第1章 命题逻辑

合集下载

离散数学第一章命题逻辑PPT课件

离散数学第一章命题逻辑PPT课件

P
Q
0
0
0
1
1
0
1
1
P→Q 1 1 0 1
如: P:雪是黑的。
Q:太阳从东方升起 。
P → Q:如果雪是黑的,则太阳从东方升起 。
命题P→Q是假, 当且仅当P是真而Q是假。
11/20/2020
chapter1
14
1.2 联结词
条件与汉语中“如果…,就…”相类似,但有所区别: (1)自然语言中,“如果P则Q”,往往P和Q有一定的因果 关系,而条件复合命题P→Q中 P和Q 可以完全不相关。 (2)自然语言中,“如果P则Q”,当P为0、Q为1时,整个 句子真值难以确定;而条件复合命题P→Q中,当P为0时, 复合命题的真值为1。 P则Q的逻辑含义:P是Q的充分条件,的表示 命题变元——常用P、Q、R、S等大写字母或加下标的大 写字母P1, Q2, R10, ……表示来表示一个命题,称为命题 变元。 如: P:巴黎在法国。
Q:煤是白色的。
11/20/2020
chapter1
4
1.1 命题及其表示法
3、命题相关概念 简单命题(原子命题)——不能再分解的命题。 复合命题——由若干个简单命题复合而成的命题。 真值表——把组成复合命题的各命题变元的真值的所有 组合及其相对应的复合命题的真值列成表,称为真值表。
11/20/2020
chapter1
6
1.1 命题及其表示法
【例3 】求公式 (P→R)∨(Q→R)的真值表。 解:∵公式含有3个命题变元P、Q、R,
∴真值表有23=8行。其真值表如下表 所示:
11/20/2020
chapter1
7
1.2 联结词
命题和原子命题常可通过一些联结词构成新命题, 这

离散数学第一章命题逻辑知识点总结

离散数学第一章命题逻辑知识点总结

数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。

简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C)德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n) (2) A(p1, p2,…, p n) A* (p1,p2,…,p n) 定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)①(p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u)注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。

第1章 命题逻辑

第1章 命题逻辑

习题11.下列句子中那些是命题?(1) 4是无理数.(2) 2+5=8.(3) x+5>3.(4) 你有铅笔吗?(5) 这只兔子跑得真快呀!(6) 请不要讲话!(7) 我正在说谎话.解:(1)(2)是命题。

(7)是悖论。

2.判断下列语句是不是命题。

若是,给出命题的真值。

(1)北京是中华人民共和国的首都。

(2)陕西师大是一座工厂。

(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。

(5)前进!(6)给我一杯水吧!解:(1)(2)(4)是命题,真值分别是1,0,1。

3.写出下列命题的否定式:(1)存在一些人是大学生;(2)所有的人都是要死的;(3)并非花都有香味。

解:(1) 不存在一些人是大学生。

(2)并非所有的人都是要死的;(3)花都有香味。

4.设P:我生病,Q:我去学校,符号化下列命题。

(1) 只有在生病时,我才不去学校。

(2) 若我生病,则我不去学校。

(3) 当且仅当我生病时,我才不去学校。

(4) 若我不生病,则我一定去学校。

解:(1)Q→P(2)P→Q(3)P Q(4)P→Q5.设p:李平聪明,q:李平用功。

符号化下列命题。

(1) 李平既聪明又用功。

(2) 李平虽然聪明,但不用功。

(3) 李平不但聪明,而且用功。

(4) 李平不是不聪明,而是不用功。

(5) 张三或李四都可以做这件事。

解:(1)p ∧q (2)p ∧q (3)p ∧q(4)(p)∧q ,或p ∧q(5)设p :张三可以做这件事,q :李四可以做这件事。

命题符号化为p ∨q 。

6.设p :天下雨,q :我骑车上班。

符号化下列命题。

(1) 如果天不下雨,我就骑车上班。

(2) 只要天不下雨,我就骑车上班。

(3) 只有天不下雨,我才骑车上班。

(4) 除非天下雨,否则我就骑车上班。

(5) 如果天下雨,我就不骑车上班。

解:(1)p →q (2)p →q(3)q →p ,p →q (4)q →p ,p →q (5)p →q7.将下列命题符号化。

第 1 章 命题逻辑

第 1 章 命题逻辑

第 1 章命题逻辑数理逻辑是用数学方法研究思维规律和推理过程的科学,而推理的基本要素是命题,因此命题逻辑是数理逻辑最基本的研究内容之一,也是谓词逻辑的基础。

由于数理逻辑使用了一套符号,简洁地表达出各种推理的逻辑关系,因此,一般又称之为符号逻辑。

数理逻辑和电子计算机的发展有着密切的联系,它为机器证明、自动程序设计、计算机辅助设计、逻辑电路、开关理论等计算机应用和理论研究提供了必要的理论基础。

一、命题与命题变量在日常生活中,人们不仅使用语句描述一些客观事物和现象,陈述某些历史和现实事件,而且往往还要对陈述的事实加以判断,从而辨其真假。

语句可以分为疑问句、祈使句、感叹句与陈述句等,其中只有陈述句能分辨真假,其他类型的语句无所谓真假。

在数理逻辑中,我们把每个能分辨真假的陈述句称作为一个命题。

陈述句的这种真或假性质称之为真值或值,这就是说真值包含“真”和“假”。

因而命题有两个基本特征,一是它必须为陈述句:二是它所陈述的事情要么成立(真),要么不成立(假),不可能同时既成立又不成立,即它的真值是惟一的。

命题可按其真值分为两类。

若一个命题是真的,则称其真值为真,用1或T表示,称该命题为真命题;若一个命题是假的,则称其真值为假,用0或F表示,称该命题为假命题。

命题还可根据其复杂程度分类。

只是由一个主语和一个谓语构成的最简单的陈述句,称为简单命题或原子命题或原始命题。

简单命题不可能再分解成更简单的命题了,它是基本的,原始的。

当然,也有一些命题并不是最基本的,它们还可以分解成若干个简单命题。

由若干个简单命题通过联结词复合而成的更为复杂的新命题称为复合命题或分子命题。

复合命题仍为陈述句。

任意有限个简单或复合命题,还可用若干不同的联结词复合成极为复杂的复合命题。

简单命题和复合命题的真值是固定不变的,故又可称为命题常量或命题常元,简称为命题。

而有些陈述句尽管不是命题,但可以将其变成命题,它的真值是不固定的、可变的,这种真值可变化的陈述句称为命题变量或命题变元。

第1章 命题逻辑3

第1章 命题逻辑3

第1章 命题逻辑
定义1.6.3 设p和q是两个命题,复 合命题p↓q称作p和q的或非。定 义为:当且仅当p、q的真值都为 假时,p↓q的真值为真。联结词 “↓”称为或非联结词。
表1.20 p 0 0 q 0 1 p↓ q 1 0
1
1
0
1
0
0
由此定义可得到下面的公式: p↓q¬ (p∨q)
联结词↓还有下面的几个性质: ⑴ p↓p¬ (p∨p) ¬ p ⑵ (p↓q)↓(p↓q) ¬ (p↓q) ¬ ¬ (p∨q)p∨q ⑶ (p↓p)↓(q↓q) ¬ p↓¬q¬ (¬ p∨¬ q)p∧q
第1章 命题逻辑
蕴含式是逻辑推理的重要工具。下面是一些重要的蕴含 式。它们都可以用上述两种方法证明,其中A,B,C,D是 任意的命题公式。 1.附加律 AA∨B, BA∨B 2.化简律 A∧BA, A∧BB 3.假言推理 A∧(A→B)B 4.拒取式 ¬ B∧(A→B)¬ A 5.析取三段论 ¬ A∧(A∨B)B, ¬ B∧(A∨B)A 6.假言三段论 (A→B)∧(B→C)(A→C) 7.等价三段论 (A↔B)∧(B↔C)(A↔C) 8.构造性二难 (A∨C)∧(A→B)∧(C→D)B∨D (A∨¬ A)∧(A→B)∧(¬ A→B)B 9.破坏性二难 (¬ B∨¬ D)∧(A→B)∧(C→D)(¬ A∨¬ C)
第1章 命题逻辑
定义1.6.5 设S是全功能联结词集,如果去掉其中的任何 联结词后,就不是全功能联结词集,则称S是最小全功 能联结词集。 可以证明 ¬,∧ , ¬,∨ , ↑ , ↓ 是最小全 功能联结词集。
第1章 命题逻辑
讨论:n个命题变元可以构成多少个不等价的命题公式? 两个命题变元可以构成多少个不等价的命题公式? 由等价的概念知道,等价的命题公式有相同的真值表,所 以上述问题就转化为两个命题变元构成的命题公式有多少个不 同的真值表? 表1.21 两个命题变元构成的命题公式 p q 公式 的真值表的格式如表1.21所示。 0 0 1或0 真值表中每行公式的真值都 有1,0两种可能,所以命题公式 0 1 1或0 22 的真值有2×2×2×2=24= 2 =16 1 0 1或0 22 种可能,既有 2 个不同的真值表。 22 1 1 1或0 故有 种不等价的公式。 2 8= 23个不等价的命题公式,n个变元可 三个变元可构成 2 2 2n 构成 2 个不等价的命题公式。

离散数学第一章命题逻辑知识点总结

离散数学第一章命题逻辑知识点总结

数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。

简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C) 德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A 1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A 1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n)(2) A(p1, p2,…, p n) A* (p1,p2,…,p n)定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)① (p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u) 结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u) 注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。

1第一章 命题逻辑基本概念

1第一章 命题逻辑基本概念


如何将语句符号化, 以及如何理解符号化了的语句。 语句符号化要注意:
1. 要善于确定简单命题, 不要把一个概念硬拆成几个 概念。 例如“我和他是同学”是一个简单命题。 2. 要善于识别自然语言中的联结词 (有时它们被省略)。 例 1.11 狗急跳墙。
解 应理解为: p: 狗急了, q: 狗才跳墙
解 令 p: odd是奇数, q: odd2是奇数,
上述语句可表示为 p q。 6. 异或(exclusive or)连结词“” 【定义】 对于“排斥或”, 在数理逻辑中用联结词 “”表示, 称作“异或”。 当且仅当命题p和q的真值相异时, p q便取值为 真。

p q的真值表如表1.1.6所示。



1. 否定(negation)词“” 【定义 1.1】 设p是一个命题, 复合命题“非P‖(P的否 定)称为命题p的否定式, 记作“P‖, (读作“非p‖)。 命题p取值为真, 当且仅当命题P取值为假。 p的真值表如表1.1.1所示。 表.1.1 P 0 1 P 1 0
例 1.3 P:地球是圆的。 P:地球不是圆的。
p
0 0 1 1
表 1.6 q 0 1 0 1
pq 0 1 1 0
从定义可知联结词“”有以下性质: (1) p q = q p (2) (p q) r = p (q r) (3) p∧(q r) = (p∧q) (p∧r) (4) p q (p∧q)∨(p∧q) (5) p q (p q) (6) p p 0,p F P, p T P。
但不完全等同。

p∧q的真值表如表1.1.2所示。
表 1.2 p q 0 0 0 1 1 0 1 1

第1篇命题逻辑

第1篇命题逻辑

合取的定义如下表:
PQ TT TF FT
P Q
T F F
注:列表时P,Q均是先取T后取F 如P:今天下雨;Q:明天下雨
P Q:今天下雨且明天下雨。
FF
F
注意:这里的“与”运算与日常生活中的“与”意义不尽相同。
又如,P:我们去看电影;Q:房间里有张桌子。
P Q:我们去看电影和房间里有张桌子。
上述命题P Q在日常生活中无意义,无联系,但在数理逻辑中,P Q是一新的命题。“ ”是二元运算。
P Q P Q
(P、Q同为F时,P Q值为T)
TT
T
如:P:两个三角形全等。
TF
F
Q :两个三角形对应边相等。
FT
F
FF
T
P Q:两个三角形全等当且仅当它们对 应边相等。
1-2 联结词
又如 P:2+2=4, Q:雪是白的。
P Q:2+2=4当且仅当雪是白的。P 、Q可毫无联系。
总结:共介绍了五个联结词。
1-2 联结词
又如 Q:南京是一个小城市。
Q:南京不是个小城市。 Q值为F,Q取值为T “”是一元运算,相当于数学中的“求相反数”运算。
(2)合取(与)
P,Q是命题,P,Q的合取是一个复合命题,记做P Q,读 作“P与Q”,或“P且Q”。P Q当且仅当P与Q的值都真时,其值
为T,否则为F。
1-2 联结词
(2)命题公式实际上是一函数,值域为{T,F),每一个命题变元取 值也是{T,F},因而它没有真 假值,只有当公式中命题变元用确 定的命题代入后,才到一个命题,才能判断其真假。
1-3 命题公式与翻译
有了命题公式的定义后,我们如何将日常生活中的命题用具体的公 式表示呢?也就是说,如何将之翻译成公式呢?举例说明:

离散数学结构第1章命题逻辑基本概念

离散数学结构第1章命题逻辑基本概念

离散数学结构第1章命题逻辑基本概念第1章命题逻辑基本概念主要内容1. 命题与真值(或真假值)。

2. 简单命题与复合命题。

3. 联结词:否定联结词┐,合取联结词∧,析取联结词∨,蕴涵联结词→,等价联结词。

4. 命题公式(简称公式)。

5. 命题公式的层次和公式的赋值。

6. 真值表。

7. 公式的类型(重⾔式(或永真式),⽭盾式(或永假式),可满⾜式)。

学习要求1. 在5种联结词中,要特别注意蕴涵联结的应⽤,要弄清三个问题:① p→q的逻辑关系② p→q的真值③ p→q的灵活的叙述⽅法2. 写真值表要特别仔细认真,否则会出错误。

3. 深刻理解各联结词的逻辑含义。

4. 熟练地将复合命题符号化。

6. 会⽤真值表求公式的成真赋值和成假赋值。

1.1 命题与联结词 (2)⼀、命题的概念 (2)⼆、复合命题与联结词 (2)三、复合命题真假值 (5)1.2 命题公式及其赋值 (6)⼀、命题公式的定义 (6)⼆、公式的层次 (6)三、公式的赋值 (6)四、真值表 (7)五、公式的真假值分类 (8)1.1 命题与联结词⼀、命题的概念引⾔中的例⼦就是要对“我戴的是⿊帽⼦”进⾏判断。

这样的陈述句称为命题。

作为命题的陈述句所表达的判断结果称为命题的真值,真值只取两个值:真或假。

真值为真的命题称为真命题,真值为假的命题称为假命题。

真命题表达的判断正确,假命题表达的判断错误。

任何命题的真值都是唯⼀的。

判断给定句⼦是否为命题,应该分两步:⾸先判定它是否为陈述句,其次判断它是否有唯⼀的真值。

例1.1 判断下列句⼦是否为命题。

(1) 4是素数。

(2) 是⽆理数。

(3) x⼤于y。

(4) ⽉球上有冰。

(5) 2100年元旦是晴天。

(6) π⼤于吗?(7) 请不要吸烟!(8) 这朵花真美丽啊!(9) 我正在说假话。

解:本题的(9)个句⼦中,(6)是疑问句,(7)是祈使句,(8)是感叹句,因⽽这3个句⼦都不是命题。

剩下的6个句⼦都是陈述句,但(3)⽆确定的真值,根据x,y的不同取值情况它可真可假,即⽆唯⼀的真值,因⽽不是命题。

离散数学——精选推荐

离散数学——精选推荐

离散数学第一章命题逻辑定义1。

设P为一命题,P的否定是一个新的命题,记作¬P。

若P为T,¬P为F;若P为F,¬P为T。

联结词“¬”表示命题的否定。

否定联结词有时亦可记作“¯”。

(P3)定义2。

两个命题P和Q的合取是一个复合命题,记作P∧Q。

当且仅当P,Q同时为T时,P∧Q为T,在其他情况下,P∧Q的真值都是F。

(P4)定义3。

两个命题P和Q的析取是一个复合命题,记作P∨Q。

当且仅当P,Q同时为F时,P∨Q的真值为F,否则P∨Q的真值为T。

(P5)定义4。

给定两个命题P和Q,其条件命题是一个复合命题,记作P→Q,读作“如果P,那么Q”或者“若P则Q”。

当且仅当P的真值为T,Q的真值为F时,P→Q的真值为F,否则P→Q的真值为T。

我们称P为前件,Q为后件。

(P6)定义5。

给定两个命题P和Q,其复合命题P⇆Q的真值为F。

(P7)定义6。

命题演算的合式公式(wff),规定为:(1)单个命题变元本身是一个合式公式。

(2)如果A是合式公式,那么¬A是合式公式。

(3)如果A和B是合式公式,那么(A∧B),(A∨B),(A→B)和(A⇆B)都是合式公式。

(4)当且仅当能够有限次地应用(1),(2),(3)所得到的包含命题变元,联结词和括号的符号串是合式公式。

(P9)定义7。

在命题公式中,对于分量指派真值得各种可能组合,就确定了这个命题公式的各种真值情况,把它汇列成表,就是命题公式的真值表。

(P12)定义8。

给定两个命题公式A和B,设P1,P2,…,P n为所有出现于A和B中的原子变元,若给P1,P2,…,P n任一组真值指派,A和B的真值都相同,则称A和B是等价的或逻辑相等。

记作A⇔B。

(P15)定义9。

如果X是合式公式的A的一部分,且X本身也是一个合式公式,则称X为公式A 的字公式。

(P16)定理1。

设X是合式公式A的字公式,若X⇔Y,如果将A中的X用Y来置换,所得到公式B 与公式A等价,即A⇔B。

第1章_命题逻辑

第1章_命题逻辑
F
T
T
T
T
F
T
F
F
T
T
T
F
F
F
T
F
F
F
T
T
F
T
F
F
T
T
T
T
T
T
T
T
T
T
12.设 是具有两个运算对象的逻辑运算符,如果 和 逻辑等价,那么运算符 是可结合的。
(1)确定逻辑运算符 , , , 哪些是可结合的?
(2)用真值表证明你的判断。
解:(1) 是可结合的。
(2)真值表如下:
P
Q
R
F
F
F
F
F
F
T
F
F
(3)
2.求下列公式的主析取范式和主合取范式:
(1)
合取范式:
析取范式:
(2)
合取范式:
析取范式:
(3)
合取范式:
析取范式:
(4)
析取范式:
合取范式:
1.4
1.试用真值表法证明: 不是 , , 和 的有效结论。
解:构造真值表如下:
A B C D E
0 0 0 0 0
1
1
1
0
0
0 0 0 0 1
1
1
0
结论C是有效结论。
(3)
(4)
证明:
{1}(1) P规则(附加前提)
{2}(2) P规则
{1,2}(3) T规则,(1),(2),
{4}(4) P规则
{1,2,4}(5) T规则,(3),(4),
{1,2,4}(6) 规则,(1),(5)
3.不构成真值表证明: 不是 、 、 和 的有效结论。

第一章命题逻辑(1,2,3)

第一章命题逻辑(1,2,3)

1.2 联 结 词
联结词:确定复合命题的逻辑形式。
❖ 原子命题和联结词可以组合成复合命题。 ❖ 联结词确定复合命题的逻辑形式,它来源于自然语言中的联结词,
但与自然语言中的联结词有一定的差别; ❖ 从本质上讲,这里讨论的联结词只注重“真值”,而不顾及具体
内容,故亦称“真值联结词”。
1.2.1 否定联结词
❖ 命题P Q的真值与命题P和命题Q的真值之间的关系如表所示。
P
Q
PQ
0
0
1
0
1
1
1
0
0
1
1
1
1.2.4 蕴涵联结词
❖ 说明:
▪ 1)蕴涵联结词也称为条件联结词。“如果P,则Q”也称为P与Q 的条件式。
▪ 2)蕴涵式的真值关系不太符合自然语言中的习惯,这一点请读者 务必注意。
1.1.3 命题标识符
❖ 命题标识符
▪ 为了能用数学的方法来研究命题之间的逻辑关系和推理,需要将 命题符号化。
▪ 通常使用大写字母P, Q, …或用带下标的大写字母或用数字,如Ai, [12]等表示命题。
• 例如:
P:今天下雨
• 意味着P表示“今天下雨”这个命题的名。
• 也可用数字表示此命题
• 例如:
❖ 定义1.1 设P为任一命题,复合命题“非P”(或“P的否定”)称为P 的否定式,记作﹁P,读作“非P”。﹁称为否定联结词。
❖ ﹁P的逻辑关系为P不成立,﹁P为真当且仅当P为假。 ❖ 命题P的真值与其否定﹁P的真值之间的关系
P
﹁P
0
1
1
0
1.2.1 否定联结词
例1.2 设 P:这是一个三角形 ﹁P:这不是一个三角形
数理逻辑命题逻辑一阶谓词逻辑集合论集合及其运算二元关系与函数代数结构代数系统的基本概念群环域格与布尔代数图论数理逻辑和集合论作为两块基石奠定了离散数学乃至整个数学理论的基础在上面生长着代数结构序结构拓扑结构和混合结构这四大结构涵盖与生长出许多数学分支同时各分支间交叉融合又形成了许多新的数学分支形成了庞大的数学体系

离散数学命题逻辑 第一章(1)

离散数学命题逻辑 第一章(1)
第一篇 数理逻辑
我现在年纪大了,搞了这么多年软件,错误 不知犯了多少,现在觉悟了。我想,假如我早在 数理逻辑上好好下点功夫的话,我就不会犯这么 多错误。不少东西逻辑学家早就说过了,可是我 不知道。要是我能年轻20岁的话,我就会回去学 逻辑。
E.W.Dijkstra
先看著名物理学家爱因斯坦出过的一道题: 一个土耳其商人想找一个十分聪明的助手协助他经商,有两人 前来应聘,这个商人为了试试哪个更聪明些,就把两个人带进一间 漆黑的屋子里,他打开灯后说:“这张桌子上有五顶帽子,两顶是 红色的,三顶是黑色的,现在,我把灯关掉,而且把帽子摆的位置 弄乱,然后我们三个人每人摸一顶帽子戴在自己头上,在我开灯后, 请你们尽快说出自己头上戴的帽子是什么颜色的。”说完后,商人 将电灯关掉,然后三人都摸了一顶帽子戴在头上,同时商人将余下 的两顶帽子藏了起来,接着把灯打开。这时,那两个应试者看到商 人头上戴的是一顶红帽子,其中一个人便喊道:“我戴的是黑帽 子。” 请问这个人说得对吗?他是怎么推导出来的呢?
Page 13
2、命题满足的条件
命题的语句形式:陈述句 非命题语句:疑问句、命令句、感叹句、非命题陈述句 (悖论语句) 命题所表述的内容可决定是真还是假,不能不真又不假, 也不能又真又假。
Page 14
3、举例
• • • • • • • • • 北京是中国的首都。 土星上有生物。 3+2≥9。 1+101=110 请关门! 你要出去吗? 如果天气好,那么我去散步。 x= 2。 我正在撒谎。
Page 9
第一章 命题逻辑
研究以命题为基本单位构成的前提和结论之间的 可推导关系。
Page 10
第一章 命题逻辑
1
命题及其表示方法 联结词

第一章 命题逻辑

第一章 命题逻辑

第一章命题逻辑逻辑学是研究推理过程规律一门科学。

数理逻辑则是用数学的方法研究思维规律的一门学科。

由于它使用了一套符号,简洁地表达出各种推理的逻辑关系,因此数理逻辑又称为符号逻辑或理论逻辑。

数理逻辑和计算机的发展有着密切的联系,它为机器证明、自动程序设计、计算机辅助设计等计算机应用和理论研究提供必要的理论基础。

数理逻辑的主要分支包括公理化集合论、证明论、递归函数论、模型论等。

从本章开始,我们用三章的篇幅介绍数理逻辑的基本内容:命题逻辑、谓词逻辑和非经典逻辑简介。

命题逻辑研究的是以原子命题为基本单位的推理演算,其特征在于,研究和考查逻辑形式时,我们把一个命题只分析到其中所含的原子命题成分为止。

通过这样的分析可以显示出一些重要的逻辑形式,这种形式和有关的逻辑规律就是命题逻辑。

1.1 命题与联结词1.1.1 命题与命题变元语言的单位是句子。

句子可以分为疑问句、祈使句、感叹句与陈述句等,其中只有陈述句能分辨真假,其他类型的句子无所谓真假。

定义1.1能够分辨真假的陈述句叫做命题(Proposition)。

从这个定义可以看出命题有两层含义:(1)命题是陈述句。

其他的语句,如疑问句、祈使句、感叹句均不是命题;(2)这个陈述句表示的内容可以分辨真假,而且不是真就是假,不能不真也不假,也不能既真又假。

作为命题的陈述句所表示的判断结果称为命题的真值,真值只取两个值:真或假。

凡是与事实相符的陈述句是真命题,而与事实不符合的陈述句是假命题。

通常用1(或大写字母T)表示真,用0(或大写字母F)表示假。

例1.1判断下列语句是否为命题,并指出其真值。

(1) 北京是中国的首都。

(2)5可以被2整除。

(3)2+2=5。

(4)请勿吸烟。

(5)乌鸦是黑色的吗?(6)这个小男孩多勇敢啊!(7)地球外的星球上存在生物。

(8)我正在说谎。

解(1)~(3)是命题,其中(1)是真命题,(2),(3)是假命题。

值得注意的是,像2+2=5这样的数学公式也是一个命题,事实上,一个完整的数学公式与一个完整的陈述句并没有什么本质的差异。

第1章 命题逻辑_20

第1章 命题逻辑_20

p∧q∧¬ r
p∧q∧r
110
111
m6
m7
从表1.13和表1.14中可以看出,极小项与其成真赋值 的对应关系为:变元对应1,而变元的否定对应0。
第1章 命题逻辑
⑵ 任意两个不同的极小项的合取式为永假式。 例如: m001∧m100 (¬ p∧¬ q∧r)∧(p∧¬ q∧¬ r) ¬ p∧¬ q∧r∧p∧¬ q∧¬ r 0 ⑶全体极小项的析取式为永真式。记为:
第1章 命题逻辑
⑵ 真值表法:即用真值表求主析取范式。 用真值表求主析取范式的步骤如下: ① 构造命题公式的真值表。 ② 找出公式的成真赋值对应的极小项。 ③ 这些极小项的析取就是此公式的主析取范式。 表1.15 p q r p→ q (p→q)→r 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1 0 1 1 1 1 1
【例1.21】求命题公式(p∨q)↔p的合取范式和析取范式。 解:⑴求合取范式 (p∨q)↔p ((p∨q)→p)∧(p→(p∨q)) (消去↔) (¬ (p∨q)∨p)∧(¬ p∨(p∨q)) (消去→) ←合取范式 ((¬ p∧¬ q)∨p)∧(¬ p∨(p∨q)) (内移) (¬ p∨p)∧(¬ q∨p)∧(¬ p∨p∨q) (分配律)
1.5.3主合取范式
定义1.5.7在基本和中,每个变元及其否定不同时存 在,但两者之一必须出现且仅出现一次,这样的基本和 叫作布尔析取,也叫大项或极大项。
两个变元p,q构成的极大项为: p∨q,p∨¬ q,¬ p∨q,¬ p∨¬ q 三个命题变元p,q,r构成的极大项为: p∨q∨r, p∨q∨¬ r, p∨¬ q∨r, p∨¬ q∨¬ r, ¬ p∨q∨r,¬ p∨q∨¬ r, ¬ p∨¬ q∨r,¬ p∨¬ q∨¬ r 两个命题变元的极大项共4(=22)个, 三个命题变元的极大项 共8(=23)个, …。一般地说,n个变元共有2n个极大项。

离散数学(第二版) (1)

离散数学(第二版) (1)
论(conclusion)或后件(consequent)。 “→”是一个二元运算。 条件联结词→的定义如表1.1.4
所示。
表1.1.4
第1章 命题逻辑
第1章 命题逻辑 5. 双条件联结词
定义1.1.6 如果 P和Q是命题, 那么“P当且仅当 Q” 是一个复合命题, 记做 P Q, 称为P和Q的双条件命题
表1.1.1
第1章 命题逻辑
第1章 命题逻辑
2. 合取联结词
定义1.1.3 如果 P和Q是命题, 那么“P并且Q”是一个 复合命题, 记做P∧Q, 称为P和Q 的合取(conjunction)。 符号∧用于表示合取联结词。 P∧Q 为T, 当且仅当P、 Q
均为T。 “∧”是一个二元运算符。 合取联结词∧的定义如表
第1章 命题逻辑
定义1.1.1 一个具有真或假但不能两者都是的断言称为 命题。
如果一个命题所表达的判断为真, 则称其真值(truth value)为“真”, 用大写字母T或数字1表示; 如果一个命题 所表达的判断为假, 则称其真值为“假”, 用大写字母F或 数字0表示。 为简便起见, 本书在构建真值表时一般用0表示 “假”, 用1表示“真”。
(biconditional proposition)。
词。 P Q为T, 当且仅当 P和Q 的真值相同。
1.1.5所示。
表1.1.5
第1章 命题逻辑
第1章 命题逻辑
1.2 命 题 公 式
1.2.1 命题公式及其符号化
定义1.2.1 用于代表取值为真(T、 1)或假(F、 0)之一 的变量, 称为命题变元, 通常用大写字母或带下标或上标的
大写字母表示, 如 P、 Q、 R、 P1、 P2等。 将T和F称为命

第1章 命题逻辑的基本概念

第1章 命题逻辑的基本概念

第1章
例题3
例3、一位父亲对儿子说:“如果我去书店,就 一 定给你买本《儿童画报》。”问:什么情况 下父亲食言? 解:可能有四种情况: (1)父亲去了书店,给儿子买了《儿童画报》。 (2)父亲去了书店,却没给儿子买《儿童画报》。 (3)父亲没去书店,却给儿子买了《儿童画报》。 (4)父亲没去书店,也没给儿子买《儿童画报》。
第1章
等价
5、等价 由p、q和等价符号↔组成的式子(p↔q)称为p和q 的等价式。 p↔q为真当且仅当p、q真值相同。 真值表描述如下: 例:p:两圆面积相等 p↔q p q
0 0 1 1 0 1 0 1 1 0 0 1
q:两圆半径相等 两圆的面积相等当且仅当它 们的半径相当。 (p↔q)
第1章
第1章
例题4
例4、p:天下雨 q:我骑车上班 (1) 如果天不下雨,我就骑车上班。 ┐p→q (2)只要天不下雨,我就骑车上班。 ┐p→q (3)只有天不下雨,我才骑车上班。 q→┐p 或 p→┐q (4)除非天下雨,否则我就骑车上班。 ┐p→q (5)如果天下雨,我就不骑车上班。 p→┐q
第1章
0 0 1 1 0 1 0 1 0 1 1 1
q:小明学过法语 则小明学过英语或法语 表示为: (p∨q)
第1章
相容性或与排斥或
例、小明学过英语或法语 p:小明学过英语 q:小明学过法语 相容性或 表示为:p∨q 例、小明只能挑选计算机专业或物联网工程专业 p:小明选计算机专业 q:小明选物联网专业 排斥或 表示为:(p∧┐q)∨(┐p∧q) 例、小明是安徽人或河南人 p:小明是安徽人 q:小明是河南人 排斥或 表示为:(p∧┐q)∨(┐p∧q) p∨q
例5
例5、p:2+2=4 q:3是奇数 (1) 2+2=4当且仅当3是奇数。p↔q (2) 2+2=4当且仅当3不是奇数。p↔┐q (3) 2+2≠4当且仅当3是奇数。┐p↔q (4) 2+2≠4当且仅当3不是奇数。┐p↔┐q
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
至多可以定义多少个二元联结词?
➢ 排斥或联结词
➢ 与非联结词 ➢ 或非联结词
全功能集
一个联结词集合,若对于任何一个公式均可以用该 集合中的联结词来等值比较,就称他为全功能联 结词组(功能完备集)
如:{ ¬ ,∧,∨ }
极小的全功能集
如果一个联结词的功能完备集中不含冗余的联结词, 就不再具备这种特性,就称为极小全功能联结词组 (极小的功能完备集)
说明: 等值与等价不是一回事。等价是命题联结 词,是公式,在某些指派下为真,某些指派下 为假;等值不是逻辑联结词,而是公式关系符, A B描述了A ,B两公式之间的关系, 只有 “成立”,“不成立”的区别。
简单判定: A B 充要条件是 A与B的真值表相同.
例1 判定下列两公式是否等值?
1) p 与 ┑( ┑P) 2) (p q) r 与 p (q r)
离散数 学
主讲教师 李红军
北京林业大学 理学院 BEIJING FORESTY UNIVERSITY
教材及参考资料
教材:
1耿素云,屈婉玲,张立昂编著,离散数学,清华大学 出版社, 2008年3月(第4版) 2耿素云,屈婉玲编著.离散数学(修订版).高等教育出版社, 2004年
参考资料:
1 左孝凌编著,离散数学,上海科学技术出版社
14) 假言易位: AB ┑B ┑A 15) 等价否定等值式: A↔B ¬ A ¬ B
16) 归缪论: (AB) ∧( A ¬ B) ┑A
例2 用等值演算法验证等值式
教材p10—12 例1.9,1.10,1.11
1.4 联结词全功能集
n元真值函数 称F:{0,1}n{0,1}为n元真值函数.
3 对于优先级相同的联结词,按从左到右 的顺序运算.
命题公式的赋值
指派(赋值):命题公式中出现n个不同的命题变 项P1 Pn ,对这n个命题给定一组真值指定称为 这个公式的一个指派或赋值或解释。
若一个公式中出现n个不同的命题变项,每个变项 分别可以取成1、0,那么该公式共有个2n不同的指 派。
成真赋值
主析取范式 若干个不同的极小项的析取式, 称为主析取范式 。
定理 任何一个命题公式均存在一个与之等值的主 析取范式,而且是唯一的。
求主析取范式方法 :
1、真值表法 ;
2、等值演算法 ;
6 主合取范式
极大项 公式中共有n个命题变项P1,……,Pn这n 个变项的简单析取式中,每个变项Pi或其否定 Pi, 必出现且两者仅出现一个,并且按命题变项的下 标排列(字母按字典序列)这样的简单析取式称 为极大项。
3 析取 符号:∨ p ∨ q 读作“p或q”,“p析取q”。
p ∨ q 真值表
p
q
p∨q
0
0
0
0
1
1
1
0
1
1
1
1
同类关联词语有:要么…要么,
注:“或”分为“相容或”和 “排斥或”两种.
4 蕴含 符号: , p q 读作“p蕴含q”,“如果P则q”, “当p,则q”,“p是q的充分条件”。
P Q的真值表
➢ 一个合取范式是重言式当且仅当它的每个简单析 取式都是重言式。
4 范式存在定理:
任意一个命题公式均存在一个与之等值的析取范 式和合取范式
求范式的一般步骤:
1、消去联结词: 和 2、内移或消去否定号; 3、利用分配律。 注:公式的范式不唯一。
5 主析取范式
极小项 公式中共有n个命题变项p1,……,pn 这n个变项的合取式中,每个变项pi和其否定 pi,均出现且两者仅出现一个,并且按命题变 项的下标排列(字母按字典序列)这样的简单 合取式称为极小项,又称布尔合取。
二 范式
1 文字:命题变项及其否定统称作文字。
2 简单析取式 仅由有限个文字的析取构成的析 取式称为简单析取式。
简单合取式 仅由有限个文字的合取构成的合 取式称为简单合取式。
注:单个文字既是简单析取式,又是简单合取式。
例:指出下列式子哪些是简单析取式哪 些是简单合取式?
1)、P P
简单析取式
2)、p Q 3. P Q R 4. P (Q R) 5. P Q R S
命题标识符:用字母p、q、r、s、p1、…来表示 命题,这些字母称为命题标识符。
1. 否定 符号:┑
P是命题, ┑ P读作“非P”。
P真值表为
P
┑P
1
0
0
1
2 合取 符号:∧, p∧q 读作“p且q”,“p合取q”。
P ∧ Q的真值表
P
Q
0
0
0
1
1
0
1
1
P∧Q 0 0 0 1
同类关联词语有:既…又…,不但…而且;虽然…但是,
则A*为(pq)(p(qs))
对偶原理 A和A*是互为对偶式,P1,
P2 ,……Pn是出现在A和A*的原子变元,则 A(P1,…,Pn) A*( P1,…, Pn) A( P1,…, Pn) A*(P1,…,Pn)
即公式的否定等值于其变元否定的对偶式。
例:A为PQ,则A*为PQ, 则(PQ) PQ
简单合取式 简单合取式 都不是 简单合取式
6. P Q R
都不是
3 范式的概念
析取范式:由有限个简单合取式的析取构成的析取 式称为析取范式。
合取范式:由有限个简单析取式的合取构成的合取 式称为合取范式。
范式:析取范式和合取范式统称为范式。
范式的性质
➢ 一个析取范式是矛盾式当且仅当它的每个简单合 取式都是矛盾式。
成假赋值
真值表 将命题公式A在所有赋值下取值情况列成表
试考虑求公式A的真值表的步骤?
例1 求下列公式的真值表,并求出成真赋值和成假赋值. 1) p(¬ r∧q) 2) (p∨q)(¬ p q) 3) ¬ p ∧ (p∨(¬ q∧p))
命题公式的类型
永真式(重言式):公式在一切赋值下的真值均为真 永假式(矛盾式):公式在一切赋值下的真值均为假 可满足式: 如公式不是矛盾式就是可满足式,即至
主合取范式 若干个不同的极大项的合取式,称为主 合取范式
定理5:任何一个命题公式均存在一个与之等值的 主合取范式,而且是唯一的。
求主合取范式的方法:
1、等值演算法; 2、真值表法; 3、利用主析取范式来得出主合取范式。
✓ 主范式有何作用? ✓ 永真式、永假式的主析取和主合取范 式有何特点?
补充 应用举例
例 1.1 :判断下列句子哪些是命题.
(1) 3 是有理数。
(2) 2是素数。 (3) X+Y>10。 (4) 请把头抬起来! (5) 火星上有生物。 (6) 我可以请假吗? (7) 这句话是错的。
假命题 真命题 不是命题
不是命题 命题 不是命题 不是命题
复合命题
原子命题(原子命题):不能分解成更简单的命题 的命题。 复合命题:由若干个原子命题用命题联结词、 标点符号联结起来的命题。
p ↔ q的真值表为
p
q
0
0
0
1
1
0
1
1
p↔q 1 0 0 1
命题符号化练习
1 晓红和元元是朋友 p:晓红和元元是朋友.(简单命题)
2 老王或小李中有一人去上海
p:老王去上海,q:小李去上海
(p ┑q) (┑ p q)
3 除非天下大雨,否则她不在室内运动 p:天下大雨 q:她在室内运动 q→p 或者 ┑p→┑q
┑(A ∧ B) ┑A∨┑B
7) 吸收律 : A ∧(A ∨ B) A, A∨(A∧B) A
8) 零律 : A ∨ 1 1 ,
A ∧00
9) 同一律: A ∨ 0 A,
A ∧1 A
10) 排中律: A ∨ ┑A 1
11) 否定律: A ∧ ┑A 0
12) 蕴含等值式:AB ¬ A∨B
13) 等价等值式:A↔B (AB)∧(BA)
解:( p p ) ( p p )
1
2
4
5
(( p2 p3 ) (p2 p3 ))
学习要求:
1. 上课时关闭手机或作静音处理,并且 不能打电话。
2. 必须独立完成作业。 3. 教师补充内容和例题需做笔记
联系方式:
Email: lihongjun_2002@
Tel: 62338357 基础楼:204
知识结构图
离散数学
数理逻辑
集合论
代数结构
图论
第一章 命题逻辑
1.1 命题与联结词 命题:能判断真假而不是可真可假的陈述句。 命题的真值:命题为真或者假的判断。 真命题:真值为真的命题。 假命题:真值为假的命题。 注:任何命题的真值都是惟一的; 用“1”表示真,用“0”表示假。
例1的参考答案
m z 1
1
3
r m 1
1
3
z m 1
1
2
m m 1 m (r m )
1
1
1
1
3
(m r ) (m m )
1
1
1
3
000
z 1 3
z 0从而m 1
1
2
因此,比赛结果为日本第一,美国第二,中国第
三.
例2 某班欲派李光,王明,张正,刘大,赵五去
西客站接新生。派人方案满足下列条件:
p
q
0
0
0
1
1
0
1
1
pq
1 1 0 1
同类关联词语:q是p的必要条件,只有…才,只要…就, 除非…才,
练习: 1) 如果它是鸟,就能飞。 2) 只有是鸟,它才能飞。 3) 除非它是鸟,否则它就不能飞。
4) 除非明天不下雨,否则我就不去香山. 5) 我不玩游戏,除非我情绪不稳定.
相关文档
最新文档