多元方差分析spss实例

合集下载

spss超详细操作两因素多元方差分析(two-way manova)

spss超详细操作两因素多元方差分析(two-way manova)

SPSS超详细操作:两因素多元方差分析(Two-way Manova)每种方差分析的应用场景,以及该如何进行SPSS操作和解读结果,各位伙伴请点击相应的文章链接查看~~今天,我们再来介绍一种统计方法:两因素多元方差分析(Two-way Manova)。

一、问题与数据某研究者想研究三种干预方式(regular—常规干预;rote—死记硬背式干预;reasoning—推理式干预)对学生学习成绩的影响。

研究者记录了学生两门考试的成绩:文科成绩(humanities_score)和理科成绩(science_score)。

另外,基于之前的知识,研究者假设干预方式对男女两种性别学生的效果可能不同。

换言之,研究者想知道不同干预方式对学习成绩的影响在男女学生中是否不同。

也就是说,干预方式和性别两个自变量之间是否存在交互作用(interaction effect)。

注:交互作用是指某一自变量对因变量的效应在另一个自变量的不同水平会不同。

在本例中,就是要比较①男性中干预方式对学习成绩的影响和②女性中干预方式对学习成绩的影响。

这两个效应就成为单独效应(simple main effects),也就是说,单独效应是指在一个自变量的某一水平,另一个自变量对因变量的影响。

因此,交互作用也可以看做是对单独效应间是否存在差异的检验。

在本研究中,共有三个效应:性别的主效应;干预方式的主效应;性别和干预方式的交互作用。

研究者选取30名男学生和30名女学生,并将其随机分配到三个干预组中,每个干预组中共有10名男学生和10名女学生。

部分数据如下:二、对问题的分析使用两因素多元方差分析法进行分析时,需要考虑10个假设。

对研究设计的假设:1. 因变量有2个或以上,为连续变量;2. 有两个自变量,为二分类或多分类变量;3. 各观察对象之间相互独立;对数据的假设:4. 自变量的各个组内,各因变量间存在线性关系;5. 自变量的各个组内,各因变量间没有多重共线性;6. ①没有单因素离群值(univariate outliers)与②多因素离群值(multivariate outliers):单因素离群值是指自变量的各个组中因变量是否是离群值;多因素离群值是指每个研究对象(case)的各因变量组合是否是一个离群值;7. 各因变量服从多元正态分布;8. 样本量足够;9. 自变量的各组观察对象之间因变量的方差协方差矩阵相等;10. 每个因变量在自变量的各个组中方差相等。

spss多因素方差分析报告例子

spss多因素方差分析报告例子

作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction 的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate 主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

多元方差分析spss实例

多元方差分析spss实例

多元方差分析1992年美国总统选举的三位候选人为布什、佩罗特、克林顿。

从支持三位候选人的选民中分别分析:该题自变量为三位候选人,因变量为年龄段和受教育程度。

从自变量来看要进行方差分析,从因变量来看是二元分析,所以最终确定使用多变量分析具体操作(spss)1、打开spss,录入数据,定义变量和相应的值在此不作详述。

结果如图1图1 被投票人:1、布什2、佩罗特3、克林顿2、在spss窗口中选择分析——一般线性模型——多变量,调出多变量分析主界面,将年龄段和受教育程度移入因变量框中,被投票人移入固定因子框中。

如图2图2 多变量分析主界面3、点击选项按钮在输出框中选择方差齐性分析(既包括协方差矩阵等同性分析也包括误差方差齐性分析),其它使用默认即可,点击继续返回主界面。

如图3图3 选项子对话框4、点击确定,运行多变量分析过程。

结果解释1、协方差矩阵等同性的Box检验结果,如图4图4 协方差矩阵检验结果说明:此Box检验的协方差矩阵为三位候选人每个人的支持者的年龄段和受教育程度的协方差矩阵。

因为sig>0.05,所以差异不显著,即各个因变量的协方差矩阵在所有三个候选人组中是相等的。

可以对其进行多元方差分析。

2、多变量检验结果,如图5图5 多变量检验结果说明:被投票人在四种统计方法中的sig均小于0.05,所以差异显著,即三组的总体均值有显著性差异3、误差方差等同性的Levene检验结果,如图6图6 Levene检验结果说明:只考虑单个变量,年龄段或者受教育程度,每位候选人的20名支持者的随机误差是否有显著性差异。

因为sig>0.05,差异不显著,所以三位候选人的20名支持者的随机误差相等。

可以进行单因素方差分析。

4、主体间效应的检验结果,如图7图7 主体间效应的检验结果说明:被投票人一行中,年龄段的sig<0.05,差异显著,即支持三位候选人的选民中,年龄段之间存在显著差异;而受教育程度的sig>0.05,差异不显著,即支持三位候选人的选民中,受教育程度差异不显著。

《2024年使用SPSS软件进行多因素方差分析》范文

《2024年使用SPSS软件进行多因素方差分析》范文

《使用SPSS软件进行多因素方差分析》篇一一、引言随着社会发展和科研进步,数据已经成为学术研究和工程领域不可或缺的部分。

对于处理复杂的多个因素之间关系的探究,多因素方差分析成为了一种常见的数据分析方法。

本文旨在展示如何使用SPSS软件进行多因素方差分析,以便读者能更好地理解和掌握其使用方法和过程。

二、数据与方法本节将介绍数据的来源、背景和采集方式,以及采用多因素方差分析的原因。

此外,也将简单介绍SPSS软件的相关知识和其在本次分析中的使用方式。

1. 数据来源本次研究使用的数据来自于一项实地调查。

数据涉及了不同区域、不同教育程度和不同经济水平的参与者,每个参与者均进行了特定的实验操作,产生了多个因变量和自变量的数据。

2. 方法我们选择使用SPSS软件进行多因素方差分析,该软件是当前广泛使用的统计分析工具之一。

其功能强大且操作简便,可以很好地处理复杂的多因素数据。

三、实验设计与变量本部分将详细介绍实验设计及所涉及的变量。

1. 实验设计实验设计为完全随机设计,涉及两个主要自变量(因素A和因素B)和多个因变量(如结果Y1、Y2等)。

2. 变量说明因素A包括三个水平:水平1、水平2、水平3;因素B同样包括三个水平:水平A、水平B、水平C。

因变量为各组在实验操作后的结果,包括但不限于特定任务完成度、准确度等。

四、数据分析与结果解读本部分将详细描述使用SPSS软件进行多因素方差分析的步骤及结果解读。

1. 数据录入与整理将收集到的数据录入SPSS软件中,并进行必要的整理和清洗,确保数据的准确性和完整性。

2. 多因素方差分析步骤(1)打开SPSS软件,选择“分析”菜单中的“一般线性模型”选项,然后选择“单变量”。

(2)在弹出的对话框中,将因变量放入“因变量”框中,将两个自变量放入“固定因子”框中。

(3)点击“运行”,SPSS将自动进行多因素方差分析,并生成相应的结果表格和图表。

3. 结果解读通过查看SPSS生成的结果表格和图表,我们可以得到以下信息:各因素的主效应、各因素之间的交互效应以及因变量的变化情况等。

SPSS教程-多因素方差分析(优质参考)

SPSS教程-多因素方差分析(优质参考)

多因素方差分析多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。

SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。

在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。

该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。

但也可以通过方差齐次性检验选择均值比较结果。

因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。

因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。

固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。

[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。

分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。

表5-7 不同温度与不同湿度粘虫发育历期表相对湿度(%)温度℃重复1 2 3 4100 25 91.2 95.0 93.8 93.0 27 87.6 84.7 81.2 82.4 29 79.2 67.0 75.7 70.6 31 65.2 63.3 63.6 63.380 25 93.2 89.3 95.1 95.5 27 85.8 81.6 81.0 84.4 29 79.0 70.8 67.7 78.8 31 70.7 86.5 66.9 64.940 25 100.2 103.3 98.3 103.8 27 90.6 91.7 94.5 92.2 29 77.2 85.8 81.7 79.7 31 73.6 73.2 76.4 72.5数据保存在“DATA5-2.SAV”文件中,变量格式如图5-1。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量历期“历期”变量,因素变量温度“A”,湿度为“B”变量,重复变量“重复”。

多元方差分析-SPSS10

多元方差分析-SPSS10

多元方差分析SPSS10.0高级教程十:征服一般线性模型(2)2004-7-12 22:06:00信息来源:医学统计之星SPSS 10.0高级教程十:征服一般线性模型(2) 生物谷网站§8.4多元方差分析所谓的多元方差分析,就是说存在着不止一个应变量,而是两个以上的应变量共同反映了自变量的影响程度。

比如要研究某些因素对儿童生长的影响程度,则身高、体重等都可以作为生长程度的测量因子,即都应作为应变量。

8.4.1分析步骤为了方便起见,我们这里直接利用SPSS自带的数据集plastic.sav,假设tear_res、gloss和o pacity都使反应橡胶质量的指标(不要笑,是假设),现在要研究extrusn和additive对橡胶的质量影响如何,则应采用多元方差分析。

选择Analyze==>General Linear Model==>Multivariate,则弹出Multivariate对话框,请注意,除了没有random effect外,它的所有元素都是和univariate对话框相同的,里面的内容也相同,因此我们这里就不再重复了。

按照我们的分析要求,对话框操作步骤如下:1.Analyze==>General Lineal model==>Multivariate2.Dependent Variable框:选入tear_res、gloss和opacity3.Fixed Factors框:选入extrusn和additive4.单击OK此处两个自变量均是二分类变量,故无需选择两两比较方法。

8.4.2结果解释按上面的选择,分析结果如下:General Linear Model这是引入模型的自变量的取值情况列表。

上表是针对模型中的自变量间及其交互作用所做的检验,采用的是四种多元检验方法。

一般他们的结果都是相同的,如果不同,一般以Hotelling's Trace方法的结果为准。

spss多因素方差分析例子

spss多因素方差分析例子

1, data0806-height 是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打 开 spss 软 件 , 打 开 data0806-height 数 据 , 点 击 Analyze->General Linear Model->Univariate 打开:把 plot 和 species 送入 Fixed Factor(s) ,把 height 送入 Dependent Variable ,点击 Model 打开:选择 Full factorial , Type III Sum of squares , Include intercept in model (即 全部默认选项) ,点击 Continue 回到 Univariate 主对话框,对其他选项卡不做任何选 择, 结果输出:因无法计算 ???? ??rror ,即无法分开 ???? intercept的影响,无法进行方差分析,重新 Analyze->General Linear Model->Univariate 打开:选择好 Dependent Variable 和 Fixed Factor(s) 点击Custom,把主效应变量 species 和plot 送入 Model 框,点击 Continue 回到Univariate 主对话框,点击 Plots : 把 date 送入 Horizontal Axis ,把 depth 送入 Separate Lines ,点击 Add ,点击 Continue 回到 Univariate 对话框,点击 Options :把 OVERALL,species, plot 送入 Display Means for 框,选择 Compare main effects , Bonferroni ,点击 Continue 回到 Univariate 对话框,输出结果:可以看到: SS species =, df species =7, MS species= ;SS plot =, df plot =7, MS plot= ;SS error =, df error =14, MS error= ;Fspecies= , p=<;Fplot=,p=<;所以故认为在 5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

SPSS软件的应用——多元统计分析

SPSS软件的应用——多元统计分析

多元统计分析学院:理学与信息科学学院专业班级:信息与计算科学 2012级01 班姓名:韩祖良(20125991)****:***2015 年6月1日作业1 方差分析三组贫血患者的血红蛋白浓度(%,X1)及红细胞计数(万/mm3,X2)如下表:1、方差分析的前提条件要求各总体服从正态分布,请给出正态分布的检验结果,另要求各总体方差齐性,给出方差齐性检验结果。

2、检验三组贫血患者的指标x1,x2间是否有显著差异,进行多元方差分析。

如果有显著差异,分析三组患者间x1指标是否有显著差异,x2指标是否有显著差异?3、最后进行两两比较,给出更具体的分析结果。

4. 画出三组患者x1,x2两指标的均值图。

答:1.将所需分析数据输入到SPSS中,首先判断各总体是否服从正态分布:对文件进行拆分:数据→拆分文件→按组组织输出→确定。

然后进行正态性检验:文件→描述统计→探索,在绘制对话框中,选择按因子水平分组和带检验的正态图,最后单击确定按钮。

最后得出结果如图(1),(2),(3)所示:表(1)由表(1)可以看出,A组的X1指标的Sig=0.907,X2的Sig=0.914,在检验标准为0.05的条件下,接受H0,拒绝H1,故得A组服从正态分布。

表(2)由表(2)可以看出,B组的X1指标的Sig=0.406,X2的Sig=0.765,在检验标准为0.05的条件下,接受H0,拒绝H1,故得B组服从正态分布。

表(3)由表(3)可以看出,C组的X1指标的Sig=0.337,X2的Sig=0.839,在检验标准为0.05的条件下,接受H0,拒绝H1,故得C组服从正态分布。

再检验各总体是否满足方差齐性:首先取消文件的拆分,对所有个案进行分析。

然后进行方差齐性检验:分析→一般线性模型→多变量,在选项对话框中,选择方差齐性检验,所得结果如下:表(4)上表是对协方差阵相等的检验,由Sig=0.670>0.05,故在显著性水平为0.05的条件下,接受H0,拒绝H1,即观测到的因变量的协方差矩阵在所有组中均相等,可得三组符合方差齐性。

多元方差分析

多元方差分析

多元方差分析在SPSS软件的数据窗口依次定义变量并输入数据,由题可知数据来自三个不同的总体,下面对不同组的贫血患者比较其血红蛋白浓度及红细胞计数是否存在差异。

一、对总体进行多元正态分布检验首先将数据进行分组,然后通过SPSS软件分析—描述统计—探索得到检验结果如下:上述两个表给出了对每一个变量进行正态检验的结果,由表可以看出血红蛋白浓度和红细胞计数的显著性水平均大于0.05,即接受原假设,所以这两个变量均遵从正态分布。

下面判断总体是否满足方差齐性:上表是对协方差阵相等的检验,检验统计量是Box’s M,由Sig.值可以看出,0.670显著的大于0.05,所以在0.05的显著性水平下接受协方差阵相等的原假设。

即可以认为三组的协方差阵是相等的,符合方差齐性。

二、多元方程分析上表为多变量检验表,该表给出了几个统计量,显著性水平均为0.001显著的小于0.05,拒绝原假设,故无论从哪个统计量来看,三组不同患者的血红蛋白浓度和红细胞计数这两个指标间均存在显著差异。

下面分别分析三组患者间x1指标是否有显著差异,x2指标是否有显著差异,结果如下:由上表GROUP行可以看到:血红蛋白浓度和红细胞计数这两个指标的显著性水平分别为0.003和0.002均小于0.05,这说明三个组在血红蛋白浓度和红细胞计数这两个指标上均有显著差异。

三、对各组进行两两比较,给出更具体的分析结果通过软件操作得到比较结果如下表:由表中数据可以看出:①在血红蛋白浓度这个指标上A组和B组、B组和C组的显著性水平均小于0.05,拒绝原假设,故A组和B组、B组和C组在血红蛋白浓度这个指标上有显著差异,且B组的血红蛋白浓度显著高于A组和C组。

②在红细胞计数这个指标上A组和C组的显著性水平为0.014小于0.05,故A组和C组在红细胞计数指标上有显著差异,且C组的红细胞计数远远高于B 组。

四、画出三组患者x1,x2两指标的均值图由软件绘图得到均值图如下:由上图可以看出,A组与B组、C组与B组的红蛋白浓度有显著差异,而A组与C组的血红蛋白浓度没有显著差别,大致在一水平线上。

SPSS超详细操作:两因素多元方差分析(Two

SPSS超详细操作:两因素多元方差分析(Two

SPSS超详细操作:两因素多元方差分析(Two医咖会在之前的推文中,推送过多篇方差分析相关的文章,包括:单因素方差分析(One-Way ANOVA)双因素方差分析(Two-way ANOVA)三因素方差分析(Three-way ANOVA)单因素重复测量方差分析两因素重复测量方差分析三因素重复测量方差分析单因素多元方差分析(One-way MANOVA)每种方差分析的应用场景,以及该如何进行SPSS操作和解读结果,各位伙伴请点击相应的文章链接查看~~今天,我们再来介绍一种统计方法:两因素多元方差分析(Two-way Manova)。

一、问题与数据某研究者想研究三种干预方式(regular—常规干预;rote—死记硬背式干预;reasoning—推理式干预)对学生学习成绩的影响。

研究者记录了学生两门考试的成绩:文科成绩(humanities_score)和理科成绩(science_score)。

另外,基于之前的知识,研究者假设干预方式对男女两种性别学生的效果可能不同。

换言之,研究者想知道不同干预方式对学习成绩的影响在男女学生中是否不同。

也就是说,干预方式和性别两个自变量之间是否存在交互作用(interaction effect)。

注:交互作用是指某一自变量对因变量的效应在另一个自变量的不同水平会不同。

在本例中,就是要比较①男性中干预方式对学习成绩的影响和②女性中干预方式对学习成绩的影响。

这两个效应就成为单独效应(simple main effects),也就是说,单独效应是指在一个自变量的某一水平,另一个自变量对因变量的影响。

因此,交互作用也可以看做是对单独效应间是否存在差异的检验。

在本研究中,共有三个效应:性别的主效应;干预方式的主效应;性别和干预方式的交互作用。

研究者选取30名男学生和30名女学生,并将其随机分配到三个干预组中,每个干预组中共有10名男学生和10名女学生。

部分数据如下:二、对问题的分析使用两因素多元方差分析法进行分析时,需要考虑10个假设。

SPSS多因素方差分析【范本模板】

SPSS多因素方差分析【范本模板】

体育统计与SPSS读书笔记(八)—多因素方差分析(1)具有两个或两个以上因素的方差分析称为多因素方差分析。

多因素是我们在试验中会经常遇到的,比如我们前面说的单因素方差分析的时候,如果做试验的不是一个年级,而是多个年纪,那就成了双因素了:不同教学方法的班级,不同年级。

如果再加上性别上的因素,那就成了三因素了。

如果我们把实验前和试验后的数据用一个时间的变量来表示,那又多了一个时间的因素。

如果每个年级都是不同的老师来上,那又多了一个老师的因素,等等等等,所以我们在设计试验的时候都要进行充分考虑,并确定自己只研究哪些因素。

下面用例子的形式来说说多因素方差分析的运用.还是用前面说单因素的例子,前面的例子说了只在五年级抽三个班进行不同教学方法的试验,现在我们还要在初二和高二各抽三个班进行不同教学方法的试验。

形成年级和不同教学法班级双因素。

分析:1.根据实验方案我们划出双因素分析的表格,可以看出每个单元格都是有重复数据(也就是不只一个数据),年级不同教学方法的班级定性班定量班定性定量班五年级(班级每个人)(班级每个人)(班级每个人)初中二年级(班级每个人)(班级每个人)(班级每个人)高中二年级(班级每个人)(班级每个人)(班级每个人)2。

因为有重复数据,所以存在在数据交互效应的可能。

我们来看看交效应的含义:如果在A因素的不同水平上,B因素对因变量的影响不同,则说明A、B两因素间存在交互作用。

交互作用是多因素实验分析的一个非常重要的内容。

如因素间存在交互作用而又被忽视,则常会掩盖因素的主效应的显著性,另一方面,如果对因变量Y,因素A与B之间存在交互作用,则已说明这两个因素都Y对有影响,而不管其主效应是否具有显著性。

在统计模型中考虑交互作用,是系统论思想在统计方法中的反映。

在大多数场合,交互作用的信息比主效应的信息更为有用。

根据上面的判断。

根据上面的说法,我也无法判断是否有交互作用,不像身高和体重那么直接。

这里假设他们之间有交互作用。

spss相关分析案例多因素方差分析

spss相关分析案例多因素方差分析
地区Simple Contrasta
Dependent Variable
人均副食支出(元/人)
人均日用杂品支出(元/人)
人均衣着支出(元/人)
Level 1 vs。Level 3
Contrast Estimate
38.213
2.437
4。124
Hypothesized Value
0
0
0
Difference(Estimate - Hypothesized)
表五
Multivariate Test Results
Value
F
Hypothesis df
Error df
Sig.
Pillai’s trace
.465
2。725
6。000
54.000
.022
Wilks’ lambda
.555
2.970a
6.000
52。000
。014
Hotelling's trace
Sig.
.668
。343
。638
95% Confidence Interval for Difference
Lower Bound
—28。967
—3。642
—10.797
Upper Bound
18.849
1。309
17。331
a. Reference category = 3
如表四,在0。05显著水平下,东部和西部的人均副食支出(Sig.值为0.001)和日用杂品支出(Sig.值为0.036)指标有明显差别(小于0。05,拒绝原假设),而在人均衣着支出(Sig。值为0.517)指标上没有明显的差别。并且东部的人均副食支出、衣着支出和日用杂品支出三项指标均高于西部地区,说明东部的城镇居民月平均消费水平较西部来说,高出很多,符合实际的情况。另外,中部和西部的人均副食支出、衣着支出和日用杂品支出(Sig。值分别为0.668、0.343、0。638,均大于显著水平)三个指标均无明显差别,但中部的人均副食支出和日用杂品支出指标低于西部地区,人均衣着支出指标高于西部,说明中、西部的城镇居民月平均消费水平差不多,但消费结构有差异,符合实际的情况。

SPSS多因素方差分析

SPSS多因素方差分析

SPSS多因素方差分析一、问题对小白鼠喂以三种不同的营养素,目的是了解不同营养素增重的效果。

采用随机区组设计方法,以窝别作为划分区组的特征,以消除遗传因素对体重增长的影响。

现将同品系同体重的24只小白鼠分为8个区组,每个区组3只小白鼠。

三周后体重增量结果(克)列于下表,问小白鼠经三种不同营养素喂养后所增体重有无差别?SPSS软件版本:18.0中文版。

二、统计操作:1、建立数据文件变量视图:建立3个变量,如下图数据视图:如下图:区组号用1-8表示,营养素号用1-3表示。

数据文件见“小白鼠喂3种不同的营养素增重数量.sav”,可以直接使用。

2、统计分析菜单选择:分析-> 一般线性模型-> 单变量点击进入“单变量”对话框将“体重”选入“因变量”框,“区组”、“营养素”选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框”点击“设定”单选按钮,在“构建项”下拉菜单中选择“主效应”把左边的因子与协变量框中区组和营养素均选入右边的模型框中其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面点击“两两比较”按钮,进入下面对话框将左边框中“区组”、“营养素”均选入右边框中再选择两两比较的方法,LSD、S-N-K,Duncan为常用的三种方法,点击“继续”按钮回到“单变量”主界面。

点击“选项”按钮勾选“统计描述”及“方差齐性检验”,设置显著性水平,点击“继续”按钮,回到“单变量”主界面点击下方“确定”按钮,开始分析。

3、结果解读这是一个所分析因素的取值情况列表。

变量的描述性分析这是一个典型的方差分析表,有2个因素“营养素”和“区组”,首先是所用方差分析模型的检验,F值为11.517,P小于0.05,因此所用的模型有统计学意义,即认为至少有一个因素对体重增长有显著影响,可以用它来判断模型中系数有无统计学意义;第二行是截距,它在我们的分析中没有实际意义,忽略即可;第三行是变量是区组,P<0.001,可见有统计学意义(即认为区组对体重增长有显著影响),不过通常我们关心的也不是他;第四行是我们真正要分析的营养素,非常遗憾,它的P值为0.084,没有统计学意义(即认为营养素对体重增长没有显著影响)。

spss多因素方差分析报告报告材料例子

spss多因素方差分析报告报告材料例子

作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

SPSS操作多因素方差分析

SPSS操作多因素方差分析

SPSS操作多因素方差分析实验题目:多因素方差分析实验类型:基本操作实验目的:掌握方差分析的基本原理及方法实验内容:某种果汁在不同地区的销售数据,调查人员统计了易拉罐包装和玻璃包装的饮料在三个地区的销售金额,利用多因素方差分析,分析销售地区和包装方式对销售金额的影响。

(1)试计算因变量在各个因素下的描述性统计量及在各个因素水平下的误差方差的Levene检验。

(2)对数据进行多因素方差分析,分析不同包装的和地区下的效果是否相同,及交互作用的效应是否显著。

实验步骤:步骤一:打开数据集,选择“分析”—“一般线性模型”—“单变量”,将操作框打开;步骤二:将“销售额”选为“因变量”,“包装形式”和“购物地区”选为“固定因子”,然后选择“选项”,将“描述统计”和“方差齐性检验”勾选。

得到描述性统计量和Levene检验,和主体间效应的结果。

实验结果:(1)试计算因变量在各个因素下的描述性统计量及在各个因素水平下的误差方差的Levene检验。

描述性统计量因变量:销售额包装形式购物地区均值标准偏差Ndime nsion1 易拉罐dimensio n2地区A 413.0657 90.86574 35地区B 440.9647 98.23860 120地区C 407.7747 69.33334 30总计430.3043 93.47877 185 玻璃瓶dimensio n2地区A 343.9763 100.47207 35地区B 361.7205 90.46076 102地区C 405.7269 80.57058 29总计365.6671 92.64058 166 总计dimensio n2地区A 378.5210 101.25839 70地区B 404.5552 102.48440 222地区C 406.7681 74.42114 59总计399.7352 98.40821 351描述性统计量的分析结果:在只考虑包装形式的情况下:易拉罐:均值=430.3043 ,标准偏差=93.47877玻璃瓶:均值=365.6671,标准偏差=92.64058在只考虑地区差异的情况下:地区A:均值=378.5210,标准偏差=101.25839地区B:均值=404.5552,标准偏差=102.4844地区C:均值=406.7681,标准偏差=74.42114由结果可知,在只考虑包装形式的情况下,采用易拉罐的形式进行销售额会有明显较高的销售额,且两种形式之间的偏差值相差不大,即采用易拉罐的形式进行销售会更有利于销售;在只考虑地区差异的情况下,三个地区之间在地区B 和地区C进行销售的销售额很接近,但是地区C的标准偏差明显比另外两个地区要小,所以建议应该在地区C加大销售力度。

(整理)SPSS生物统计分析示例4-多因素方差分析.

(整理)SPSS生物统计分析示例4-多因素方差分析.

SPSS 生物统计分析示例3 (多因素方差分析)例一:番薯种植的两因素方差分析通过SPSS 统计分析推断种植密度(因素一)、品种(因素二)对亩产量(鲜重)的影响数据文件“sweetpotato-wet.sav ”品种5532304徐薯18 胜利百号 红东 利丰3号 二黄C-17C-3039(脱毒胜百)1)方差分析:Analyze→ General linear model→Univariate…结果输出:方差分析表Tests of Between-Subjects Effects Dependent Variable: 每亩鲜产a R Squared = .747 (Adjusted R Squared = .502)无交互效应,密度因素不显著,品种因素极显著2)多重比较(Post Hoc)结果LSD法:Multiple Comparisons Dependent Variable: 每亩鲜产Based on observed means.* The mean difference is significant at the .05 level.2304553C-17C-3023040.0580.394徐薯180.276黄色阴影为差异极显著(P<0.01**),绿色阴影为差异显著(P<0.05*),其余无显著差异Duncan法:每亩鲜产品种NSubset1 2 3 4 5红东 6 982.982509C-30 6 1183.224658 1183.224658C-17 6 1246.833306 1246.83330639(脱毒胜百) 6 1378.033689 1378.033689 1378.033689553 6 1469.473579 1469.473579胜利百号 6 1717.694931 1717.694931二黄 6 1764.122633 1764.1226332304 6 1819.723120 1819.723120 1819.723120 徐薯18 6 1999.091807 1999.091807 利丰3号 6 2229.200327 Sig. .090 .218 .065 .225 .070 Means for groups in homogeneous subsets are displayed.Based on Type III Sum of SquaresThe error term is Mean Square(Error) = 128993.994.a Uses Harmonic Mean Sample Size = 6.000.b Alpha = .05.每亩鲜产Duncan品种NSubset1 2 3 4红东 6 982.982509C-30 6 1183.224658 1183.224658C-17 6 1246.833306 1246.83330639(脱毒胜百) 6 1378.033689 1378.033689 1378.033689553 6 1469.473579 1469.473579 1469.473579胜利百号 6 1717.694931 1717.694931 1717.694931 二黄 6 1764.122633 1764.122633 1764.122633 2304 6 1819.723120 1819.723120 1819.723120 徐薯18 6 1999.091807 1999.091807 利丰3号 6 2229.200327 Sig. .042 .010 .011 .033 Means for groups in homogeneous subsets are displayed.Based on Type III Sum of SquaresThe error term is Mean Square(Error) = 128993.994.a Uses Harmonic Mean Sample Size = 6.000.b Alpha = .01.汇总表:品种每亩产率Alpha=0.01 Alpha=0.05红东982.982509 a AC-30 1183.224658 ab ABC-17 1246.833306 ab AB39(脱毒胜百) 1378.033689 abc ABC553 1469.473579 abc BC胜利百号1717.694931 bcd CD二黄1764.122633 bcd CD2304 1819.723120 bcd CDE徐薯18 1999.091807 cd DE利丰3号2229.200327 d E注:不同字母代表用邓肯新复极差法多重比较中差异显著利丰3号徐薯18 2304 二黄胜利百号553 39(脱毒胜百) C-17 C-30二黄2304徐薯18黄色阴影为差异极显著(P<0.01**),绿色阴影为差异显著(P<0.05*),其余无显著差异。

SPSS多元方差分析

SPSS多元方差分析

SPSS多元方差分析分析3种药品对2种疾病的疗效是否与性别有关,观测数据如下表。

试进行多元多因素方差分析,分析药品与性别对疗效的影响是否显著。

1. SPSS22.0的分析过程选择【分析】→【一般线性模型】→【多变量】将因子“疗效1”和“疗效2”放入因变量框,将药品和性别放入固定因子框。

并设置各类选项。

模型为默认选项,即“全因子”。

对比选项中对比方法更改为“差值”。

绘制设定中,将药品拖入水平轴,将性别拖入单图,点击添加按钮,绘制“药品*性别”轮廓图。

两两比较选项中,选择药品进行两两比较。

性别只有两个水平,无需再进行多重比较。

选项中选OVERALL,即全部因子,并选择方差齐性检验。

可以根据自己的需求选择输出描述性统计等指标。

2. 结果分析(1)误差方差等同性的Levene检验表疗效1和疗效2在各组总体方差相等。

(2)多元方差分析表多元反差分析药品与性别两个主效应他们的四种检验统计量结果都相同(sig都小于0.05),显著性p值分别0.000和0.013,说明药品与性别两个因素对疗效1和疗效2两个指标影响显著,单其交互作用的影响不显著,p值均大于0.05,说明药品与性别对两个指标的影响不存在协同作用。

(3)主体间效应的检验疗效1在药品与性别两个因素都有差别(p值分别为0.000和0.004),而疗效2只在药品上有差别(p值为0.000),在性别间没有显著性(p值0.056)。

药品与性别交互作用在疗效1和疗效2上都没有显著性。

(4)多重比较结果疗效1和疗效2在药物为1、2间没有显著性差异,而在1与3、2与3之间有显著性差异。

(5)两因素交互影响折线图估值边际均值图中的两条折线基本平行,说明疗效和药品的两因素交互作用均不显著。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元方差分析
1992年美国总统选举的三位候选人为布什、佩罗特、克林顿。

从支持三位候选人的选民中分
分析:该题自变量为三位候选人,因变量为年龄段和受教育程度。

从自变量来看要进行方差分析,从因变量来看是二元分析,所以最终确定使用多变量分析
具体操作(spss)
1、打开spss,录入数据,定义变量和相应的值在此不作详述。

结果如图1
图1 被投票人:1、布什2、佩罗特3、克林顿
2、在spss窗口中选择分析——一般线性模型——多变量,调出多变量分析主界面,将年龄段和
受教育程度移入因变量框中,被投票人移入固定因子框中。

如图2
图2 多变量分析主界面
3、点击选项按钮在输出框中选择方差齐性分析(既包括协方差矩阵等同性分析也包括误差方差齐
性分析),其它使用默认即可,点击继续返回主界面。

如图3
图3 选项子对话框
4、点击确定,运行多变量分析过程。

结果解释
1、协方差矩阵等同性的Box检验结果,如图4
图4 协方差矩阵检验
结果说明:此Box检验的协方差矩阵为三位候选人每个人的支持者的年龄段和受教育程度的协方差矩阵。

因为sig>0.05,所以差异不显著,即各个因变量的协方差矩阵在所有三个候选人组中是相等的。

可以对其进行多元方差分析。

2、多变量检验结果,如图5
图5 多变量检验
结果说明:被投票人在四种统计方法中的sig均小于0.05,所以差异显著,即三组的总体均值有显著性差异
3、误差方差等同性的Levene检验结果,如图6
图6 Levene检验
结果说明:只考虑单个变量,年龄段或者受教育程度,每位候选人的20名支持者的随机误差是否有显著性差异。

因为sig>0.05,差异不显著,所以三位候选人的20名支持者的随机误差相等。

可以进行单因素方差分析。

4、主体间效应的检验结果,如图7
图7 主体间效应的检验
结果说明:被投票人一行中,年龄段的sig<0.05,差异显著,即支持三位候选人的选民中,年龄段之间存在显著差异;而受教育程度的sig>0.05,差异不显著,即支持三位候选人的选民中,受教育程度差异不显著。

相关文档
最新文档