漆安慎力学习题解答完整版03

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由①②可求得:
所以,天平右端的总重量应该等于T,天平才能保持平衡。
3.4.11棒球质量为0.14kg,用棒击棒球的力随时间的变化如图所示,设棒球被击前后速度增量大小为70m/s,求力的最大值,打击时,不计重力。
解:由F—t图可知:
[斜截式方程y=kx+b,两点式方程(y-y1)/(x-x1)=(y2-y1)/(x2-x1)]
对A,B,C分别在其加速度方向上应用牛顿第二定律:
①,②,③联立,可求得:
3.4.8天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m1,m2的物体(m1≠m2),天平右端的托盘上放有砝码.问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。
解:隔离m1,m2及定滑轮,受力及运动情况如图示,应用牛顿第二定律:
第三章基本知识小结
⒈牛顿运动定律适用于惯性系、质点,牛顿第二定律是核心。
矢量式:
分量式:
⒉动量定理适用于惯性系、质点、质点系。
导数形式:
微分形式:
积分形式:
(注意分量式的运用)
⒊动量守恒定律适用于惯性系、质点、质点系。
若作用于质点或质点系的外力的矢量和始终为零,则质点或质点系的动量保持不变。即
(注意分量式的运用)
解:以地为参考系,设谷物的质量为m,所受到的最大静摩擦力为 ,谷物能获得的最大加速度为
∴筛面水平方向的加速度至少等于3.92米/秒2,才能使谷物与筛面发生相对运动。
μ1
μ2
3.4.3题图3.4.4题图
3.4.4桌面上叠放着两块木板,质量各为m1,m2,如图所示,m2和桌面间的摩擦系数为μ2,m1和m2间的摩擦系数为μ1,问沿水平方向用多大的力才能把下面的木板抽出来。
令v=0,由(1)求得达最大高度y2时所用时间(t-20)=32,代入(2)中,得y2-y1=5030 y2=ymax=5030+1672=6702(m)
3.4.13抛物线形弯管的表面光滑,沿铅直轴以匀角速率转动,抛物线方程为y=ax2,a为正常数,小环套于弯管上。⑴弯管角速度多大,小环可在管上任一位置相对弯管静止?⑵若为圆形光滑弯管,情况如何?
3.4.2质量为m的质点在o-xy平面内运动,质点的运动学方程为: ,a,b,ω为正常数,证明作用于质点的合力总指向原点。
证明:∵
,∴作用于质点的合力总指向原点。
3.4.3在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较低的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动?
①+②可求得:
将a代入①中,可求得:
3.4.7在图示的装置中,物体A,B,C的质量各为m1,m2,m3,且两两不相等.若物体A,B与桌面间的摩擦系数为μ,求三个物体的加速度及绳内的张力,不计绳和滑轮质量,不计轴承摩擦,绳不可伸长。
解:以地为参考系,隔离A,B,C,受力及运动情况如图示,其中:f1=μN1=μm1g,f2=μN2=μm2g,T'=2T,由于A的位移加B的位移除2等于C的位移,所以(a1+a2)/2=a3.
(1)、(2)、(3)、(4)联立,即可求得:
3.4.6在图示的装置中两物体的质量各为m1,m2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。
解:以地为参考系,隔离m1,m2,受力及运动情况如图示,其中:f1=μN1=μm1g,f2=μN2=μ(N1+m2g)=μ(m1+m2)g.在水平方向对两个质点应用牛二定律:
⒋在非惯性系中,考虑相应的惯性力,也可应用以上规律解题。
在直线加速参考系中:
在转动参考系中:
⒌质心和质心运动定理


(注意分量式的Baidu Nhomakorabea用)
3.4.1质量为2kg的质点的运动学方程为
(单位:米,秒),求证质点受恒力而运动,并求力的方向大小。
解:∵ , 为一与时间无关的恒矢量,∴质点受恒力而运动。
F=(242+122)1/2=12 N,力与x轴之间夹角为:
解:以地为参考系,隔离m1、m2,其受力与运动情况如图所示,
其中,N1'=N1,f1'=f1=μ1N1,f2=μ2N2,选图示坐标系o-xy,对m1,m2分别应用牛顿二定律,有
解方程组,得
要把木板从下面抽出来,必须满足 ,即
3.4.5质量为m2的斜面可在光滑的水平面上滑动,斜面倾角为α,质量为m1的运动员与斜面之间亦无摩擦,求运动员相对于斜面的加速度及其对斜面的压力。
解:以固定底座为参考系,设弯管的角速度为ω,小环受力及运动情况如图示:α为小环处切线与x轴夹角,压力N与切线垂直,加速度大小a=ω2x,方向垂直指向y轴。
在图示坐标下应用牛顿二定律的分量式:
①/②得:tgα=ω2x/g③;由数学知识:tgα=dy/dx=2ax;
所以,
若弯管为半径为R的圆形,圆方程为:x2+ (R-y)2= R2,即
解:
以相对地面向右作加速直线运动的斜面为参考系(非惯性系,设斜面相对地的加速度为a2),取m1为研究对象,其受力及运动情况如左图所示,其中N1为斜面对人的支撑力,f*为惯性力,a'即人对斜面的加速度,方向显然沿斜面向下,选如图所示的坐标系o'-x'y',应用牛顿第二定律建立方程:
再以地为参考系,取m2为研究对象,其受力及运动情况如右图所示,选图示坐标o-xy,应用牛顿第二定律建立方程:
由动量定理:
可求得Fmax= 245N
3.4.12沿铅直向上发射玩具火箭的推力随时间变化如图所示,火箭质量为2kg,t=0时处于静止,求火箭发射后的最大速率和最大高度(注意,推力大于重力时才启动)。
解:根据推力F-t图像,可知F=
(t≤20),令F=mg,即=2×,t=4s
因此,火箭发射可分为三个阶段:t=0—4s
为第一阶段,由于推力小于重力,火箭静止,v=0,y=0;t=4—20s为第二阶段,火箭作变加速直线运动,设t=20s时,y = y1,v = vmax;t≥20s为第三阶段,火箭只受重力作用,作竖直上抛运动,设达最大高度时的坐标y=y2.
第二阶段的动力学方程为:F- mg=mdv/dt
第三阶段运动学方程
相关文档
最新文档