抽油机系统设计样本

合集下载

油田抽油机设计范文

油田抽油机设计范文

油田抽油机设计范文油田抽油机是用于从油井中抽取原油的设备,它在油田开发过程中起着至关重要的作用。

一个高效可靠的抽油机设计能够提高油田开采效率,减少能源消耗,降低环境污染。

本文将从抽油机的类型、工作原理、设计要求以及优化措施等方面进行阐述。

首先,根据抽油机的原理和结构特点,可以将其分为柱塞泵、螺杆泵、离心泵等几种类型。

柱塞泵由于其结构简单,能够达到较高的压力,因此在抽油机中得到广泛应用。

螺杆泵则具有抽油量大、能耗低等优点,适用于油井中脏杂物较多的情况。

离心泵由于其结构简单、重量轻,被广泛应用于海洋石油抽油设备中。

设计者需要根据油井的特点和要求选择合适的抽油机类型。

其次,抽油机的工作原理主要是利用机械能将原油从油井中抽取出来。

具体来说,柱塞泵通过柱塞来实现抽油的过程,柱塞在泵筒内上下运动,产生变压作用,从而将原油抽到地面。

螺杆泵通过螺杆的转动将原油推送出来。

离心泵则是利用离心力将原油抽取出来。

设计者需要了解各种抽油机的工作原理,并根据油井的情况选择合适的工作原理。

再次,设计抽油机时需要考虑的要求包括抽油量、抽油深度、耐腐蚀性、可靠性等方面。

抽油量应能够满足油田开采的需求,其大小与油田产量密切相关。

抽油深度是指油井离地面的高度,设计者需要根据油井的深度来选择抽油机的结构和参数。

耐腐蚀性是指抽油机能否在恶劣的工作环境下长时间稳定运行,设计者需要选用适合的材料以保证抽油机的耐腐蚀性。

可靠性是指抽油机运行是否稳定可靠,设计者需要选用优质的零部件和合理的结构来提高抽油机的可靠性。

最后,为了进一步提高抽油机的工作效率和节能效果,设计者可以采取一些优化措施。

例如,可以采用变频器来控制抽油机的转速,以适应不同抽油量的需求。

同时,设计者还可以采用高效能的电机和传动装置,来降低抽油机的能源消耗。

此外,还可以对抽油机的泵筒、柱塞等关键部件进行优化设计,以提高其耐磨性和耐腐蚀性。

综上所述,油田抽油机设计是一个综合性的工程项目,需要设计者充分考虑抽油机的类型、工作原理、设计要求以及优化措施等各个方面。

有杆抽油系统的设计

有杆抽油系统的设计

188.5380.61860620.851.0290.9436400.1β=0.6580P s = 2.537400.1019.8ρl =0.95249801.15L p =11787850钢材的密度7850kg/m 3标准状况下压力:P sc =0.101MPa频率系数F c =1.15声波在抽油杆中的速度a=4980m/s泵挂深度的公式为书中(重力加速度:g=9.8计算沉没压力公式如公式以上公式计算沉没压力,β为可自己设定一个β值,则0<Q t <Q b ,此时产量与流压Q omax =Q b +Q c =Q b +JP b /1.8=而Q t =36m 3/d.一:油井产能预测或流1、确定井底流压(9Mpa)Q b =J(P r -P b )=3、确定下泵深度(1178m)ρl =ρw f w +(1-f w )ρo 设计产量(配产):Q x =40m 3/d井口套管压力:P c =0.1Mpa则Q t 下的井底流压可通过下式P wf =P r -Q t /J=2、确定沉没压力(2.537Mpa 泵入口温度:80℃GOR(气油比):40m 3/m 3油管内径:D ti =62mm(2.44Lin)产液指数:J=4.0m 3/(d*Mpa)试井产量:Q t =36m 3/d原油相对密度:0.85地层水相对密度:1.02杆柱的使用系数:SF=0.9有杆抽油系统的设计地层平均压力:P r =18MPa原油饱和压力:P b =8.5MPa含水率:f w =60%油层中部深度:H=1860m56.89ηp =0.750.75Q t =53.3952①D p =38.1s*n=32.5②D p =44.5s*n=24则:1、2符合要求选用D p =38.1mm和D p =44.45mm的泵径(2):柱塞长度选用1.2m,防冲距0.8m。

(3):根据不同的泵径,选择不同的s、n组合应大于油管内径,则可供选择的泵径为38.1mm,44.45mm,57.15mm则有:1、D p =38.1mm时,s*n=32.52、D p =44.45mm时,s*n=243、D p =57.15mm时,s*n=14.4(舍去)原则上:s*n=20-50m/min由于油管内径D ti =62mm,因而泵径D p 不书中(7-24)s*n=Q t /(1.131*10-3D p 2)s*n=53.3/(1.131*10-3D p 2)如公式(7-23)压力,β为未知数,由于s、n、D p 都是未知的,应采用不同的泵径D p 来确定S、N的组合二、初选抽汲参数1、泵效泵效ηp 采用如下公式计算:ηp =1-0.4(L p /(L p +300))2,此时产量与流压呈线性关系Q t (PD,泵的理论排量)=Q x /ηp b +JP b /1.8=测或流压的确定(9Mpa)(1178m)-f w )ρo 流压可通过下式计算:(2.537Mpa)则有:F o=1252312.523F o=1704563.40.2、n组合。

JY1001 机械原理课程设计-抽油机系统设计1

JY1001 机械原理课程设计-抽油机系统设计1

机械原理课程设计说明书设计题目:抽油机机械系统设计院系:XX学院专业:机械设计制造及其自动化班级:XXXX班设计者:XXX指导老师:XXX日期:20XX年XX月XX日目录一、机械原理课程设计概述 (1)1.1 机构机械原理课程设计的目的 (1)1.2 机械原理课程设计的任务 (1)1.3 机械原理课程设计的方法 (1)二、设计任务要求 (1)三、执行机构的选择和比较 (3)3.1 方案一 (3)3.2 方案二 (4)3.3 方案三 (5)四、主要机构设计 (5)4.1 设计分析 (5)4.2 基本设计 (7)4.3 优化计算 (8)五、机构运动分析 (9)六、原动机的选择 (10)七、传动机构的选择与比较 (11)八、机构循环图 (11)九、设计总结与心得体会 (12)十、参考文献 (12)一、机械原理课程设计概述1.1 机构机械原理课程设计的目的机械原理课程设计是高等工业学校机械类专业学生第一次较全面的机械运动学和动力学分析与设计的训练,是本课程的一个重要实践环节。

其基本目的在于:●进一步加深学生所学的理论知识,培养学生独立解决有关本课程实际问题的能力。

●使学生对于机械运动学和动力学的分析设计有一较完整的概念。

●使学生得到拟定运动方案的训练,并具有初步设计选型与组合以及确定传动方案的能力。

●通过课程设计,进一步提高学生运算、绘图、表达、运用计算机和查阅技术资料的能力。

1.2 机械原理课程设计的任务机械原理课程设计的任务是对机械的主体机构(连杆机构、凸轮机构、齿轮机构以及其他机构)进行设计和运动分析、动态静力分析,并根据给定机器的工作要求,在此基础上设计凸轮、齿轮;或对各机构进行运动分析。

要求学生根据设计任务,绘制必要的图纸,编写说明书。

1.3 机械原理课程设计的方法机械原理课程设计的方法大致可分为图解法和解析法两种。

图解法几何概念较清晰、直观;解析法精度较高。

根据教学大纲的要求,本设计主要应用图解法进行设计。

毕业设计常规游梁式抽油机设计

毕业设计常规游梁式抽油机设计

毕业设计常规游梁式抽油机设计引言:抽油机是石油开采中不可缺少的重要设备之一、游梁式抽油机作为抽油机的一种常见设计,已经在石油开采中得到广泛应用。

本文将对游梁式抽油机进行常规设计,从结构设计、工作原理、控制系统等方面进行详细阐述。

一、结构设计:游梁式抽油机的结构主要由主骨架、曲柄杆、游梁、连杆等组成。

主骨架是整个抽油机的主要支撑结构,承受着巨大的载荷。

曲柄杆通过曲轴与发动机相连接,通过往复运动驱动游梁实现抽油机的工作。

游梁由游梁杆和游梁头组成,游梁杆可以左右滑动,提供了抽油机的往复运动。

连杆连接着游梁和曲柄杆,使得游梁能够沿着曲柄杆方向运动。

二、工作原理:游梁式抽油机的工作原理基于连杆机构,将曲柄杆的旋转运动转变为游梁的往复运动。

曲柄杆与游梁通过连杆连接,当曲柄杆旋转时,连杆将转动力转移到游梁上。

由于游梁杆可以左右滑动,游梁在连杆驱动下完成了往复运动。

当游梁向上运动时,抽油杆与井下抽油泵相连,完成抽油工作。

当游梁向下运动时,抽油杆与井下抽油泵断开,准备进行下一次往复运动。

三、控制系统:常规游梁式抽油机的控制系统主要包括位置控制系统和液压系统。

位置控制系统通过传感器、控制器等实现对游梁位置的监测和控制,保证游梁的往复运动的准确性。

液压系统通过控制液压泵和液压缸等实现对游梁的驱动,控制游梁的上下运动。

在工作过程中,位置控制系统和液压系统紧密配合,以保证抽油机的正常工作。

四、优化设计:为了提高游梁式抽油机的效率和可靠性,可以进行优化设计。

首先,可以通过材料选择和结构设计来提高主骨架的强度和刚度,以承受更大的载荷。

其次,可以优化连杆的设计,减小摩擦损失,提高能量传递效率。

此外,还可以提高液压系统的控制精度和响应速度,以提高抽油机的工作效率。

结论:本文对游梁式抽油机进行了常规设计,并对其结构、工作原理和控制系统进行了详细阐述。

通过优化设计,可以进一步提高抽油机的效率和可靠性,促进石油开采工作的顺利进行。

这对于石油工业的发展具有重要意义,也为相关领域的研究提供了一定的参考。

机械课程设计---油田抽油机

机械课程设计---油田抽油机

机械原理机械设计课程设计计算说明书设计题目油田抽油机目录一、设计题目 (1)二、系统总体方案的确 (1)三、设计原始数据 (2)四、电动机的选择 (3)五、传动比的分配 (4)六、执行机构尺寸计算 (5)七、机构运动分析 (6)八、V带设计 (15)九、传动装置的运动和动力参数 (17)十、齿轮的传动计算 (18)十一、减速器机体的尺寸设计 (31)十二、轴的设计 (32)十三、键的选择及强度较核 (33)十四、轴承寿命计算及静强度 (35)十五、轴的强度较核 (37)十六、参考文献 (41)计算及说明主要结果一、设计题目:油田抽油机二、系统总体方案的确定:系统总体方案:电动机→传动系统→执行机构;初选三种传动方案,如下:(a)二级圆柱齿轮传动(b)为涡轮涡杆减速器(c)为二级圆柱圆锥减速器系统方案总体评价:(b)方案为整体布局最小,传动平稳,而且可以实现m c R 35604.1)2sin(sin ==ψθ,其中m c 5.1=; θsin 221R L C C =R L C AC L C C AC 2sin sin 21121==∠θR C AC L AC 2sin 222=∠其中,由于032][=α,则:02133775.242][=-=∠ψαA C C002173917.148)2][(180=-+-=∠ψαθC AC⎩⎨⎧==+==-1052667.11176882.121AC AC L a b L a b 解得:m a 1437893.0=,m b 2614775.1=;m b a c c b a d 410937.1]sin[)(2)(22=+-++=α七、 机构运动分析:1.数学模型 如图所示,取以A 点为原点、x 轴与AD 线一致的直角坐标系,标出向量和转角,由封闭向量多边形ABCD 可得1.35604R m =01224.33775C C A ∠=012148.73917AC C ∠=m a 1437893.0= m b 2614775.1=1.410937d m =122()()(/2)22122''"i i i AB BC BC l e l e l e ϕπϕπϕπϕϕϕ+++++33()(/2)233'"i i DC DC l e l e ϕπϕπϕϕ++=+实部和虚部分别相等可得22112222'cos 'cos "sin AB BC BC l l l ϕϕϕϕϕϕ++ 23333'cos "sin DC DC l l ϕϕϕϕ=+22112222'sin 'sin "cos AB BC BC l l l ϕϕϕϕϕϕ--+ 23333'sin "cos DC DC l l ϕϕϕϕ=-+解得2221122332332'cos()''cos()"sin AB BC DC DC l l l l ϕϕϕϕϕϕϕϕϕϕ-+--=-()222113232332'cos()'cos()'2"sin()AB BC DC BC l l l l ϕϕϕϕϕϕϕϕϕϕ-+--=-2.框图设计3.程序和计算结果Visual C++ 程序#include "stdio.h"332.3697410231.481.044P d C mm n ≥==Ⅱ332.264171.06 1.069843.421.894P d C mm n ≥=⨯=Ⅲ 中间轴各轴段设计:1.各段轴的直径轴段1为轴承径,其直径应符合轴承内径标准,且31.4d mm ≥Ⅱ,由此选定35d mm =1。

常规游梁式抽油机设计

常规游梁式抽油机设计

常规游梁式抽油机设计抽油机是利用物理原理将水或其他液体从井底抽上来的装置,广泛应用于石油、石油化工和水处理等领域。

常见的抽油机类型有很多,其中梁式抽油机是一种常用的设计。

下面将介绍梁式抽油机的设计原理和构造。

梁式抽油机的设计可以分为三个部分:输液系统、驱动系统和支撑系统。

输液系统是梁式抽油机的核心部分,它负责将井底的液体抽到地面。

输液系统包括井口设备、抽油杆和泵。

井口设备通常包括井口阀、井口头和泵桥等设备,其作用是保证液体正常流入抽油杆和泵。

井口阀用于控制液流的通断,井口头用于连接抽油杆和泵。

抽油杆是将驱动力传递给泵的关键部件。

它由一根或多根连接在一起的钢管组成,常见的有六角形和圆形截面。

抽油杆通常由优质碳素钢制成,具有较高的强度和刚性。

电机是驱动系统的主要动力源,负责提供驱动力给减速器。

电机的选型要根据抽油机的功率和工作条件来确定。

减速器用于将电机的高速旋转转换为适合抽油机运行的低速旋转。

减速器通常采用齿轮传动的结构,能够提供较高的传动比和较大的扭矩输出。

连杆是将减速器的旋转运动转换为抽油杆的线性往复运动的关键部件。

它由一对连杆和一根活塞杆组成。

连杆和活塞杆要具有较高的强度和刚性,以确保传动的可靠性和稳定性。

支撑系统是梁式抽油机的支撑和定位装置,它负责固定抽油机的各个部件,并保持其稳定运行。

支撑系统包括井口支撑装置、牵引装置和平衡装置。

井口支撑装置用于支撑并固定抽油机的上部分,通常由一个支撑架和一个固定架组成。

支撑架用于支撑抽油杆和泵,固定架用于固定井口设备。

牵引装置用于将抽油杆与支撑架连接起来,并通过定位轮对其进行固定。

牵引装置具有较高的刚性和可靠性,以确保抽油机的稳定运行。

平衡装置用于平衡抽油机在运行过程中产生的力和扭矩,以减少对井口设备和支撑系统的冲击和磨损。

通过合理的设计和选型,梁式抽油机能够高效地将井底的液体抽上来,并保持稳定的运行。

在设计过程中,需要考虑井深、产液量、液体性质和工作环境等因素,并且要根据实际情况进行调整和改进,以提高抽油机的性能和可靠性。

抽油系统设计(程序及开发文档)

抽油系统设计(程序及开发文档)

前言随着我国经济的快速发展,对石油的需求与日俱增。

这对石油行业来说,既是机遇更是挑战。

它要求石油人具备更强的专业知识和能力。

因此它对石油专业的大学生提出了更高的要求。

本次课程设计就是为了适应上述要求而开设的。

它要求学生在熟练掌握理论知识的基础上,结合生产实践,自己独立完成一口井的采油设计。

编者2004年7月10日目录第一节.基础数据第二节.基本理论第三节.计算机程序及框图第四节.设计结果及分析第五节.认识及结论参考文献第一节.基础数据一.抽油系统设计基础数据井号 cy0046 试油产液量 25.5 m*m*m 油层深度 1725 m 试油流压 5.4 mpa油管内径 88.9 mm 体积含水率 32.5 %套管直径 190 mm 原油密度 978.91 kg/m*m*m 地温梯度 3.25 c/100m 地层水密度 1000 kg/m*m*m 井底温度 87 c 原油比热 2142.36 w /kgc地层压力 10.53 mpa 地层水比热 4343.9 w /kgc饱和压力 11.32 mpa 设计沉没度 212.06 m传热系数 2.72 w/m.c 设计排量 25.8 m*m*m/d二.原油粘度温度关系数据井号 cy0046三.抽油机基本参数序号 73 型号 12-5-73HB 生产厂兰石最大载荷(KN)120最大扭矩 73 游梁前臂(mm)5010 游梁后臂(mm)2905 连杆长度(mm)4500 曲柄半径/冲程(mm/m) 1045/3.69,1215/4.33,1385/5冲次(1/min) 4,6,8四.抽油杆基本参数第二节.基本理论一.油井产能所谓油井产能,是指油井的生产能力,常用采油指数来衡量。

采油指数是指油井产量随流压的变化率,用公式表示为:J。

=- dq。

/dpwf (2-1)采油指数大小,反映了油层物性.流体参数.泄油面积及完井条件对油井产量的综合影响。

对于单相渗流(pwf>pb),由于各项参数随压力变化很小可忽略这种变化,流入动态曲线呈线形关系,即:q。

常规式游梁抽油机设计 - 副本

常规式游梁抽油机设计 - 副本

塔里木大学毕业设计常规式游梁抽油机设计说明书学生姓名学号所属学院机械电气化工程学院专业机械设计制造及其自动化班级指导教师XXX日期2012.05XXX大学教务处制前言目前,采油方式有自喷采油法和机械采油法。

在机械采油法中,有杆抽油系统是国内外油田最主要的,也是至今一直在机械采油方式中占绝对主导地位的人工举升方式。

有杆抽油系统主要由抽油机、抽油杆、抽油泵等三部分组成,抽油机是有杆抽油系统最主要的升举设备。

根据是否具有游梁,抽油机可以划分为游梁式抽油机和无游梁式抽油机。

而常规游梁抽油机自诞生以来,历经百年使用,经历了各种工况和各种地域油田生产的考验,经久不衰。

目前仍在国内外普通使用。

常规游梁式抽油机以其结构简单、耐用、操作简便、维护费用低等明显优势,而区别于其他众多拍油机类型,一直占据着有杆系采油地面设备的主导地位。

由于这里不能上传完整的毕业设计(完整的应包括毕业设计说明书、相关图纸CAD/PROE、中英文文献及翻译等),此文档也稍微删除了一部分内容(目录及某些关键内容)如需要其他资料的朋友,请加叩扣:二二壹五八玖一壹五一游梁式抽油机的主体结构为曲柄摇杆机构。

根据驴头和曲柄摇杆机构相对于支架的位置,游梁式抽油机的机构形式可以划分为常规型和前置式两种;根据平衡方式的不同,游梁式抽油机可以划分为曲柄平衡、游梁平衡和复合平衡。

常规型游梁式抽油机主要由发动机、三角皮带、曲柄、连杆、横梁、游梁、驴头、悬绳器、支架、撬座、制动系统及平衡重等组成。

发动机安装在撬座上,其安装位置有两种,一种是将发动机置于整体尾部,另一种是将发动机放在支架下面。

减速箱为二级齿轮传动减速箱,传动比为30左右.齿轮型式一般小功率用斜齿,大功率用人字齿。

近年来推广使用点啮合双圆弧人字齿。

曲柄一端与减速器输出轴固结,另一端与连杆铰接.连杆与横梁常见有两种型式:小型抽油机多为组焊结构,靠改变后臂长度来调节冲程.大型抽油机多为整体机构,靠改变曲柄与连杆铰接位置来调爷冲程。

游梁式抽油机井抽油装置系统设计及应用

游梁式抽油机井抽油装置系统设计及应用

游梁式抽油机井抽油装置系统设计及应用第一篇:游梁式抽油机井抽油装置系统设计及应用课程设计课程游梁式抽油机井抽油装置系统设计及应用院系石油工程专业班级学生姓名学生学号指导教师****年**月**日游梁式抽油机井抽油装置系统设计及应用第1章前言1:1 设计的目的及意义油田开发是一项庞大而复杂的系统工程,必须编制油田开发总体建设方案—油田开发工作的指导性文件。

采油工程设计更是总体方案的重要组成部分和方案实施的核心,而游梁式抽油机的设计抽油装置系统设计更是采油课程设计的重中之重。

该课程为石油工程专业采油模块学生必修课,它是石油工程专业主干课《采油工程》的扩展和补充。

石油工程学生在学完专业基础课和专业课之后,为加深学生对采油工程深入了解,训练学生系统,全面和综合应用采油工程技术方法和设计能力,开设本课程。

目的是为了学生综合应用能力打下基础,培养学生毕业后能更快的适应和应用采油工程理论和技术方法解决采油工程问题。

有杆泵采油包括游梁式有杆泵采油和地面驱动螺杆泵采油两种方法。

其中游梁式有杆泵采油方法以结构简单、适应性强和寿命长等特点,成为目前最主要的采油方法。

抽油机是有杆泵抽油的主要地面设备,按是否有梁,可将其分为游梁式抽油机和无游梁式抽油机。

游梁式抽油机是通过游梁与曲柄连杆机构将曲柄的圆周运动转变为驴头的上、下摆动。

依据详探成果和必要的生产试验资料,在综合研究的基础上对具有工业价值的油田,按石油市场的需求,从油田的实际情况和生产规律出发,提高最终采收率。

近些年来,为了满足采油工艺对长冲程、低冲次抽油机的需要,国内近年来研制出多种新型游梁式与无游梁式长冲程、低冲次、节能抽油机。

游梁式抽油机的设计受到了抽油机设计工作者的重视,并取得了明显的经济效益,游梁式抽油机的最基本特点是结构简单,制造容易,维修方便,特别是它可以长期在油田全天运转,使用可靠。

因此尽管它存在驴头悬点运动的加速度大,平衡效果差,效率低,在长冲程时体积较大和笨重的特点,但依旧是目前应用最广泛的抽油机。

ks-1抽油机(8方案)

ks-1抽油机(8方案)

设计题目——油田抽油机1. 机器的用途及功能要求抽油机是一种采油机械,主要用于当油井不能自喷或自喷能力不能满足采油需要时,从地下抽取石油。

图1是游梁式抽油机的工作原理图。

工作时,抽油机的执行机构通过钢丝绳牵引抽油杆,带动活塞上、下往复运动。

当活塞上移(上冲程)时,抽油泵泵体下部形成负压,使得排出阀关闭,吸入阀打开,油液被吸入泵体内;当活塞下移(下冲程)时,泵体下部压力增大,使得吸入阀关闭,排出阀打开,泵体内的石油被压入活塞体内。

在活塞不断往复运动的过程中,油液从活塞体内进入抽油泵上部的油管,最后从井口排入集油管线(图1a )。

抽油机在一个运动循环中所受的生产阻力变化很大。

在上冲程中,生产阻力不仅包括抽油杆和活塞以上环形液柱的重量,而且还包括抽油杆和环形液柱的惯性动载荷(悬点E 承受了最大载荷);而在下冲程时,抽油杆在其自重作用下克服浮力下行,生产阻力为零。

此外,执行机构的总惯性力和总惯性力矩也不平衡。

这些因素使抽油机在工作过程中产生有害振动,同时造成其速度波动,影响抽油杆和抽油泵的正常工作,影响抽油机的工作寿命。

因此,必须对抽油机进行动平衡。

a) b)图 12. 设计要求和原始数据设计以电动机为原动机的抽油机。

⑴ 抽油机结构简单,加工容易,便于维护,受力好,效率高,执行机构的许用压力角[α]≤40°; ⑵ 执行机构具有急回性能,行程速比系数1<k ≤1.15; ⑶ 抽油杆的冲程长度可调;⑷ 采用曲柄平衡方式对抽油机进行动平衡,平衡重G 作用于B 点(图1b ); ⑸ 机器使用寿命10年(每年按300天计算),每日三班制工作,机器工作时不逆转,允许曲柄转速有±5%的误差,载荷基本平稳,起动载荷为名义载荷的1.5倍。

⑹ 设计原始数据如下:3.设计内容⑴确定总体设计方案,包括传动系统中各传动的类型、传动路线、总传动比和传动比分配;⑵选择执行机构的型式,确定各构件尺寸,计算机构自由度;⑶用电算法作执行机构的运动分析,求出在一个运动循环中,步长为π/36弧度的抽油杆的位置、速度和加速度,以及抽油杆在一个运动循环中的平均速度V m、最大速度V max、最小速度V min和速度不均匀系数δv(此处所说速度均指速度的大小);⑷求出原动机所需工作功率P d,选择电动机;⑸对传动系统中各级传动进行工作能力计算;⑹进行减速器的结构设计。

液压抽油机设计

液压抽油机设计

前言国内各大油田现以游梁式抽油机为主流,夹杂着链条抽油机等其他抽油机作为石油开采设备进行生产。

游梁式抽油机因为以曲柄滑块机构作为工作的主要机构,必须配以平衡重块,而且游梁本身也十分笨重;移动不便,制造时消耗材料较多。

链条抽油机相对于游梁式占地面积相对小,但是其整体结构导致了安装与移动的不方便。

利用液压传动的相关技术可以获得较大的输出力,而且液压传动有着传动不受地形的条件限制,参数调动灵活等优点。

随着近些年来密封与液压技术的进步,利用液压力开采石油作为一种新的方法,正受到各国的关注。

我国液压抽油方法研究的起步较晚,而且中途有一段时间停滞,故相关技术不是很完善,同时可创新的空间也较大。

液压抽油机省去了笨重的平衡重等重物,若设计拆装方便,可用于野外作业故障的迅速补救,减少因坏损抽油机不工作耽误时间减少产量的弊端;如遇工作要求调动,迅速拆装方便运输,可大大提高机动性;海上作业平台抽油设备的运输相对地面大大不便,设计轻型才有设备有利于减轻船舶的运输负担;占地面积小,适用于密集井口的开采作业,并且泵站的液压元件,再回路上稍加调整可以对多台设备进行动力供给。

因此涉及题目综合性较强,引起本人兴趣,故选中该课题作为毕业设计,希望给自己所学知识有一个综合的应用的机会。

本次设计对个人学科知识要求比较综合,涉及到液压传动,以及机械设计,工程图学等几门专业知识,而且国内可参考的文献非常少,缺点难以避免,望老师审阅后批评指教。

目录前言1. 绪论 (4)1.1本课题来源及研究的目的和意义 (4)1.2本课题所涉及的问题在国内的研究现状及分析 (4)1.3本课题所涉及的问题在国外的研究现状及分析 (4)2. 液压回路的设计 (5)2.1上行回路与下行回路基本思路的确定…………………………………………………52.2最终回路图的确定………………………………………………………………………63. 液压元件的选用……………………………………………………………………………73.1液压缸的选用……………………………………………………………………………73.2液压泵的选用……………………………………………………………………………93.3蓄能器的选用 (10)3.4液压回路中各元件对应型号 (10)4.机械部分设计 (10)4.1 塔架部分的设计 (10)4.2扶正系统 (12)4.3液压缸固定部分 (13)4.4钢丝固定 (14)5.安装与找正 (15)6.整体效果 (16)致谢 (17)参考文献 (18)1绪论1.1本课题来源及研究的目的和意义随着原油储量日益减少,开采难度的增大,油田对新型采油方法以及采油设备的探索及构思也在日益更新中。

毕业设计常规游梁式抽油机设计

毕业设计常规游梁式抽油机设计

摘要常规型抽油机,是机械采油设备中问世最早,应用最广泛,结构最简单的设备。

抽油机是石油工业中的一项重要组成部分,在抽油机驱动下,带动其他设备运转,实现油井的机械式开采。

主要分为游梁式和无梁式两大类。

游梁式抽油机主要由发动机、三角带、曲柄、连杆、横梁、游梁、驴头、悬绳器、支架、撬座、制动系统及平衡重组成。

随着时代的发展,对环保节能要求的不断提高,在理论与实践相结合的基础之上,目前国内外抽油机的总的发展趋势是向着超大载荷,长冲程,低冲次,精确平衡,自动化,智能化,节能化,高适应性,无游梁长冲程方向发展。

本设计主要根据抽油机的四杆机构(曲柄——连杆——横梁——游梁)的工作原理。

本文介绍了常规抽油机工作原理与节能原理,以及设计过程中对抽油机运动学和动力学分析与计算,阐述了这种设备的运动规律。

游梁式抽油机驴头的悬点载荷标志抽油机的工作能力的重要参数之一,而看它是否节能,其技术指标是抽油机的电动机实耗功率的大小及减速器的工作状态。

本设计全面概述了常规性抽油机的发展概况,抽油机的优化设计及其节能原理。

另外,设计者对抽油机得几何参数,运动参数,动力学参数进行了全面的分析计算。

此外,本设计不仅采用了计算机编程来计算抽油机的运动和动力学参数,而且采用了Auto CAD绘图软件,并附有中英文对照资料。

关键词:常规型抽油机;悬点载荷;结构;设计计算AbstractConwentional beam-pumping unit to take out the oil machine,publishing in the machine oil extraction equapments at the earliest stage,applied extensive,the most simple equipments in structure.Pumping unit is an important component in the petroleum industry, driving by the pumping units,and the other equipments are running in order to achieve the mechanized exploitation of the oil well. It is mainly classified beam and non- beam two categories. Beam style pumping unit mainly consists of the engine, triangle belt, crank, connecting rod, beam, beam, donkey head, hanging a rope device, cradles, pry block, brake system and balance weight. With the development of the ages, the requirements of energy-saving and the consciousness of environmental protection enhancement, on the basis of the combining of the theory and practice, the current domestic and international pumping unit’s overall development trend is toward super-load, long stroke, low stroke times, precise balance, automatic, intelligent, energy- saving, high adaptability and non-beam long stroke direction. This design was mainly according to the principle of four-pole framework (crank -- connecting rod -- beam -- beam) of pumping unit’s.In this article ,working routine and power-saving technology of the conventional beam-pumping unit will be introduced, and during the designing procedure, the analysis of kinetic and dynamic to the pumping units express law of motion of this kind of equipment .The air load of beam style pumping unit is one of the important parameters, which is the first sign of the work capacity, and see it whether energy-saving, the technical indicators are the size of the electromotor consumption power and the work state of the pletely this design said the difference al mutually a development general situation that took out the oil machine excellent to turn the design and it economized on energy the principle .Moreover,designed to taking ou the oil machine get several parameter,sport parameter ,the dynamics parameter carried on the analytical calculation completely.In addition, not only computer programming to calculate the movement and dynamics parameters is used in the design, but also the application of the Auto CAD software, simultaneously with Chinese-English information.Key words: Conventional Pumping Unit,;Horsehead load,;Structural Characteristic,;Design Calculation目录第一章绪论 (1)1.1游梁式抽油机技术发展 (1)1.1.1我国抽油机的现状 (1)1.2常规性游梁式抽油机的工作原理及节能原理 (2)1.2.1工作原理 (2)1.2.2节能机理 (2)1.3节能型抽油机技术发展方向 (4)1.3.1智能控制是采油设备发展的方向 (4)1.3.2基础材料的研究应用即将造就一个立式抽油机时代 (5)1.3.3采油设备向通用化和个性化发展 (5)1.3.4采油设备向艺术性发展 (5)1.4游梁式抽油机优化设计数学模型的研究 (5)第二章计算部分 (7)2.1设计原始数据 (7)2.2结构组成 (7)2.3主要参数 (8)2.4建立动力模型示功图 (8)2.5运动学计算 (9)2.5.1常规游梁式抽油机几何关系计算式 (9)2.5.2光杆(悬点)加速度计算式 (10)2.5.3悬点载荷计算式 (10)2.5.4扭矩因数和光杆位置因数计算式 (10)2.5.5减速器净扭矩计算式 (10)2.5.6抽油机扭矩因数几几何计算 (11)2.6设计原始参数 (11)2.6.1参数 (11)2.6.2抽油机几何结构尺寸 (11)2.7运动学的运算 (12)第三章主要部件的设计计算 (14)3.1电动机的选择计算 (14)3.2计算传动比及减速器的选择 (14)3.2.1抽油机的总传动比 (14)3.2.2选减速器 (15)3.2.3带的传动比 (15)3.3传动装置的运动和动力参数的计算 (15)3.4带传动的设计 (16)第四章抽油机的各结构的强度校核 (19)4.1连杆的应力分析与强度校核 (19)4.2曲柄连接设计强度校核 (20)4.3游梁的应力分析及强度校核 (22)4.4游梁支承的强度校核 (25)4.5滚动轴承的选择和寿命计算 (28)结论 (30)参考文献 (31)致谢 (32)附录一中文译文 (i)附录二外文资料原文 (v)常规游梁式抽油机设计第一章绪论1.1游梁式抽油机技术发展抽油机产生和使用由来已久,迄今已有百年的历史。

抽油机机械系统设计123

抽油机机械系统设计123

目录第一节设计任务---------------------------------------------------------------------- (1) 第二节方案设计分析 ----------------------------------------------------------------- (2) 第三节轴承的选择及寿命计算--------------------------------------------------------- (17) 第四节设计小结--------------------------------------------------------------------- (23)第一节设计任务抽油机是将原油从井下举升到地面的主要采油设备之一,常用的有杆抽油设备有三部分组成:一是地面驱动设备即抽油机;二是井下的抽油泵,它悬挂在油井油管的下端;三是抽油杆,它将地面设备的运动和动力传递给井下抽油泵。

抽油机由电动机驱动,经减速传动系统和执行系统(将转动变转为往复移动)带动抽油杆及抽油泵柱塞作上下往复移动,从而实现将原油从井下举升到地面的目的。

图1-1假设电动机做匀速转动,抽油机的运动周期为T,抽油杆的上冲程时间与下冲程时间相等。

冲程S=1.4m,冲次n=11次/min,上冲程由于举升原油,作用于悬点的载荷等于原油的重量加上抽油杆和柱塞自身的重量为40kN,下冲程原油已释放,作用于悬点的载荷就等于抽油杆和柱塞自身的重量为15kN。

要求:① 根据任务要求,进行抽油机机械系统总体方案设计,确定减速传动系统、执行系统的组成,绘制系统方案示意图。

② 根据设计参数和设计要求,采用优化算法进行执行系统(执行机构)的运动尺寸设计,优化目标为抽油杆上冲程悬点加速度为最小,并应使执行系统具有较好的传力性能。

③ 建立执行系统输入、输出(悬点)之间的位移、速度和加速度关系,并编程进行数值计算,绘制一个周期内悬点位移、速度和加速度线图(取抽油杆最低位置作为机构零位)。

毕业设计-液压抽油机设计

毕业设计-液压抽油机设计

液压抽油机设计摘要一种液压传动式石油开采抽油机,由包括液压泵、马达、控制阀、管路辅件在内的液压元件及相关机械零件装配组连为一个整体构成液压传动部件,通过其中的液压传动部件中的液压马达传动轮的轮面式或者齿式或者槽式传动结构与相对应的一端与采油油井的抽油泵连接杆相接的带式或者链式或者绳索式柔性传动件相配合,构成该机的往复工作机构。

通过由机、电、液元器件装配组连所构成的工作冲程和冲次调整控制系统来调整和控制该机往复工作机构,牵引石油油井的抽油泵按设定的冲程和冲次连续往复工作。

电动机的动力输出轴端与液压泵的转子轴端直接或者经由连轴构件实现配合连接,经由液压控制阀、工作液过滤器、管路、附件将工作液容箱和液压泵之间组连成液压控制和工作回路,构成该液压传动部件的液压动力源部分。

一种滑块式盘传动低速大扭矩液压马达的传动盘的外周直接装配轮面备有与绳或者带或者链式柔性传动件相对应配合的传动结构的传动轮,即构成该部件的动力转换和传动部分。

其特点是:结构简单,制造、使用、维护成本低,明显节能。

关键词:液压泵1,液容箱2,控制阀3,传动轮4Hydraulic pumping unit designABSTRACTA hydraulic drive type oil pumping unit, by including hydraulic pumps, motors, control valves, piping accessories, including hydraulic components and mechanical parts associated with the assembly as a whole constitutes a group of hydraulic components, through which the hydraulic parts of the hydraulic motor drive wheel or gear wheel surface, or trough-type structure corresponding to the transmission side and the oil wells pump connecting rod connecting the belt or chain or rope-style flexible transmission parts matched to form reciprocating machine working bodies.Through the mechanical, electrical, hydraulic components, the assembly constituted by the work group with stroke and rushed revision control system to adjust and control the aircraft reciprocating body traction pump oil wells set by the stroke and the rushing back and forth consecutive working . Motor power output shaft and the pump rotor shaft directly or through a coupling component to achieve with the connection, via the hydraulic control valve, the working fluid filters, piping, accessories will be the working fluid between the tank and pump together into groups and work-loop hydraulic control, hydraulic components that make up the hydraulic power source part.One kind of slider-style disk drive low speed high torque hydraulic motor drive plate assembly wheel peripheral surface with a direct and flexible rope or belt or chain drive transmission parts corresponding with the structure of the drive wheel, which constitute the components of the power conversion and transmission parts. It features: simple structure, manufacture, use, maintenance costs low, clear energy.KEY WORDS:hydraulic pump 1, the tank liquid 2, the control valve 3, wheel drive 4目录前言 (7)第1章液压传动的发展概况和应用 (10)§1.1液压传动的发展概况 (10)§1.2液压传动的特点及在机械行业中的应用 (11)第2章液压传动的工作原理和组成 (12)§2.1工作原理 (12)§2.2液压系统的基本组成 (12)第3章液压系统工况分析 (13)§3.1运动分析、负载分析、负载计算 (13)§3.2液压缸的确定 (14)§3.2.1 液压缸工作负载的计算 (15)§3.2.2 确定缸的内径和活塞杆的直径 (15)§3.2.3 计算液压缸在工作循环中各个阶段的压力、流量和功率的实际值 (16)第4章拟定液压系统图 (17)§4.1选择液压泵型式和液压回路 (17)§4.2选择液压回路和液压系统的合成 (17)第5章液压元件的选择 (20)§5.1选择液压泵和电机 (20)§5.1.1 确定液压泵的工作压力、流量 (20)§5.1.2 液压泵的确定 (21)§5.2辅助元件的选择 (21)§5.3确定管道尺寸 (22)§5.4确定油箱容积 (22)第6章液压系统的性能验算 (22)§6.1管路系统压力损失验算 (22)§6.1.1 判断液流类型 (22)§6.1.2沿程压力损失 (22)§6.2液压系统的发热与温升验算 (23)第7章抽油机—深井泵抽油装置及基础理论计算 (24)§7.1抽油机—深井泵抽油装置 (24)§7.1.1 抽油机 (24)§7.1.2抽油泵 (26)§7.1.3 抽油杆 (28)§7.2抽油泵的工作原理 (28)§7.2.1 泵的抽汲过程 (28)§7.2.2 泵的理论排量 (29)§7.3抽油机悬点载荷的计算 (29)§7.3.1 悬点承受的载荷 (30)§7.3.2 悬点最大、最小载荷 (36)§7.4抽油机平衡、扭矩与功率计算 (39)§7.4.1 抽油机平衡计算 (39)§7.4.2 电机的选择与功率计算 (42)§7.5泵效的计算 (44)§7.5.1 柱塞冲程 (46)§7.5.2 泵的充满程度 (48)§7.5.3 提高泵效的措施 (50)第8章抽油机井系统效率及节能技术 (52)§8.1系统效率 (52)§8.1.1 系统效率的影响因素 (55)§8.1.2 提高系统效率的方法 (57)§8.2抽油机井节能技术 (58)§8.2.1 抽油机的电能消耗的特点 (58)§8.2.2 节能技术 (59)附表 (64)前言一种液压传动式石油开采抽油机,由包括液压泵、马达、控制阀、管路辅件在内的液压元件及相关机械零件装配组连为一个整体构成液压传动部件,该部件与底座、支架及其连接构件装配组合构成的机架部分一道构成该机的主体结构,通过其中的液压传动部件中的液压马达传动轮的轮面式或者齿式或者槽式传动结构与相对应的一端与采油油井的抽油泵连接杆相接的带式或者链式或者绳索式柔性传动件相配合,构成该机的往复工作机构,通过由机、电、液元器件装配组连所构成的工作冲程和冲次调整控制系统来调整和控制该机往复工作机构牵引石油油井的抽油泵按设定的冲程和冲次连续往复工作,其特征是:通过连接底座将一种滑块式具有变排量、变流向结构和功能的液压泵与相匹配的动力电动机装配组合,电动机的动力输出轴端与液压泵的转子轴端直接或者经由连轴构件实现配合连接,工作液容箱安装于连接底座的上部,经由液压控制阀、工作液过滤器、管路、附件将工作液容箱和液压泵之间组连成液压控制和工作回路,构成该液压传动部件的液压动力源部分;于一种滑块式盘传动低速大扭矩液压马达的传动盘的外周直接装配轮面制备有与绳或者带或者链式柔性传动件相对应配合的传动结构的传动轮,即构成该部件的动力转换和传动部分;将此两个部分安装于装配有升降导向轮、配置有用于安放由数块配重块叠加组合构成的组合体托架的架体之上,通过液压管路沟通这两部分之间的液压回路,即构成该传动部件的完整结构;在其内部结构中,所采用的液压泵是一个由变量、换向液压泵与组合配流阀一体化的泵、阀组合体,其组合配流阀的具体结构是,于泵的壳体的体内沿壳体内腔轴心线方向平行设置有两阀腔,两阀腔的中部,各有一径向通液孔与壳体内腔沟通,与工作液进、回液管路相接的进、回油口沿水平方向、平行、并列、垂直于两阀腔轴线的方向设置于阀腔壁的外部,两油口的底孔分别将两阀腔垂直交汇贯通,阀腔的内置件的构成及由内向外的装配顺序依次是,由内阀体、内阀芯、内压缩弹簧、内腔依次装配中心阀芯和外压缩弹簧再由限位卡环限定的中间阀体和外端部设置有液压管路接口的外阀体构成;该组7合配流阀在泵的工作过程中的配流规律是,当一阀腔的径向通液孔沟通的是泵的吸液工作腔,则该阀腔的内阀芯被吸外移,开通进液油口与该吸液工作腔的液流通道,中间阀体连同内腔处于关闭状态的中心阀芯一道整体被吸内移,开通回液油口经由外阀体的径向通液孔和外端管路接口与所连接管路之间的通道;与此同步,另一阀腔的径向通液孔沟通的必定是泵的排液工作腔,此时该阀腔的内阀芯关闭、中间阀体封闭外阀体的径向通液孔,即进、回液油口与泵工作腔的通路同时关闭,中间阀体内腔的中心阀芯被工作液推动外移,开通泵的排液工作腔与外阀体外端的管路接口所连接管路之间的通路;该泵的工作液排量和流向的变换是通过其体内变位定子零件的轴心线相对于转子回转轴线的径向位移量的变化实现的,即,径向位移量增大,则排量增大,径向位移量减小,则排量减小,径向位移由转子回转轴线的一侧移动至另一侧,则该泵改变工作液流向;变位定子的径向位移是通过径向相对装配于该泵的壳体上的两只平衡液缸的活塞杆受到控制液交替往复推动实现的,位移量值的确定,即泵工作排量的调定是通过调整液缸盖上的限位螺钉限定活塞复位位置来实现的,平衡液缸的液压动力是由液压系统中的控制回路提供的;在总体上,液压传动部件的整个液压系统是一个开式泵控马达容积调速及换向的液压系统,由液压动力传动工作回路和液压控制回路两部分构成;液压动力传动工作回路的基本构成是,工作液自工作液容箱经由供液管路、进液油口、组合配流阀进入液压泵的工作腔加压后,再经由组合配流阀、液压管路进入液压马达的工作腔,驱动马达旋转后,再经由液压管路、组合配流阀、工作液回液油口、工作液回液管路、回液过滤器过滤后返回工作液容箱,完成整个工作循环;液压控制回路的基本构成是,于泵的端盖上装配有工作液压力继电器、手动节流阀和二位四通电磁换向阀,端盖的体内设置有阀腔、装配有梭阀芯、预制有相关通液孔道、设置有两端和中间这三个油口构成梭阀结构,经由控制管路将组合配流阀的两只外阀体外端管路接口处分别与梭阀两端油口接通,梭阀的中间油口经由端盖的体内孔道分别与压力继电器的控制液接口和电磁换向阀进液口接通,该换向阀的两控制液油口经由盖体体内孔道、控制管路分别与径向相对装配于泵的壳体上的两平衡液缸的8油路接口接通,该换向阀的回液口经由端盖体内孔道与节流阀的一端口接通,该节流阀的另一端口经由端盖的体内孔道与泵的工作泄漏液容腔接通,由此构成本系统的控制回路;该控制回路在工作状态下的适时控制状态是,分别自液压动力传动工作回路中与液压马达进、排油口相通的液压管路引入的工作液至梭阀的两端接口,经梭阀调控后,由梭阀中间接口输出压力控制液,该控制液一路至压力继电器,根据该控制液的实际工作压力相对于压力继电器设定的工作液压力额定值的超、欠状况自动控制动力电动机的运转或者停止;该控制液另一路至电磁换向阀,当电磁换向阀受电控换向,则与该阀相通的两平衡液缸中的工作液压力状态同时转换,即高压变低压、低压变高压,变为高液压力平衡液缸的活塞杆推动泵的变位定子向变为低液压力状态下的平衡液缸的方向移动,直到变为低液压平衡液缸的活塞受到限位螺钉的限制停止,移动的速度取决于节流阀对变为低压的平衡液缸的工作液回流施行节流强度的大小,当节流强度大,则移动速度小,与之相应的是液压马达的转换旋转方向的过程平滑缓慢,当节流强度小,则移动速度大,与之相应的是液压马达的转换旋转方向的过程相对迅速。

抽油机机械设计课程设计报告

抽油机机械设计课程设计报告

机械设计课程设计报告——抽油机机械系统设计作者:毛燕目录第一节设计任务------(1) 第二节方案设计分析----(2) 第三节轴承的选择及寿命计算--(17) 第四节设计结果----(22) 第五节心得体会--(23) 第六节附录----(25) 第一节设计任务抽油机是将原油从井下举升到地面的主要采油设备之一,常用的有杆抽油设备有三部分组成:一是地面驱动设备即抽油机;二是井下的抽油泵,它悬挂在油井油管的下端;三是抽油杆,它将地面设备的运动和动力传递给井下抽油泵。

抽油机由电动机驱动,经减速传动系统和执行系统(将转动变转为往复移动)带动抽油杆及抽油泵柱塞作上下往复移动,从而实现将原油从井下举升到地面的目的。

图1- 1 假设电动机做匀速转动,抽油机的运动周期为T,抽油杆的上冲程时间与下冲程时间相等。

冲程S=1.4m,冲次n=11次/min,上冲程由于举升原油,作用于悬点的载荷等于原油的重量加上抽油杆和柱塞自身的重量为40kN,下冲程原油已释放,作用于悬点的载荷就等于抽油杆和柱塞自身的重量为15kN。

要求:①根据任务要求,进行抽油机机械系统总体方案设计,确定减速传动系统、执行系统的组成,绘制系统方案示意图。

②根据设计参数和设计要求,采用优化算法进行执行系统(执行机构)的运动尺寸设计,优化目标为抽油杆上冲程悬点加速度为最小,并应使执行系统具有较好的传力性能。

③建立执行系统输入、输出(悬点)之间的位移、速度和加速度关系,并编程进行数值计算,绘制一个周期内悬点位移、速度和加速度线图(取抽油杆最低位置作为机构零位)。

④选择电机型号,分配减速传动系统中各级传动的传动比,并进行传动机构的工作能力设计计算。

⑤对抽油机机械系统进行结构设计,绘制装配图及关键零件工作图。

第二节方案设计分析一.抽油机机械系统总体方案设计根据抽油机功率大,冲次小,传动比大等特点,初步决定采用以下总体方案,如框图所示:图2- 1 1. 执行系统方案设计图2- 2 图2- 3 由于执行机构是将连续的单向转动转化为往复移动,所以采用四连杆式执行机构,简单示意如图2-2所示P点表示悬点位置;AB杆表示输入端,与减速器输出端相连,逆时针方向旋转;CD表示输出端;AD 表示机架;e 为悬臂长度,通常取e/c=1.35。

《常规型抽油机机械系统设计任务书1000字》

《常规型抽油机机械系统设计任务书1000字》
(4)对传动系统进行结构设计;
(5)对新型曳引节能抽油机进行结构设计;
(6)对抽油机零部件进行结构设计;
(7)绘制新型曳引节能抽油机的装配图;
(8)绘制主要零部件的零件图。
三、主要参考文献的范围:
[1]生因亮.贝尔油田抽油机井系统效率分析及提高对策[J].中国石油和化工标准与质量.2013(20)
[2]孙守渊,王艳丽.提高抽油机井系统效率配套节能技术的效果分析[J].节能技术.2012(05)
常规型抽油机机械系统设计
年月日
一、设计(论文)内容:
目前,常规式游梁抽油机仍然是油田生产的主要设备,但是运动不平衡、能耗大,已经不满足油田生产需求。因此,本文针对常规式游梁抽油机的运动不平衡、耗能高,操作调整难度大,很难保持最佳工作状态等问题进行创新改造设计,针对油田生产情况设计了一种曳引节能抽油机。
本课题应当完成的具体内容,如:
(1)认真查阅、收集资料,深刻理解论文所要设计的内容,在此基础上完成开题报告;
(2)分析目前常规游梁式抽油机的缺点,提出新型曳引节能抽油机的总体结构设计方案;
(3)根据提供的原始数据,并查阅相关资料,对抽油机运动学及动力学进行分析,得到悬点速度、加速度的公式,计算抽油机悬点动载荷,根据研究结果说明该抽油机的优越性;
(4)设计曳引节能抽油机的机械结构,对主要零部件的性能进行校核;
(5)画出装配图及零件图。
二、具体要求:
(1)首先了解常规游梁式抽油机的工作原理、结构特点,并进行新型曳引节能抽油机结构方案设计;
(2)通过对新型曳引节能抽油机传动原理的分析,推导悬点速度、加速度等参数和抽油机其它参数的运动学方程;
(3)确定悬点的动载荷、静载荷,选择电动机;
[11]寇秀玲.游梁式抽油机平衡状况影响因分析[J].新疆石油科技.2017(02)

课程设计:抽油井系统设计范文

课程设计:抽油井系统设计范文

东北石油大学课程设计2013 年月日东北石油大学课程设计任务书课程石油工程课程设计题目抽油井系统设计专业石油工程姓名学号主要内容、基本要求、主要参考资料等1. 设计主要内容:依据已有的基础数据,利用所学的专业知识,完成抽油井系统从油层到地面的所有相关参数的计算,最终选出抽油泵、抽油杆、抽油机。

①计算出油井温度分布;②通过回归分析确定原油粘温关系表达式;③确定井底流压;④确定出油井的合理下泵深度;⑤确定合适的冲程、冲次;⑥选择合适的抽油泵;⑦确定抽油杆直径及组合;⑧计算出悬点的最大、最小载荷;⑨选出合适的抽油机;⑩编制实现上述内容的计算机程序程序。

2. 设计基本要求:要求学生选择一组基础数据,在教师的指导下独立地完成设计任务,最终以设计报告的形式完成本专题设计,设计报告的具体内容如下:①前沿;②基础数据;③基本理论;④设计框图和计算机程序;⑤设计结果及结果分析;⑥结束语⑦参考文献设计报告采用统一格式打印,要求图标清晰、语言流畅、书写规范,依据充分、说服力强,达到工程设计的基本要求。

3. 主要参考资料:李子丰著.油气井杆管柱力学.北京:石油工业出版社,1996葛家理主编.油气层渗流力学.北京:石油工业出版社,1982陈涛平等.石油工程.石油工业出版社,2000完成期限指导教师专业负责人2013年 2 月26 日目录1 概述 (1)1.1 设计的目的意义 (1)1.2 设计的主要内容 (2)2 基础数据 (3)2.1抽油系统设计基本数 (3)2.2原油粘度温度关系数据 (3)2.3抽油杆基本参数 (3)2.4抽油机基本参数 (4)3基础理论 (5)3.1油井产能 (5)3.2井温分布 (6)3.3原油粘温关系 (7)3.4泵吸入口压力 (7)3.5下泵深度 (8)3.6冲程和冲次 (8)3.7确定泵径 (9)3.8悬点载荷计算及抽油杆强度校核方法 (9)3.9确定抽油杆直径及组合 (12)4设计框图和计算程序 (14)4.1设计的基本思路 (14)4.2抽油杆柱设计框图 (14)4.3抽油井系统设计的框图 (14)4.4计算机程序 (14)4.5 程序运行结果及程序所调用文件的数据 (14)5设计结果及结析 (15)5.1井温分布 (15)5.2原油粘温关系 (15)5.3 井底流压与油井产量关系 (16)5.4下泵深度 (17)5.5 冲程和冲次 (17)5.6选择抽油泵 (17)5.7抽油杆直径及组合 (17)5.8悬点最大和最小载荷 (17)5.9计算并校核减速箱扭矩 (18)5.10计算电机功率 (18)5.11选择合适抽油机型号 (18)结束语 (19)总结 (19)认识 (19)参考文献 (21)附录 (22)附录1 程序 (22)附录2 抽油杆柱设计框图 (31)附录3 抽油井系统设计框图 (32)附录4 程序运行结果 (33)附录5 程序调用文件数据 (34)1 概述1.1 设计的目的意义在油田开发中,采油方法可分为自喷采油和人工举升采油。

抽油井系统设计

抽油井系统设计

重庆科技学院课程设计报告院(系):石油与天然气工程学院专业班级:石油工程09-2 学生姓名:王磊学号: 2009440055设计地点(单位)___ 石油与天然气工程学院____ __ 设计题目:_________ 抽油井系统设计__________ 完成日期: 2012年 7月 4日指导教师评语: _______________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________ __________ _成绩(五级记分制):______ __________指导教师(签字):________ ________目录前言 (1)1设计目的 (2)2抽油井系统设计 (2)2.1 基础生产数据 (2)2.2原油粘温关系数据 (3)2.3抽油机基本参数 (3)3抽油井设计的过程 (4)3.1 油井产能计算及IPR曲线 (4)3.2 井温分布计算 (7)3.3 原油粘温关系 (8)3.4下泵深度计算及抽油机型号 (9)3.5 确定泵径 (12)3.6 悬点载荷计算及抽油杆强度校核方法及抽油杆分级 (13)3.7计算曲柄扭矩 (16)3.8计算需要的电机功率 (17)3.9泵漏失计算 (17)4计算结果参数 (18)5 结束感言 (18)6 参考文献 (19)前言为适应我国石油工业发展和石油工程专业的学习计划,石油高等本科学习阶段必须完成一定得设计内容,培养已学完基础知识理论和专业课程的学生利用已获得的知识去分析和解决实际问题的能力,根据一口井的相关数据资料和技术要求,能够完成一口井的采油课程设计,其目的就是为了提高学生的实际分析能力和自主设计能力,为现实的工程设计打好基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、基础数据
抽油井系统杆柱设计所必须的基础数据主要有基础生产数据、原油粘温关系数据、抽油机型参数、抽油杆参数、抽油泵参数。

其中, 抽油机型、抽油泵这三方面的参数、抽油杆参数、抽油泵参数。

其中,抽油机型、抽油杆、抽油泵泵这三方面的参数均可由《采油技术手册》( 修订本四) 查得。

1.基础生产数据
基础生产数据是进行抽油井系统设计的基本条件,它包括油井井身结构、油层物性、流体( 油、气、水) 物性、油井条件, 传热性质以及与油井产能有关的试井参数等, 详见表1。

表1 基础生产数据
油层深度: 1500.00 m 套管内径: 124.00 mm 油管内径: 88.90 mm
井底温度: 80℃
地层压力: 10.00 Mpa 饱和压力: 7.00 Mpa
传热系数: 2.5 W/M·℃地温梯度: 3.3 ℃/100m 试井产液量: 25 m/d
试井流压: 5.00 MPa
体积含水率: 30 %
原油密度: 997.40 kg/m
地层水密度: 1000.00 kg/m
原油比热: 2100 W/kg·℃
地层水比热: 4186.8 W/kg·℃设计沉没度: 200.00 m
2.原油粘温关系数据
原油粘度是影响摩擦载荷的主要因素, 因此原油粘度数据的准确度是影响设计结果合理性的重要参数。

原油粘度随温度变化非常敏感, 经过对现场实测原油粘温关系数据进行回归分析, 能够得到原油粘度随温度变化的关系式。

这样, 不但能够提高抽油井系统设计结果的准确度, 而且还易于实现设计的程序化。

现场能够提供的原油粘温关系数据, 如表2所示。

表2 某区块原油粘温关系数据
温度, ℃ 40 455055 60657075
粘度, mPa·s268018201240900600420310230
3.抽油机参数
抽油机参数是指常规型游梁式抽油机的型号、结构参数、能够提供的冲程冲次大小。

当前已有93种不同型号的常规型抽油机, 其型号意义如下:
不同型号抽油机的参数可见《采油技术手册》( 修订本四) 。

这里, 以宝鸡产CYJ10-3-48型抽油机为例, 其有关参数见表3。

表 3 抽油机参数
游梁前臂
(mm)
游梁后臂
(mm)
连杆长度
(mm)
曲柄半径/冲程
(mm/m)
冲次
(1/min) 30003330 6.0, 9.0, 12.0另外, 由抽油机型号CYJ10-3-48, 根据型号意义可直接得出:
许用载荷[P max]=100 kN; 许用扭矩[M max]=48 kN
4.抽油杆参数
抽油杆的材质为普通碳钢, 其许用应力一般为90 N/mm, 可提供的直径有: 16 mm、 19 mm、 22 mm 、 25 mm和29 mm。

二、设计要求
根据以上的基础数据, 在产液量为28.29 m/d时, 对该井进行系统选择设
计以下内容:
(1) 确定出该井的井温分布;
(2) 确定出原油粘温关系表示式;
(3) 确定合理的下泵深度;
(4) 选择合适的冲程和冲次;
(5) 选择合适的抽油泵;
(6) 确定出抽油杆直径及组合;
(7) 计算出悬点的最大和最小载荷;
(8) 计算并校核减速箱扭矩;
(9) 计算电机功率并选电机;
(10) 选择出合适的抽油机。

三、设计步骤
针对该井的已知条件, 系统设计的步骤如下:
(1) 根据油井条件, 建立热传导能量方程, 计算出井温沿井深的温度分布;
(2) 经过对原油粘温关系数据进行回归分析,拟合出原油粘温关系表示式;
(3) 根据试井参数, 确定出该井的流入动态方程, 并进一步确定出在设计
排量条件下的井底流压;
(4) 根据设计沉没度确定泵吸入口压力;
(5) 根据井底流压和泵吸入口压力,确定下泵高度,并进一步确定下泵深度;
(6) 初选抽油机, 并根据油井条件, 选择合适的冲程和冲次;
(7) 根据冲程、冲次和设计排量, 确定抽油泵的直径;
(8) 自下而上, 计算并确定抽油杆直径及组合;
(9) 计算悬点最大和最小载荷, 并对所选择的抽油机进行载荷校核;
(10) 计算减速箱的最大扭矩, 并进行扭矩校核;
(11) 计算需要的电机功率, 并进行电机功率校核;
(12) 选择抽油机。

四、设计原理及计算
1.油井温度分布
原油越稠, 原油粘度随井温变化就越敏感。

因此, 井温分布对抽油井系统选择设计是十分重要的。

根据热传导, 可建立井筒的能量方程为:
(1)
式中∶——油管中L位置处原油的温度, ℃;
K
1
——总传热系数, W/( m·℃);
——内热源, W/m;
W——水当量, W/ ℃
——井底原油温度, ℃;
m——地层温度梯度, ℃/m。

对于常规采油来说, 由于没有内热源, 故可取=0。

水当量W可如下计算:
W=M
f C
f
+M g C g
式中∶M f——井液质量流量, kg/s;
C
——井液比热, W/(g·℃);
f
M
——气体质量流量, kg/s;
g
C
——气体的比热, W/(g·℃);
g
g——重力加速度, m/s。

将已知数据代入方程(1) , 可计算出任意深度所对应的
油井温度, 由此温度便能够计算出处于该深度处原油
的粘度, 从而能够进一步计算摩擦载荷、选择抽油设
备。

另外, 还能够根据计算结果做出井温沿井深的分布
曲线, 如图1所示。

2.原油粘温关系
将现场实测原油粘温数据经过回归分析, 发现原油粘度随温度的变化服从指数规律, 可用下式表示:
(2)
式中∶——原油的动力粘度, mPa·s;
t ——原油的温度, ℃;
a——系数常数;
b ——温度指数。

其中, a=9.7861,b=3.9483。

对于不同区块原油, a、b的取值不同。

3.井底流压
井底流压是确定下泵深度的重要参数, 因此, 进行抽油井系统设计时必须首先确定。

井底流压主要是利用油井产能并根据设计排量来确定。

油井流入动态具有多种类型, 这里采用沃格尔方程:
(3)
式中∶q1——对应于井底流压p wf下的油井产量;
q
——油井的极限产量;
1max
p
——井底流压;
wf
p
——平地层压力。

r
将已知数据代入上式, 在设计排量为q 1=28.29 m/d的条件下, 求得该井流压为: p wf=4.50 MPa。

4.泵吸入口压力
泵吸入口压力是确定下泵深度的重要参数, 主要根据设计沉没度来估算。

沉没段油、水混合液的平均密度为:
(4)
代入已知数据, 得=998.18m/d。

再根据沉没度h s=200 m, 可求得泵吸入口压力p s=1.958 MPa。

5.下泵深度
下泵深度是抽油井系统设计的重要数据, 它决定了抽油杆的总长度, 而且影响着悬点载荷、冲程损失以及泵效。

下泵深度主要是根据井底流压与泵吸入口压力的差值, 应用相应的方法来确定。

确定方法主要有三类:
1.将油、气、水看成是三相, 应用相应的相关式来计算;
2.将油、水处理成液相, 这样便应用气、液两相垂直管流理论来计算;
3.是对于象稠油井气体较少,从而可不考虑气体,只考虑单相液体进行估算。

这里采用单相估算法。

自油层中部到泵吸入口之间的压差为2.542 Mpa,根据静液柱估算,该压差对应的高度H p为208.63m。

因此, 下泵深度则为:
6.确定冲程和冲次。

相关文档
最新文档