计时器测速度、实验2
[考试标准]实验1:用打点计时器测速度1.打点计时器是计时仪器,电磁打点计时器是使用4~6 V 交流电源;电火花计时器是使用220 V 交流电源,当电源的频率是50 Hz 时,它每隔0.02_s 打一个点. 2.使用打点计时器打点时,应先接通电源,再释放小车.3.根据v =ΔxΔt 可求出任意两点间的平均速度,Δx 是纸带上两点间的距离,Δt 是这两点间的时间间隔.实验2:探究小车速度随时间变化的规律1.实验器材电火花计时器(或电磁打点计时器)、一端附有滑轮的长木板、小车、纸带、细绳、钩码、刻度尺、导线、交流电源、复写纸.2.实验步骤(1)按照实验原理图所示实验装置,把打点计时器固定在长木板无滑轮的一端,接好电源;(2)把一细绳系在小车上,细绳绕过滑轮,下端挂适量的钩码,纸带穿过打点计时器,固定在小车后面;(3)把小车停靠在打点计时器处,先接通电源,后释放小车;(4)小车运动一段时间后,断开电源,取下纸带;(5)换纸带反复做三次,选择一条比较理想的纸带进行测量分析.3.注意事项(1)平行:纸带、细绳要和长木板平行.(2)两先两后:实验中应先接通电源,后释放小车;实验完毕应先断开电源,后取纸带.(3)防止碰撞:在到达长木板末端前应让小车停止运动,防止钩码落地及小车与滑轮相撞.(4)减小误差:小车的加速度宜适当大些,可以减小长度的测量误差,加速度大小以能在约50 cm的纸带上清楚地取出6~7个计数点为宜.1.数据处理 (1)目的通过纸带求解运动的加速度和瞬时速度,确定物体的运动性质等. (2)处理的方法①分析物体的运动性质——测量相邻计数点间的距离,计算相邻计数点距离之差,看其是否为常数,从而确定物体的运动性质. ②利用逐差法求解平均加速度(如图1)图1a 1=x 4-x 13T 2,a 2=x 5-x 23T 2,a 3=x 6-x 33T 2⇒a =a 1+a 2+a 33 ③利用平均速度求瞬时速度:v n =x n +x n +12T④利用速度—时间图象求加速度a .作出速度—时间图象,通过图象的斜率求解物体的加速度;b .剪下相邻计数点的纸带紧排在一起求解加速度. 2.依据纸带判断物体是否做匀变速直线运动 (1)x 1、x 2、x 3…x n 是相邻两计数点间的距离.(2)Δx 是两个连续相等的时间间隔内的位移差:Δx 1=x 2-x 1,Δx 2=x 3-x 2,….(3)T 是相邻两计数点间的时间间隔:T =0.02n (打点计时器的频率为50 Hz ,n 为两计数点间计时点的间隔数).(4)Δx =aT 2,因为T 是恒量,做匀变速直线运动的小车的加速度a 也为恒量,所以Δx 必然是个恒量.这表明:只要小车做匀变速直线运动,它在任意两个连续相等的时间间隔内的位移之差就一定相等.命题点一教材原型实验例1某同学用如图2甲所示的实验装置探究小车速度随时间变化的规律.图2实验步骤如下:A.安装好实验器材;B.让小车拖着纸带运动,打点计时器在纸带上打下一系列点,重复几次,选出一条点迹比较清晰的纸带,从便于测量的点开始,每五个点取一个计数点,如图乙中a、b、c、d等点;C.测出x1、x2、x3、….结合上述实验步骤,请你继续完成下列问题:(1)实验中,除打点计时器(含纸带、复写纸)、小车、一端附有滑轮的长木板、细绳、钩码、导线及开关外,在下列的仪器和器材中,必须使用的有________.(填选项代号)A.电压合适的50 Hz交流电源B.电压可调的直流电源C .秒表D .刻度尺E .天平F .重锤G .弹簧测力计H .滑动变阻器(2)如果小车做匀加速直线运动,所得纸带如图乙所示,则x 1、x 2、x 3的关系是________,已知打点计时器打点的时间间隔是T ,则打c 点时小车的速度大小是________.解析 (2)因小车做匀加速直线运动,所以x 3-x 2=x 2-x 1,即2x 2=x 1+x 3,c 点是bd 段的时间中点,则c 点的瞬时速度等于该段的平均速度,v c =x 2+x 310T.答案 (1)AD (2)x 3-x 2=x 2-x 1(或2x 2=x 1+x 3)x 2+x 310T例2 实验中,如图3所示为一次记录小车运动情况的纸带,图中A 、B 、C 、D 、E 为相邻的计数点,相邻计数点间的时间间隔T =0.1 s.图3(1)根据纸带可判定小车做________运动.(2)根据纸带计算各点瞬时速度:v D =________ m/s ,v C =__________ m/s ,v B =__________ m/s.以A 点为零时刻,在如图4所示坐标系中作出小车的v -t 图线,并根据图线求出a =________.图4(3)将图线延长与纵轴相交,交点的速度的物理意义是________________________________________________________________________. 解析 (1)根据纸带提供的数据可知x BC -x AB =x CD -x BC =x DE -x CD =12.60 cm , 故小车做匀加速直线运动.(2)根据v 2t =v 可知v D =(105.60-27.60)×10-20.2 m/s=3.90 m/sv C =(60.30-7.50)×10-20.2 m/s =2.64 m/sv B =27.60×10-20.2m/s =1.38 m/s描点连线得如图所示v -t 图线,根据图线斜率知 a =12.60 m/s 2.(3)图线与纵轴交点的速度的物理意义是零时刻小车经过A 点的速度.答案 (1)匀加速直线 (2)3.90 2.64 1.38 见解析图 12.60 m/s 2 (3)零时刻小车经过A 点的速度题组阶梯突破1.当纸带与运动物体连接时,打点计时器在纸带上打出点迹,下列关于纸带上的点迹的说法正确的是()A.点迹记录了物体运动的时间B.点迹记录了物体在不同时刻的位置和某段时间内的位移C.纸带上点迹的分布情况反映了物体的运动情况D.纸带上的点越密,说明物体运动得越快答案ABC解析从打点计时器的用途出发对选项进行筛选.打点计时器每隔一定的时间打下一个点,因而点迹记录了物体运动的时间,也记录了物体在不同时刻的位置和某段时间内的位移;纸带上点迹的分布情况反映了物体的运动情况,点迹越密说明物体运动越慢.2.关于“探究小车速度随时间变化的规律”的实验操作,下列说法中错误的是()A.长木板不能侧向倾斜,也不能一端高一端低B.在释放小车前,小车应停在靠近打点计时器处C.应先接通电源,待打点计时器开始打点后再释放小车D.要在小车到达定滑轮前使小车停止运动答案 A解析长木板不能侧向倾斜,但可以一端高一端低,故选项A错误.3.在做“探究小车速度随时间变化的规律”的实验时,为了能够较准确地测出加速度,将你认为正确的选项前面的字母填在横线上:________.A.把附有滑轮的长木板放在实验桌上,并使滑轮伸出桌面B .把打点计时器固定在长木板上没有滑轮的一端,连接好电路C .再把一条细绳拴在小车上,细绳跨过滑轮,下边挂上合适的钩码,每次必须由静止释放小车D .把纸带穿过打点计时器,并把它的一端固定在小车的后面E .把小车停在靠近打点计时器处,接通直流电源后,放开小车,让小车拖着纸带运动,打点计时器就在纸带上打下一系列的点,换上新纸带,重复三次F .从三条纸带中选择一条比较理想的纸带,舍掉开头比较密集的点,在后边便于测量的地方找一个起始点,并把每打五个点的时间作为时间单位.在选好的起始点下面记作0,往后数五个点作为计数点1,依次标出计数点2、3、4、5、6,并测算出相邻两计数点间的距离G .根据公式a 1=x 4-x 13T 2、a 2=x 5-x 23T 2、a 3=x 6-x 33T 2及a =a 1+a 2+a 33,求出a 答案 ABCDFG解析 在实验中应尽可能地保证小车做匀变速直线运动,同时也要求纸带能尽可能地直接反映小车的运动情况,既要减小系统误差又要减小偶然误差.其中E 项中的电源应采用交流电源,而不是直流电源.命题点二 拓展创新实验例3 在“探究小车速度随时间变化的规律”的实验中,小车做匀加速直线运动,打点计时器接在50 Hz 的低压交变电源上.某同学在打出的纸带上每5点取一个计数点,共取了A 、B 、C 、D 、E 、F 六个计数点(每相邻两个计数点间的四个点未画出).从每一个计数点处将纸带剪开分成五段(分别为a 、b 、c 、d 、e 段),将这五段纸带由短到长紧靠但不重叠地粘在xOy 坐标系中,如图5所示,由此可以得到一条表示v -t 关系的图线,从而求出加速度的大小.图5(1)请你在xOy 坐标系中用最简洁的方法作出能表示v -t 关系的图线.(2)从第一个计数点开始计时,为求出0.15 s 时刻的瞬时速度,需要测出哪一段纸带的长度?(3)若测得a 段纸带的长度为2.0 cm ,e 段纸带的长度为10.0 cm ,则可求出加速度的大小为________ m/s 2.解析 (1)纸带的长度表示位移,由于每条纸带宽度相同,也就是时间相同,因此长度也表示速度的大小,因此各个顶点连线就可以表示v -t 关系的图线.(2)0.15 s 恰好是BC 的中间时刻,因此需要测出BC 的长度,也就是纸带b 的长度. (3)根据匀变速直线运动的规律Δx =aT 2,由于相邻两段的时间间隔都是0.1 s ,可得:a =x e -x a4T 2=2.0 m/s 2.答案 (1)如图所示 (2)b (3)2.0题组阶梯突破4.如图6是某同学在做匀变速直线运动实验中获得的一条纸带.图6(1)已知打点计时器电源频率为50 Hz ,则纸带上打相邻两点的时间间隔为________. (2)A 、B 、C 、D 是纸带上四个计数点,每两个相邻计数点间有四个点没有画出.从图中读出A 、B 两点间距x =________;C 点对应的速度是________(计算结果保留两位有效数字). 答案 (1)0.02 s (2)0.70 cm 0.10 m/s解析 (1)打点计时器频率为50 Hz ,周期T =1f =0.02 s ,故打相邻两点的时间间隔为0.02 s.(2)两相邻计数点间的时间间隔为t =0.02×5 s =0.1 s ,由图读出x =7.0 mm =0.70 cm.C 点对应的速度v C =x BC +x CD 2t =0.90+1.102×0.1cm/s =0.10 m/s.5.某同学用如图7甲所示的实验装置“探究小车速度随时间变化的规律”:图7(1)电磁打点计时器接________电源(填“低压直流”“低压交流”或“220 V交流”).(2)实验时,使小车靠近打点计时器,先________再________.(填“接通电源”或“放开小车”)(3)若所接电源的频率是50 Hz,则每隔________秒打一个点.(4)图乙是绘出的小车速度—时间关系图线,根据图线求出小车的加速度为a=________ m/s2.(保留三位有效数字)答案(1)低压交流(2)接通电源放开小车(3)0.02(4)0.682解析(1)电磁打点计时器接低压交流电源.(2)实验时,使小车靠近打点计时器,先接通电源再放开小车.(3)若所接电源的频率是50 Hz,则每隔0.02 s打一个点.(4)在v-t图象中图线的斜率表示加速度,即a=ΔvΔt=0.682 m/s2.。
2018高考物理步步高 第一章 第2讲
第2讲 匀变速直线运动的规律一、匀变速直线运动的规律 1.匀变速直线运动沿一条直线且加速度不变的运动. 2.匀变速直线运动的基本规律 (1)速度公式:v =v 0+at . (2)位移公式:x =v 0t +12at 2.(3)位移速度关系式:v 2-v 02=2ax . 二、匀变速直线运动的推论 1.三个推论(1)做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初、末时刻速度矢量和的平均值,还等于中间时刻的瞬时速度. 平均速度公式:v =v 0+v 2=v t2.(2)连续相等的相邻时间间隔T 内的位移差相等. 即x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2. (3)位移中点速度v x2=v 20+v22. 2.初速度为零的匀加速直线运动的四个重要推论(1)1T 末,2T 末,3T 末,…,nT 末的瞬时速度之比为v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . (2)1T 内,2T 内,3T 内,…,nT 内的位移之比为x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2. (3)第1个T 内,第2个T 内,第3个T 内,…,第n 个T 内的位移之比为x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x N =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间之比为t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶(2-3)∶…∶(n -n -1).深度思考 飞机着陆后以6m/s 2的加速度做匀减速直线运动,若其着陆速度为60 m/s ,则它着陆后12s 内滑行的距离是多少? 某位同学的解法如下:由位移公式x =v 0t +12at 2,代入已知量求得滑行距离x =288m ,请分析以上解析是否正确,若不正确,请写出正确的解析. 答案 不正确.解析如下:先求出飞机着陆后到停止所用时间t .由v =v 0+at ,得t =v -v 0a =0-60-6s =10s ,由此可知飞机在12s 内不是始终做匀减速运动,它在最后2s 内是静止的.故它着陆后12s 内滑行的距离为x =v 0t +at 22=60×10m +(-6)×1022m =300m.三、自由落体运动 1.条件物体只受重力,从静止开始下落. 2.基本规律 (1)速度公式:v =gt . (2)位移公式:x =12gt 2.(3)速度位移关系式:v 2=2gx . 3.伽利略对自由落体运动的研究(1)伽利略通过逻辑推理的方法推翻了亚里士多德的“重的物体比轻的物体下落快”的结论. (2)伽利略对自由落体运动的研究方法和科学的推理方法,是人类思想史上最伟大的成就之一.他所用的研究方法是逻辑推理―→猜想与假设―→实验验证―→合理外推.这种方法的核心是把实验和逻辑推理(包括数学演算)和谐地结合起来.1.(多选)物体从静止开始做匀加速直线运动,第3s 内通过的位移为3m ,则( ) A .前3s 内的平均速度为3m/s B .前3s 内的位移为6m C .物体的加速度为1.2m/s 2 D .3s 末的速度为3.6m/s 答案 CD2.(粤教版必修1P35第5题改编)雨滴自屋檐由静止滴下,每隔0.2s 滴下一滴,第1滴落下时第6滴恰欲滴下,此时测得第1、2、3、4滴之间的距离依次为1.62m 、1.26m 、0.9m .假定落下的雨滴的运动情况完全相同,则此时第2滴雨滴下落的速度和屋檐高度各为(假设雨滴下落过程中不考虑空气阻力)( ) A .3.6m/s ,4.5 m B .7.2 m/s,4.5m C .3.6m/s ,4 m D .8 m/s,4m答案 B解析 6个雨滴的自由落体运动可以等效为1个雨滴在不同时刻的位置,如图: x 12=1.62m ,x 23=1.26m ,x 34=0.9m v 2=x 12+x 232T=7.2m/s由v 0=0时相邻相同时间内位移之比为1∶3∶5∶7… 可得:x 12h =925,h =4.5m.3.(人教版必修1P43第3题)某型号的舰载飞机在航空母舰的跑道上加速时,发动机产生的最大加速度为5m/s 2,所需的起飞速度为50 m/s ,跑道长100m .通过计算判断,飞机能否靠自身的发动机从舰上起飞?为了使飞机在开始滑行时就有一定的初速度,航空母舰装有弹射装置.对于该型号的舰载飞机,弹射系统必须使它至少具有多大的初速度?为了尽量缩短舰载飞机起飞时的滑行距离,航空母舰还需逆风行驶.这里对问题做了简化. 答案 不能 1015m/s4.(人教版必修1P45第5题)频闪摄影是研究变速运动常用的实验手段.在暗室中,照相机的快门处于常开状态,频闪仪每隔一定时间发出一次短暂的强烈闪光,照亮运动的物体,于是胶片上记录了物体在几个闪光时刻的位置.如图1是小球自由下落时的频闪照片示意图,频闪仪每隔0.04s 闪光一次.如果通过这幅照片测量自由落体加速度,可以采用哪几种方法?试一试.图1照片中的数字是小球落下的距离,单位是厘米. 答案 见解析解析 方法一 根据公式x =12gt 2x =19.6cm =0.196m. t =5T =0.2sg =2x t 2=0.196×24×10-2m/s 2=9.8 m/s 2 方法二 根据公式Δx =gT 2g =Δx T 2=(19.6-12.5)-(12.5-7.1)(0.04)2×10-2m/s 2=10.6 m/s 2. 方法三 根据v =gt 和v =v 0+v 2=x t =v t 2v =(19.6-7.1)×10-22×0.04m/s =1.56 m/sg =vt =1.560.16m/s 2=9.75 m/s 2.命题点一 匀变速直线运动规律及应用 1.恰当选用公式除时间t 外,x 、v 0、v 、a 均为矢量,所以需要确定正方向,一般以v 0的方向为正方向. 2.规范解题流程 画过程示意图―→判断运动性质―→选取正方向―→选用公式列方程―→解方程并加以讨论例1 据报道,一儿童玩耍时不慎从45m 高的阳台上无初速度掉下,在他刚掉下时恰被楼下一社区管理人员发现,该人员迅速由静止冲向儿童下落处的正下方楼底,准备接住儿童.已知管理人员到楼底的距离为18m ,为确保能稳妥安全地接住儿童,管理人员将尽力节约时间,但又必须保证接住儿童时没有水平方向的冲击.不计空气阻力,将儿童和管理人员都看成质点,设管理人员奔跑过程中只做匀速或匀变速运动,g 取10m/s 2. (1)管理人员至少用多大的平均速度跑到楼底?(2)若管理人员在奔跑过程中做匀加速或匀减速运动的加速度大小相等,且最大速度不超过9m/s ,求管理人员奔跑时加速度的大小需满足什么条件?①无初速度掉下;②不计空气阻力;③没有水平方向的冲击.答案 (1)6m/s (2)a ≥9 m/s 2解析 (1)儿童下落过程,由运动学公式得:h =12gt 02管理人员奔跑的时间t ≤t 0,对管理人员运动过程,由运动学公式得:x =v t ,联立各式并代入数据解得:v ≥6m/s.(2)假设管理人员先匀加速接着匀减速奔跑到楼底,奔跑过程中的最大速度为v 0,由运动学公式得:v =0+v 02解得:v 0=2v =12m/s >v m =9 m/s故管理人员应先加速到v m =9m/s ,再匀速,最后匀减速奔跑到楼底.设匀加速、匀速、匀减速过程的时间分别为t 1、t 2、t 3,位移分别为x 1、x 2、x 3,加速度大小为a ,由运动学公式得: x 1=12at 12x 3=12at 32,x 2=v m t 2,v m =at 1=at 3t 1+t 2+t 3≤t 0,x 1+x 2+x 3=x 联立各式并代入数据得a ≥9m/s 2.1.一个做匀变速直线运动的质点,初速度为0.5m/s ,第9s 内的位移比第5s 内的位移多4m ,则该质点的加速度、9s 末的速度和质点在9s 内通过的位移分别是( ) A .a =1m/s 2,v 9=9 m/s ,x 9=40.5m B .a =1m/s 2,v 9=9 m/s ,x 9=45m C .a =1m/s 2,v 9=9.5 m/s ,x 9=45m D .a =0.8m/s 2,v 9=7.7 m/s ,x 9=36.9m 答案 C解析 根据匀变速直线运动的规律,质点在t =8.5s 时刻的速度比在t =4.5s 时刻的速度大4m/s ,所以加速度a =Δv Δt =4m/s 4s =1m/s 2,v 9=v 0+at =9.5 m/s ,x 9=12(v 0+v 9)t =45m ,选项C正确.2.随着机动车数量的增加,交通安全问题日益凸显.分析交通违法事例,将警示我们遵守交通法规,珍爱生命.某路段机动车限速为15m/s ,一货车严重超载后的总质量为5.0×104 kg ,以15 m/s 的速度匀速行驶.发现红灯时司机刹车,货车即做匀减速直线运动,加速度大小为5m/s 2.已知货车正常装载后的刹车加速度大小为10 m/s 2. (1)求此货车在超载及正常装载情况下的刹车时间之比. (2)求此货车在超载及正常装载情况下的刹车距离分别是多大?(3)若此货车不仅超载而且以20m/s 的速度超速行驶,则刹车距离又是多少?(设此情形下刹车加速度大小仍为5 m/s 2).答案 (1)2∶1 (2)22.5m 11.25m (3)40m解析 (1)此货车在超载及正常装载情况下刹车时间之比t 1∶t 2=v 0a 1∶v 0a 2=2∶1.(2)超载时,刹车距离x 1=v 202a 1=1522×5m =22.5m正常装载时,刹车距离x 2=v 202a 2=1522×10m =11.25m显然,严重超载后的刹车距离是正常装载时刹车距离的两倍. (3)货车在超载并超速的情况下的刹车距离x 3=v 0′22a 1=2022×5m =40m由此可见,超载超速会给交通安全带来极大的隐患. 命题点二 常用的几种物理思想方法例2 一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为s ,动能变为原来的9倍.该质点的加速度为( ) A.s t 2B.3s 2t 2C.4s t 2D.8s t 2 答案 A解析 动能变为原来的9倍,则质点的速度变为原来的3倍,即v =3v 0,由s =12(v 0+v )t 和a=v -v 0t 得a =st2,故A 对. 例3 质点由A 点出发沿直线AB 运动,行程的第一部分是加速度大小为a 1的匀加速运动,接着做加速度大小为a 2的匀减速运动,到达B 点时恰好速度减为零.若AB 间总长度为s ,则质点从A 到B 所用时间t 为( ) A.s (a 1+a 2)a 1a 2B.2s (a 1+a 2)a 1a 2 C.2s (a 1+a 2)a 1a 2D.a 1a 22s (a 1+a 2)①接着做加速度大小为a 2的匀减速运动;②到达B 点时恰好速度减为零.答案 B解析 设第一阶段的末速度为v , 则由题意可知:v 22a 1+v 22a 2=s ,解得:v =2a 1a 2sa 1+a 2; 而s =0+v 2t 1+v +02t 2=v 2t ,由此解得:t =2(a 1+a 2)sa 1a 2,所以正确答案为B.3.一个物体做末速度为零的匀减速直线运动,比较该物体在减速运动的倒数第3m 、倒数第2m 、最后1m 内的运动,下列说法中正确的是( ) A .经历的时间之比是1∶2∶3 B .平均速度之比是3∶2∶1C .平均速度之比是1∶(2-1)∶(3-2)D .平均速度之比是(3+2)∶(2+1)∶1 答案 D解析 将末速度为零的匀减速直线运动看成是反方向初速度为0的匀加速直线运动(逆向思维),从静止开始通过连续相等的三段位移所用时间之比为t 1∶t 2∶t 3=1∶(2-1)∶(3-2),则倒数第3m 、倒数第2m 、最后1m 内经历的时间之比为(3-2)∶(2-1)∶1,平均速度之比为13-2∶12-1∶1=(3+2)∶(2+1)∶1,故只有选项D 正确. 4.做匀加速直线运动的质点,在第一个3s 内的平均速度比它在第一个5s 内的平均速度小3m/s.则质点的加速度大小为( ) A .1m/s 2 B .2 m/s 2C .3m/s 2 D .4 m/s 2 答案 C解析 第1个3s 内的平均速度即为1.5s 时刻瞬时速度v 1,第1个5s 内的平均速度即为2.5s 时刻瞬时速度v 2,a =Δv Δt =v 2-v 1Δt =3m/s(2.5-1.5)s=3m/s 2,C 正确.5.某款小轿车对紧急制动性能的设计要求是:以20m/s 的速度行驶时,急刹车距离不得超过25m .在一次紧急制动性能测试中,该款小轿车以某一速度匀速行驶时实行紧急制动,测得制动时间为1.5s ,轿车在制动的最初1s 内的位移为8.2m ,试根据测试结果进行计算来判断这辆轿车的紧急制动性能是否符合设计要求. 答案 符合设计要求解析 轿车在制动的最初1s 内的位移为8.2m. 则v 0.5=v =x t =8.21m/s =8.2 m/s ,a =v 0.5-v 0t =8.2-200.5m/s 2=-23.6 m/s 2.由v 2-v 02=2ax ,可得x =0-2022×(-23.6)m ≈8.5m<25m.故这辆轿车的紧急制动性能符合设计要求. 命题点三 自由落体 1.特点和规律(1)从静止开始,即初速度为零. (2)只受重力的匀加速直线运动. (3)基本公式有:v =gt ,h =12gt 2,v 2=2gh .2.解题方法对自由落体运动,v 0=0,a =g ,将匀变速运动的所有公式和推论全部接收过来.例4 如图2所示,木杆长5m ,上端固定在某一点,由静止放开后让它自由落下(不计空气阻力),木杆通过悬点正下方20m 处圆筒AB ,圆筒AB 长为5m ,取g =10m/s 2,求:图2(1)木杆经过圆筒的上端A所用的时间t1是多少?(2)木杆通过圆筒AB所用的时间t2是多少?答案(1)(2-3) s(2)(5-3) s解析(1)木杆由静止开始做自由落体运动,木杆的下端到达圆筒上端A用时t下A=2h下A g=2×1510s=3s木杆的上端到达圆筒上端A用时t上A=2h上Ag=2×2010s=2s则通过圆筒上端A所用的时间t1=t上A-t下A=(2-3) s(2)木杆的上端离开圆筒下端B用时t上B=2h上Bg=2×2510s=5s则木杆通过圆筒所用的时间t2=t上B-t下A=(5-3) s.6.伽利略对自由落体运动规律的探究中,下列描述错误的是()A.亚里士多德根据生活现象提出了重的物体下落得快,轻的物体下落得慢B.伽利略利用斜槽实验发现物体从静止开始滑下,在连续相等的时间间隔内通过的距离之比为1∶3∶5…,从而间接证实了他提出的“落体速度与时间成正比”的假说C.在当时的实验中,伽利略已经可以较精确地测量自由落体时间,直接研究自由落体运动了D.伽利略对自由落体的探究中,经历了提出问题—猜想假设—数学推论—实验验证—合理外推—得出结论的科学推理方法答案 C解析当时的计时工具还不能精确测量自由落体运动所用的较短时间,所以不能直接研究自由落体运动,选项C 错误.7.(多选)一根轻质细线将2个薄铁垫片A 、B 连接起来,一同学用手固定B ,此时A 、B 间距为3l ,A 距地面为l ,如图3所示.由静止释放A 、B ,不计空气阻力,且A 、B 落地后均不再弹起.从释放开始到A 落地历时t 1,A 落地前的瞬时速率为v 1,从A 落地到B 落在A 上历时t 2,B 落在A 上前的瞬时速率为v 2,则( )图3A .t 1>t 2B .t 1=t 2C .v 1∶v 2=1∶2D .v 1∶v 2=1∶3答案 BC解析 由题意可知l =12gt 12,l +3l =12g (t 1+t 2)2,故t 1=t 2,选项A 错误,B 正确;而v 1=gt 1,v 2=g (t 1+t 2),故v 1∶v 2=1∶2,选项C 正确,D 错误.8.距地面高5m 的水平直轨道上A 、B 两点相距2m ,在B 点用细线悬挂一小球,离地高度为h ,如图4所示.小车始终以4m/s 的速度沿轨道匀速运动,经过A 点时将随车携带的小球由轨道高度自由卸下,小车运动至B 点时细线被轧断,最后两球同时落地.不计空气阻力,取重力加速度的大小g =10 m/s 2.可求得h 等于( )图4A .1.25mB .2.25mC .3.75mD .4.75m答案 A解析 小车上的小球自A 点自由落地的时间t 1=2H g,小车从A 到B 的时间t 2=dv ;小车运动至B 点时细线被轧断,小球下落的时间t 3=2hg;根据题意可得时间关系为t 1=t 2+t 3,即2H g =dv+2hg,解得h =1.25m ,选项A 正确.9.同学们利用如图5所示方法估测反应时间.首先,甲同学捏住直尺上端,使直尺保持竖直状态,直尺零刻度线位于乙同学的两指之间.当乙看见甲放开直尺时,立即用手指捏直尺,若捏住位置的刻度读数为x ,则乙同学的反应时间为________(重力加速度为g ).基于上述原理,某同学用直尺制作测量反应时间的工具,若测量范围为0~0.4s ,则所用直尺的长度至少为__________cm(g 取10m/s 2);若以相等时间间隔在该直尺的另一面标记出表示反应时间的刻度线,则每个时间间隔在直尺上对应的长度是________的(选填“相等”或“不相等”).图5答案2xg80 不相等 解析 在人的反应时间内,直尺做自由落体运动,则x =12gt 2,解得乙同学的反应时间为t =2x g .当t =0.4s 时,x =12gt 2=12×10×0.42m =0.8m =80cm ,即所用直尺的长度至少为80cm ;由于t ∝x ,故每个时间间隔内在直尺上对应的长度不相等. 命题点四 多运动过程问题如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带.可按下列步骤解题:(1)画:分清各阶段运动过程,画出草图; (2)列:列出各运动阶段的运动方程;(3)找:找出交接处的速度与各段间的位移-时间关系; (4)解:联立求解,算出结果.例5 假设收费站的前、后都是平直大道,大假期间过站的车速要求不超过v t =21.6km /h ,事先小汽车未减速的车速均为v 0=108 km/h ,制动后小汽车的加速度的大小为a 1=4m/s 2.试问: (1)大假期间,驾驶员应在距收费站至少多远处开始制动?(2)假设车过站后驾驶员立即使车以a 2=6m/s 2的加速度加速至原来的速度,则从减速开始至最终恢复到原来速度的过程中,汽车运动的时间至少是多少? (3)在(1)(2)问题中,车因减速和加速过站而耽误的时间至少为多少?答案 (1)108m (2)10s (3)4s解析 (1)v t =21.6km /h =6 m/s ,事先小汽车未减速的车速均为v 0=108km /h =30 m/s ,小汽车进入站台前做匀减速直线运动,设距收费站至少x 1处开始制动, 则:v t 2-v 02=-2a 1x 1 即:62-302=2×(-4)x 1 解得:x 1=108m.(2)小汽车通过收费站经历匀减速和匀加速两个阶段,前后两段的位移分别为x 1和x 2,时间分别为t 1和t 2,则: 减速阶段:v t =v 0-a 1t 1 t 1=v t -v 0-a 1=6-304s =6s加速阶段:v 0=v t +a 2t 2 t 2=v 0-v t a 2=30-66s =4s则汽车运动的时间至少为:t =t 1+t 2=10s. (3)在加速阶段:v 02-v t 2=2a 2x 2 302-62=2×6x 2 解得:x 2=72m则总位移x =x 1+x 2=180m若不减速通过收费站,所需时间t ′=x 1+x 2v 0=6s车因减速和加速过站而耽误的时间至少为: Δt =t -t ′=4s.多过程组合问题的“三个”处理技巧1.用图象分析运动学问题能很好地反映出物体的运动规律,且直观、形象,这是图象法的优势,一些物理量的关系能通过图象很明显地反映出来.2.将末速度为零的匀减速直线运动通过逆向思维转化为初速度为零的匀加速直线运动. 3.多运动过程的转折点的速度是联系两个运动过程的纽带,因此,转折点速度的求解往往是解题的关键.10.短跑运动员完成100m 赛跑的过程可简化为匀加速运动和匀速运动两个阶段.一次比赛中,运动员用11.00s 跑完全程.已知运动员在加速阶段的第2s 内通过的距离为7.5m ,求运动员的加速度及加速阶段通过的距离. 答案 5m/s 2 10m解析 根据题意,在第1s 和第2s 内运动员都做匀加速运动.设运动员在匀加速阶段的加速度为a ,在第1s 和第2s 内通过的位移分别为x 1和x 2,由运动学规律得: x 1=12at 02① x 1+x 2=12a (2t 0)2②式中t 0=1s联立(1)(2)两式并代入已知条件,得a =5m/s 2③设运动员做匀加速运动的时间为t 1,匀速运动时间为t 2,匀速运动的速度为v ;跑完全程的时间为t ,全程的距离为x . 依题意及运动学规律,得 t =t 1+t 2④v =at 1⑤ x =12at 12+v t 2⑥ 设加速阶段通过的距离为x ′,则x ′=12at 21⑦ 联立③④⑤⑥⑦式,并代入数据得:x ′=10m⑧用“等效法”处理三类直线运动问题一、将“平均速度”等效为“中间时刻的瞬时速度”做匀变速直线运动的物体在某段时间内的平均速度v 等于它在这段时间t 内的中间时刻的瞬时速度,在解题中,我们可以充分利用这一关系,进行等效处理,以达到简化解题的目的. 典例1 物体从静止开始做匀加速直线运动,测得它在第n s 内的位移为x m ,则物体运动的加速度为( ) A.2xn2m/s 2 B.x2n2m/s 2C.2n -12x m/s 2D.2x 2n -1m/s 2 答案 D解析 第n s 内位移为x m ,该秒内平均速度大小为x m/s ,与该秒内中间时刻瞬时速度相等,则(n -0.5) s 时瞬时速度大小也为x m/s ,即 a ·(n -0.5)=x所以a =2x 2n -1m/s 2,选项D 正确.二、将“匀减速至零的运动”等效为“初速度为零的匀加速运动”加速度大小相等的匀加速运动与匀减速运动,在相应的物理量上表现出一定的对称性,即加速运动可等效为逆向的减速运动,反之亦然.典例2 以36km /h 的速度沿平直公路行驶的汽车,遇障碍物刹车后获得大小为4 m/s 2的加速度,刹车后第三个2s 内,汽车走过的位移为( ) A .12.5mB .2mC .10mD .0 答案 D解析 设汽车从刹车到停下的时间为t ,根据匀减速至零的运动等效为初速度为零的匀加速运动,则由v 0=at 得t =v 0a =104s =2.5s ,所以刹车后第三个2s 时汽车早已停止,即刹车后第三个2s 内,汽车走过的位移为零,D 正确.三、将“匀减速运动至零又反向加速”等效为“竖直上抛运动”如果物体先做匀减速直线运动,减速为零后又反向做匀加速直线运动,且全过程加速度大小、方向均不变,故求解时可对全过程列式,但必须注意x 、v 、a 等矢量的正负号及物理意义. 典例3 (多选)一物体以5m/s 的初速度在光滑斜面上向上运动,其加速度大小为2 m/s 2,设斜面足够长,经过t 时间物体位移的大小为4m ,则时间t 可能为( ) A .1sB .3sC .4sD.5+412s答案 ACD解析 当物体的位移为4m 时,根据x =v 0t +12at 2得,4=5t -12×2t 2,解得t 1=1s ,t 2=4s ;当物体的位移为-4m 时,根据x =v 0t +12at 2得:-4=5t -12×2t 2,解得t 3=5+412s ,故A 、C 、D 正确,B 错误.题组1 匀变速直线运动规律的应用1.假设某无人机靶机以300m/s 的速度匀速向某个目标飞来,在无人机离目标尚有一段距离时从地面发射导弹,导弹以80 m/s 2的加速度做匀加速直线运动,以1200m/s 的速度在目标位置击中该无人机,则导弹发射后击中无人机所需的时间为( ) A .3.75sB .15sC .30sD .45s 答案 B解析 导弹由静止做匀加速直线运动,即v 0=0,a =80m/s 2,据公式v =v 0+at ,有t =v a =120080s =15s ,即导弹发射后经15s 击中无人机,选项B 正确.2.(多选)做匀减速直线运动的质点,它的加速度大小为a ,初速度大小为v 0,经过时间t 速度减小到零,则它在这段时间内的位移大小可用下列哪些式子表示( ) A .v 0t -12at 2B .v 0t C.v 0t 2 D.12at 2 答案 ACD3.(多选)给滑块一初速度v 0使它沿光滑斜面向上做匀减速运动,加速度大小为g2,当滑块速度大小减为v 02时,所用时间可能是( )A.v 02gB.v 0gC.3v 0gD.3v 02g 答案 BC解析 当滑块速度大小减为v 02时,其方向可能与初速度方向相同,也可能与初速度方向相反,因此要考虑两种情况,即v =v 02或v =-v 02,代入公式t =v -v 0a 得t =v 0g 或t =3v 0g ,故B 、C 正确.4.(多选)如图1所示,一小滑块沿足够长的斜面以初速度v 向上做匀减速直线运动,依次经A 、B 、C 、D 到达最高点E ,已知AB =BD =6m ,BC =1m ,滑块从A 到C 和从C 到D 所用的时间都是2s .设滑块经C 时的速度为v C ,则( )图1A .滑块上滑过程中加速度的大小为0.5m/s 2B .vC =6m/s C .DE =3mD .从D 到E 所用时间为4s答案 AD5.在水下潜水器蛟龙号某次海试活动中,完成任务后从海底竖直上浮,从上浮速度为v 时开始计时,此后匀减速上浮,经过时间t 上浮到海面,速度恰好减为零,则蛟龙号在t 0(t 0<t )时刻距离海平面的深度为( ) A.v t 2 B .v t 0(1-t 02t )C.v t 202tD.v (t -t 0)22t答案 D6.在一平直路段检测某品牌汽车的运动性能时,以路段的起点作为x 轴的原点,通过传感器发现汽车刹车后的坐标x 与时间t 的关系满足x =60+30t -5t 2(m),下列说法正确的是( ) A .汽车刹车过程的初速度大小为30m/s ,加速度大小为10 m/s 2 B .汽车刹车过程的初速度大小为30m/s ,加速度大小为5 m/s 2 C .汽车刹车过程的初速度大小为60m/s ,加速度大小为5 m/s 2 D .汽车刹车过程的初速度大小为60m/s ,加速度大小为2.5 m/s 2 答案 A解析 根据汽车刹车后的坐标x 与时间t 的关系x =60+30t -5t 2(m),对比匀变速直线运动的规律x =v 0t +12at 2,可知汽车刹车过程的初速度大小为30m/s ,加速度大小为10 m/s 2,故选A.题组2 自由落体7.一小石块从空中a 点自由落下,先后经过b 点和c 点,不计空气阻力.经过b 点时速度为v ,经过c 点时速度为3v ,则ab 段与ac 段位移之比为( ) A .1∶3B .1∶5C .1∶8D .1∶9 答案 A解析 小石块做自由落体运动,2gh ab =v 2,2gh ac =(3v )2,可得h ab h ac =19,选项D 正确.8.(多选)如图2所示,在一个桌面上方有三个金属小球a 、b 、c ,离桌面高度分别h 1∶h 2∶h 3=3∶2∶1.若先后顺次静止释放a 、b 、c ,三球刚好同时落到桌面上,不计空气阻力,则下列说法正确的是( )图2A .三者到达桌面时的速度之比是3∶2∶1B .三者运动的平均速度之比是3∶2∶1C .b 与a 开始下落的时间差小于c 与b 开始下落的时间差D .b 与a 开始下落的时间差大于c 与b 开始下落的时间差 答案 ABC解析 由公式v 2-v 20=2gx 可得v =2gh ,所以三者到达桌面时的速度之比是h 1∶h 2∶h 3=3∶2∶1,A 正确;三者都做匀变速直线运动,初速度为零,所以v =v2,故平均速度之比为h 1∶h 2∶h 3=3∶2∶1,B 正确;根据h =12gt 2可得a 、b 开始下落的时间差为Δt 1=2h 1g-2h 2g=(3-2) 2h 3g,b 、c 开始下落的时间差为Δt 2=2h 2g-2h 3g=(2-1) 2h 3g,所以Δt 1<Δt 2,C 正确,D 错误.题组3 多运动过程问题9.如图3所示,运动员从离水面10m 高的平台上向上跃起,举起双臂直体离开台面,此时其重心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计,计算时可以把运动员看成全部质量集中在重心的一个质点,g 取10m/s 2),求:图3(1)运动员起跳时的速度v 0.(2)从离开跳台到手接触水面的过程中所经历的时间t (结果保留3位有效数字). 答案 (1)3m/s (2)1.75s解析 (1)上升阶段:-v 02=-2gh 解得v 0=2gh =3m/s(2)上升阶段:0=v 0-gt 1 解得:t 1=v 0g =310s =0.3s自由落体过程:H =12gt 22解得t 2=2H g=2×10.4510s ≈1.45s 故t =t 1+t 2=0.3s +1.45s =1.75s10.在一次低空跳伞训练中,当直升机悬停在离地面224m 高处时,伞兵离开飞机做自由落体运动.运动一段时间后,打开降落伞,展伞后伞兵以12.5m/s 2的加速度匀减速下降.为了伞兵的安全,要求伞兵落地速度最大不得超过5 m/s ,求:(取g =10m/s 2) (1)伞兵展伞时,离地面的高度至少为多少? (2)伞兵在空中的最短时间为多少? 答案 (1)99m (2)8.6s解析 (1)设伞兵展伞时,离地面的高度至少为h ,此时速度为v 0 则有:v 2-v 02=-2ah , 又v 02=2g (224m -h )联立并代入数据解得:v 0=50m/s ,h =99m (2)设伞兵在空中的最短时间为t , 则有:v 0=gt 1, t 1=5st 2=v -v 0a=3.6s ,故所求时间为:t =t 1+t 2=(5+3.6) s =8.6s.。
(完整版)物理步步高大一轮复习讲义答案
实验基础知识一、螺旋测微器的使用1.构造:如图1所示,B为固定刻度,E为可动刻度.图12.原理:测微螺杆F与固定刻度B之间的精密螺纹的螺距为0.5 mm,即旋钮D每旋转一周,F前进或后退0.5 mm,而可动刻度E上的刻度为50等份,每转动一小格,F前进或后退0.01 mm,即螺旋测微器的精确度为0.01 mm.读数时估读到毫米的千分位上,因此,螺旋测微器又叫千分尺.3.读数:测量值(mm)=固定刻度数(mm)(注意半毫米刻度线是否露出)+可动刻度数(估读一位)×0.01(mm).如图2所示,固定刻度示数为2.0 mm,半毫米刻度线未露出,而从可动刻度上读的示数为15.0,最后的读数为:2.0 mm+15.0×0.01 mm=2.150 mm.图2二、游标卡尺1.构造:主尺、游标尺(主尺和游标尺上各有一个内、外测量爪)、游标卡尺上还有一个深度尺.(如图3所示)图32.用途:测量厚度、长度、深度、内径、外径.3.原理:利用主尺的最小分度与游标尺的最小分度的差值制成.不管游标尺上有多少个小等分刻度,它的刻度部分的总长度比主尺上的同样多的小等分刻度少1 mm.常见的游标卡尺的游标尺上小等分刻度有10个的、20个的、50个的,其规格见下表:4.读数:若用x表示从主尺上读出的整毫米数,K表示从游标尺上读出与主尺上某一刻度线对齐的游标的格数,则记录结果表示为(x+K×精确度)mm.三、常用电表的读数对于电压表和电流表的读数问题,首先要弄清电表量程,即指针指到最大刻度时电表允许通过的最大电压或电流,然后根据表盘总的刻度数确定精确度,按照指针的实际位置进行读数即可.(1)0~3 V的电压表和0~3 A的电流表的读数方法相同,此量程下的精确度分别是0.1 V和0.1 A,看清楚指针的实际位置,读到小数点后面两位.(2)对于0~15 V量程的电压表,精确度是0.5 V,在读数时只要求读到小数点后面一位,即读到0.1 V.(3)对于0~0.6 A量程的电流表,精确度是0.02 A,在读数时只要求读到小数点后面两位,这时要求“半格估读”,即读到最小刻度的一半0.01 A.基本实验要求1.实验原理根据电阻定律公式知道只要测出金属丝的长度和它的直径d ,计算出横截面积S ,并用伏安法测出电阻R x ,即可计算出金属丝的电阻率. 2.实验器材被测金属丝,直流电源(4 V),电流表(0~0.6 A),电压表(0~3 V),滑动变阻器(50 Ω),开关,导线若干,螺旋测微器,毫米刻度尺. 3.实验步骤(1)用螺旋测微器在被测金属丝上的三个不同位置各测一次直径,求出其平均值d . (2)连接好用伏安法测电阻的实验电路.(3)用毫米刻度尺测量接入电路中的被测金属丝的有效长度,反复测量三次,求出其平均值l .(4)把滑动变阻器的滑片调节到使接入电路中的电阻值最大的位置.(5)闭合开关,改变滑动变阻器滑片的位置,读出几组相应的电流表、电压表的示数I 和U 的值,填入记录表格内.(6)将测得的R x 、l 、d 值,代入公式R =ρl S 和S =πd 24中,计算出金属丝的电阻率.4.电流表、电压表测电阻两种方法的比较电流表分压 电压表分流。
【步步高】2018版浙江省高考物理《选考总复习》文档讲义:第一章第1讲-运动的描述
[考试标准]一、质点、参考系和坐标系1.质点:质点是一种理想化模型,当物体的形状和大小对所研究的问题影响可忽略时,就可以看做质点.2.参考系(1)比较两物体的运动情况时,必须选同一参考系.(2)选取不同的物体作为参考系,对同一物体运动的描述可能不同.通常以地球为参考系.3.坐标系:为了定量地描述物体的位置及位置变化,需要在参考系上建立适当的坐标系.[深度思考]地面上的观察者说从水平匀速航行的飞机上投下的物体在沿曲线下落,是以谁为参考系呢?答案地面或地面上静止的物体二、时间和位移1.时间与时刻(1)时间在时间轴上对应为一线段,与时间对应的物理量为过程量.(2)时刻在时间轴上对应于一点,与时刻对应的物理量为状态量.2.位移与路程(1)位移:表示质点的位置变动,它是质点由初位置指向末位置的有向线段.(2)与路程的区别:位移是矢量,路程是标量.只有在单向直线运动中,位移的大小才等于路程.三、速度和加速度1.平均速度(1)在变速运动中,物体在某段时间内的位移与发生这段位移所用的时间的比值叫做这段时间内的平均速度,即v =ΔxΔt,其方向与位移的方向相同. (2)平均速度反映一段时间内物体运动的平均快慢程度,它与一段时间或一段位移相对应. 2.瞬时速度(1)运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上物体所在点的切线方向指向前进的一侧,是矢量.瞬时速度的大小叫速率,是标量.(2)瞬时速度能精确描述物体运动的快慢,与某一时刻或某一位置相对应. 3.加速度(1)物理意义:描述物体速度变化快慢和方向的物理量,是状态量. (2)定义式:a =Δv Δt =v -v 0Δt.(3)决定因素:a 不是由v 、Δt 、Δv 来决定,而是由Fm来决定.(4)方向:与Δv 的方向一致,由合外力的方向决定,而与v 0、v 的方向无关. [深度思考] 加速度为正值,物体速度的大小一定越来越大吗?答案 不一定,判断物体加速还是减速要根据加速度与速度的方向之间的关系.1.2016年夏季奥运会在巴西的里约热内卢顺利举行,比赛前,为了取得好成绩,教练员和运动员认真分析了训练视频,对于下面的叙述,正确的是( ) A .研究运动员的跳水动作时,可以将运动员看成质点B .研究运动员与跳板接触过程中跳板的弯曲情况时,不能将运动员看成质点C .为了提高训练成绩,不管分析什么问题,都不能把运动员看成质点D .能否把运动员看成质点,应根据研究的问题而定 答案 D2.小明坐在运动的列车车厢里,看见路旁树木往后退,小明选择的参照物是()A.树木B.车厢C.大地D.铁轨答案 B3.(2016·浙江4月选考·1)某同学绕操场一周跑了400 m,用时65 s.这两个物理量分别是() A.路程、时刻B.位移、时刻C.路程、时间D.位移、时间答案 C4.关于速度,下列说法中正确的是()A.汽车速度计上显示70 km/h,指的是汽车一段行程中的平均速度B.某高速公路上的限速为120 km/h,指的是平均速度C.子弹以900 m/s的速度从枪口射出,指的是瞬时速度D.火车从杭州到北京的速度约为120 km/h,指的是瞬时速度答案 C5.如图1所示,汽车向右沿直线运动,原来的速度是v1,经过一小段时间之后,速度变为v2,Δv表示速度的变化量.由图中所示信息可知()图1A.汽车在做加速直线运动B.汽车的加速度方向与v1的方向相同C.汽车的加速度方向与Δv的方向相同D.汽车的加速度方向与Δv的方向相反答案 C命题点一质点、参考系和位移例1下列说法正确的是()A.参考系必须是固定不动的物体B.若以河岸为参考系,在顺水漂流的船上行走的人一定是不动的C.地球很大,又因有自转,研究地球公转时,地球不可视为质点D.研究跳水运动员做转体动作时,运动员不可视为质点解析参考系是为了描述物体的运动而人为选定作为参照的物体,参考系可以是不动的物体,也可以是运动的物体;只有当人逆着水流方向在船上以与水流速度大小相同的速度向后行走时,人与河岸的相对位置才是不变的,人相对于河岸才是静止的;地球的公转半径比地球半径大得多,在研究地球公转时,可将地球视为质点;研究跳水运动员身体转动时,运动员的形状和大小对研究结果的影响不可忽略,不能被视为质点,D正确.答案 D抓住“三点”理解质点、参考系和位移1.质点的模型化:建立模型.一是要明确题目中需要研究的问题;二是看物体的形状和大小对所研究问题是否有影响.2.运动的相对性:选取不同的参考系,对同一运动的描述一般是不同的.3.位移的矢量性:一是位移只与初末位置有关;二是位移方向由初位置指向末位置.题组阶梯突破1.以下情景中,人或物体可以看成质点的是()A.研究一列火车通过长江大桥所需的时间B.乒乓球比赛中,运动员发出的旋转球C.研究航天员翟志刚在太空出舱挥动国旗的动作D.用GPS确定打击海盗的“武汉”舰在大海中的位置答案 D解析长江大桥虽长,但火车长度与之相比不能忽略,不符合“物体的大小或形状对研究的问题没有影响,或者对所研究问题的影响可以忽略时,物体就可以看成质点”的条件,选项A错误;既然是“旋转球”,就是要研究球的旋转的,如果把它看成质点,则掩盖了其旋转的特点,故不能把它看成质点,选项B错误;研究航天员翟志刚在太空出舱挥动国旗的动作时,突出的是看清“挥动国旗的动作”,不能把翟志刚看成质点,选项C错误;用GPS确定“武汉”舰在大海中的位置时,突出它的“位置”,可以把“武汉”舰看成质点(船的大小与大海相比,其大小可以忽略),故选项D正确.2.(2015·浙江10月选考·3)2015年9月3日,纪念中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵式在天安门广场举行.如图2所示,七架战机保持“固定队列”在天安门广场上空飞过.下列说法正确的是()图2A.以某飞机为参考系,其他飞机是静止的B.以飞行员为参考系,广场上的观众是静止的C.以某飞行员为参考系,其他飞行员是运动的D.以广场上的观众为参考系,飞机是竖直向上运动的答案 A3.如图3所示,三位旅行者从北京到上海,甲乘火车直达,乙乘飞机直达,丙先乘汽车到天津,再换乘轮船到上海,这三位旅行者中()图3A.甲的路程最小B.丙的位移最大C.三者位移相同D.三者路程相同答案 C解析三位旅行者从北京到上海,甲乘火车直达,乙乘飞机直达,丙先乘汽车到天津,再换乘轮船到上海,运动轨迹不一样,但首末位置一样,所以位移相同.甲的路程比乙大.故C 正确,A、B、D错误.命题点二速度和加速度例2在变速直线运动中,下面关于速度和加速度关系的说法,正确的是()A.加速度与速度无必然联系B.速度减小时,加速度也一定减小C .速度为零时,加速度也一定为零D .速度增大时,加速度也一定增大解析 速度和加速度无必然联系,A 对;速度减小时,加速度也可以增大或不变,B 错;速度为零,加速度不一定为零,C 错;速度增大时,加速度也可以不变或减小,D 错. 答案 A抓住两点理解速度和加速度的关系1.物体做加速运动还是减速运动,关键是看物体的加速度与速度的方向关系,而不是看加速度的变化情况.2.加速度的大小只反映速度变化(增加或减小)的快慢. 题组阶梯突破4.甲、乙两质点在同一直线上匀速运动,设向右为正方向,甲质点的速度为2 m /s ,乙质点的速度为-4 m/s ,则下列说法错误的是( ) A .乙质点的速率大于甲质点的速率B .因为+2>-4,所以甲质点的速度大于乙质点的速度C .这里的正、负号的物理意义表示运动的方向D .若甲、乙两质点同时由同一点出发,则10 s 后甲、乙两质点相距60 m 答案 B5.一个朝着某方向做直线运动的物体,在时间t 内的平均速度是v ,紧接着t2内的平均速度是v2,则物体在这段时间内的平均速度是( ) A .v B.23v C.43v D.56v答案 D6.足球以8 m/s的速度飞来,运动员把它以12 m/s的速度反向踢出,踢球的时间为0.02 s,设飞来的方向为正方向,则足球在这段时间内的加速度为()A.200 m/s2B.-200 m/s2C.1 000 m/s2D.-1 000 m/s2答案 D(建议时间:30分钟)1.物理学中引入了“质点”的概念,从科学方法上来说属于()A.控制变量法B.类比法C.理想模型法D.等效替代法答案 C2.如图1所示,我国空军在进行空中加油训练.大型加油机与接受加油的受油机在空中以同样的速度沿同一方向水平飞行.下列说法中正确的是()图1A.选地面为参考系,受油机是静止的B.选地面为参考系,加油机是静止的C.选加油机为参考系,受油机是运动的D.选加油机为参考系,受油机是静止的答案 D解析选地面为参考系,受油机是运动的.故A错误;选地面为参考系,加油机是运动的.故B错误;加油机与接受加油的受油机在空中以同样的速度沿同一方向水平飞行,选加油机为参考系,受油机是静止的.故C错误,D正确.3.关于位移和路程,下列说法正确的是()A.位移和路程在大小上总相等,只是位移有方向,是矢量,路程无方向,是标量B.位移用来描述直线运动,路程用来描述曲线运动C.位移是矢量,它取决于物体的始末位置;路程是标量,它取决于物体实际通过的路线D.其实位移和路程是一回事答案 C4.汽车启动后,某时刻速度计示数如图2所示.由此可知此时汽车()图2A.行驶了70 hB.行驶了70 kmC.速率是70 m/sD.速率是70 km/h答案 D解析表盘读数为70,单位是km/h,该读数随着时刻不断改变,是瞬时速率,故A、B、C 错误,D正确.5.第五颗北斗导航卫星成功送入太空预定轨道标志着卫星导航市场的垄断局面被打破,北斗卫星导航系统将免费提供定位、测速和授时服务,定位精度10 m,测速精度0.2 m/s,以下说法不正确的是()A.北斗导航卫星定位提供的是被测物体的位移B.北斗导航卫星定位提供的是被测物体的位置C.北斗导航卫星授时服务提供的是时刻D.北斗导航卫星测速服务提供的是运动物体的速率答案 A解析由位置、位移、时间、时刻、速度、速率的定义可知,北斗导航卫星定位提供的是一个点,是位置,不是位置的变化,A错,B对;北斗导航卫星授时服务提供的是时刻,C对;北斗导航卫星测速服务提供的是运动物体某时刻的速度的大小即速率,D正确.6.(多选)关于速度和加速度,下列说法正确的是()A.加速度是描述速度变化快慢的物理量B.加速度的方向可能与速度的方向相反C.物体的加速度越大,它的速度也一定越大D.物体的加速度为零,它的速度也一定为零答案AB解析加速度表示物体速度变化的快慢,故A正确;加速度的方向与速度方向相同时做加速运动,相反时做减速运动,故B正确;加速度由物体所受的合力和物体的质量共同决定,与速度没有直接的关系,故C错误;加速度为零,物体可能处于静止状态或做匀速直线运动,速度不一定为零,故C错误.7.关于速度、速度改变量、加速度,下列说法正确的是()A.物体运动的速度改变量很大,它的加速度一定很大B.速度很大的物体,其加速度可以很小,可以为零C.某时刻物体的速度为零,其加速度一定为零D.加速度很大时,运动物体的速度一定很大答案 B解析 速度反映的是物体运动的快慢,速度的变化量指的是速度变化的多少,即Δv =v 2-v 1,而加速度指的是速度变化的快慢,即a =Δv Δt,由此可知,只有B 正确. 8.以下说法中正确的是( )A .做匀变速直线运动的物体,t s 内通过的路程与位移的大小一定相等B .质点一定是体积和质量都极小的物体C .速度的定义式和平均速度公式都是v =Δx Δt,因此速度就是指平均速度 D .速度不变的运动是匀速直线运动答案 D解析 只有在单向的直线运动中,路程才等于位移大小,A 错;质点不一定是体积小、质量小的物体,B 错;速度分为平均速度和瞬时速度,C 错;速度不变是指速度的大小和方向均不变,故做匀速直线运动,D 对.9.(多选)关于瞬时速度和平均速度,以下说法正确的是( )A .一般讲平均速度时,必须讲清楚是哪段时间(或哪段位移)内的平均速度B .对于匀速直线运动,其平均速度跟哪段时间(或哪段位移)无关C .瞬时速度和平均速度都可以精确描述变速运动D .瞬时速度是某时刻的速度,只有瞬时速度才能精确描述变速运动的物体运动的快慢 答案 ABD解析 一般情况下,物体在不同时间(或不同位移)内的平均速度不同,但对于匀速直线运动,物体的速度不变,所以平均速度与哪段时间(或哪段位移)无关,故A 、B 均正确;平均速度只能粗略描述变速运动,只有瞬时速度才能精确描述变速运动的物体运动的快慢,故C 错,D 正确.10.(多选)根据给出的初速度与加速度的正负,对下列运动性质的判断正确的是()A.v0>0,a<0,物体做加速运动B.v0<0,a<0,物体做减速运动C.v0<0,a>0,物体做减速运动D.v0>0,a>0,物体做加速运动答案CD11.(多选)关于物体的运动,下列说法不正确的是()A.速度大的物体,位移一定大B.加速度大的物体,速度变化一定大C.物体的位移大小和路程相等D.位移、速度、加速度都是矢量答案ABC解析物体的位移与速度及时间都有关,故速度大的物体位移不一定大,选项A错误;根据Δv=aΔt可知,加速度大的物体,速度变化不一定大,选项B错误;当物体做单向的直线运动时,物体的位移大小和路程相等,选项C错误;位移、速度、加速度都是矢量,选项D正确;故选A、B、C.12.若规定向东方向为位移正方向,今有一个足球停在坐标原点处,轻轻踢它一脚,使它向东做直线运动,经过5 m时与墙相碰后又向西做直线运动,经过7 m停下,则上述过程足球通过的路程和位移分别是()A.12 m、2 m B.12 m、-2 mC.-2 m、-2 m D.2 m、2 m答案 B13.(多选)某赛车手在一次野外训练中,先利用地图计算出出发地和目的地的直线距离为9 km,从出发地到目的地用了5 min,赛车上的里程表指示的里程数值增加了15 km,当他经过某路标时,车内速率计指示的示数为150 km/h,那么可以确定的是()A.在整个过程中赛车手的位移是9 kmB.在整个过程中赛车手的路程是9 kmC.在整个过程中赛车手的平均速度是180 km/h D.经过路标时的瞬时速率是150 km/h答案AD。
2022版步步高《大一轮复习讲义》人教版第1章 第2讲 物质的分离和提纯
第2讲物质的分离和提纯复习目标 1.掌握常见物质分离和提纯的方法。
2.能综合运用物质的不同性质对常见的物质进行分离和提纯。
考点一分离、提纯的常用物理方法及装置1.物质分离、提纯的区别(1)物质的分离将混合物的各组分分离开来,获得几种纯净物的过程。
(2)物质的提纯将混合物中的杂质除去而得到纯净物的过程,又叫物质的净化或除杂。
2.依据物理性质选择分离、提纯的方法(1)“固+固”混合物的分离(提纯)(2)“固+液”混合物的分离(提纯)(3)“液+液”混合物的分离(提纯)3.物理法分离、提纯物质所选装置(1)常用装置①过滤适用范围分离不溶性固体与液体注意事项一贴滤纸紧贴漏斗内壁二低滤纸边缘低于漏斗边缘液面低于滤纸边缘三靠烧杯杯口紧靠玻璃棒玻璃棒下端抵靠三层滤纸处漏斗下端长的那侧管口紧靠烧杯内壁②蒸发适用范围分离易溶性固体的溶质和溶剂注意事项玻璃棒的作用:搅拌,防止液体局部过热而飞溅停止加热的标准:当有大量晶体析出时停止加热,利用余热蒸干③萃取和分液适用范围萃取:利用溶质在互不相溶的溶剂里的溶解度不同,用一种溶剂把溶质从它与另一种溶剂组成的溶液里提取出来分液:分离两种互不相溶且易分层的液体注意事项①溶质在萃取剂中的溶解度比在原溶剂中大的多②萃取剂与原溶剂不反应、不相溶③萃取剂与溶质不反应④常用的萃取剂是苯或CCl4,一般不用酒精作萃取剂④蒸馏适用范围分离沸点相差较大且互溶的液体混合物注意事项①温度计的水银球在蒸馏烧瓶的支管口处②蒸馏烧瓶中要加沸石或碎瓷片,目的是防止暴沸③冷凝管水流方向为下口进,上口出⑤升华适用范围对于某种组分易升华的混合物,利用物质易升华的性质在加热条件下将其分离注意事项如NaCl固体中的I2可用该方法,但NH4Cl固体中的I2不能用升华的方法分离(2)创新装置①过滤装置的创新——抽滤由于水流的作用,使装置a、b中气体的压强减小,故使过滤速率加快②蒸馏装置的创新由于冷凝管竖立,使液体混合物能冷凝回流,若以此容器作反应容器,可使反应物能循环利用,提高了反应物的转化率(1)过滤时,为加快过滤速度,应用玻璃棒不断搅拌漏斗中液体(×)错因:不能搅拌,以防弄破滤纸。
2018版步步高高考物理(全国用)大一轮复习讲义单元滚动检测五 机械能
单元滚动检测五机械能考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间90分钟,满分100分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题,共48分)一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,第1~8题只有一个选项正确,第9~12题有多项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分)1.下列各种运动过程中,物体(弓、过山车、石头、圆珠笔)机械能守恒的是(忽略空气阻力)()2.如图1所示,质量为m的小球以初速度v0水平抛出,恰好垂直打在倾角为θ的斜面上,则球落在斜面上时重力的瞬时功率为(不计空气阻力)()图1A .mg v 0tan θ B.mg v 0tan θ C.mg v 0sin θD .mg v 0cos θ3.如图2所示,木板质量为M ,长度为L ,小木块质量为m ,水平地面光滑,一根不计质量的轻绳跨过定滑轮分别与M 和m 连接,小木块与木板间的动摩擦因数为μ,开始时小木块静止在木板左端,现用水平向右的力将小木块拉至右端,拉力至少做功为( )图2A .μmgLB .2μmgL C.μmgL 2D .μ(M +m )gL4.取水平地面为重力势能零点.一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力.该物块落地时的速度方向与水平方向的夹角为( ) A.π6 B.π4 C.π3 D.5π125.如图3所示,质量相同的两物体从同一高度由静止开始运动,A 沿着固定在地面上的光滑斜面下滑,B 做自由落体运动.两物体分别到达地面时,下列说法正确的是( )图3A .重力的平均功率P A >PB B .重力的平均功率P A =P BC .重力的瞬时功率P A =P BD .重力的瞬间功率P A <P B6.如图4所示,小车A 放在一个倾角为30°的足够长的固定的光滑斜面上,A 、B 两物体由绕过轻质定滑轮的细线相连,已知重力加速度为g ,滑轮质量及细线与滑轮之间的摩擦不计,小车A 的质量为3m ,小球B 的质量为m ,小车从静止释放后,在小球B 竖直上升h 的过程中(小球B 未到达滑轮处),小车受绳的拉力大小F T 和小车获得的动能E k 分别为( )图4A .F T =mg ,E k =38mghB .F T =mg ,E k =32mghC .F T =98mg ,E k =32mghD .F T =98mg ,E k =38mgh7.如图5所示,一张薄纸板放在光滑水平面上,其右端放有小木块,小木块与薄纸板的接触面粗糙,原来系统静止.现用水平恒力F 向右拉薄纸板,小木块在薄纸板上发生相对滑动,直到从薄纸板上掉下来.上述过程中有关功和能的说法正确的是( )图5A .拉力F 做的功等于薄纸板和小木块动能的增加量B .摩擦力对小木块做的功一定等于系统中摩擦产生的热量C .离开薄纸板前小木块可能先做加速运动,后做匀速运动D .小木块动能的增加量可能小于系统中由摩擦产生的热量8.如图6所示,有三个斜面a 、b 、c ,底边的长分别为L 、L 、2L ,高度分别为2h 、h 、h ,某物体与三个斜面间的动摩擦因数都相同,这个物体分别沿三个斜面从顶端由静止下滑到底端.三种情况相比较,下列说法正确的是( )图6A .物体损失的机械能ΔE c =2ΔE b =4ΔE aB .因摩擦产生的热量2Q a =2Q b =Q cC .物体到达底端的动能E k a =2E k b =2E k cD .因摩擦产生的热量4Q a =2Q b =Q c9.如图7所示,摆球质量为m ,悬线的长为L ,把悬线拉到水平位置后放手.设在摆球从A 点运动到B 点的过程中空气阻力F 阻的大小不变,则下列说法正确的是( )图7A .重力做功为mgLB .绳的拉力做功为0C .空气阻力F 阻做功为-mgLD .空气阻力F 阻做功为-12F 阻πL10.(2016·全国Ⅲ卷·20)如图8,一固定容器的内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P .它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W .重力加速度大小为g .设质点P 在最低点时,向心加速度的大小为a ,容器对它的支持力大小为N ,则( )图8A .a =2(mgR -W )mRB .a =2mgR -WmRC .N =3mgR -2WRD .N =2(mgR -W )R11.如图9所示,一物块通过一橡皮条与粗糙斜面顶端垂直于固定斜面的固定杆相连而静止在斜面上,橡皮条与斜面平行且恰为原长.现给物块一沿斜面向下的初速度v 0,则物块从开始滑动到滑到最低点的过程中(设最大静摩擦力与滑动摩擦力大小相等,橡皮条的形变在弹性限度内),下列说法正确的是( )图9A .物块的动能一直增加B .物块运动的加速度一直增大C.物块的机械能一直减少D.物块减少的机械能等于橡皮条增加的弹性势能12.如图10所示轨道是由一直轨道和一半圆轨道组成的,一个小滑块从距轨道最低点B 为h高度的A处由静止开始运动,滑块质量为m,直轨道与半圆轨道平滑连接,不计一切摩擦.则()图10A.若滑块能通过圆轨道最高点D,h的最小值为2.5RB.若h=2R,当滑块到达与圆心等高的C点时,对轨道的压力为3mgC.若h=2R,滑块会从C、D之间的某个位置离开圆轨道做斜抛运动D.若要使滑块能返回到A点,则h≤R第Ⅱ卷(非选择题,共52分)二、非选择题(共52分)13.(6分)某同学利用如图11所示的装置探究动能定理,将斜槽固定在桌面上,斜槽末端与桌面边缘对齐.在水平地面上依次固定好白纸、复写纸,将小球从斜槽高度h处由静止释放,小球落到复写纸上的某点,测出落点到桌边缘的水平距离为x.改变小球在斜槽上的释放位置,进行多次实验测量,得出多组h和x数据.图11(1)在安装斜槽时,应使其末端__________________________________.(2)已知斜槽倾角为θ,小球与斜槽之间的动摩擦因数为μ,斜槽末端距地面的高度为H,不计小球与水平槽之间的摩擦,若动能定理成立,则x与h应满足的关系式为______________________________________.(3)若以h为横坐标,以x2为纵坐标,画出的图线形状是________________,说明h与x2的关系为______________________.14.(9分)如图12甲所示,一位同学利用光电计时器等器材做“验证机械能守恒定律”的实验.有一直径为d、质量为m的金属小球从A处由静止释放,下落过程中能通过A处正下方、固定于B处的光电门,测得A、B间的距离为H(H≥d),光电计时器记录下小球通过光电门的时间为t,当地的重力加速度为g.则:图12(1)如图乙所示,用游标卡尺测得小球的直径d=______mm.(2)小球经过光电门B时的速度表达式为v=______.(3)多次改变高度H,重复上述实验,作出1t2随H的变化图象如图丙所示,当图中已知量t0、H0和重力加速度g及小球的直径d满足表达式____________时,可判断小球下落过程中机械能守恒.(4)实验中发现动能增加量ΔE k总是稍小于重力势能减少量ΔE p,增加下落高度后,则ΔE p -ΔE k将________(选填“增加”“减少”或“不变”).15.(8分)一半径为R的半圆形竖直圆柱面,用轻质不可伸长的细绳连接的A、B两球悬挂在圆柱面边缘内外两侧,A球质量为B球质量的2倍,现将A球从圆柱面边缘处由静止释放,如图13所示.已知A球始终不离开圆柱内表面,且细绳足够长,若不计一切摩擦,求:图13(1)A球沿圆柱内表面滑至最低点时速度的大小;(2)A球沿圆柱内表面运动的最大位移.16.(8分)如图14所示,足够长的水平传送带在电动机的带动下匀速转动.现有一可视为质点、质量m=0.5 kg的煤块落在传送带左端(不计煤块落下的速度),煤块在传送带的作用下达到传送带的速度后从右轮轴正上方的P点恰好离开传送带做平抛运动,正好落入运煤车车厢中心点Q.已知煤块与传送带间的动摩擦因数μ=0.8,P点与运煤车底板间的竖直高度H=1.8 m,与运煤车车厢底板中心点Q的水平距离x=1.2 m,g取10 m/s2,求:图14(1)传送带的速度大小v0;(2)右轮半径R;(3)由于传送煤块,电动机多做的功W.17.(10分)如图15所示,质量为5 kg的物块自倾角为37°的传送带上由静止下滑,物块经过水平地面CD后进入光滑半圆弧轨道DE,传送带向下匀速转动,其速度v=10 m/s,传送带与水平地面之间光滑连接(光滑圆弧BC长度可忽略),传送带AB长度为16 m,水平地面CD长度为6.3 m,物块与水平地面、传送带间的动摩擦因数均为μ=0.5,圆弧DE的半径R=1.125 m.(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)图15(1)求物块在传送带上运动的时间t;(2)求物块到达D点时的速度大小;(3)物块能否到达E点,若能,求通过E点后物块落地点距离D点的距离.18.(11分)如图16,光滑固定斜面倾角为α,斜面底端固定有垂直斜面的挡板C,斜面顶端固定有光滑定滑轮.质量为m的物体A经一轻质弹簧与下方挡板上的质量也为m的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A上方的一段绳平行于斜面.现在挂钩上挂一质量M的物体D并从静止状态释放,已知它恰好能使B离开挡板但不继续上升.若让D带上正电荷q,同时在D运动的空间中加上方向竖直向下的匀强电场,电场强度的大小为E,仍从上述初始位置由静止状态释放D,则这次B刚离开挡板时D的速度大小是多少?已知重力加速度为g.图16答案精析1.D [拉弓的过程人克服弹力做功,弓弦所具有的弹性势能增加,机械能不守恒,A 错误.B 项和C 项中均是缓慢运动,动能不变,但是重力势能发生改变,机械能不守恒,B 、C 错误.圆珠笔(包含内部弹簧)弹起时,只有重力和弹簧弹力做功,机械能守恒,D 正确.] 2.B [小球落在斜面上时重力的瞬时功率为P =mg v y ,而v y tan θ=v 0,所以P =mg v 0tan θ,B 正确.]3.A [将小木块缓慢拉至木板右端,拉力F 做功最少,其中F =μmg +F T ,F T =μmg ,小木块位移为L 2,所以W F =F ·L2=μmgL ,故A 对.]4.B [设物块水平抛出的初速度为v 0,高度为h ,由题意知12m v 20=mgh ,即v 0=2gh .物块在竖直方向上的运动是自由落体运动,落地时的竖直分速度v y =2gh =v 0,则该物块落地时的速度方向与水平方向的夹角θ=π4,故选项B 正确,选项A 、C 、D 错误.]5.D [B 做自由落体运动,运动时间t B =2h g .A 做匀速直线运动,a =g sin θ,根据hsin θ=12g sin θt 2A 得t A =2h g sin 2θ,可知t A >t B .重力做功相等,根据P =W Gt知,P A <P B ,A 、B 错误.根据动能定理,mgh =12m v 2得,物体到达底端时的速度v =2gh .A 物体重力的瞬时功率P A =mg v sin θ,B 物体重力的瞬时功率P B =mg v .则P A <P B .C 错误,D 正确.]6.D [小车A 与小球B 构成的系统做加速运动,设加速度为a .隔离分析小车,据牛顿第二定律得3mg sin 30°-F T =3ma .隔离分析小球B ,据牛顿第二定律得F T -mg =ma .联立可得小车受绳的拉力大小F T =9mg8.当小球B 上升到h 高度时,根据动能定理有3mgh sin 30°-mgh =12(3m +m )v 2.解得v =12gh .小车的动能E k =12×3m ×gh 4=3mgh 8,综合上述可知,A 、B 、C 错误,D 正确.]7.D [由功能关系,拉力F 做的功等于薄纸板和小木块动能的增加量与系统产生的内能之和,选项A 错误;摩擦力对小木块做的功等于小木块动能的增加量,选项B 错误;离开薄纸板前小木块一直在做匀加速运动,选项C 错误;对于系统,由摩擦产生的热量Q =F f ΔL ,其中ΔL 为小木块相对薄纸板运动的位移,即薄纸板的长度.对小木块,F f L 木=ΔE k ,L 木为小木块相对地面的位移,由于L 木存在大于、等于或小于ΔL 三种可能,即ΔE k 存在大于、等于或小于Q 三种可能,选项D 正确.]8.B [设斜面a 倾角为θ,长为s ,则下滑过程中克服摩擦力做功为μmg cos θ·s =μmgL ,故物体从三个斜面a 、b 、c 上滑下时克服摩擦力做的功分别为μmgL 、μmgL 、2μmgL ,由功能关系知物体损失的机械能2ΔE a =2ΔE b =ΔE c ,因摩擦产生的热量2Q a =2Q b =Q c ,选项A 、D 错误,B 正确;由动能定理有mgH -W f 克=ΔE k ,物体到达底端的动能分别为mg (2h -μL )、mg (h -μL )和mg (h -2μL ),故选项C 错误. ]9.ABD [小球下落过程中,重力做功为mgL ,A 正确;绳的拉力始终与速度方向垂直,拉力做功为0,B 正确;空气阻力F 阻大小不变,方向始终与速度方向相反,故空气阻力F 阻做功为-F 阻·12πL ,C 错误,D 正确.]10.AC [质点P 下滑过程中,重力和摩擦力做功,根据动能定理可得mgR -W =12m v 2,根据公式a =v 2R ,联立可得a =2(mgR -W )mR,A 正确,B 错误;在最低点重力和支持力的合力充当向心力,根据牛顿第二定律可得,N -mg =ma ,代入可得,N =3mgR -2W R,C 正确,D 错误.]11.BC [由题意知物块的重力沿斜面向下的分力为mg sin θ≤F f =μmg cos θ,在物块下滑过程中,橡皮条拉力F 一直增大,根据牛顿第二定律有a =F f +F -mg sin θm,选项B 正确;物块受到的合外力方向沿斜面向上,与位移方向相反,根据动能定理知动能一直减少,选项A 错误;滑动摩擦力和拉力F 一直做负功,根据功能关系知物块的机械能一直减少,选项C 正确;根据能量守恒定律,物块减少的机械能等于橡皮条增加的弹性势能和摩擦产生的热量之和,选项D 错误.]12.ACD [要使滑块能通过最高点D ,则应满足mg =m v 2R,可得v =gR ,即若在最高点D 时滑块的速度小于gR ,滑块无法达到最高点.若滑块速度大于等于gR ,则可以通过最高点做平抛运动.由机械能守恒定律可知,mg (h -2R )=12m v 2,解得h =2.5R ,A 正确.若h =2R ,由A 至C 过程由机械能守恒可得mg (2R -R )=12m v 2C,在C 点,由牛顿第二定律有F N =m v 2C R,解得F N =2mg ,由牛顿第三定律可知B 错误.h =2R 时小滑块不能通过D 点,将在C 、D 之间某一位置离开圆轨道做斜上抛运动,故C 正确.由机械能守恒可知D 正确.]13.(1)切线水平 (2)x 2=4H (sin θ-μcos θ)sin θh (3)一条过原点的直线 h ∝x 2解析 (1)小球离开斜槽末端后要做平抛运动,因而斜槽末端的切线要水平.(2)设小球从斜槽上滑到斜槽末端时速度为v ,根据动能定理有mgh -μmg cos θh sin θ=12m v 2,小球离开O 点后做平抛运动,水平方向有x =v t ,竖直方向有H =12gt 2,联立解得:x 2=4H (sin θ-μcos θ)sin θh . (3)由于θ、μ、H 为定值,由(2)可知,其图线形状是一条过原点的直线,即h ∝x 2.14.(1)7.25 (2)d t (3)1t 20=2g d 2H 0(或2gH 0t 20=d 2) (4)增加 解析 (1)小球的直径d =7 mm +0.05 mm ×5=7.25 mm.(2)小球经过光电门B 时的速度表达式为v =d t. (3)若机械能守恒,则满足mgH =12m v 2=12m (d t )2,整理可得:1t 2=2g d 2H ,由图线可知,当满足1t 20=2g d 2H 0时,可判断小球下落过程中机械能守恒. (4)因金属小球下落时受空气阻力作用,故使得动能增加量ΔE k 总是稍小于重力势能减少量ΔE p ;若增加下落高度后,则空气阻力做功变大,则ΔE p -ΔE k 将增加.15.(1)22-25gR (2)3R 解析 (1)设A 球沿圆柱内表面滑至最低点速度的大小为v ,B 球的质量为m ,则根据机械能守恒定律有2mgR -2mgR =12×2m v 2+12m v 2B由图甲可知,A 球的速度v 与B 球速度v B 的关系为 v B =v 1=v cos 45°联立解得v =22-25gR(2)当A 球的速度为零时,A 球沿圆柱内表面运动的位移最大,设为x ,如图乙所示,由几何关系可知A 球下降的高度h =x 2R 4R 2-x 2根据机械能守恒定律有2mgh -mgx =0解得x =3R .16.(1)2 m/s (2)0.4 m (3)2 J解析 (1)煤块最终将与传送带一起匀速运动,故传送带的速度v 0等于煤块运动到P 点后做平抛运动的初速度v 0=x 2Hg=2 m/s. (2)煤块运动至P 点恰好离开传送带的临界条件是:它在P 点做圆周运动且恰好不受到传送带的支持力,因此有mg =m v 2P R,v P =v 0, 解得R =v 20g=0.4 m. (3)根据功能关系,在传送带传送煤块过程中,电动机多做的功等于该过程煤块动能的增量ΔE k 与煤块与传送带由于摩擦生热而产生的内能Q 之和,即W =ΔE k +Q .其中ΔE k =12m v 2P,v P =v 0, Q =μmg (x 传-x 煤)=μmg (v 0·v P μg -v P 2v P μg )=12m v 2P, 解得W =2 J.17.(1)2 s (2)9 m/s (3)能 955m 解析 (1)刚开始时,对物块受力分析可知mg sin 37°+μmg cos 37°=ma 1解得a 1=10 m/s 2物块与传送带达到共同速度时有v =a 1t 1,解得t 1=1 s.物块的位移x =12a 1t 21=5 m 此后对物块受力分析可知mg sin 37°-μmg cos 37°=ma 2 解得a 2=2 m/s 2物块在传送带上的第二段运动:L AB -x =v t 2+12a 2t 22 解得t 2=1 s物块在传送带上运动的时间t =t 1+t 2=2 s.(2)物块到达传送带底端的末速度v 2=v +a 2t 2=12 m/s对物块在CD 部分的运动,由动能定理可得-μmgL CD =12m v 23-12m v 22 解得v 3=9 m/s.(3)若物块能到达E 点,则由动能定理得-mg ·2R =12m v 24-12m v 23解得v 4=6 m/s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.伽利略对自由落体运动的研究 (1)伽利略通过 逻辑推理 的方法推翻了亚里士多德的“重的物体比轻的 物体下落快”的结论. (2)伽利略对自由落体运动的研究方法和科学的推理方法,是人类思想史 上最伟大的成就之一.他所用的研究方法是逻辑推理― →猜想与假设― → 实验验证― → 合理外推 .这种方法的核心是把实验和逻辑推理(包括数学 演算)和谐地结合起来.
1 2 ②位移公式: x=2gt .
③速度位移关系式: v2=2gx .
2.竖直上抛运动 自由落体 (1)运动特点:加速度为g, 上升阶段做匀减速运动, 下降阶段做__________ 运动. (2)运动性质: 匀减速 直线运动. (3)基本规律 ①速度公式: v=v0-gt ;
1 2 ②位移公式: x=v0t- gt . 2
第一章 运动的描述
匀变速直线运动
第2讲 匀变速直线运动的规律
内容索引
基础 知识梳理
命题点一
匀变速直线运动 规律及应用
命题点二
常用的几种物理 思想方法
命题点三
自由落体和 竖直上抛运动
多运动过程问题
命题点四 盘查拓展点 课时作业
1
基础知识梳理
一、匀变速直线运动的规律 1.匀变速直线运动 沿一条直线且 加速度 不变的运动. 2.匀变速直线运动的基本规律 (1)速度公式:v= v0+at .
1 2 x=v0t+ at 2 v2-v02=2ax v +v 0 x= t 2
除时间t外,x、v0、v、a均为矢量,所以需要确定正方向,一般以v0的方
向为正方向.
2.规范解题流程
画过程示意图 ― → 判断运动性质 ― → 选取正方向 ― → 选用公式列方程 ― → 解方程并加以讨论
【例1】 据报道,一儿童玩耍时不慎从45 m高的阳台上无初速度掉下,在他刚掉 下时恰被楼下一社区管理人员发现,该人员迅速由静止冲向儿童下落处的正下方 楼底,准备接住儿童.已知管理人员到楼底的距离为18 m,为确保能稳妥安全地
解析
B.7.2 m/s,4.5 m D.8 m/s,4 m
√
3.(人教版必修1P43第3题)某型号的舰载飞机在航空母舰的跑道上加速时, 发动机产生的最大加速度为5 m/s2,所需的起飞速度为50 m/s,跑道长 100 m.通过计算判断,飞机能否靠自身的发动机从舰上起飞?为了使飞机 在开始滑行时就有一定的初速度,航空母舰装有弹射装置.对于该型号的 舰载飞机,弹射系统必须使它至少具有多大的初速度?为了尽量缩短舰载 飞机起飞时的滑行距离,航空母舰还需逆风行驶.这里对问题做了简化.
答案
不能,10 15 m/s
4.(人教版必修1P45第5题)频闪摄影是研究变速运动常用的实验
手段.在暗室中,照相机的快门处于常开状态,频闪仪每隔一
定时间发出一次短暂的强烈闪光,照亮运动的物体,于是胶片
上记录了物体在几个闪光时刻的位置.如图是小球自由下落时
的频闪照片示意图,频闪仪每隔0.04 s闪光一次.如果通过这幅
照片测量自由落体加速度,可以采用哪几种方法?试一试.
照片中的数字是小球落下的距离,单位是厘米.
答案
解析
见解析
2
匀变速直线运动规律及应用
命题点一
1.恰当选用公式 题目中所涉及的物理量(包括已知量、 待求量和为解题设定的中间量) v0、v、a、t v0、a、t、x v0、v、a、x v0、v、t、x 没有涉及的物理量 适宜选用公式 xn .
(2)1T 内, 2T 内, 3T 内, „ , nT 内的位移之比为 x1∶x2∶x3∶„∶xn =
___________________. 12∶22∶32∶„∶n2
(3) 第 1 个 T 内,第 2 个 T 内,第 3 个 T 内, „ ,第 n 个 T 内的位移之比为
1 2 (2)位移公式:x= v0t+ at . 2
(3)位移速度关系式: v2-v02=2ax .
二、匀变速直线运动的推论
1.三个推论
(1)做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初、
末时刻速度矢量和的 平均值 ,还等于中间时刻的瞬时速度.
v0+v v . 平均速度公式:v = = 2
深度思考 飞机着陆后以6 m/s2的加速度做匀减速直线运动,若其着陆速度为 60 m/s,则它着陆后12 s内滑行的距离是多少? 某位同学的解法如下:
1 2 由位移公式x=v0t+ at ,代入已知量求得滑行距离x=288 m,请分析 2
以上解析是否正确,若不正确,请写出正确的解析.
答案
三、自由落体运动和竖直上抛运动 1.自由落体运动 (1)条件:物体只受 重力 ,从静止开始下落. (2)基本规律 ①速度公式: v=gt .
t 2
(2)连续相等的相邻时间间隔T内的位移差相等. 即x2-x1=x3-x2=„=xn-xn-1= aT2 . (3)位移中点速度 v =
x 2
v0 2+v2 . 2
2.初速度为零的匀加速直线运动的四个重要推论
(1)1T 末, 2T 末,3T 末, „ , nT 末的瞬时速度之比为 v1∶v2∶v3∶„∶vn
基础题组自测
1.(多选)物体从静止开始做匀加速直线运动,第3 s内通过的位移为3 m, 则
答案
A.前3 s内的平均速度为3 m/s
B.前3 s内的位移为6 m D.3 s末的速度为3.6 m/s √
√
C.物体的加速度为1.2 m/s2
2.(粤教版必修1P35第5题改编)雨滴自屋檐由静止滴下,每隔0.2 s滴下一 滴,第1滴落下时第6滴恰欲滴下,此时测得第1、2、3、4滴之间的距离 依次为1.62 m、1.26 m、0.9 m.假定落下的雨滴的运动情况完全相同,则 此时第2滴雨滴下落的速度和屋檐高度各为 (假设雨滴下落过程中不考虑 空气阻力) 答案 A.3.6 m/s,4.5 m C.3.6 m/s,4 m
xⅠ∶xⅡ∶xⅢ∶„∶xN= 1∶3∶5∶„∶(2n-1) .
(4) 从静止开始通过连续相等的位移所用时间之比为 t1∶t2∶t3∶„∶tn =
1∶( 2-1)∶( 3- 2)∶(2- 3)∶„∶( n- n-1) ______________________________________________.