【管理学】spss因子分析案例共

合集下载

spss因子分析案例

spss因子分析案例

spss因子分析案例在进行SPSS因子分析时,我们通常遵循以下步骤:数据准备、因子提取、因子旋转、因子得分和结果解释。

下面是一个因子分析的案例,展示了如何使用SPSS软件进行这一统计分析。

首先,我们需要准备数据。

这通常涉及收集问卷调查数据,其中包含多个项目或变量,这些变量被认为是潜在因子的指标。

在SPSS中,数据应该以数据集的形式输入,每个变量代表一个问卷项目,每个案例代表一个受访者的回答。

接下来,我们进行因子提取。

在SPSS中,我们可以通过“分析”菜单选择“降维”然后选择“因子”来开始因子分析。

在因子分析对话框中,我们需要指定分析的变量,并决定提取因子的方法。

常见的提取方法包括主成分分析和最大似然法。

此外,我们还需要决定因子提取的标准,如特征值大于1的规则或基于特定比例的方差提取。

因子提取后,我们通常需要进行因子旋转。

旋转的目的是使因子结构更加清晰,便于解释。

SPSS提供了多种旋转方法,如正交旋转(如Varimax)和斜交旋转(如Promax)。

旋转后,每个变量的因子载荷(即变量与因子的相关系数)将被重新估计。

然后,我们可以计算因子得分。

因子得分是每个受访者在每个因子上的估计得分,它可以帮助我们了解每个受访者在潜在因子上的位置。

在SPSS中,可以通过“保存”选项来保存因子得分,以便进一步分析。

最后,我们需要解释因子分析的结果。

这包括解释每个因子的含义,以及哪些变量与每个因子最相关。

我们可以通过查看因子载荷矩阵来完成这一步骤。

通常,载荷值较高的变量被认为是该因子的良好指标。

在实际应用中,因子分析可以帮助我们识别数据中的潜在结构,简化数据集,并为进一步的分析提供基础。

例如,在市场研究中,因子分析可以用来识别消费者行为的潜在维度,从而帮助企业更好地理解其客户群体。

通过上述步骤,我们可以使用SPSS软件有效地进行因子分析,从而揭示数据背后的潜在结构,并为决策提供支持。

SPSS因子分析经典案例分享

SPSS因子分析经典案例分享

SPSS因⼦分析经典案例分享因⼦分析已经被各⾏业⼴泛应⽤,各种案例琳琅满⽬,今天再次发布这⼀经典案例以飨读者。

什么是因⼦分析?因⼦分析⼜称因素分析,传统的因⼦分析是探索性的因⼦分析,即因⼦分析是基于相关关系⽽进⾏的数据分析技术,是⼀种建⽴在众多的观测数据的基础上的降维处理⽅法。

其主要⽬的是探索隐藏在⼤量观测数据背后的某种结构,寻找⼀组变量变化的共同因⼦。

因⼦分析能做什么?⼈的⼼理结构具有层次性,即分为外显和内隐。

但是作为具有同⼀性的个体来说,内隐的⽅⾯总是和外显的⽅⾯相互作⽤,内隐⽅⾯制约着外显特征。

所以我们经常说,⼀个⼈的内在⾃我会在相当程度上决定他的外在⾏为特征,表现为某些⾏为倾向具有⾼度的⼀致性或相关性。

反过来说,我们可以通过对个体进⾏系统的观察和测量,从⼀组⾼度相关的⾏为倾向(可观测)中,探索到某种稳定的内在⼼理结构(潜存在),这就是因⼦分析所能做的。

具体来说主要应⽤于:(1)个体的综合评价:按照综合因⼦得分对case进⾏排序;(2)调查问卷效度分析:问卷所列问题作为输⼊变量,通过KMO、因⼦特征值贡献率、因⼦命名等判断调查问卷架构质量;(3)降维处理,结果再利⽤:因⼦得分作为变量,进⾏聚类或其他分析。

案例描述:⾼中⼤家都读过吧,那是⼀个以成绩论英雄的时代,理科王⼦、⽂科⼩⽣是时代标签。

为什么我们会将数学、物理、化学归并为理科,其他的归并为⽂科,有没有数据⽀持?今天我们将⽤科学的⽅法找到答案。

100个学⽣数学、物理、化学、语⽂、历史、英语成绩如下表(部分),请你来评价他们。

这是⼀个有趣的案例,你可以客观的观测到每⼀科⽬的成绩,但你可以直接看到理科、⽂科的情况吗?6个科⽬的成绩是我们观测到的外在表现,隐藏在其中的公共因⼦你找到了吗?如果我们针对6科⽬做降维处理,会得到什么结果,拭⽬以待。

SPSS分析过程6科⽬成绩作为6个原始变量,利⽤SPSS进⾏因⼦分析,具体步骤请参照各因⼦分析教程,默认亦可,不在讨论范围之内。

如何利用SPSS做因子分析等分析(仅供参考)

如何利用SPSS做因子分析等分析(仅供参考)

我就以我的数据为例来做示范,仅供参考一、信度分析(即可靠度分析)1.分析——度量——可靠度分析图 12.然后就会弹出上图1的框框。

在这里,你可以对所有的问题进行可靠度分析,如果是这样,那你只需要选中所有的问题到右边这个白色的框框,然后点击“统计量”,按照右边这个图进行打钩。

然后点“继续”。

之后就点“确定”图2 3.接着去“输出1”这个框看分析结果,你就会看到很多分析结果,其中有一个就是右图,那第一个0.808就是你所选择进行分析的数据的信度。

如果你想把每一个维度的数据进行独立的信度分析,那道理也是一样的。

二、因子分析在做因子分析之前首先要判断这些数据是否适合做因子分析,那这里就需要进行效度检验,不过总共效度检验是和因子分析的操作同步的,意思就是说你在做因子分析的时候也可以做效度检验。

具体示范如下:1.分析——降维——因子分析图 2一般来说,咱们做因子分析的时候是为了把那些具有共同属性的因子归类成一类,说的简单点就是要验证咱们所选取的每一个维度下面的题目是属于这个维度,而非其他维度的。

那一般来说,因子分析做出来的结果就是你原本有几个维度,最终分析结果就会归类成几个公因子。

2.一般来说,自变量的题目和因变量的题目是要独立分析的。

我的课题是“店面形象对顾客购买意愿的影响”那自变量就是店面形象的那些维度,因变量就是顾客购买意愿。

3.将要做分析的题目选择到右边的白框之后,就如下图打钩:“抽取”和“选项”两个不用管他。

然后就点“确定”4.按照上述步骤操作下来之后,就可以去“输出1”看分析结果。

首先看效度检验的结果:这里要看第一行和最后一行的数据,第一行数据为0.756,表明效度较高,sig为0.000,这两个结果显示这份数据完全可以做因子分析。

那就去看因子分析的结果。

5.看下面这张图,看“初始特征值”这一项下面的“合计”的数值,有几个数据是>1,那就表明此次因子分析共提取了几个公因子。

下图所示,有5个数据是>1,这表明可以提取5个公因子。

(详细图解版)应用SPSS17进行因子分析举例

(详细图解版)应用SPSS17进行因子分析举例

SPSS进行因子分析举例2011-4-61.数据准备下表是较次P126-127数据,其中V1-V6分别代表含义:V1——购买预防蛀牙的牙膏很重要V2——我喜欢使牙齿亮泽的牙膏V3——牙膏应当保护牙龈V4——我喜欢使口气清新的牙膏V5——预防坏牙不是牙膏提供的一项重要利益V6——购买牙膏时,最重要的考虑是富有魅力的牙齿。

调查的人员有30人,按编号布置。

附数据列表编号V1 V2 V3 V4 V5 V601 7.00 3.00 6.00 4.00 2.00 4.0002 1.00 3.00 2.00 4.00 5.00 4.0003 6.00 2.00 7.00 4.00 1.00 3.0004 4.00 5.00 4.00 6.00 2.00 5.0005 1.00 2.00 2.00 3.00 6.00 2.0006 6.00 3.00 6.00 4.00 2.00 4.0007 5.00 3.00 6.00 3.00 4.00 3.0008 6.00 4.00 7.00 4.00 1.00 4.0009 3.00 4.00 2.00 3.00 6.00 3.0010 2.00 6.00 2.00 6.00 7.00 6.0011 6.00 4.00 7.00 3.00 2.00 3.0012 2.00 3.00 1.00 4.00 5.00 4.0013 7.00 2.00 6.00 4.00 1.00 3.0014 4.00 6.00 4.00 5.00 3.00 6.0015 1.00 3.00 2.00 2.00 6.00 4.0016 6.00 4.00 6.00 3.00 3.00 4.0017 5.00 3.00 6.00 3.00 3.00 4.0018 7.00 3.00 7.00 4.00 1.00 4.0019 2.00 4.00 3.00 3.00 6.00 3.0020 3.00 5.00 3.00 6.00 4.00 6.0021 1.00 3.00 2.00 3.00 5.00 3.0022 5.00 4.00 5.00 4.00 2.00 4.0023 2.00 2.00 1.00 5.00 4.00 4.0024 4.00 6.00 4.00 6.00 4.00 7.0025 6.00 5.00 4.00 2.00 1.00 4.0026 3.00 5.00 4.00 6.00 4.00 7.0027 4.00 4.00 7.00 2.00 2.00 5.0028 3.00 7.00 2.00 6.00 4.00 3.0029 4.00 6.00 3.00 7.00 2.00 7.0030 2.00 3.00 2.00 4.00 7.00 2.002.具体操作1), 打开因子分析界面2),将各原始变量选入变量框3),设定描述指标4),设置因子提取项,如采用什么方法,输出什么,提取什么等5),设置因子的旋转方法6),设置因子得分选项3.结果分析。

SPSS因子分析报告实例操作步骤

SPSS因子分析报告实例操作步骤

SPSS因子分析实例操作步骤实验目的:引入2003~2013年全国的农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业7个产业的投资值作为变量,来研究其对全国总固定投资的影响。

实验变量:以年份,合计(单位:千亿元),农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业作为变量。

实验方法:因子分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.数据标准化:在最上面菜单里面选中Analyze——Descriptive Statistics——OK (变量选择除年份、合计以外的所有变量).2.降维:在最上面菜单里面选中Analyze——Dimension Reduction——Factor ,变量选择标准化后的数据.3.点击右侧Descriptive,勾选Correlation Matrix选项组中的Coefficients和KMO and Bartlett’s text of sphericity,点击Continue.4.点击右侧Extraction,勾选Scree Plot和fixed number with factors,默认3个,点击Continue.5.点击右侧Rotation,勾选Method选项组中的Varimax;勾选Display选项组中的Loding Plot(s);点击Continue.6.点击右侧Scores,勾选Method选项组中的Regression;勾选Display factor score coefficient matrix;点击Continue.7.点击右侧Options,勾选Coefficient Display Format选项组中所有选项,将Absolute value blow改为0.60,点击Continue.8.返回主对话框,单击OK.输出结果分析:1.描述性统计量Descriptive StatisticsN Minimum Maximum Mean Std. Deviation农、林、牧、渔业11 3.27 9.73 7.6645 1.97515采矿业11 .6 9.5 5.008 2.7092制造业11 .44 7.07 2.6900 2.22405电力、热力、燃气及水生产和11 3.36 15.05 10.3545 3.22751供应业建筑业11 1.79 23.51 7.8955 6.18302批发和零售业11 2.10 18.52 9.1018 5.50553交通运输、仓储和邮政业11 .82 8.39 2.7891 2.20903Valid N (listwise) 11该表提供分析过程中包含的统计量,表格显示了样本容量以及11个变量的最小值、最大值、平均值、标准差。

管理学研究方法之因子分析法+案例(史上最详细)

管理学研究方法之因子分析法+案例(史上最详细)

颜色X6 0.57075 0.45547 -0.07874 0.22931 0.62148 0.14770 -0.00183
易洗熨X7 0.04328 0.49569 0.52183 0.50821 -0.46939 -0.03945 -0.00155
特征值 1.78312 1.40444 1.21696 1.04998 0.83791 0.70779 0.00003
• 因子分析希望达到的目的是:减少变量的个数, 解释事物的本质。
• 在这里,我们选前四个变量作为因子,则累计的 综合变量方差的贡献率达到了77.9%。
• 为了使因子对变量的解释以及因子的命名更准确, 我们再对因子进行旋转。旋转之后得到因子负荷 系数,如下表:
观察 变量
舒适X1 质地X2 款式X3 耐穿X4 价位X5 颜色X6 易洗熨X7
-0.08925
-0.39328
0.00088
F4 0.05156 -0.72079 -0.41522 0.13561 0.24376 0.11851 0.75523
• 由表中数据得到分析结果:
因子F1与变量X3,X4,X6相关性较强,说明它体 现了顾客对服装外在表现的要求;
因子F2与变量X5有较强的证相关性,说明它体现 了顾客对服装价格的要求;
之间的相关关系; 因子得分是以回归方程的形式将指标X1,X2,…, Xm表示为因子F1 ,F 2 ,…,Fp的线性组合。
三、因子分析模型
• 因子分析法是从研究变量内部相关的依赖关系出 发,把一些具有错综复杂关系的变量归结为少数 几个综合因子的一种多变量统计分析方法。它的 基本思想是将观测变量进行分类,将相关性较高, 即联系比较紧密的分在同一类中,而不同类变量 之间的相关性则较低,那么每一类变量实际上就 代表了一个基本结构,即公共因子。对于所研究 的问题就是试图用最少个数的不可测的所谓公共 因子的线性函数与特殊因子之和来描述原来观测 的每一分量。

spss因子分析案例

spss因子分析案例

spss因子分析案例SPSS因子分析是一种用于探索或验证潜在结构的数据分析方法。

它将一组观测变量分解为几个潜在变量(或因子),以便更好地理解这些变量之间的关系。

假设我们有一个数据集,其中包含了一些心理测量量表的数据。

我们对这些测量量表进行因子分析,以了解是否可以将它们归类为几个互相关联的潜在因子。

我们将使用SPSS进行因子分析。

首先,我们打开SPSS,并加载数据集。

然后,我们选择'Analyze'菜单下的'Dimension Reduction',再选择'Factor'。

在'Factor'对话框中,我们将选择要进行因子分析的测量量表变量,并将它们添加到'Variables'框中。

然后,我们单击'Extraction'选项卡。

在'Extraction'选项卡中,我们需要选择一个因子抽取方法。

常用的方法包括主成分分析和最大似然估计。

在本例中,我们选择最大似然估计。

然后,我们单击'Rotation'选项卡。

因子旋转是为了使因子之间更易解释。

我们可以选择'Varimax'或'Promax'旋转方法。

在本例中,我们选择'Varimax'。

接下来,我们单击'Summary'选项卡,然后单击'Continue'。

最后,我们单击'OK'按钮开始进行因子分析。

SPSS将计算因子分析,并提供一个结果表。

在结果表中,我们可以看到每个测量量表变量在每个因子上的载荷值。

载荷值表示变量与因子之间的关联强度。

我们还可以看到每个因子的解释方差比例。

这个比例表示每个因子解释了多大比例的变量的方差。

我们希望尽可能多的方差被解释,以便更好地理解数据。

此外,结果表还提供了每个因子的特征值。

特征值表示因子的重要性,越大的特征值表示该因子在解释数据中起到更重要的作用。

SPSS因子分析(因素分析)——实例分析

SPSS因子分析(因素分析)——实例分析

SPSS因子分析(因素分析)——实例分析提起因子分析那是老生常谈,分析人士大都喜欢讨论主成分与因子分析。

我也凑个热闹,顺便温习温习,时间长了就会很模糊。

一、概念探讨存在相关关系的变量之间,是否存在不能直接观察到的但对可观测变量的变化其支配作用的潜在因子的分析方法就是因子分析,也叫因素分析。

通俗点:原始变量是共性因子的线性组合。

二、简单实例现在有12个地区的5个经济指标调查数据(总人口、学校校龄、总雇员、专业服务、中等房价),为对这12个地区进行综合评价,请确定出这12 个地区的综合评价指标。

点击下载三、解决方案1、不同地区的不同指标不同,这导致目前我们拥有的5个指标数据很难对这12个地区给一个明确的评价。

所以,有必要确定综合评价指标,便于对比。

因子分析是一种选择,当然还有其他的方法。

5个指标即为我们分析的对象,直接选入。

2、描述统计选项卡。

我们要对比因子提取前后的方差变化,所以选定“初始分析结果”;现在是基于相关矩阵提取因子,所以,选定相关矩阵的“系数”;比较重要的还有KMO和球形检验,它告诉我们数据是不是适合做因子分析。

选定。

其他选择自定。

3、抽取选项卡。

提取因子的方法有很多,最常用的就是主成分法。

这里选主成分。

关于特征值,不想解释太多,这和显著性水平一样,都是统计学的一个基本概念。

因为参与分析的变量测度单位不同,所以选择“相关矩阵”,如果参与分析的变量测度单位相同,则考虑选用协方差矩阵。

4、是否需要旋转?因子分析要求对因子给予命名和解释,对因子旋转与否取决于因子的解释。

如果不经旋转因子已经很好解释,那么没有必要旋转,否则,应该旋转。

这里直接旋转,便于解释。

至于旋转就是坐标变换,使得因子系数向1和0靠近,对公因子的命名和解释更加容易。

5、要计算因子得分,就必须先写出因子的表达式。

而因子是不能直接观察到的,是潜在的。

但是可以通过可观测到的变量获得。

前面说到,因子分析模型是原始变量为因子的线性组合,现在我们可以根据回归的方法将模型倒过来,用原始变量也就是参与分析的变量来表示因子。

统计学案例——SPSS因子分析

统计学案例——SPSS因子分析

《统计学》案例——SPSS因子分析基于因子分析的宜昌与中西部城市竞争力比较研究1引言随着武汉城市圈被国家批准为“全国资源节约型和环境友好型”社会建设综合配套改革实验区后,湖北省11个地级城市有5个进入“8+1”城市圈,享受着“两型社会”实验区和中部崛起双重政策扶持,今后一段时期会得到很好的发展。

作为发展基础比较好的宜昌市,在目前的大环境下,要争当省内同类城市第一,走在中西部城市的前列,迫切需要客观、准确地评价宜昌市社会经济发展现状,探寻中西部城市间社会经济发展的差异以及形成差异的内在原因,拟定适合城市可持续发展的各项对策。

本文在对比样本城市选择的基础上,利用反映城市经济、社会、环境等方面指标体系,借助SPSS软件因子分析法进行定量分析,探讨宜昌城市如何建设成为省域副中心城市。

2样本城市和评价指标的选择2.1样本城市的选择中部地区包括湖北、湖南、江西、安徽、河南、山西六省,西部地区包括内蒙古、广西、四川、贵州、云南、西藏、陕西、甘肃、宁夏、新疆、青海、重庆市十二个省市自治区。

中西部共有地级以上城市166个,其中有17个省会城市和1个直辖市,148个地级市。

为了增加城市之间的可比性,以对比城市宜昌市作参照系,地级市中2007年地区生产总值在700万元以上作为样本城市(宜昌市2007年地区生产总值为820万元),共有20个城市分布于6个省市自治区,具体见表1:表1 2008年地区生产总值700万元以上的中西部地区地级城市资料来源:《中国城市统计年鉴2008》,中国统计出版社,20092.2评价指标的选择城市竞争力评价指标不同的学者观点不一,朱红根等(2005)用国内生产总值、海关进出口总额等14个指标对江西省各城市综合竞争力进行比较研究,陈晓林(2007)提出地区生产总值、全社会固定资产投资总额等14个指标构成城市评价指标体系,颜丙胜等(2007)认为城市经济实力评价指标应包括城乡居民储蓄余额等在内的13项统计指标,张旭亮(2009)认为城市群城市综合竞争力评价应涵盖经济、社会、文化、环境等方面,由人均图书、城市化水平等20项指标组成。

SPSS因子分析法-内容及案例

SPSS因子分析法-内容及案例

实验课:因子分析实验目的理解主成分〔因子〕分析的根本原理,熟悉并掌握SPSS中的主成分〔因子〕分析方法及其主要应用。

因子分析一、根底理论知识1 概念因子分析〔Factor analysis〕:就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子来反映原资料的大局部信息的统计学分析方法。

从数学角度来看,主成分分析是一种化繁为简的降维处理技术。

主成分分析〔Principal ponent analysis〕:是因子分析的一个特例,是使用最多的因子提取方法。

它通过坐标变换手段,将原有的多个相关变量,做线性变化,转换为另外一组不相关的变量。

选取前面几个方差最大的主成分,这样到达了因子分析较少变量个数的目的,同时又能与较少的变量反映原有变量的绝大局部的信息。

两者关系:主成分分析〔PCA〕和因子分析〔FA〕是两种把变量维数降低以便于描述、理解和分析的方法,而实际上主成分分析可以说是因子分析的一个特例。

2 特点〔1〕因子变量的数量远少于原有的指标变量的数量,因而对因子变量的分析能够减少分析中的工作量。

〔2〕因子变量不是对原始变量的取舍,而是根据原始变量的信息进展重新组构,它能够反映原有变量大局部的信息。

〔3〕因子变量之间不存在显著的线性相关关系,对变量的分析比拟方便,但原始局部变量之间多存在较显著的相关关系。

〔4〕因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。

在保证数据信息丧失最少的原那么下,对高维变量空间进展降维处理〔即通过因子分析或主成分分析〕。

显然,在一个低维空间解释系统要比在高维系统容易的多。

3 类型根据研究对象的不同,把因子分析分为R 型和Q 型两种。

当研究对象是变量时,属于R 型因子分析;当研究对象是样品时,属于Q 型因子分析。

但有的因子分析方法兼有R 型和Q 型因子分析的一些特点,如因子分析中的对应分析方法,有的学者称之为双重型因子分析,以示与其他两类的区别。

4分析原理假定:有n 个地理样本,每个样本共有p 个变量,构成一个n ×p 阶的地理数据矩阵 :当p 较大时,在p 维空间中考察问题比拟麻烦。

SPSS因子分析实例操作步骤

SPSS因子分析实例操作步骤

SPSS因子分析实例操作步骤实验目的:引入2003~2013年全国的农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业7个产业的投资值作为变量,来研究其对全国总固定投资的影响。

实验变量:以年份,合计(单位:千亿元),农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业作为变量。

实验方法:因子分析法软件:spss19.0操作过程:第一步:导入Excel数据文件???1.opendatadocument——opendata——open;2.Openingexceldatasource——OK.第二步:1.数据标准化:在最上面菜单里面选中Analyze——DescriptiveStatistics——OK?(变量选择除年份、合计以外的所有变量).2.降维:在最上面菜单里面选中Analyze——DimensionReduction——Factor?,变量选择标准化后的数据.3.点击右侧Descriptive,勾选CorrelationMatrix选项组中的Coefficients和KMOandBartlett’stextofsphericity,点击Continue.4.点击右侧Extraction,勾选ScreePlot和fixednumberwithfactors,默认3个,点击Continue.5.点击右侧Rotation,勾选Method选项组中的Varimax;勾选Display选项组中的LodingPlot(s);点击Continue.6.点击右侧Scores,勾选Method选项组中的Regression;勾选Displayfactorscorecoefficientmatrix;点击Continue.7.点击右侧Options,勾选CoefficientDisplayFormat选项组中所有选项,将Absolutevalueblow改为0.60,点击Continue.8.返回主对话框,单击OK.输出结果分析:1.描述性统计量DescriptiveStatistics该表提供分析过程中包含的统计量,表格显示了样本容量以及11个变量的最小值、最大值、平均值、标准差。

SPSS因子分析(因素分析)——实例分析

SPSS因子分析(因素分析)——实例分析

SPSS因子分析(因素分析)——实例分析SPSS因子分析(因素分析)——实例分析SPSS(Statistical Package for the Social Sciences)是一种广泛应用于数据分析的软件工具,其中的因子分析(Factor Analysis)被广泛用于统计学和社会科学领域的研究。

本文将通过一个实例分析来介绍SPSS因子分析的基本原理和步骤。

1.研究背景在实施因子分析之前,首先需要明确研究背景和目的。

假设我们正在研究消费者购物行为,并希望确定出不同因素对于购物偏好的影响。

2.数据收集和准备在进行因子分析前,需要收集并准备相关数据。

假设我们已经收集到了100位消费者的关于购物行为的调查问卷数据,包括10个关于购物偏好的变量。

在SPSS中,我们可以将这些数据输入到一个数据矩阵中,每一行代表一个消费者,每一列代表一个变量。

3.因子分析设置在SPSS中,通过导航菜单选择适当的分析工具来进行因子分析。

在设置选项中,我们可以选择因子提取方法(如主成分分析、极大似然法等)和旋转方法(如方差最大旋转、斜交旋转等)等。

根据实际情况,我们可以调整这些参数以获得最佳结果。

4.因子提取在因子分析的第一步中,SPSS会计算每个变量的因子载荷矩阵,并根据设定的准则提取出主要因子。

因子载荷表示了每个变量与每个因子之间的关联程度,值越大表示关联程度越高。

通过因子载荷矩阵,我们可以判断每个变量对于哪个因子具有较高的影响。

5.因子旋转因子旋转可用于调整因子载荷矩阵,以使其更易于解释。

旋转后的因子载荷矩阵通常会呈现出更简洁、更有意义的结果。

在SPSS中,我们可以选择合适的旋转方法并进行旋转操作。

6.因子解释和命名在完成因子分析后,我们需要对结果进行解释和命名。

根据因子载荷矩阵和旋转结果,我们可以确定每个因子代表了哪些变量,并为每个因子赋予一个描述性的名称,以便于后续的数据分析和报告撰写。

7.结果解读最后,根据因子分析的结果,我们可以进行一系列的统计推断和解读。

SPSS因子分析——实例分析

SPSS因子分析——实例分析

SPSS因子分析——实例分析SPSS因子分析是一种统计方法,用于探索多个变量之间的相关性和结构。

它可以帮助研究者发现潜在的因素或维度,简化数据分析,并揭示变量之间的潜在关系。

本文将通过一个实例来介绍如何使用SPSS进行因子分析。

假设我们有一个关于消费者购买行为的调查问卷,包含了多个变量,如购买频率、购买金额、购买渠道等。

我们想要通过因子分析来探索这些变量之间的潜在结构,并识别出潜在的因素。

首先,我们需要将原始数据导入SPSS软件。

在SPSS的"变量视图"中,我们可以将每个变量名称输入到空白单元格中,并为每个变量选择适当的测量尺度(如定类尺度、定序尺度、定距尺度)。

然后,切换到"数据视图",在每一行中输入被调查者的数据。

接下来,我们需要进行因子分析的前提检测。

在SPSS的"分析"菜单中,选择"数据采样"并点击"样本界限",以确保我们选择的样本大小是否足够。

然后,我们选择"统计"中的"相关性",点击"双变量"并检查变量之间是否存在显著的相关性。

如果我们的数据满足以上要求,我们可以继续进行因子分析。

在SPSS的"分析"菜单中,选择"数据准备",点击"描述统计"并选择"频数",以检查每个变量的分布情况。

然后,我们再次选择"分析"中的"数据准备",点击"因子"并选择"提取方法"。

在弹出的对话框中,我们可以选择合适的提取方法,如主成分分析、极大似然估计等。

这些方法之间的选择要根据具体情况而定。

接下来,我们需要选择合适的因子数。

在"因子提取"对话框中,点击"因子"并输入我们认为合适的因子数。

(完整版)SPSS因子分析法-例子解释

(完整版)SPSS因子分析法-例子解释

因子分析的基本概念和步骤一、因子分析的意义在研究实际问题时往往希望尽可能多地收集相关变量,以期望能对问题有比较全面、完整的把握和认识。

例如,对高等学校科研状况的评价研究,可能会搜集诸如投入科研活动的人数、立项课题数、项目经费、经费支出、结项课题数、发表论文数、发表专著数、获得奖励数等多项指标;再例如,学生综合评价研究中,可能会搜集诸如基础课成绩、专业基础课成绩、专业课成绩、体育等各类课程的成绩以及累计获得各项奖学金的次数等。

虽然收集这些数据需要投入许多精力,虽然它们能够较为全面精确地描述事物,但在实际数据建模时,这些变量未必能真正发挥预期的作用,“投入”和“产出”并非呈合理的正比,反而会给统计分析带来很多问题,可以表现在:计算量的问题由于收集的变量较多,如果这些变量都参与数据建模,无疑会增加分析过程中的计算工作量。

虽然,现在的计算技术已得到了迅猛发展,但高维变量和海量数据仍是不容忽视的。

变量间的相关性问题收集到的诸多变量之间通常都会存在或多或少的相关性。

例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。

而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。

例如,多元线性回归分析中,如果众多解释变量之间存在较强的相关性,即存在高度的多重共线性,那么会给回归方程的参数估计带来许多麻烦,致使回归方程参数不准确甚至模型不可用等。

类似的问题还有很多。

为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。

为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。

因子分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。

因子分析的概念起源于20世纪初Karl Pearson和Charles Spearmen等人关于智力测验的统计分析。

SPSS因子分析实例操作步骤

SPSS因子分析实例操作步骤

SPSS因子分析实例操作步骤实验目的:引入2003~2013年全国的农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业7个产业的投资值作为变量,来研究其对全国总固定投资的影响。

实验变量:以年份,合计(单位:千亿元),农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业作为变量。

实验方法:因子分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.数据标准化:在最上面菜单里面选中Analyze——Descriptive Statistics——OK (变量选择除年份、合计以外的所有变量).2.降维:在最上面菜单里面选中Analyze——DimensionReduction——Factor ,变量选择标准化后的数据.3.点击右侧Descriptive,勾选Correlation Matrix选项组中的Coefficients和KMO and Bartlett’s text of sphericity,点击Continue.4.点击右侧Extraction,勾选Scree Plot和fixed number with factors,默认3个,点击Continue.5.点击右侧Rotation,勾选Method选项组中的Varimax;勾选Display选项组中的Loding Plot(s);点击Continue.6.点击右侧Scores,勾选Method选项组中的Regression;勾选Display factor score coefficient matrix;点击Continue.7.点击右侧Options,勾选Coefficient Display Format选项组中所有选项,将Absolute value blow改为0.60,点击Continue.8.返回主对话框,单击OK.输出结果分析:1.描述性统计量Descriptive StatisticsN Minimum Maximum Mean Std. Deviation农、林、牧、渔业11 3.27 9.73 7.6645 1.97515采矿业11 .6 9.5 5.008 2.7092制造业11 .44 7.07 2.6900 2.22405电力、热力、燃气及水生产和11 3.36 15.05 10.3545 3.22751供应业建筑业11 1.79 23.51 7.8955 6.18302批发和零售业11 2.10 18.52 9.1018 5.50553交通运输、仓储和邮政业11 .82 8.39 2.7891 2.20903Valid N (listwise) 11该表提供分析过程中包含的统计量,表格显示了样本容量以及11个变量的最小值、最大值、平均值、标准差。

SPSS因子分析报告实例操作步骤

SPSS因子分析报告实例操作步骤

SPSS因子分析实例操作步骤实验目的:引入2003~2013年全国的农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业7个产业的投资值作为变量,来研究其对全国总固定投资的影响。

实验变量:以年份,合计(单位:千亿元),农、林、牧、渔业,采矿业,制造业电力、热力、燃气及水生产和供应业,建筑业,批发和零售业,交通运输、仓储和邮政业作为变量。

实验方法:因子分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.数据标准化:在最上面菜单里面选中Analyze——Descriptive Statistics——OK (变量选择除年份、合计以外的所有变量).2.降维:在最上面菜单里面选中Analyze——DimensionReduction——Factor ,变量选择标准化后的数据.3.点击右侧Descriptive,勾选Correlation Matrix选项组中的Coefficients和KMO and Bartlett’s text of sphericity,点击Continue.4.点击右侧Extraction,勾选Scree Plot和fixed number with factors,默认3个,点击Continue.5.点击右侧Rotation,勾选Method选项组中的Varimax;勾选Display选项组中的Loding Plot(s);点击Continue.6.点击右侧Scores,勾选Method选项组中的Regression;勾选Display factor score coefficient matrix;点击Continue.7.点击右侧Options,勾选Coefficient Display Format选项组中所有选项,将Absolute value blow改为0.60,点击Continue.8.返回主对话框,单击OK.输出结果分析:1.描述性统计量Descriptive StatisticsN Minimum Maximum Mean Std. Deviation农、林、牧、渔业11 3.27 9.73 7.6645 1.97515采矿业11 .6 9.5 5.008 2.7092制造业11 .44 7.07 2.6900 2.22405电力、热力、燃气及水生产和11 3.36 15.05 10.3545 3.22751供应业建筑业11 1.79 23.51 7.8955 6.18302批发和零售业11 2.10 18.52 9.1018 5.50553交通运输、仓储和邮政业11 .82 8.39 2.7891 2.20903Valid N (listwise) 11该表提供分析过程中包含的统计量,表格显示了样本容量以及11个变量的最小值、最大值、平均值、标准差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【管理学】SPSS因子分析案例共11.2.1 数据预备激活数据治理窗口,定义变量名:分不为 XI 、X2、X3、X4、X5、X6、X7,按顺序输入相应数值,建立数据库,结果见图11.1。

图11.1 原始数据的输入激活Statistics 菜单选 Data Reduction 的 Factor..命令项,弹出 Factor An alysis 对话框(图 11.2) X7,点击?钮使之进入 Variabl图11.3 描述性指标选择对话框点击 Extraction …钮,弹出 Factor Analysis:Extraction 对话框(图11.4),系统提供如下因子提取方法:图 11.4 因子提取方法选择对话框在对话框左侧的变量列表中选变量 X1至 es 框。

图11.2 因子分析对话框出 Factor Analysis:Descriptives 对话框(图 11. tedescriptives 项要求输出各变量的均数与标 内选Coefficients 项要求运算有关系数矩阵, 在Statistics 中选 UI口I 耐||的財血准差;在 Correlation"CnrtEititlv ii Mtfhrix ( 并选KMO E“「and Bartlett ' s test of sphericity 项,要求对有关系数矩阵进行 3), 统计Matrix 栏pCnr-rcl-fl liciin MirfirixPrincipal components 主成分分析法;Un weighted least squares未加权最小平方法;Generalized least squares 综合最小平方法;Maximumlikelihood :极大似然估量法;Principal axis factoring: 主轴因子法;Alpha factoring : a 因子法;Image fa cto ri n g :多元回来法。

本例选用Principal components方法,之后点击Continue钮返回Factor Analysis 对话框。

点击Rotation...钮,弹出Factor Analysis:Rotation 对话框(图 1I.5),系统有 5 种因子旋转方法可选:图11.5 因子旋转方法选择对话框No ne:不作因子旋转;Varimax :正交旋转;Equamax:全体旋转,对变量和因子均作旋转;Quartimax :四分旋转,对变量作旋转;Direct Oblimin :斜交旋转。

旋转的目的是为了获得简单结构,以关心我们讲明因子。

本例选正交旋转法,之后点击Continue钮返回Factor Analysis对话框。

点击Scores..钮,弹出弹出Factor Analysis:Scores对话框(图II.6),系统提供3种估量因子得分系数的方法,本例选Regression (回来因子得分),之后点击Continue钮返回Factor Analysis对话框,再点击OK 钮即完成分析。

图11.6 估量因子分方法对话框11.2.3 结果讲明在输出结果窗口中将看到如下统计数据:系统第一输出各变量的均数(Mean)与标准差(Std Dev),并显示共有25 例观看单位进入分析;接着输出有关系数矩阵(Correlation Matr ix),经Bartlett 检验表明:Bartlett 值二 326.28484, P<0.0001,即有关矩阵不是一个单位矩阵,故考虑进行因子分析。

Kaiser-Meyer-Olkin Measure of Sampling Adequacy 是用于比较观测有关系数值与偏有关系数值的一个指标, 其值愈靠近1,表明对这些变量进行因子分析的成效愈好。

今KMO 值= 0.32122,偏小,意味着因子分析的结果可能不能同意。

Analysis number 1 Listwise deletion of cases with missing value sMean Std Dev LabelX1 7.10000 2.32380X2 4.77320 2.41779X3 2.34880 1.66556X4 9.15240 3.01405X5 5.45840 3.27344X6 7.16720 4.55817X7 2.34600 1.61091Number of Cases =25Correlation Matrix:X1 X2 X3 X4 X5 X6 X7X1 1.00000X2 .58026 1.00000X3 .20113 .36379 1.00000X4 .90900 .83725 .43611 1.00000 X5 .28347 .16590 -.70423 .16328 1.00000X6 .28656 .26119 -.68058 .20309 .99020 1.00000X7 -.53321 -.60846 -.64918 -.67758 .42733 .35732 1.00000Kaiser-Meyer-Olkin Measure of Sampling Adequacy = .32122Bartlett Test of Sphericity = 326.28484, Significance = .00000使用主成分分析法得到 2 个因子,因子矩阵( Factor Matrix )如下,变量与某一因子的联系系数绝对值越大,则该因子与变量关系越近。

如本例变量X 7 与第一因子的值为-0.88644,与第二因子的值为0.21921,可见其与第一因子更近,与第二因子更远。

或者因子矩阵也能够作为因子奉献大小的度量,其绝对值越大,奉献也越大。

在Final Statistics 一栏中显示各因子讲明掉方差的比例,也称变量的共同度(Communality)。

共同度从0到1, 0为因子不讲明任何方差, 1 为所有方差均被因子讲明掉。

一个因子越大地讲明掉变量的方差,讲明因子包含原有变量信息的量越多。

Extraction 1 for analysis 1, Principal Components Analysis (PC)PC extracted 2 factors.Factor Matrix:Factor 1 Factor 2X1 .74646 .48929X2 .79644 .37219X3 .70890 -.59727X4 .91054 .38865X5 .23424 .96350X6 .17715 .97172X7 .88644 .21921Final Statistics:Variable Communality * Factor Eigenvalue Pct ofVar CumPct*X1 .79660 *1 3.39518 48.5 48.5X2 .77284 *2 2.80632 40.1 88.6X3 .85927 *X4 .98014 *X5 .98320 *X6 .97561 *X7 .83384 *下面显示经正交旋转后的因子负荷矩阵( Rotated Factor Matrix )和因子转换矩阵( Factor Transformation Matrix )。

旋转的目的是使复杂的矩阵变得简洁,即第一因子替代了X1 、X2、X4、X7 的作用,第二因子替代了X3、X5、X6 的作用VARIMAX rotation 1 for extraction 1 in analysis 1 - Kaiser Normalization.VARIMAX converged in 3 iterations.Rotated Factor Matrix:Factor 1 Factor 2X1 .87795 .16064X2 .87848 .03332X3 .42098 -.82586X4 .99001 .00414X5 .15872 .97878X6 .21452 .96415X7 -.73151 .54656Factor Transformation Matrix:Factor 1 Factor 2Factor 1 .92135 -.38873Factor 2 .38873 .92135最后将第一因子的因子分用变量名fac_1、第二因子的因子分用变量名fac_2 存入原始数据库中。

这些值既可用于模型诊断,又可用于进一步分析。

基于因子分析法的西部地区服务业竞争力评判【摘要】:加快服务业的,提升服务业在国民中的地位,是我国政府近十年来经济政策的重要导向之一。

随着西部大开发的推进,西部地区服务业的进展状况得到广泛关注。

该研究基于服务业和服务业竞争力的理论,运用因子分析方法,对西部十二省区的服务业竞争力进行分析评判,并按照因子分析的结果和西部十二省区服务业进展的优劣势,提出提升该地区服务业竞争力水平的计策与建议。

关键词:服务业;竞争力;因子分析中图分类号:N949AbstractDuring the last ten years, speeding up the development of service industry and enhancing its position in national economy is one of the most important directions of the economic policy of our government. Along with the progress of Development of t he West Regions, all circles concerned starts paying attention to the devel opment of service industry over there. Based on the theories of service in dustry and its competitiveness, this research makes use of factor analysis to evaluate the competitiveness of service industry in twelve western provi nces and regions, and then brings forward countermeasuresand suggestion s to upgrade their competitiveness, which is on the base of the results of factor analysis andthe advantages and disadvantages of the development of service industry i n the west regions.Keywords: Service Industry;Competitiveness;Factor Analysis1.引言服务业的进展状况与竞争力水平,不仅能够衡量一个国家和地区经济进展水平,而且能够反映一个国家和地区经济进展所处的时期。

相关文档
最新文档