带电粒子与物质的相互作用

合集下载

射线检测技术4-3带电粒子、中子与物质的相互作用

射线检测技术4-3带电粒子、中子与物质的相互作用

会发生很大的变化,根据经典电磁理论,将产生电磁辐射,这种电磁辐射称



轫致辐射。带电粒子的(轫致dd辐Ex射)r引ad起的辐zm2射Z2能2量N损E失率为
所以X射线管中用高能量电子、高原子序数靶 多次散射
电子与靶原子核库仑场发生相互作用时,还可能发生弹性散射,即只改变运 动
方向,不辐射能量。由于电子质量比原子核小得多,因此散射角度可以
(c) 进行粒子放射的吸收
(d) 进行核裂变的吸收
中子射线强度的指数衰减规律
α射线与物质相互作用
•(1) α射线与核外电子作用 •α粒子在物质中通过时,由于α粒子和原子核外电 子的库仑作用,使电子获得能量。如果这种能量能 够使电子克服核的束缚,电子将脱离原子而成为自 由电子,即为电离。如果α粒子传给电子的能量较 小,还不能使电子脱离核的束缚变成自由电子,但 是电子有可能从原来的能级跃迁到更高的能级上去
如电子撞击阳极靶
重带电粒子与靶原子核发生非弹性碰撞时,可能 使靶核激发而损失它的能量,这种过程的激发称 为库仑激发。一般库仑激发概率太小,将不予考 虑。
带电粒子与靶原子核的弹性碰撞
带电粒子与靶原子核发生库仑相互作用而改变其 运动速度和方向,但不辐射光子,也不激发原子 核,碰撞前后保持动量守恒,入射粒子损失能量 ,靶原子核反冲。入射粒子可以多次与靶原子核 发生这种弹性碰撞,造成能量损失。同时反冲的 靶原子核如果能量较高,也可以与靶原子核发生 弹性碰撞,这种级联碰撞可造成靶物质的辐射损 伤。从靶物质对入射粒子的阻止作用来讲,这种 作用过程也称为“核阻止”。
,使原子处于较高的能量状态,即为激发。
荧光光子
散射光子
α射线
e
(a) 激发

带电粒子与物质相互作用的类型、特点与作用参数

带电粒子与物质相互作用的类型、特点与作用参数

带电粒子与物质相互作用的类型、特点与作用参数嘿,伙计们!今天我们要聊聊带电粒子与物质相互作用的类型、特点与作用参数。

这可是个相当有趣的话题,让我们一起来探索一下吧!我们来说说带电粒子与物质相互作用的类型。

你知道吗,带电粒子与物质相互作用主要有三种类型:电磁相互作用、弱相互作用和强相互作用。

其中,电磁相互作用是最常见的,比如我们平时用的手机充电就是靠电磁作用实现的。

而弱相互作用和强相互作用则比较特殊,它们主要发生在原子核内部,对宇宙的演化有着重要的影响。

我们来谈谈带电粒子与物质相互作用的特点。

你可能会觉得这个话题有点儿深奥,但其实很简单。

带电粒子与物质相互作用的特点主要有两个:一是它们之间会产生电荷转移,二是它们之间会发生能量传递。

举个例子,当你把一个电子从一个物体上剥离下来时,这个物体就会带上正电荷,而电子则变成负电荷。

这就是电荷转移的例子。

而当你把一个光子打在一个原子上时,原子就会吸收光子的能量,变得更加激发态。

这就是能量传递的例子。

我们来探讨一下带电粒子与物质相互作用的作用参数。

作用参数是指带电粒子与物质相互作用时所涉及到的各种物理量,比如电场强度、磁场强度、电磁波频率等等。

这些参数对于研究带电粒子与物质相互作用的过程和规律非常重要。

比如,我们可以通过测量电场强度和磁场强度来计算出带电粒子在磁场中受到的洛伦兹力。

而通过测量电磁波的频率和振幅,我们则可以了解到电磁波的能量分布情况。

今天的话题就聊到这里了。

希望大家对带电粒子与物质相互作用有了更深入的了解。

记住哦,无论是学习还是生活,都要保持好奇心和求知欲,这样才能不断进步哦!下次再见啦!。

放射性地球物理第二章 射线和物质相互作用

放射性地球物理第二章 射线和物质相互作用

第一节 带电粒子与物质相互作用
三、β射线与物质的相互作用 3、 韧致辐射
高速运动的β粒子或其它带电粒子通过物质时,在核库 仑场作用下,改变运动速度,伴随放出电磁辐射。
原子核 轫致辐射放出的电磁辐射是连续能量的X射线。 使用辐射损耗率描述在单位距离上轫致辐射的能量损耗。
辐射损耗率定义为:
d d X E 辐 = 射 N 1E m 3 Z 0 2 C 1 7 Z 2 e4 4ln m 2 0C E 23 4
电子打在荧光屏上 产生X射线
电视机显像管
特征: x 射线能量连续 0 – EMax(电子能量) 电视机 高压15 kV 电子束能量15 keV x 射线能量 0 -15 keV
产生机制
第一节 带电粒子与物质相互作用
三、β射线与物质的相互作用
4、 线阻止本领 S
在核反应可以忽略的(不是太高)能量范围,带电粒子 主要的能量损失方式是碰撞电离损失核轫致辐射损失。
d dX E 电= 离2m e04vZ 2Nln (1 2 Im 2(0 1v 2 )2E 8 1 2)(1 ln1 2 (1 2)2212)
m0,e-电子的静止质量与电荷; z,v-α粒子的电荷数与速度; β= v /c,c-光速;
Z-介质的原子序数; N-介质单位体积(1cm3)内的原子数目; I-吸收介质原子的平均电离电位; E-入射电子动能;
d d X E 电= 离 4 e m 4 0 Z v2 z2N ln I(2 1 m 0 v2 2)2 Wn
m0,e-电子的静止质量与电荷; z,v-α粒子的电荷数与速度; β= v /c,c-光速;
Z-介质的原子序数; N-介质单位体积(1cm3)内的原子数目; I-吸收介质原子的平均电离电位; W-平均电离能; n-电离比度;

带电粒子与物质相互作用的几个主要过程

带电粒子与物质相互作用的几个主要过程

带电粒子与物质相互作用的几个主要过程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!带电粒子与物质之间的相互作用是物理学和材料科学中非常重要的研究领域,其中包括以下几个主要过程:1. 电离过程。

带电粒子与物质相互作用

带电粒子与物质相互作用

带电粒子与物质相互作用1. 引言在我们日常生活中,电与物质的相互作用可谓无处不在。

无论是手机的电池还是医学影像技术,带电粒子和物质的互动都在背后默默地发挥着重要作用。

让我们一起探个究竟,看看这些神奇的粒子如何与物质打交道吧!2. 带电粒子:小小角色,大大影响2.1 什么是带电粒子?首先,咱们得搞清楚,带电粒子到底是什么。

简单来说,带电粒子就是那些带有电荷的粒子,比如电子。

你可以把它们想象成那些总喜欢带电的“小家伙”,在物质中来回跑动,带来各种各样的效果。

2.2 带电粒子如何与物质互动?当这些带电粒子碰上物质时,就会发生一系列有趣的事情。

就像你把磁铁靠近铁屑,它们会被吸引一样,带电粒子也会和物质中的原子、分子产生互动。

这种互动能导致物质的变化,比如发光、发热,甚至改变物质的结构。

是不是听起来挺酷的?3. 实际应用:生活中的带电粒子3.1 电子设备中的奇妙作用我们的电子设备离不开带电粒子的参与。

比如手机的电池里,带电粒子通过电池的化学反应流动,产生电力,让你的手机“活”过来。

换句话说,没有这些粒子,手机就像没电了的蔫菜,不动弹了。

3.2 医学影像中的神奇表现医学影像技术也是带电粒子发挥作用的一个好例子。

比如X射线,它就是利用带电粒子穿透身体,拍出内部的“照片”。

医生通过这些“照片”能看到身体的各种状况,帮助我们及早发现问题。

真是个了不起的“侦探”工作吧!4. 结论总的来说,带电粒子与物质的相互作用虽然看似微小,却在我们生活中扮演着重要角色。

从电子设备到医学影像,它们都在默默地发挥着作用,让我们的生活变得更加便利和美好。

希望通过这次简单的探讨,你能对这些小小的粒子有个全新的认识!。

粒子与物质的相互作用

粒子与物质的相互作用

粒子与物质的相互作用一、引言粒子与物质的相互作用是物质世界中一种基本的物理现象。

无论是宏观的物体还是微观的粒子,它们都受到相互作用的影响。

本文将从不同角度介绍粒子与物质的相互作用。

二、电磁力的作用电磁力是粒子与物质之间最常见的相互作用方式之一。

当粒子携带电荷时,它们与周围的电场相互作用。

根据库伦定律,电荷之间的相互作用力与它们之间的距离成反比,与电荷的大小成正比。

这就解释了为什么带电粒子在电场中会受到电力的作用。

磁场也是粒子与物质相互作用的重要因素。

带电粒子在磁场中会受到洛伦兹力的作用,这个力的方向垂直于粒子的速度和磁场的方向。

这种相互作用在电磁感应、电磁波传播等现象中都扮演着重要角色。

三、强力与弱力的作用除了电磁力,强力和弱力也是粒子与物质相互作用的重要力量。

强力是在原子核中起作用的力量,维持着核内的质子和中子的结合。

它是一种非常强大的力量,远超过电磁力的范围。

弱力则是一种相对较弱的力量,主要作用于一些放射性衰变过程中。

这两种力量的相互作用机制十分复杂,需要通过精确的数学描述才能完整解释。

四、引力的作用引力是质量之间的相互作用力。

根据普遍引力定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

这种力量是所有物体都具备的,无论是微观粒子还是宏观物体。

引力决定了物体之间的相互吸引作用,使得星球绕太阳公转、月球围绕地球运动等现象得以产生。

五、弹性力和摩擦力的作用除了上述力量外,弹性力和摩擦力也是粒子与物质相互作用的重要力量。

弹性力是物体在受到外力作用后产生的恢复力,使物体恢复到原始形状或位置。

摩擦力则是两个物体接触时产生的相互阻碍运动的力。

这两种力量在日常生活中随处可见,如弹簧的拉伸和压缩、车辆行驶中的摩擦等。

六、总结粒子与物质的相互作用是物质世界中的基本现象,涉及到电磁力、强力、弱力、引力、弹性力和摩擦力等多种力量。

这些力量共同作用,决定了物质的性质、物体的运动以及各种自然现象的发生。

带电粒子与物质的相互作用

带电粒子与物质的相互作用

带电粒子与物质的相互作用引言:带电粒子是指具有电荷的微观粒子,例如电子、质子等。

在物质中,带电粒子与其他物质之间会发生相互作用。

这种相互作用是物质世界中一种重要的基本现象,对于我们理解和应用自然界具有重要意义。

本文将从带电粒子与物质的相互作用的基本原理、类型和应用等方面进行阐述。

一、基本原理带电粒子与物质的相互作用遵循电磁相互作用力。

根据库仑定律,带电粒子之间的相互作用力与它们之间的电荷量成正比,与它们之间的距离的平方成反比。

这种相互作用力可以是吸引力,也可以是排斥力,取决于带电粒子之间的电荷性质。

二、类型1. 静电作用:带电粒子与物质之间的相互作用可以表现为静电作用。

当带电粒子靠近物质时,它们之间会发生电荷的转移或者重排,导致电荷的分布发生变化,从而产生静电力。

这种作用在电荷不移动的情况下发生,例如静电吸附、静电排斥等。

2. 磁场作用:带电粒子的运动会产生磁场,而物质对磁场也会产生响应。

当带电粒子通过物质时,物质中的电荷会受到磁场力的作用,并产生相应的运动或变化。

这种作用可以用于磁共振成像、磁性材料的制备等。

3. 电流作用:带电粒子在物质中运动时,会与物质中的电荷发生相互作用。

当带电粒子通过物质时,会产生电流,而电流会产生磁场。

这种作用可以用于电子输运、电磁感应等。

4. 能量转移:带电粒子与物质之间的相互作用还可以导致能量的转移。

当带电粒子与物质发生碰撞或相互作用时,它们之间的能量会发生转移,从而改变物质的性质或状态。

例如带电粒子的辐射与物质的相互作用会导致能量的转移,产生辐射损失。

三、应用带电粒子与物质的相互作用在科学研究和技术应用中具有广泛的应用价值。

1. 粒子加速器:粒子加速器利用带电粒子与物质之间的相互作用,通过电场或磁场加速带电粒子的运动。

这种技术被广泛应用于高能物理实验、核物理研究等领域。

2. 材料表征:带电粒子与物质的相互作用可以用于材料的表征。

例如扫描电子显微镜(SEM)利用电子与物质的相互作用,观察和分析材料的表面形貌和成分。

射线与物质相互作用

射线与物质相互作用


I
厚层
表示射线β计数率与 h无关,已达饱和 此时h称为饱和厚度
①③ ②
I I ,
③对于以上两者之间,有: I I0 (1 eh )

过渡层
1.3.2 γ射线与物质的相互作用 1.3.2.1、作用形式
一、γ 射线的特点
即是粒子,又是光子,具有波粒二象性,是一种波 长极短的电磁辐射,不带电,静止质量为零,不会 发生电离,激发,轫致辐射作用。
(
dE dX
)电离



n)
2、轫致辐射
当高速电子或其它带电粒子通过物质,而被原子核库 仑场阻止而减速时,伴生的电磁辐射,此称轫致辐射。 另一定义:当快速运动的带电粒子在原子核附近突然 被减速时,则有一部分动能转变为连续能量的电磁辐 射,这种过程称为轫致辐射。
(
dE dX
)辐射

Z 2EN m02
三、带电粒子在介质中的射程
1、带电粒子的吸收:带电粒子与物质作用(电离,激 发,轫致辐射)不断损失自已的能量,直到能量完全 耗尽,而停在介质中,这一过程称为~。
2、射程:沿入射方向从入射点到终止点的直线距离。
α粒子的射程
3
R
β α
R 0.318E2 (cm)
R' 3.2104
A
R (cm)
强度(cps/道/%K )
8
K谱
10
K谱 (a)
12
Cs-137的仪器谱
为什么会发生这一现象?
如何发生的?
其过程是这样的:
(1)γ 光子与NaI晶体作用,产生次 级电子:
光电效应____光电子
康吴效应_____反冲电子,散射光 子__光电子

重带电粒子与物质相互作用

重带电粒子与物质相互作用

其中: R1和R2为射程 M1和M2为静止质量 Z1和 Z2为电荷
如果第二个粒子为质子(M2=1且Z2=1),这样另外粒子的射程R由下式给 出:
其中Rp(β)为质子射程。 图5.7表示了质子,α粒子和电子在水,肌肉,骨头和铅中的gcm-2射程。 对于给定能量的质子,在Pb中的gcm-2射程比水中大,这与Pb的小质量阻止 本领一致。
阻止本领和距离:Bragg峰
• 在低能处,当β→0时,括号前面的因子增加,导致产生一个峰(称为Bragg峰)。 • 当粒子能量接近0时,线性能量损失率最大。
α粒子在路径上的能量损失率
• • •
图画中低能处的能量损失的峰是一个例子。图中还画出了α的-dE/dx与在材料 中距离的关系。 对绝大多数α粒子径迹, α粒子具有2个电子电荷,能量损失率随1/E增加,这 点可由阻止本领方程预测。 在径迹末尾,通过电子拾取减少电荷,曲线下降。
阻止本领可以由能量损失谱来估算。 • 宏观截面μ表示单位路径上电子发生碰撞的概率。 • μ的倒数表示在两次碰撞间带电粒子走过的平均距离或平均自由程。 • 阻止本领是宏观截面与每次碰撞损失的平均能量的积。
例如: 1MeV的质子在水中的宏观截面为410μm-1,每次碰撞的平均能量损失为 72eV。阻止本领和平均自由程为多少? 阻止本领,
单次碰撞能量损失谱
• • • • • Y轴代表计算得到的给定碰撞中能量损失为Q的概率。 以上计算得到的1MeV 质子最大能量损失,21.8keV 的 N.B.超出坐标范围。 最可能的能量损失在20eV量级。 N.B., 快带电粒子的能量损失谱很可能在10-70eV区间 慢带电粒子的能量损失谱不同,最可能的能量损失接近Qmax。
对于化合物或混合物,必须考虑每个单个成分的贡献。 在这种情况下,可以由不同成分的电子密度权重得到lnI值。 以下是对于水的例子(对组织也可能足够)。

带电粒子与物质的相互作用

带电粒子与物质的相互作用

带电粒子与物质的相互作用在物理学中,带电粒子与物质之间的相互作用是一个重要的研究领域。

带电粒子指的是带有电荷的基本粒子,如电子、质子等,而物质则包括了构成我们周围世界的一切物质实体。

这两者之间的相互作用机制不仅对于理解物质的性质和行为具有重要意义,也为各种应用提供了基础。

一、静电作用最基本的带电粒子与物质的相互作用是静电作用。

当两个物体中的带电粒子之间存在电荷差异时,它们会产生静电力的相互作用。

根据库仑定律,两个电荷之间的静电力与电荷的大小成正比,与它们之间的距离的平方成反比。

这种相互作用可以导致物体的吸附、斥力、电荷传递等现象。

静电作用在日常生活中也经常出现,比如我们身体摩擦后产生的静电电荷可以使身体与物体发生吸引或者排斥的现象。

在工业中,静电作用也是一种重要的物料处理技术,例如静电吸附、静电喷涂等。

二、电磁作用电磁作用是带电粒子与物质之间更加复杂的相互作用方式。

它包括两个方面,一方面是带电粒子在物质中受到的电场力的作用,另一方面是带电粒子的运动状态对物质电磁性质的影响。

对于带电粒子在电场中的相互作用,根据库仑定律和电场叠加原理,可以得到带电粒子在电场中所受到的电场力大小和方向。

这种相互作用广泛应用于电子学和电路中,例如电荷在电场中的偏转、电势差引起的电子流等。

带电粒子对物质电磁性质的影响则涉及到材料的导电性、磁性等方面。

带电粒子的运动会在物质中引起电流,进而改变物质的导电性质。

而当带电粒子的运动速度接近光速时,还会产生磁场效应,即洛伦兹力。

这些现象在电磁学、材料科学等研究中有着广泛的应用。

三、辐射作用带电粒子与物质相互作用的另一种重要方式是辐射作用。

当带电粒子在物质中运动时,会释放出能量并产生辐射,例如电子在物质中的电离和俄歇效应。

辐射作用在核物理、粒子物理等领域中具有重要意义。

例如,在医学上,正电子发射断层成像(PET)技术利用正电子与物质相互作用产生的辐射进行人体成像;在核反应中,粒子与原子核的相互作用可以产生高能粒子和辐射。

带电粒子与物质的相互作用

带电粒子与物质的相互作用

与重带电粒子相比,快电子的射程的概念不太明
确,因为电子的总路程的长度比沿初始速度方向穿 透的距离大得多。通常,电子的射程是从图中那样 的曲线将末端直线部分外推到零求得的,它表示几 乎没有电子能穿透的吸收体厚度。
为了描述快电子由于电离和激发引起的比能损失 (“碰撞损失”),Bethe也推出类似重带电粒子比能损 失的公式。
式中符号意义与前式相同。
电子与重带电粒子也不同,除经过库伦相互作用以外,还能 经过辐射过程损失能量。这些辐射损失的形式是轫致辐射, 及电磁波,它可以从电子径迹的任何位置发出。根据经典理 论,电子被加速时必然发射能量,而电子与吸收体相互作用 而偏转时相当于这种加速,经过这样辐射过程的线性比能损 失为
带电粒子与物质的相互作用
带电粒子主要分为两种,一是重带电粒子(特征穿 透距离≈10-3m),二是快电子(特征穿透距离≈108m)。带电粒子与电荷借助库仑力不断地与所经过的 介质中的电子或原子核相互作用,从而损失能量,当介 质厚度足够时,最后沉积再介质中。
重带电粒子与物质的相互作用
重带电粒子(如α粒子)与物质的相互 作用主要是通过它们的正电荷与吸收体原 子中轨道电子的负电荷之间的库仑力。虽 然重带电粒子也可能与和核发生相互作用 (如卢瑟福散射或α粒子引起的核反应), 但是这种相互作用很少发生,因而它们大 多数情况下并不重要,可以忽略掉。
粒子的相对论速度 。
c
为粒子的洛仑兹因子。 I 为介质原子 的平均激发能, Tmax 为一次碰撞中可能传递给一个 自由电子的最大动能。
带电粒子的比能损失沿其径迹的变化曲线(如图所示)称为 Bragg曲线。这个例子是对初始能量为几MeV的α粒子的。在径 迹的绝大部分,α的电荷是两个电子的电荷,比能损失粗略的随 1/E增加,如同Bathe公式预计的一样,接近径迹末端时,α粒子 的电荷由于拾取电子而减少,Bragg曲线现将下降。

带电粒子与物质相互作用

带电粒子与物质相互作用

带电粒子穿过靶物质时,与路径上靶物质的原子核及核外电子发生相互作用,随着入射粒子种类和能量的不同,各种相互作用的强度和特征也不相同,绘终决定了入射带电粒子在靶物质中的能量损失与射程分布等。

带电粒子与物质相互作用的特征带电粒子在物质屮的慢化过程具有一定能量的带电粒子(如质子,a粒子,电子等)入射到靶物质中时, 带电粒子与其路径上靶物质的原子核或电子会发生库伦相互作用,从而把一部分动能转移给靶物质的电子或原子核而逐渐损失能量,最终停止在靶物质中,这个过程称为慢化过程。

快速带电粒子与靶物质屮电子的库伦相互作用在幔化过程中起主要作用。

对重带电粒子來说,由于电子的质量非常小,在和电子的每次碰撞中,转移给电子的能量只占其本身能量的很少一部分。

重带电粒子在每次碰撞后的运动状态可以认为没有改变。

所以重带电粒子穿过靶物质时,要与靶物质中的电子连续地发生许多次这样的小能最转移碰撞,才逐渐损失掉它的能最。

重带电粒子经过多次碰撞而不断损失能量,当速度减少到一定程度时,就会与靶物质发生电荷交换效应。

原來高速运动的重带电粒子的外层电子是全部剥离的,随着速度的降低而会俘获靶物质中的电子,从而使白身所带的有效正电荷数逐渐减少。

如果靶物质足够厚,则经过许多次碰撞后,重入射带电粒子的能量会全部耗尽,并俘获电子成为中性原子,停止在靶物质中。

重带电粒子被阻止在靶物质中所需的时间与它的能量及靶物质的性质有关。

对能量在MeV量级的a粒子和质子,整个慢化过程在气体物质中约为10$秒,在固体物质中约为10"秒。

高速重带电粒子(如a粒子)与靶原子核的库伦碰撞造成的能量损失,和与靶原子的电子的碰撞造成的能星损失相比可以忽略不计,只有在重带电粒子速度非常低时才显得觅要。

但对于快速电子,它与靶原子核的碰撞对能量损失和角度偏移则有较大的影响。

入射电子与靶物质中电子的单次碰撞也可能损失较多的能量。

总之,慢化过程中带电粒子在靶物质中的能量损失和角度偏转,完全是入射带电粒子与靶物质中的电子和原子孩发生各种相互作用的结果,主要有下列四种碰撞过程:①带电粒子与靶原子的核外电子发生非弹性碰撞:②带电粒子与靶原子核发生弹性碰撞:③带电粒子与靶原子核发生非弹性碰撞;④带电粒子与靶原子的核外电子发生弹性碰撞;在所讨论的能最范围内,入射粒子与原子核发生核反应的概率非常小,可以不予考虑。

第2章电离辐射与物质的相互作用.

第2章电离辐射与物质的相互作用.

第2章电离辐射与物质的相互作用.第二章电离辐射与物质的相互作用个人觉得第二章是整个内容中理论性最强的一部分,要掌握这些内容得多看几遍书才行,要是感到不好理解的话,只能死记了!而且整个第二章内容已经很精简了,短短的二十页内容,几乎处处都是考点,好好多看几遍书才行!第一节带电粒子与物质的相互作用一、带电粒子与物质相互作用的主要方式:1、与核外电子发生非弹性碰撞;2、与原子核发上非弹性碰撞;3、与原子核发上弹性碰撞;4、与原子核发生核反应掌握以上各种作用方式的作用过程以及每种作用的关系式、由关系式得出的结论。

掌握概念电离辐射,直接致电离辐射,间接致电离辐射;线性碰撞阻止本领,质量碰撞阻止本领;(线性碰撞阻止本领linear collision stopping power)入射带电粒子在靶物质中穿行单位长度路程时电离损失的平均能量(J*m-1) 质量碰撞阻止本领(mass collision stopping power)线性碰撞阻止本领除以靶物质的密度线性辐射阻止本领,质量辐射阻止本领;单位路程长度和单位质量厚度的辐射能量损失。

总质量阻止本领,质量角散射本领;带电粒子在密度为p的介质中穿过路程dl时,一切形式的能量损失dE除以pdl而得的商。

质量角散射本领指均方散射角除以吸收块密度p和厚度l之积所得的商,与原子序数的平方成正比,与入射电子的动量平方近似成反比。

射程,路经,半值深度,实际射程;沿入射方向从入射位置至完全停止位置所经过的距离称为射程。

粒子从入射位置至完全停止位置沿运动轨迹所经过的距离称为路径长度;比电离;带电粒子穿过靶物质时使物质原子电离产生电子-离子对,单位路程上产生的电子-离子对数目称为比电离,它与带电粒子在靶物质中的碰撞阻止本领成正比。

传能线密度。

(linear energy transfer, LET)描述辐射品质的物理量,定义为dE除以dl而得的商。

第二节X(r)射线与物质的相互作用1、X(r)射线与物质相互作用的特点:(区别与带电粒子与物质的相互作用)1)不能直接引起物质原子电离或激发,而是首先把能量传递给带电粒子;2)与物质的一次相互作用可以损失其能量的全部或很大一部分,而带电粒子则是通过许多次相互作用逐渐损失其能量;3)光子束入射到物体时,其强度随穿透物质厚度近似呈指数衰减,而带电粒子有确定的射程,在射程之外观察不到带电粒子。

带电粒子与物质相互作用可产生

带电粒子与物质相互作用可产生

带电粒子与物质相互作用可产生1. 引言嘿,你有没有想过那些看似平常的电荷和物质碰撞后会发生什么有趣的事情?其实,这背后可大有文章。

带电粒子就像一颗颗小小的炸弹,它们碰撞到物质时,可不是简单的“嗨”一下那么简单。

来,我们一块儿探探这其中的奥秘,看看这些电荷们能在物质里搞出什么大动静!2. 电荷与物质的奇妙碰撞2.1. 光的产生首先,带电粒子碰到物质时,最常见的就是产生光了。

你看,荧光灯、电视机、甚至一些闪闪发光的玩意儿,都是依靠这种原理的。

带电粒子(比如电子)飞速撞击物质内部的原子,这些原子就像被打了一针兴奋剂一样,变得很激动。

当这些原子从高能状态回到低能状态时,它们就会释放出光,照亮你的世界。

是不是感觉像是电子们在物质中举行了一场灯光秀?2.2. 电离效应接着,带电粒子还会让物质发生电离。

电离就是把原本平静的原子搞得一团乱。

带电粒子碰到原子时,有可能把它们的电子给打飞了,留下带正电的原子核和一个自由的电子。

这种现象在日常生活中有很多应用,比如X光检查,医学上用得特别广。

电离就像是带电粒子给物质带来了小型的炸弹爆炸,瞬间改变了原本的状态。

3. 电荷与物质的互动效果3.1. 激发与辐射除了光和电离,带电粒子还会引发激发效应。

当带电粒子撞到物质时,它们能把物质中的原子或分子推到激发状态,就像是给它们加了“鸡血”,让它们兴奋起来。

这时候,物质就会在某些特定的条件下释放出特定的辐射,比如紫外线、X射线等。

这种辐射可以用来研究物质的内部结构,了解它们的秘密。

3.2. 粒子散射最后,带电粒子还可能引起粒子散射。

想象一下你扔石子进水里,水面就会产生涟漪。

带电粒子也差不多,它们在碰到物质时,会把物质中的其他粒子“撞”得东倒西歪。

这种散射现象被用来分析物质的性质,比如研究物质的结构、密度等信息。

科学家们就像在用带电粒子玩一个复杂的“弹珠游戏”,在不断地揭示物质的奥秘。

4. 结论综上所述,带电粒子和物质的互动不仅仅是“碰一碰”那么简单,而是会引发一系列精彩的反应。

第2章辐射与物质的相互作用

第2章辐射与物质的相互作用
22
辐射阻止本领
1 dE ρ dl rad
mc2 << E << 137mc2Z-1/3 时:
1 dE K1 E + mc2 Z (Z + 1) 2 E + mc2 4 = × 4 ln − MeV ⋅ cm2 ⋅ g −1 ρ dl rad 2πMa mc2 137 mc2 3
(
)
(
)
E >> 137mc2Z-1/3 时:
K 1 E + mc 2 Z (Z + ζ ) 1 dE 183 2 × 4 ln 1 / 3 + = 2 mc Z 137 9 ρ dl rad 2π M a
(说明略)
(
)
MeV ⋅ cm 2 ⋅ g −1
23
总质量阻止本领=碰撞阻止本领+辐射阻止本领
S =S +S ρ ρ col ρ rad
8
1. 电离、激发和碰撞阻止本领
库仑相互作用 带电粒子 轨道电子
电离
激发
9
碰撞阻止本领 (S/ρ)col
线碰撞阻止本领
dE dl col
44
第 I 阶段:
原子的光电效应截面: (每个原子) hν<<m0c2时, σ τ ∝ Z 5 h1 ν hν>>m0c2时,
στ ∝ Z 5
7 2
单位:cm2
Z-介质的原子序数
1 hν
光电效应的几率与原子序数 Z5成正比; 光电效应的几率与光子能量hν或hν3.5成反比; 低能光子与高原子序数物质作用,光电效应占优势; 光电效应主要发生在K层及L层电子。

α粒子与物质的相互作用

α粒子与物质的相互作用

α粒子与物质的相互作用α粒子是由两个质子和两个中子组成的带正电的粒子。

它在物质中传播的过程中与物质相互作用,产生一系列的效应。

在本文中,我将简要介绍α粒子与物质的相互作用,并详细解释这些相互作用的机制。

首先,α粒子与物质的相互作用主要是通过电磁相互作用和核力相互作用来实现的。

电磁相互作用是指α粒子与物质中的电子相互作用,而核力相互作用是指α粒子与物质中的原子核相互作用。

在电磁相互作用中,α粒子与物质中的电子发生库仑相互作用。

这种相互作用将导致α粒子的轨迹发生偏转,并在物质中散射。

这种散射现象称为康普顿散射。

康普顿散射通常发生在α粒子的能量较低时,例如在几百keV到几MeV的能量范围内。

在高能范围内,α粒子与电子发生电离作用,使电子脱离原子而形成电离对。

除了电磁相互作用,α粒子还与物质中的原子核发生核力相互作用。

在接近原子核时,α粒子与核子之间的核力相互作用作用会引起散射。

这种散射现象称为核散射。

核力是一种极强的相互作用力,因此α粒子在与原子核发生相互作用时,往往会改变方向并散射。

此外,α粒子还可能发生核反应。

核反应是指α粒子与原子核之间发生核变化的过程。

这种变化可以导致原子核的转变,产生新的粒子或放射出其他粒子。

核反应在核物理研究和核能利用中具有重要的应用。

例如,α粒子与氮核反应可以产生碳核和质子,这是碳-14测年法的基础原理。

另外,α粒子还可以与铀核发生聚变反应,用于核能发电。

总体而言,α粒子与物质的相互作用是多种多样的,包括康普顿散射和核散射,还有核反应。

这些相互作用是通过电磁相互作用和核力相互作用来实现的。

了解和研究α粒子与物质的相互作用机制对于理解核物理的基本原理以及开发核能技术都具有重要意义。

肿瘤放射物理学-物理师资料-22 带电粒子与物质的相互作用

肿瘤放射物理学-物理师资料-22 带电粒子与物质的相互作用

用 Scol 或
dE ( dl )col
表示
质量碰撞阻止本领(mass collision stopping power):线性 碰撞阻止本领除以靶物质的密度。

(
S
)col

1 dE
( dl )col 表示
电离损失与入射粒子的能量、电荷数及靶物质的每克电子数之间的关系
1、重带电粒子质量碰撞阻止本领表达式:

1 dE
( dl )rad
辐射损失与入射粒子及靶物质部分物理量之间的关系
关系式:
S
z2Z 2
( )rad m2 NE
带电粒子的能量
结论:
带电粒子静止质量
单位质量靶物 质中的原子数
(1)与入射带电粒子的质量m的平方成反比,重带电粒子的轫致
辐射引起的能量损失可以忽略;
(2)与Z2成正比,说明在重元素物质中的韧致辐射损失比轻元素
物质大;
(3)与粒子的能量成正比,这与电离损失的情况不同。
(三)带电粒子与原子核的弹性碰撞 当带电粒子与靶物质原子核库仑场发生相互作用时,尽管带电粒
子的运动方向和速度发生变化,但不辐射光子,也不激发原子核, 它满足动能和动量守恒定律,属弹性碰撞,也称弹性散射。
当带电粒子能量较低时,才有明显的弹性碰撞。 重带电粒子由于质量比较大,与原子核发生弹性碰撞时运动方向 改变小,散射现象不明显,因此它在物质中的径迹比较直。 电子质量很小,与原子核发生弹性碰撞时,运动方向改变可以很 大,而且还会与轨道电子发生弹性碰撞,因此它在物质中的径迹很 曲折。
(二)带电粒子与原子核的非弹性碰撞 当带电粒子从原子核附近掠过时,在原子核库仑场作用下,运
动方向和速度发生变化,此时带电粒子的一部分动能就变成具连续 能谱的X射线辐射出来,这种辐射称为韧致辐射。

4-3带电粒子中子与物质的相互作用

4-3带电粒子中子与物质的相互作用

中子射线与物质相互作用
(2) 非弹性散射 中子的一部分能量用于激发原子核,而后它 离开相互作用点,被激发的原子核放出光子 后又回到基态。因此,中子的部分能量变成 了辐射γ 能。
(b) 非弹性碰撞
中子射线与物质相互作用
(3) 吸收
原子核俘获中子的过程称为吸收。俘获中子的原子 核呈激发状态,紧接着它就发射出光子或带电的粒 子。 对于几个重原子,也可能发生核裂变图。残存的原 子核常常是放射性的。
R0 0.318E
3/ 2
4.4 β 射线与物质相互作用
电子与靶物质的相互作用,主要有
电离、激发 快电子穿过靶物质时,与靶原子的核外电子发生非弹性碰撞,从而把一部分 能量转给核外电子,使靶原子电离或激发。 轫致辐射 由于电子质量轻,当入射电子与靶原子核发生非弹性碰撞时,其速度和方向都 会发生很大的变化,根据经典电磁理论,将产生电磁辐射,这种电磁辐射称为 轫致辐射。带电粒子的轫致辐射引起的辐射能量损失率为
带电粒子与核外电子发生非弹性碰撞
当入射带电粒子从靶原子附近掠过时,靶原子的核外电 子因库仑相互作用而受到吸引或排斥,获得一部分能量。 如果核外电子获得的能量大于轨道结合能,电子脱离原子 核的束缚逸出,成为一个自由电子,原子成为正离子。即 入射带电粒子引起的靶原子的电离过程。原子的最外层电 子受核的束缚最弱,最容易被电离。 如果核外电子在库仑相互作用中获得的动能较小,不足以 被电离,但有可能从原来较低的能级跃迁到较高的能级, 从而使原子处于激发状态,这种过程称为激发,处于激发 态的原子不稳定,会通过跃迁返回基态(退激),退激过程 中会释放出可见光或紫外线,这就是受激原子的发光现象 。
带电粒子与靶原子核的非弹性碰撞
当入射带电粒子到达靶原子核的库仑场时,其库 仑引力或斥力会使入射粒子的速度和方向发生变 化。由电磁学理论可知,伴随着这种运动状态的 改变会产生电磁辐射(称为“韧致辐射”),从 而造成入射粒子的能量损失,这种能量损失称为 “辐射损失”。(辐射损失是轻带电粒子损失能量 的一种重要方式) 如电子撞击阳极靶 重带电粒子与靶原子核发生非弹性碰撞时,可能 使靶核激发而损失它的能量,这种过程的激发称 为库仑激发。一般库仑激发概率太小,将不予考 虑。

核辐射探测器与核电子学期末复习题

核辐射探测器与核电子学期末复习题

《核辐射探测器与核电子学》期末考试复习题一、填空题(20分,每小题2分)1.α粒子与物质相互作用的形式主要有以下两种:激发、电离2.γ射线与物质相互作用的主要形式有以下三种:康普顿散射、光电效应、形成电子对3.β射线与物质相互作用的主要形式有以下四种:激发、电离、形成离子对、形成电子-空穴对、轫致辐射4.由NaI(Tl)组成的闪烁计数器,分辨时间约为:几μs;G-M计数管的分辨时间大约为:一百μs。

5.电离室、正比计数管、G-M计数管输出的脉冲信号幅度与入射射线的能量成正比。

6.半导体探测器比气体探测器的能量分辨率高,是因为:其体积更小、其密度更大、其电离能更低、其在低温下工作使其性能稳定、气体探测器有放大作用而使其输出的脉冲幅度离散性增大7.由ZnS(Ag)组成的闪烁计数器,一般用来探测α射线的强度8.由NaI(Tl)组成的闪烁计数器,一般用来探测γ、X 射线的能量、强度、能量和强度9.电离室一般用来探测α、β、γ、X、重带电粒子射线的能量、强度、能量和强度。

10.正比计数管一般用来探测β、γ、X 射线的能量11.G-M计数管一般用来探测α、β、γ、X 射线的强度12.金硅面垒型半导体探测器一般用来探测α射线的能量、强度、能量和强度13.Si(Li)半导体探测器一般用来探测α、β、γ、X射线的能量、强度、能量和强度14.HPGe半导体探测器一般用来探测α、β、γ、X、带电粒子、重带电粒子射线的能量15.对高能γ射线的探测效率则主要取决于探测器的有效体积16.对低能γ射线的探测效率则主要取决于“窗”的吸收17.G-M计数管的输出信号幅度与工作电压无关。

18.前置放大器的类型主要分为以下三种:电压型、电流型、电荷灵敏型19.前置放大器的两个主要作用是:提高信-噪比、阻抗匹配。

20.谱仪放大器的两个主要作用是:信号放大、脉冲成形21.滤波成效电路主要作用是:抑制噪声、改造脉冲波形以满足后续测量电路的要求22.微分电路主要作用是:使输入信号的宽度变窄和隔离低频信号23.积分电路主要作用是:使输入信号的上升沿变缓和过滤高频噪声24.单道脉冲幅度分析器作用是:选择幅度在上下甄别阈之间的信号25.多道脉冲幅度分析器的道数(M)指的是:多道道脉冲幅度分析器的分辨率26.谱仪放大器的线性指标包括:积分非线性INL、微分非线性DNL二、名词解释及计算题(10分,每小题5分)1.能量分辨率: 表征γ射线谱仪对能量相近的γ射线分辨本领的参数,可用全能峰的半高宽度FWHM或相对半高宽度表示2.探测效率:定义为探测器输出信号数量(脉冲数)与入射到探测器(表面)的粒子数之比3.仪器谱:由仪器(探测器)探测(响应)入射射线而输出的脉冲幅度分布图,是一连续谱4.能谱:脉冲幅度经能量刻度后就可以得到计数率5.全能峰:入射粒子以各种作用方式(一次或多次)将全部能量消耗在探测器内而形成的仪器谱峰6.逃逸峰:若光电效应在靠近晶体表面处发生,则X射线可能逸出晶体,相应的脉冲幅度所对应的能量将比入射光子能量小,这种脉冲所形成的峰称为全能峰7. 特征峰:许多放射源本身具有特征X 射线它们在能谱上形成的峰为特征X 射线峰8. 分辨时间:第一个脉冲开始到第二个脉冲幅度恢复到Vd 的时间,该时间内探测器无法记录下进入计数管的粒子9. 死时间:入射粒子进入计数管引起放电后,形成了正离子鞘,使阳极周围的电场削弱,终止了放电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

快电子与物质的相互作用
与重带电粒子相比,快电子能量损失较慢,而且 通过吸收材料的径迹曲折得多,单能电子源的一组径 迹可能如下图示意图所示,电子路径这里可能发生较 大的偏转是因为电子的质量等于与之相互作用的轨道 电子的质量,从而在单次碰撞中电子可能损失其很大 部分能量,此外,有时还发生能急剧改变电子方向的 电子——核子相互作用。
重带电粒子由于本身质量很重,不容易通过碰撞改变运动 方向,其径迹如图所示,除末尾以外,径迹相当平直。因 此重带电粒子可以用在某一吸收物质中的一定射程来表征, 这个射程的表示没有粒子穿透到这个距离以外。
重带电粒子的比电离损失
用经典方法或者量子力学方法可以求得,重带电粒子 穿过厚度为 dx 的介质层,与介质原子电子的碰撞所丢 失的能量可以用 Bethe-Bloch 公式来描述:
与重带电粒子相比,快电子的射程的概念不太明
确,因为电子的总路程的长度比沿初始速度方向穿 透的距离大得多。通常,电子的射程是从图中那样 的曲线将末端直线部分外推到零求得的,它表示几 乎没有电子能穿透的吸收体厚度。
为了描述快电子由于电离和激发引起的比能损失 (“碰撞损失”),Bethe也推出类似重带电粒子ห้องสมุดไป่ตู้能损 失的公式。
式中符号意义与前式相同。
电子与重带电粒子也不同,除经过库伦相互作用以外,还能 经过辐射过程损失能量。这些辐射损失的形式是轫致辐射, 及电磁波,它可以从电子径迹的任何位置发出。根据经典理 论,电子被加速时必然发射能量,而电子与吸收体相互作用 而偏转时相当于这种加速,经过这样辐射过程的线性比能损 失为
粒子的相对论速度 。
c
为粒子的洛仑兹因子。 I 为介质原子 的平均激发能, Tmax 为一次碰撞中可能传递给一个 自由电子的最大动能。
带电粒子的比能损失沿其径迹的变化曲线(如图所示)称为 Bragg曲线。这个例子是对初始能量为几MeV的α粒子的。在径 迹的绝大部分,α的电荷是两个电子的电荷,比能损失粗略的随 1/E增加,如同Bathe公式预计的一样,接近径迹末端时,α粒子 的电荷由于拾取电子而减少,Bragg曲线现将下降。
dE / dx(MeV / g ⋅ cm 2 ) 称为带电粒子的比电离损失(粒子在 单位质量厚度的介质中损失的能量),其前面的负号表示粒子 的能量不断减小。
k = 4πNavore2mec2 ,是由普适常数阿佛加德罗常数
N数a值vo k,=电0.3子0的70经5(M典e半V 径·mroe l,⋅c电m子2 )的,质量mV是e组入成射,带其电
带电粒子进入任一种吸收介质后,就立 即同时与许多电子相互作用,在任一次 这样的相互作用中,电子当粒子从其附 近经过时都受到一次库伦引力的冲击。 根据相互作用的接近程度,这种冲击可 能使电子升至吸收体原子中的较高位壳 层(激发)或使电子完全脱离原子(电 离)。
传递给电子的能量必然来自带电粒子,隐刺带电粒子的速度 由于相互作用而降低,在一次碰撞中,质量为m、动能为E的 带电粒子传递给质量为me的电子的最大能量为4Eme/m,即 大约为每个核子的粒子能量的1/500,由于这是总能量的很小 的一部分,初级粒子经过吸收体时,一定是通过许多次这样 的相互作用才损失掉它的能量。在任何时刻,带电粒子都是 在与许多电子相互作用,因此总效果是粒子速度不断降低, 知道粒子被阻止。
带电粒子与物质的相互作用
带电粒子主要分为两种,一是重带电粒子(特征穿 透距离≈10-3m),二是快电子(特征穿透距离≈108m)。带电粒子与电荷借助库仑力不断地与所经过的 介质中的电子或原子核相互作用,从而损失能量,当介 质厚度足够时,最后沉积再介质中。
重带电粒子与物质的相互作用
重带电粒子(如α粒子)与物质的相互 作用主要是通过它们的正电荷与吸收体原 子中轨道电子的负电荷之间的库仑力。虽 然重带电粒子也可能与和核发生相互作用 (如卢瑟福散射或α粒子引起的核反应), 但是这种相互作用很少发生,因而它们大 多数情况下并不重要,可以忽略掉。
式中分子中的因子E和Z2表明,对于 电子能量较高呵呵吸收体材料原子序 数较大的情况,辐射损失是最重要的。 在一般情况下,轫致辐射光子的平均 能量是十分低的。
电子的总线性组织本领是碰撞损失和轫致 辐射损失之和
两种比能损失之比近似为:
单能电子的射程和透射曲线
由于电子散射使它显著地偏离入射方向,因此被测 到的电子数与吸收体厚度的关系曲线起始就下降, 而在吸收体厚度大时渐渐趋于零,穿透最大吸收体 厚度的那些电子是在它们经过吸收体的路径中改变 初始方向最小的那些电子
相关文档
最新文档