化学反应工程气液反应工程
化学反应工程(第九章 气-液-固三相反应工程)
易于更换、补充失活的催化剂,但又要求催化剂耐磨损。 使用三相流化床或三相携带床时,则存在液-固分离的技术
问题,三相携带床存在淤浆输送的技术问题。
3. 气、液并流向上休系的操作流型 颗粒运动基本操作方式:固定床、膨胀床(悬浮床)、 输送床(携带床)。 液体介质的液固系统中固体颗粒终端速度ut:
采用多孔固体催化剂时,可以定义两 种润湿率: ①内部润湿或空隙充满率。 ②外部有效润湿率。
图9-6 催化剂颗粒间的 液囊和流动膜
4. 床层压力降
单相气体通过固定床的压力降与气体的流速和物性、催
化剂的粒径、形状及催化剂的装填状况等因素有关,可 用Ergun式作为计算固定床压降的基本方程。 并未计入破碎、积炭、物流中的固体杂物沉积和床层下 沉等因素致使随操作后期压力降增加,因此工业反应器 开工初期的压力降可称为床层固有压力降。 气、液并流下向下滴流床反应器的床层固有压力降,还 应考虑液体以液膜的形式在催化剂颗粒表面间流动形成
床层宏观反应动力学91气液固三相反应器的类型及宏观反应动力学92三相滴流床反应器93机械搅拌鼓泡悬浮三相反应器9497压力对三相悬浮床反应器操作性能的影响95气液并流向上三相流化床反应器96三相悬浮床中的相混合98气液固三相悬浮床反应器的数学模型99讨论与分析图95气液井流滴流床流动状态与操作条件气液并流向下固定床内气体和液体的流动状态可以分为稳定流动滴流区脉冲流动区和分散鼓泡区如图95流动状态一气液并流向下通过固定床的流体力学气液稳定流动滴流区当气速较低时液体在颗粒表面形成滞流液膜气相为连续相这时的流动状态称为滴流状
rA, g dNA/dVR k AG a(cAg c Aig ) kALa(cAiL c AL ) kAS Se(c AL c AS ) kwSeρ sw c AS ζ 向气-液界面传质速率 向液相主体传质速率 向催化剂外表面传质速 率 催化剂内的扩散 - 反应速率
化学反应工程(第三版)陈甘棠主编第八章气液两相反应器PPT课件
(8-14)
定常态操作时,单位界面上反应量等于扩散通量,即
NA(rA )d SA n dtD LA ddA czz0
将A的浓度分布对z求导后代入上式得
式中,
N A( rA )D L LA cA 1 i b D L L D c B c B A AL i kLc A Ai
k LA
DLA L
,称为液膜传质系数。
(8-16)
1 DLBcBL bDLAcAi
,称为瞬间反应的增强系数。物理意义是气
液反应条件下组分A的消失速率与最大物理吸收速率 kLAcAi 之比。 13
式(8-15)中cAi是界面浓度,难以测定,工程设计中通常将 其换算为容易测量的pA来表示的反应速率。因为,
N AkG(A p Ap A)i( rA )kLc A A 1 ib D L L D c c B B A A L i
第八章 气液两相反应器
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
8.1 概述
气-液相反应是一类重要的非均相反应。主要分为二种类型: (1)化学吸收: 原料气净化、产品提纯、废气处理等。 (2)制取化工产品
a.
b.
c.
(淤浆床)
A ( g b) l) B P(( r A ) k A c B c
定常态条件下,在单位面积的液膜中取一厚度为dz的微元层,对组分
A作物料衡算:
D Ld A dAc z( rA )d z D Ld A d c zAd dAc d z z
整理得
DLAdd2cz2A kcAcB 0
化学反应工程第九章气液固三相反应工程资料
2019/12/16
2. 鼓泡淤浆床三相反应器的特征 鼓泡淤浆床反应器(Bubble Column Slurry
Reactor,简称BCSR)的基础是气-液鼓泡反应器, 即在其中加入固体,往往文献中将鼓泡淤浆床反 应器与气-液鼓泡反应器同时进行综述。
2019/12/16
2019/12/16
2019/12/16
1—入口扩散器; 2—气液分离器; 3—去垢篮筐; 4—催化剂支持盘; 5—催化剂连通管; 6—急冷氢箱及再分配盘; 7—出口收集盘; 8—卸催化剂口; 9—急冷氢管
图(例9-1-1)热壁式加氢裂化反应器
(二)悬浮床气-液-固三相ห้องสมุดไป่ตู้应器
固体呈悬浮状态的悬浮床气-液-固三相反应器一般 使用细颗粒固体,有多种型式,例如:
2019/12/16
工业滴流床反应器优点
气体在平推流条件下操作,液固比(或液体滞留量) 很小,可使均相反应的影响降至最低;
气-液向下操作的滴流床反应器不存在液泛问题; 滴流床三相反应器的压降比鼓泡反应器小。
2019/12/16
工业滴流床反应器缺点
在大型滴流床反应器中,低液速操作的液流径向分布 不均匀,并且引起径向温度不均匀,形成局部过热, 催化剂颗粒不能太小,而大颗粒催化剂存在明显的内 扩散影响;
2019/12/16
温度
加氢裂化是放热反应,温度升高可以提高反 应速率常数,但对加氢反应的化学平衡不利, 原料油越重,氮含量越高,反应温度要越高, 但过高的反应温度会增加催化剂表面的积炭。
例如,对于轻循环油加氢过程,当原料油含氮
(质量分数)分别为0.04%,0.1%及0.16%时, 反 应 温 度 分 别 为 355 ~ 365℃ , 385 ~ 395℃ 及 430~435℃。
化学反应工程-22-第七章-气液相反应过程
Z =0
dC A dZ
dC A dZ
=
γ (α − 1)ch γ 1 − Z + sh γ 1 − Z ⋅ (− γ ) γ (α − 1)shγ + chγ
=
[(
)]
[(
)]
Z =0
γ (α − 1)chγ + shγ γ (α − 1) + thγ (− γ ) ⋅ (− γ ) = γ (α − 1)shγ + chγ 1 + γ (α − 1)thγ
γ = (aδ L ) =
2 2
2 δLk
δ L kC Ai
k LA C Ai
DLA
=
液膜最大可能的反应量 通过相界面A的最大可能的传质量
γ反映了液膜内进行的极限反应量与极限传递速率之比,所以可以应 用它来判断反应的快慢。与气固相催化反应的Φ模数意义类似。
①
γ > 2 时,即膜内最大反应量大于4倍膜内最大传质量时,可以认为
⑤可逆一级快速反应:
DLB 1+ k D LA β= D thγ 1 + k LB D LA γ
三、反应相内部利用率 η
实际的反应速率 η= 单位体积反应器中可能具有的最大反应速率
和气固相反应一样,对气液相反应,也存在一个内部利用率问题。 对一级反应定义如下:
βk LA C Ai D AL ⋅ γ [γ (α − 1) + thγ ] ⋅ δ L 1 γ (α − 1) + thγ η= = = ⋅ 2 kC Aiυ γα 1 + γ (α − 1)thγ δ L kυ [1 + γ (α − 1)thγ ]
(
化学反应工程第四章
C Co u z L
代入上式中有
C D 2 C C ( ) 2 W Z Z
ul Pe 令 D
皮克特准数(Pecllet Number)
当Pe→∞时, ul 0 无轴向扩散,活塞流 D ul 当Pe→0时, D 极大轴向扩散,全混流 1.离散程度较小的扩散模型(服从正态分布)
0
0
E (t )dt
(t t ) 2 E (t )dt
0
N
t E (t )dt 2tt E (t )dt t 2 E (t )dt
2 0 0 0
t 2 E (t )dt t 2
0
离散点 t 2 t 2 E(t )t (t ) 2 4.停留日间分布函数的测定
1.年令分布E函数(密度函数)
n E f (t ) tQ
Qm
n E f (t ) tQ
检测
一次注入
E dt
n E f (t ) tQ
E
t t+dt
t1 t2
t
E (t )t 1
i 1
M
E (t ) dt 1
i 1
n n tQ t Q 1 i 1 i 1 M M
,
E ( ) e e e
1
t
t
F ( ) 1 e
返混
0 1
2
§4-3非理想流动(non-ideal flow)
实际流动大多是属于非理想流动范畴。 2 0 1 。若按两种理想流动模型都有误差。 应用非理想流动模型处理。
化学反应工程-24-第七章-气液相反应过程
①气相返馄 对并流操作的鼓泡塔,当处于安静区时,气泡相属平推流,轴向混合 可以不计; 对逆流操作的鼓泡塔,由于液体向下流速较大,必然夹带较小的气泡 向下运动,因此存在一定的返混; 对采用机械搅拌装置时,气相有可能为全混流。
②液相返混 即使在安静区,u0G很小时,液相就有返混,塔径越大,返混越剧烈。工业 鼓泡塔内的液相基本上都处于全混状态。当满足下列条件时:
u 0G = 0 − 45 cm ,u 0 L = 0 − 2 cm s s
可用下式推算轴向分散系数: Du 0G E ZL = 3ε G
2、鼓泡塔内的传热和传质 ⑴鼓泡塔内的传热 通常采用三种热交换方式: ①采用夹套、蛇管或列管式冷却器; ②采用液体外循环冷却器; ③利用溶剂、反应物或产物的汽化带走热量。 本节主要针对第一中情况讨论给热系数: 对于水-空气系统,鼓泡床和热交换装置间的给热系数,可用如下关联式: 0 . 22 h = 6800 u 0 G W 2 m ⋅K u0G的单位为m/s。
P 由于没有气相阻力, Ai = PAg
不同情况下的传质系数,关联式如下: ①安静区 此时由于气泡直径db相当均一,关联式如下:
Sh = 2.0 + 0.552 Re
0 .5 P
Sc L 3
1
kL db µL d u ρL 式中: Sh = , Re P = b t , Sc L = DL ρ L DL µL
或采用以下关联式:
3 0.484 0.339 d b g Sh = 2.0 + 0.0187 Re P Sc L 23 DL
1
0.072
1.61
②湍动区 若床层内的气泡直径db为已知时,则有如下关联式:
有机催化反应工程-气液反应
DA
t
(
c*A
c AL
)
表面更新模型
表面元在表面暴露时间为零到无穷大任一值 暴露时间分布密度函数
se st
N A 0 N A( t )dt
DAs ( c*A cAL )
kL DAs
简单气液反应宏观动力学
扩散-反应微分方程
D
2c A z 2
c A t
rA
三维模型
D 2cA
uc A
c A t
aL:单位液相体积为基准的相界面积 εL:液含率
气液反应的理论基础
扩散方程
Fick第一定律-分子扩散速率
Fick第二定律-扩散方程
膜模型 渗透模型 表面更新模型
N AB
DAB
dc A dz
DAB
2c A z 2
c A t
双膜理论
气液界面上,气体在液相的浓度与其在气相的浓度瞬 时达到平衡 溶质通过界面无阻力 气液相界面两侧分别存在气膜与液膜,传质阻力完全 集中于膜内 通过气膜的溶质都通过液膜,膜内无累积 膜内流体视为静止 膜外气体和液体被充分搅拌,浓度均一 气体通过的液面不更新
渗透模型
DA
2c A z 2
c A t
cA(
z,t
)
c AL
(
c*A
ቤተ መጻሕፍቲ ባይዱ
c AL
)1
erf
(
2
z )
DAt
z0 z0
t0 t0
cA cA
cAi c*A c AL
N
A
(
t
)
DA
cA z
z0
z t 0 cA cAL
DA
t
化学反应工程(ChemicalReactionEngineering)
§1-1化学反应工程
第一节 化学反应工程 一、化学反应工程的研究对象
化学反应工程是化学工程学科的一个重要分支,主要包括 两个方面的内容,即反应动力学和反应器设计分析。
反应动力学--研究化学反应进行的机理和速率,以获得工 业反应器设计与操作所需的动力学知识和信息,如反应模式、 速率方程及反应活化能等。其中速率方程可表示为:
化学反应工程(Chemical Reaction Engineering) 西南科技大学
§1-1化学反应工程
例如: so2 o2 为钒 一 气固催s化o反3 应
化学反应工程(Chemical Reaction Engineering) 西南科技大学
§1-1化学反应工程
三、反应过程的举例
化学反应工程(Chemical Reaction Engineering) 西南科技大学
§1-1化学反应工程
无论对于放热过程,还是吸热过程,催化剂与 反应物气体存在温差。 就整个反应器而言,如反应器内的浓度和温度 随位置变化,需将化学反应与传递现象综合起 来考虑。
四、化学反应工程作用
对于化学产品和加工过程的开发、反应器 的设计放大起着重要的作用。运用化学反应工程 知识可以: 提高反应器的放大倍数,减少试验和开发周期。
Chapter Ⅰ绪 论 Chapter Ⅰ绪 论 Chapter 1 Introduction
§1-1 化学反应工程 §1-2 转化率、收率和选择性 §1-3 化学反应器的类型 §1-4 反应器的操作方式 §1-5 反应器的设计与基本过程 §1-6 工业反应器的放大
化学反应工程(Chemical Reaction Engineering) 西南科技大学
化学反应工程
化学反应工程化学反应工程是研究和应用化学反应的一门学科,主要涉及反应基础、反应动力学、反应工程、反应器设计、反应工艺优化等方面。
本文将介绍化学反应工程的基本概念、关键内容和应用领域。
一、化学反应工程的基本概念化学反应工程是将化学反应原理与工程技术相结合,研究化学反应的机理、动力学和应用,以达到控制和优化反应过程的目标。
它是化工过程工程的重要组成部分,也是化工工业中最基本、最关键的环节之一。
化学反应工程主要研究反应的速率、选择性、稳定性和收率等关键问题,通过设计合适的反应器以及优化反应工艺,来实现预期的反应目标。
反应体系的研究对象包括单一物质和复杂物质之间的化学反应,如气相反应、液相反应、固相反应、催化反应等。
二、化学反应工程的关键内容1. 反应动力学反应动力学研究反应速率与反应物浓度、温度、压力等因素之间的关系。
通过实验和理论模型的建立,可以确定反应的速率常数、反应机理和反应动力学方程。
反应动力学的研究对于反应过程的深入理解和反应器设计具有重要意义。
2. 反应器设计反应器是进行化学反应的装置,其设计旨在实现高效率、高选择性和高产率的反应过程。
根据反应条件的不同,常见的反应器有批式反应器、连续式反应器、循环式反应器等。
反应器设计考虑到传热、质量传递、混合和流动等因素,以最大程度地实现反应条件的控制和反应物的利用率。
3. 反应工艺优化反应工艺优化是指通过调整反应条件、改变反应器结构和优化操作参数等手段,提高反应过程的经济效益和可行性。
优化方法包括响应面法、遗传算法、模拟退火算法等,通过建立反应过程的数学模型,寻求最优解,以达到能源节约、资源利用和环境友好的目标。
三、化学反应工程的应用领域化学反应工程广泛应用于化工领域的各个环节,包括新材料制备、能源开发、环境保护、医药制造等。
以下列举几个典型应用案例:1. 新材料制备化学反应工程在新材料制备中发挥重要作用,如高分子材料的合成、纳米材料的制备和催化剂的研发等。
化学反应工程第九章气液固三相反应工程资料
工业悬浮床反应器优点
由于存液量大,热容量大,并且悬浮床与传热元件之 间的给热系数远大于固定床,容易回收反应热量及调 节床层温度。
对于强放热多重反应可抑制其超温和提高选择率。 三相悬浮床反应器可以使用含有高浓度反应物的原料
气,并且仍然控制在等温下操作,这在固定床气-固 相催化反应器中由于温升太大而不可能进行。 三相悬浮床反应器使用细颗粒催化剂,可以消除内扩 散的影响。
例如,对于轻循环油加氢过程,当原料油含氮
(质量分数)分别为0.04%,0.1%及0.16%时, 反 应 温 度 分 别 为 355 ~ 365℃ , 385 ~ 395℃ 及 430~435℃。
氢油比
加氢裂化过程中热效应较大,氢耗量相应较 大,一般采用较高的氢油比,即含氢气体在STP 状态下的体积流量(m3/h)与20℃原料油体积流 量(m3/h)之比为1000~2000。
催化剂颗粒较易磨损,但磨损程度低于气-固相流化床; 气相呈一定程度的返混,影响了反应器中的总体速率。
实例
煤或天然气制合成气主要含CO和H2,经费-托合成反 应,再经加氢或异构化反应,制成汽油、柴油、石蜡等 产品是原料油制燃料油以外另一个主要的燃料油生产路 线,又称间接液化。费托合成一般选择压力0.5~3.0MPa, 反应温度200~350℃,决定于所使用催化剂的性质。
可以在不停止操作的情况下更换催化剂; 催化剂不会象固定床中那样产生烧结。
鼓泡淤浆床反应器有下列缺点:
要求所使用的液体为惰性,不与其中某一反应物发生任
何化学反应,在操作状态下呈液态,蒸汽压低且热稳定 性好,不易分解,并且不含对催化剂有毒物质。但三相 床中进行氧化反应时,耐氧化的惰性液相热载体的筛选 是一个难点;
化学反应工程课后习题答案 吴元欣
第二节 气-液反应历程
3. 准数M的判据
准数M表示了液膜中反应速率与传递速率之比值。由M数值的大 小,可以决定反应相对于传递速率的类别,这一情况列于下表。
准数M的判别条件
条件 M << l M >> l
反应类别 缓慢反应过程 快速反应过程
反应进行情况 反应在液流主体中进行
反应在膜中进行完毕
第二节 气-液反应历程
DD的斜率大于 DE 的斜率(以绝对值而言),这表明液膜 中进行的化学反应将使吸收速率较纯物理吸收大为 增加,若以 表 示吸收速率增强因子,则
DD的斜率 DE的斜率
1
第二节 气-液反应历程
如果化学反应进行得很快,则被吸收组分浓度 在液膜中的变化曲线将变得更向下弯曲一些,此时 增强因子将会提高;反之,化学反应进行得慢,浓 度曲线将更直一些,增强因子将会降低。
溶解热高达数万焦耳每摩尔,因此,温度改变对化学吸收平 衡的影响较物理吸收时更为强烈。
第二节 气-液反应历程
一、气—液相间物质传递
描述气-液相间物质传递有各种不同的传质模型 ,例如双膜论、Higbie渗透论、Danckwerts表面更 新论和湍流传质论等,其中以双膜论最为简便。
双膜论是假定在气-液相界面两侧各存在一个静
第二节 气-液反应历程
相界面上各种参数不随时 间而改变。
pAi = cAi / H
传质只发生在 气、液膜内。
膜内的传质方 式仅为分子扩
散。
ZG
ZL
第二节 气-液反应历程
若吸收系统服从亨利定律或平衡关系在计算范围 为直线,则:
cA HpA*
根据双膜理论,界面无阻力,即界面上气液两相平 衡,则:
cAi HpAi
反应工程pdf
反应工程反应工程是一门研究化学反应过程、反应器设计、反应条件优化以及反应产物的分析和控制的学科。
它涉及化学、化工、材料科学等多个领域,旨在实现化学反应的高效、可控和可持续进行。
本文将从反应工程的基本概念、反应器设计、反应条件优化、反应产物分析等方面进行探讨。
一、基本概念1.化学反应:化学反应是指物质在原子、离子或分子层面上发生的原子或离子重新组合的过程,伴随着能量的吸收或释放。
化学反应具有方向性、可逆性和平衡性等特点。
2.反应速率:反应速率是指单位时间内反应物浓度变化的快慢。
影响反应速率的因素有温度、浓度、压强、催化剂、反应物表面积等。
3.反应机理:反应机理是指化学反应过程中,反应物分子或离子发生断裂、形成新键等微观过程。
了解反应机理有助于解释反应现象、预测产物结构以及优化反应条件。
4.反应热力学:反应热力学研究化学反应过程中能量变化与反应条件的关系。
主要包括反应焓、反应熵、反应自由能等概念。
二、反应器设计1.反应器类型:根据反应物状态、反应条件、反应机理等因素,反应器可分为气相反应器、液相反应器、固相反应器等。
气相反应器主要包括管式反应器、釜式反应器等;液相反应器主要包括搅拌釜、膜反应器等;固相反应器主要包括固定床反应器、流化床反应器等。
2.反应器设计原则:反应器设计应考虑反应物的混合、反应条件的控制、反应产物的分离、热量传递等因素。
同时,要确保反应器具有良好的操作稳定性、安全性和环保性能。
3.反应器优化:通过改变反应器结构、提高反应物接触效率、优化反应条件等手段,提高反应速率和产物收率。
常见的优化方法有:增加反应物表面积、提高反应温度、使用催化剂等。
三、反应条件优化1.温度:温度是影响化学反应速率和平衡的关键因素。
提高温度有利于加快反应速率,但可能导致平衡向逆反应方向移动。
因此,需要在保证反应速率的前提下,选择合适的温度。
2.浓度:浓度影响反应速率和平衡位置。
适当提高反应物浓度可以加快反应速率,但过高的浓度可能导致反应体系不稳定。
化学反应工程-第8章
• H/D 值太小时,分布器结构及气泡进入时状态对过程 影响较大。气泡离开床层时液体夹带量较多。 • H/D比值过大,由于气泡的汇合作用,在小直径塔中 有可能形成节涌状态。
溶质渗透理论的结果是
表面更新理论
丹克沃茨提出的表面更新理论引入了相际接触表面更新的概念。 假定旋涡的年龄分布函数为一指数分布,并规定分布函数的特征参数为在界 面上旋涡微元的更新频率s,为一常数,则可求得通过液膜的平均传质速率NA 为:
从表面更新理论得到的结果,也是
8.2 伴有不可逆和可逆反应的传质
落在图中对角线附近,这相当于拟一 级反应的情况。
•
c .在一定β∞值时,增加γ,则β也增 加,最后β值趋近于β∞ 。
④ 一级或拟一级不可逆快速反应
边界条件为
解得
于是有
由图图8-6可见:
对于快速反应,质及反应速率。情况(c ) (d ) : 容积反应速率
容积传质速率
⑤ 慢速反应
(情况图8-4(g ))
• 基本理论:双膜理论 • 与物理吸收的差别在于在液相主体和液膜中存在化学反应,反应速率的快慢直 接影响了吸收的速率。 • 反应历程亦为连串过程,反应速率决定了控制步骤的所在。
反应过程根据不同的传质速率和化学反应速率,可有8种不同情况 :
情况(a ) :与传质速率相比较,反应是瞬间完成的。在液体微元中,只能含有 A 或B ,两者不能并存,反应只能发生在含A 的液相和含B 的液相间的一个界 面上。A 和B 扩散至此界面的速率就决定了过程的总速率。р A 和cB的变化将导 致反应面位置的移动。
的增大,导致η下降显得缓慢。 对快反应,为了提高内部利用率,应使
下降。
8.2.3 反应速率的实验测定
化学反应工程 第六章 气-液反应及反应器
电流过程与双膜传质过程的类似
Ci Hpi
U1
U2
G
L
I U1 U2 U2 U3
R1
R2
U1 U2 U1 U2
R1 R2
R0
R0 R1 R2
U3
pG
Ci
pi
CL
GL
N pG pi Ci CL pG pi Ci CL
G / DG L / DL 1/ kG
M H(a或φ)准数数值大小的含义:
Ci pG
δg
δL
pi
GL
G
L
M (H或a φ)准数 数值大小的含义:
M或φ数值越大,反 应越快于传质,浓 CL 度分布越显著。
M H(a或φ)准数数值大小的含义:
Ci pG
δg
δL
pi
GL
G
L
M (H或a φ)准数 数值大小的含义:
M或φ数值越大,反 应越快于传质,浓 CL 度分布越显著。
三、M准数的判据
M准数:液膜中化学反应与传递之间相对速率的大小
条 件 反应类别 反应进行情况
M 0 反应可忽略 液膜液相的反应均可忽略
M 1 慢反应
反应在液相主体中进行
M 1 中速反应 反应在液膜和液相中进行
M 1 快反应
反应在液膜中进行完毕
M 瞬间反应 反应在膜内某处进行完毕
瞬
快
间
反
反
应
假设:扩散组分在气-液界面处达到气液相平衡。
双膜理论
Ci pG
δg
δL
pi
GL
G
L
CL
JG
DG
化学反应工程知识点
化学反应工程知识点化学反应工程知识点—郭锴主编1、化学反应工程学不仅研究化学反应速率与反应条件之间的关系,即化学反应动力学,而且着重研究传递过程对宏观化学反应速率的影响,研究不同类型反应器的特点及其与化学反应结果之间的关系。
2、任何化工生产,从原料到产品都可以概括为原料的预处理、化学反应过程和产物的后处理这三个部分,而化学反应过程是整个化工生产的核心。
3.化学反应工程的基本研究方法是数学模型法。
数学模型法是对复杂的、难以用数学全面描述的客观实体,人为地做某些假定,设想出一个简化模型,并通过对简化模型的数学求解,达到利用简单数学方程描述复杂物理过程的目的。
模型必须具有等效性,而且要与被描述的实体的那一方面的特性相似;模型必须进行合理简化,简化模型既要反映客观实体,又有便于数学求解和使用。
4.反应器按型式来分类可以分为管式反应器、槽式反应器(釜式反应器)和塔式反应器。
5反应器按传热条件分类,分为等温反应器、绝热反应器和非等温非绝热反应器。
第一章均相单一反应动力学和理想反应器1、目前普遍使用关键组分A 的转化率来描述一个化学反应进行的程度,其定义为:00A A A A A A n n n x -==组分的起始量组分量转化了的 2、化学反应速率定义(严格定义)为单位反应体系内反应程度随时间的变化率。
其数学表达式为dtd V r ξ1=。
3、对于反应D C B A 432+=+,反应物A 的消耗速率表达式为dt dn V r A A 1-=-;反应产物C 的生成速率表达式为:dtdn V r C C 1= 4.反应动力学方程:定量描述反应速率与影响反应速率之间的关系式称为反应动力学方程。
大量的实验表明,均相反应的速率是反应物系的组成、温度和压力的函数。
5.阿累尼乌斯关系式为RT E C C e k k -=0,其中活化能反应了反应速率对温度变化的敏感程度。
6、半衰期:是指转化率从0变为50%所需时间为该反应的半衰期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H
i
M
ρ
0
Ei
为溶液的密度;M0为溶剂摩尔质量。
亨利系数Ei与溶解度系数Hi与温度和压力的关
系为
dln E i
d 1 T
dlnH i
d 1 T
Hi R
dln E i dln H i Vi
dp
dp
RT
Vi 为气体在溶液中的偏摩尔容积,m3 kmol。
二、溶液中气体溶解度的估算
解 查表6-2及表6-3得
对1mol/L Na2CO3:h1 h h hG 0.091 0.038 0.015 0.114
1mol/L NaOH:h 2 h h hG 0.091 0.060 0.015 0.136
1mol/LNa2CO3的离子强度:I1
如果溶液中含有电解质,这些电解质的离子将会降低气
体的溶解度,它可由如下关联式表示
lg E / E 0 lg H 0 / H h1 I1 h2 I2
式中E0、E为气体在水中和在电解质溶液中的亨利系数;
H0、H为气体在水中和在电解质溶液中的溶解度系数;
I1、I2为溶液中各电解质的离子强度,
1 HA
c c M N MN
K
c
c B B
1 A
当气相是理想气体混合物时,上式为
p
* A
1 HA
c M M
Kc
c N N
c B B
1 A
为了较深入地阐明带化学反应的气液平衡关系, 下面分几种类型来分析。
1. 被吸收组分与溶剂相互作用
I
1 2
ci Z i2
,其中ci为离子浓度,Zi为离子价数;
h1、h2为溶液中各电解质所引起的溶解度降低系数,其 数值为h h h hG,其中h+、h-、hG分别为该电解质正、负离 子及被溶解的气体引起的数值。
如果吸收剂中含有非电解质溶质,气体溶解度 亦会降低,则溶解度系数为
lg E / E0 lg H 0 / H hScS
一、气-液相平衡
气-液相达平衡时,i组分在气相与液相中的逸度相等,
即
fig fiL
气相中i组分的逸度 fig 是分压
Py
(或)与逸度因子
i
i
的乘积,即 fig Pyii
液相中i组分为被溶解的气体,xi是i组分在液相中摩 尔分数,如果是符合亨利定律的稀溶液,即 f i (L) Eixi
式中 hs为非电解质溶液盐效应系数,m3 kmol ; cS为非电解质的浓度,kmol 。 m3
盐效应系数随分子量增大而增加。
[例6-1]计算CO2在20℃、1mol/L Na2CO3和1mol/L NaOH溶液中的溶解度系数,已知CO2在20℃水中溶 解度系数H0为0.385 kmol m3 MPa。
第六章 气-液反应工程
在“化工原理”课程中,“气体吸收”一章主 要讨论以液体吸收气体混合物中的有用物质,以制 取产品和除去其中有害的物质,其基本原理是利用 目的组分在溶剂中不同的物理溶解度,而与气体混 合物分离,称为物理吸收,所采用的设备主要是填 料吸收塔。
以溶剂中活性组分与目的组分产生化学反应而 增大溶解度和吸收速率的过程,称为化学吸收, “化工原理”课程只做了简要阐述。
设被吸收组分A在溶液中总浓度为
c
0 A
,即c
0 A
cA*
,cM
可得 。联合理想气体亨利定律 ,整 Kc
cM cA*cB
c
0 A
c
* A
c
* A
c
B
cA
H
A
p
* A
理得
p
* A
c
A
HA
HA
c
0 A
1 KccB
当A为稀溶液时,溶剂B是大量的,p*A与
c
0表观上
A
仍遵从亨利定律,但溶解度系数较无溶剂化作用时
增大(1+Kc cB)倍。
如水吸收氨即属此例。
2. 被吸收组分在溶液中离解
由反应平衡,Kc cM cN
有机物加氢 烯烃加氢;脂肪酸酯加氢
其他有机反 应
气体的吸收
合成产物
甲醇羟基化为醋酸;异丁烯被硫酸所吸收;烯烃在有机溶剂中聚合。
SO3被硫酸所吸收;NO2被稀硝酸所吸收;CO2和H2S被Байду номын сангаас性溶液所吸 收。
CO2与液氨合成尿素;CO2与氨水生成碳铵;CO2与含NH3的盐水生成 NaHCO3和NH4Cl
第一节 气-液反应平衡
Ei 是亨利系数。
若气相为理想气体的混合物,即i 1 ,则低压 下的气-液平衡关系为 pi p yi Ei xi
如果不是稀溶液,则还应引入活度和活度因 子,可参见其它专著。
亨利定律也可用容积摩尔浓度ci来表示,则
ci Hi fig
在低压下则为 ci Hi pi
溶解度系数和亨利系数的近似关系为
三、带化学反应的气—液相平 衡
气体A与液相组分B发生化学反应,则A组分既 遵从相平衡关系又遵从化学平衡关系。设溶解气体 A与液相中B发生反应,则可表示为
由化学平衡常数可写出
c A*
c
ν M
M
c
ν N
K
c
c
ν B
B
N
1 /ν A
由相平衡关系式可得
f* A( g )
cA* HA
在过程工业中,采用化学吸收进行气体净化和 气-液反应,气-液反应是气相中某组分与液相溶剂 产生化学反应而生成另一种液相产物,广泛用于有 机物的氧化、氯化、加氢等反应,主要采用填料反 应器和鼓泡反应器。
本章授课内容
• 气-液反应平衡 • 气-液反应历程 • 气-液反应动力学特征 • 气-液反应器概述 • 鼓泡反应器 • 填料反应器
气-液反应广泛地应用于加氢、磺化、卤化、氧化等 化学加工过程;合成气净化,废气及污水处理,以及好气 性微生物发酵等过程均常应用气-液反应。
有机物氧化 有机物氯化
工业应用气-液反应实例
链状烷烃氧化成酸;对-二甲苯氧化成对苯二甲酸;环己烷氧化成 环己酮;乙醛氧化成醋酸。
苯氯化为氯化苯;十二烷烃的氯化;甲苯氯化为氯化甲苯。
1 2
ci Zi2
1 2
2
4
3
1mol/L的离子强度:I2
1 2
1 1
1
由式(6-10)得, lg H0 H h1I1 h2I2 0.114 3 0.136 1 0.478
H 0 H 3.00
H 0.385 / 3.00 0.128 kmol /(m3 MPa)