管内流体流动现象

合集下载

自化工原理_王志魁_第四版___复习大纲及复习题解析

自化工原理_王志魁_第四版___复习大纲及复习题解析

第一章流体流动1流体静力学压强的基准;流体静力学方程及应用。

“等压面”2 管内流体流动的基本方程式流量与流速间的关系;连续性方程及应用;柏努利方程及应用要点。

3 管内流体流动现象黏度的单位及换算、影响因素(温度);流体流动类型及判据;两种基本流动类型的区别。

“质点运动方式、管内流速分布”“理解边界层的概念及对传质传热的影响”4管内流体流动的摩擦阻力损失流动阻力产生的原因和条件;摩擦系数的影响因素(P37图1-28);当量直径;直管及局部阻力计算。

5管路计算6流量的测定常见流量计的类型及应用。

➢流体流动问答题1流体流动有哪两种基本流动类型,如何判断?2 从质点运动方式和管内流速分布两方面说明层流和湍流的区别。

3一定量的液体在圆形直管内作滞流流动。

若管长及液体物性不变,而管径减至原有的一半,问因流动阻力产生的能量损失为原来的多少倍?若流动处于完全湍流区,则结果如何?简要写出推导过程。

4 期中问答题15P551-6➢流体流动的计算主要计算公式:流量与流速间关系式;连续性方程;柏努利方程;摩擦阻力损失计算式。

注意:截面选取、压强基准、储槽液面流速可略。

局部阻力系数与截面选取应一致辅助计算式:当量直径、雷诺数、功(效)率和计算➢流体流动的计算计算类型:(1)求输送设备的功率(效率);(2)求设备间的相对位置;(3)求输送的流量;(4)求某截面处压强;(5)求管径。

注意:单位的一致性。

1离心泵的工作原理气缚现象及产生的原因、如何防止。

2离心泵的主要部件及其作用3 离心泵的主要性能参数4离心泵的特性曲线一定转速下离心泵特性曲线的特点;输送流体的密度和黏度变化对离心泵的流量、扬程、轴功率及效率的影响。

5 离心泵的工作点和流量调节“工作点”、“额定点(设计点)”;离心泵常用的流量调节方法,流量调节时工作点的变化,画图示意。

6离心泵的汽蚀现象和安装高度汽蚀现象及产生的原因、如何防止,表示离心泵汽蚀性能的主要参数。

“通过计算判断是否发生汽蚀”7 离心泵的操作和选型启动和关闭时的要点及原因;选型主要依据。

管内流体流动现象

管内流体流动现象


(1-27)
其单位为m2/s。显然运动粘度也是流体的物理
性质。
二、流体的流动型态
1、两种流型——层流和湍流 图1-18为雷诺实验装置示意图。水箱装有溢流装置, 以维持水位恒定,箱中有一水平玻璃直管,其出口 处有一阀门用以调节流量。水箱上方装有带颜色的 小瓶,有色液体经细管注入玻璃管内。
图1-17 流体在管内的速度分布
实验证明,对于一定的流体,内摩擦力F与两流体 层的速度差成正比,与两层之间的垂直距离dy成 反比,与两层间的接触面积A成正比,即
.

F A(ddyu1-26)
式中:.F——内摩擦力,N;
du

—dy —法向速度梯度,即在与流体流动方向相垂直的
y方向流体速度的变化率,1/s;
2. 湍流时的速度分布 湍流时的速度分布目前尚不能利用理论推导获得,而是通过
实验测定,结果如图1-22所示,其分布方程通常表示成以下 形式:
图1-22 湍流时的速度分布
四、流体流动边界层
图1-19 流体流动型态示意图
2、流型判据——雷诺准数
流体的流动类型可用雷诺数Re判断。
Re d(u1-28)


Re准数是一个无因次的数群。
大量的实验结果表明,流体在直管内流动时, (1)当Re≤2000时,流动为层流,此区称为层流区; (2)当Re≥4000时,一般出现湍流,此区称为湍流区; (3)当2000< Re <4000 时,流动可能是层流,也可
μ——比例系数,称为流体的粘度或动力粘度,Pa·s。
一般,单位面积上的内摩擦力称为剪应力,以τ表
示,单位为Pa,则式(1-26)变为
.

管内流体流动现象

管内流体流动现象

第一章 流体流动§4 流体在管内流动时的摩擦阻力损失本节重点:直管阻力与局部阻力的计算,摩擦系数的影响因素。

难点:用量纲分析法解决工程实际问题。

流动阻力的大小与流体本身的物理性质、流动状况及壁面的形状等因素有关。

化工管路系统主要由两部分组成,一部分是直管,另一部分是管件、阀门等。

相应流体流动阻力也分为两种:直管阻力:流体流经一定直径的直管时由于内摩擦而产生的阻力; 局部阻力:流体流经管件、阀门等局部地方由于流速大小及方向的改变而引起的阻力。

一 范宁公式(Fanning )1、范宁公式 :范宁经过理论推导,得到了以下公式: 22l u h f d λ= (1-53) 式(1-53)为计算流体在直管内流动阻力的通式,称为范宁(Fanning )公式。

式中λ为无量纲系数,称为摩擦系数或摩擦因数,与流体流动的Re 及管壁状况有关。

式(1-53)也可以写成:22u d l h p f f ρλρ==∆ (1-54) 应当指出,范宁公式对层流与湍流均适用,只是两种情况下摩擦系数λ不同。

2、管壁粗糙度对摩擦系数λ的影响光滑管:玻璃管、铜管、铅管及塑料管等称为光滑管;粗糙管:钢管、铸铁管等。

管道壁面凸出部分的平均高度,称为绝对粗糙度,以ε表示。

绝对粗糙度与管径的比值即dε,称为相对粗糙度。

工业管道的绝对粗糙度数值见教材(P27表1-1)。

管壁粗糙度对流动阻力或摩擦系数的影响,主要是由于流体在管道中流动时,流体质点与管壁凸出部分相碰撞而增加了流体的能量损失,其影响程度与管径的大小有关,因此在摩擦系数图中用相对粗糙度dε,而不是绝对粗糙度ε。

流体作层流流动时,流体层平行于管轴流动,层流层掩盖了管壁的粗糙面,同时流体的流动速度也比较缓慢,对管壁凸出部分没有什么碰撞作用,所以层流时的流动阻力或摩擦系数与管壁粗糙度无关,只与Re有关。

流体作湍流流动时,靠近壁面处总是存在着层流内层。

如果层流内层的厚度δL大于管壁的绝对粗糙度ε,即δL>ε时,如图1-28(a)所示,此时管壁粗糙度对流动阻力的影响与层流时相近,此为水力光滑管。

化工原理第一章 流体流动

化工原理第一章 流体流动
两根不同的管中,当流体流动的Re相 同时,只要流体的边界几何条件相 似,则流体流动状态也相同,这称为 流体流动的相似原理。
例1-10 20℃的水在内径为 50mm的管内流动,流速为 2m/s,是判断管内流体流动的 型态。
三.流体在圆管内的速度分布
(a)层流
(b)湍流
u umax / 2 u 0.82umax
hf
le
d
u2 2
三.管内流体流动的总摩擦阻力损失计算 总摩擦阻力损失 =直管摩擦阻力损失+局部摩擦阻力损失
hf hf 直 hf局
l u2 ( le u2 z u2 )
d2 d 2
2
[
(
l
d
l
e
)
z
]
u2 2
管内流体流动的总摩擦阻力损失计算 直管管长 管件阀件当量长度法
hf
l
制氮气的流量使观察瓶内产生少许气泡。 已知油品的密度为850 kg/m3。并铡得水 银压强计的读数R为150mm,同贮槽内的 液位 h等于多少?
(三)确定液封高度 h p ρg
H 2O
气体 压力 p(表压)
为了安全, 实际安装
水 的管子插入 液面的深度
h 比上式略低
第二节 流体流动中的基本方程式
截面突然变化的局部摩擦损失
突然扩大
突然缩小
A1 / A2 0
z (1 A1 )2
A2
z 0.5(1 A2 )2
A1
当流体从管路流入截面较 大的容器或气体从管路排 到大气中时z1.0
当流体从容器进入管的入 口,是自很大截面突然缩 小到很小的截面z=0.5
局部阻力系数法
hf
z
u2 2

化工原理第一章(流体的流动现象)

化工原理第一章(流体的流动现象)

ρ(
∂v ∂v ∂v ∂v ∂p ∂ ∂v 2 r ∂ ∂v ∂w ∂ ∂u ∂v + u + v + w ) = k y − + µ(2 − ∇v) + µ( + ) + µ( + ) ∂t ∂x ∂y ∂z ∂y ∂y ∂y 3 ∂z ∂z ∂y ∂x ∂y ∂x
2012-4-18
湍 流 的 实 验 现 象
2012-4-18
(3)流体内部质点的运动方式(层流与湍流的区别) )流体内部质点的运动方式(层流与湍流的区别) ①流体在管内作层流流动 层流流动时,其质点沿管轴作有规 有规 层流流动 互不碰撞,互不混合 则的平行运动,各质点互不碰撞 互不混合 的平行运动 互不碰撞 互不混合。 ②流体在管内作湍流流动 湍流流动时,其质点作不规则的杂 湍流流动 不规则的杂 乱运动,并互相碰撞混合 互相碰撞混合,产生大大小小的旋涡 旋涡。 乱运动 互相碰撞混合 旋涡 管道截面上某被考察的质点在沿管轴向 轴向运动的同时 轴向 ,还有径向 径向运动(附加的脉动 脉动)。 径向 脉动
du F = µA dy
式中:F——内摩擦力,N; du/dy——法向速度梯度 法向速度梯度,即在与流体流动方向相垂直的 法向速度梯度 y方向流体速度的变化率,1/s; µ——比例系数,称为流体的粘度或动力粘度 粘度或动力粘度,Pa·s。 粘度或动力粘度
2012-4-18
【剪应力 剪应力】 剪应力 【定义 定义】单位面积上的内摩擦力称为剪应力 剪应力,以τ表 定义 剪应力 示,单位为Pa。
ρ(
2012-4-18
著名的“纳维-斯托克斯方程”,把流体的速度、压力、密 度和粘滞性全部联系起来,概括了流体运动的全部规律;只 是由于它比欧拉方程多了一个二阶导数项,因而是非线性的 ,除了在一些特殊条件下的情况外,很难求出方程的精确解 。分析这个方程的性态,“仿佛是在迷宫里行走,而迷宫墙 的隔板随你每走一步而更换位置”。计算机之父冯·诺意曼( Neumann,Joha von 1903~1957)说:“这些方程的特性…… 在所有有关的方面同时变化,既改变它的次,又改变它的阶 。因此数学上的艰辛可想而知了。 有一个传说,量子力学家海森伯在临终前的病榻上向上帝提 有一个传说 了两个问题:上帝啊!你为何赐予我们相对论 相对论?为何赐予我 相对论 们湍流 湍流?海森伯说:“我相信上帝也只能回答第一个问题” 湍流 。

工程流体力学流体在圆管中的流动

工程流体力学流体在圆管中的流动

4.2 圆管中的层流流动
层流流动假设:
1)研究对象为不可压缩流体;
2)一般情况下,流体质点的运动惯性力和质量力
忽略不计;
3)流体的粘度不变。
颜色水
4.2.1 管中层流流速分布和流量
u
管中层流运动分析: 管中流动流线是平行的,流速以管轴为对称轴,在同一半
径上速度相等,流体做等速运动。
取筒状流体为分离体, 设壁厚为 dr,长度为 l, 半径为 r,则: 对于层流流动,该筒状 流体 做匀速运动,所有外力 在 管轴上投影为 0,即:
qV
udA
A
r0 0
u
2rdr
p 8l
R4
d 4g 128l
hf
d 4p 128l
此式称为哈根-伯肃叶定律。该定律说明:圆管中流体作层流流
动时,流量与单位长度的压强降和管半径的四次方成正比。
4.2.2 平均流速与最大流速
1.平均流速 V qV p R2 = p d 2;
A 8l 32l
流速增大时,颜色水看是动荡,但仍保持 完整形状,管内液体仍为层流状态,当到 达到某一值 v时k ,颜色线开始抖动、分散。 这是一种由层流到湍流的过渡状态。
当流速达到一定值时,质点运动曾现一种 紊乱状态,质点流动杂乱无章,说明管中 质点流动不仅仅在轴向,在径向也有不规 则的脉动现象,各质点大量交换混杂,这 种流动状态称为湍流或紊流。
4.1 雷诺实验
19世纪末,英国物理学家雷诺通过实验装置,发现流体在管 道中流动时,有两种完全不同的流动状态。
4.1.1层流和湍流
颜色水
颜色水 颜色水
流速很小时,管内液体沿轴向流动,层与 层之间、流束之间不互相混杂,流体质点 之间没有径向的运动交换,都保持各自的 流线运动,这种流动状态称为层流。

化工原理管内流体流动现象

化工原理管内流体流动现象

二、边界层的分离
B
A
S
A →C:流道截面积逐渐减小,流速逐渐增加,压 力逐渐减小(顺压梯度);
C → S:流道截面积逐渐增加,流速逐渐减小,压 力逐渐增加(逆压梯度);
S点:物体表面的流体质点在逆压梯度和粘性剪应 力的作用下,速度降为0。
SS’以下:边界层脱离固体壁面,而后倒流回来, 形成涡流,出现边界层分离。
f ( p,T )
液体 : f (T ) T ↑ → ↓ 气体 : 一般 f (T ) T ↑ → ↑
超高压 f ( p,T ) p ↑ → ↑
2. 粘度的单位 SI制:Pa·s 或 kg/(m·s) 物理制:cP(厘泊) 换算关系 1cP=10-3 Pa·s
3.运动粘度
管截面上的平均速度 :
R.
u VS A
0
u 2rdr R 2
1 2
umax
层流流动平均速度为管中心最大速度的1/2。
u ( p1 p2 ) R2
8l
u ( p1 p2 ) R2
8l
p1
p2
8lu
R2
32lu
d2
哈根-泊谡叶方程
(3)
二、湍流时的速度分布
.
剪应力 : ( e) d u
dy
e为湍流粘度,与流体的流动状况有关。
湍流速度分布 的经验式:
.
u
umax1
r R
n
1.3.4 流体流动边界层
一、边界层的形成与发展 流动边界层:存在着较大速度梯度的流体层区域,
即流速降为主体流速的99%以内的区域。
边界层厚度:边界层外缘与壁面间的垂直距离。
流体在平板上流动时的边界层:
界层区(边界层内):沿板面法向的速 度梯度很大,需考虑粘度的影响,剪应力不 可忽略。

管道流体原理

管道流体原理

管道流体原理管道是一种常见的输送流体的工程结构,广泛应用于石油、化工、水利、供热等领域。

了解管道流体原理对于设计和操作管道系统至关重要。

本文将介绍管道流体的基本原理以及与之相关的一些重要概念和公式。

一、流体基本概念流体是指在外力作用下可以流动的物质,包括液体和气体。

与固体相比,流体的分子间距较大,分子间相互作用力较小,因此具有流动性。

流体的性质可通过以下两个基本参数来描述:1. 密度(ρ):流体单位体积的质量,通常以千克/立方米(kg/m³)表示。

2. 粘度(μ):流体内部抵抗剪切力的能力,即流体的黏稠程度,通常以帕斯卡秒(Pa·s)表示。

二、流体力学中的基本定律1. 连续方程:根据质量守恒定律,流体在管道中的质量守恒可由连续方程描述。

连续方程的数学表达为:∂ρ/∂t + ∇·(ρv) = 0其中,∂ρ/∂t表示流体密度随时间的变化率,∇·(ρv)表示流体质量流入单位面积内的变化率。

2. 动量方程:根据动量守恒定律,流体在管道中的动量守恒可由动量方程描述。

动量方程的数学表达为:∂(ρv)/∂t + ∇·(ρv⃗v) = -∇P + ∇·τ + ρg⃗其中,∂(ρv)/∂t表示流体动量随时间的变化率,∇·(ρv⃗v)表示流体动量流入单位面积内的变化率,∇P表示压力梯度,∇·τ表示剪应力的散度,ρg⃗表示重力作用力。

三、流体在管道中的流动状态管道中的流体可分为层流和湍流两种流动状态。

1. 层流:当流体在管道中呈现出较为有序的分层流动状况时,称为层流。

层流时,流体的速度随距离变化较平缓,流线间相对稳定,分子间相互作用力起主导作用。

层流的特点是低速、流线整齐。

2. 湍流:当流体在管道中呈现出非线性、脉动和流线交错等现象时,称为湍流。

湍流时,流体的速度和压力有大幅度波动,分子间相互作用力起次要作用。

湍流的特点是高速、流线混乱。

刘体流动过程管内流体流动现象

刘体流动过程管内流体流动现象

刘体流动过程管内流体流动现象刘体流动过程是管道内流体流动的一种现象。

流体流动的基本原理是流体在管道内受力的作用下产生的运动。

在实际应用中,流体流动现象广泛存在于各个领域,如工业生产、交通运输、能源供应等。

本文将从流体运动的基本特征、数学描述、流动类型和流体运动的影响因素等方面进行论述,以便更好地理解刘体流动过程。

一、刘体流动的基本特征1.流体的连续性:刘体流动过程中,粒子之间的距离虽然会发生变化,但流体质点间距离的变化不大,整个流体质点仍然保持着连续的状态。

2.流体的非黏性:刘体流动过程中,流体质点之间的摩擦力相对较小,不会对流体的流动性质产生重要影响。

3.流体的不可压性:刘体流动过程中,流体质点相对变动量较小,流体密度基本不变。

4.流体的运动速度不同:刘体流动过程中,流体质点之间的运动速度不同,导致流速梯度的产生。

流体速度最大的地方为流体的中心轴线,流体速度逐渐减小,最靠近管道壁的地方速度最小。

二、刘体流动的数学描述刘体流动过程可以通过对连续介质流动的描述来进行数学建模。

在不同的情况下,刘体流动可以通过不同的数学模型来描述。

常用的数学模型有连续介质方程、动量方程、能量方程和物质守恒方程。

这些方程可以用来描述流体的流动特性,如速度分布、压力分布等。

在实际应用中,可以通过求解这些方程来预测流体流动的行为。

三、刘体流动的类型刘体流动可以分为层流和湍流两种类型。

1.层流:层流是指流体质点在流动过程中遵循谢姆的流体力学规律,流体质点的运动方式有序,并且流速的分布是有规律的。

层流一般发生在低速流或小管径情况下,流体的运动速度不超过一定的临界速度。

2.湍流:湍流是指流体质点在流动过程中运动不规则,流速分布无序的流动方式。

湍流一般发生在高速流或大管径情况下,流体的运动速度超过临界速度。

四、刘体流动的影响因素刘体流动的行为受到多种因素的影响,包括以下几个方面:1.管道形状:管道形状对刘体流动的行为有着重要的影响。

管道中的液体流动

管道中的液体流动

管道中的液体流动管道中的液体流动是液体在管道中运动和传输的过程。

液体流动在日常生活和工业生产中起着重要的作用,涉及到很多领域,如供水、石油输送、化学工程等。

了解液体在管道中的流动规律,对于管道设计、操作和维护都具有重要意义。

一、液体流动的原理液体流动的原理主要涉及两个重要的物理学定律,即贯穿流方程和伯努利定律。

1. 贯穿流方程贯穿流方程是描述液体流动的基本方程之一,可以表示为:Q = Av其中,Q是液体的流量,A是流体通过管道横截面的面积,v是液体的流速。

贯穿流方程表明,在单位时间内通过管道单位面积的液体流动的体积等于液体的流速乘以管道的横截面积。

2. 伯努利定律伯努利定律是描述液体在流动过程中能量转换的定律,可以表示为:P + 1/2ρv² + ρgh = 常数其中,P是液体的压力,ρ是液体的密度,v是液体的流速,g是重力加速度,h是液体的高度。

伯努利定律表明,在液体流动中,液体的压力、速度和重力势能之间存在着相互转换的关系。

二、管道中的液体流动类型在管道中,液体的流动可以分为层流和湍流两种类型。

1. 层流层流是指液体在管道中呈现出规则的、无交错的流动状态。

在层流中,液体的流速是均匀的,流体粒子的速度分布呈现顺序排列,层与层之间不存在明显的混合和对流的现象。

层流具有流速低、流动平稳和粘性损失小等特点。

2. 湍流湍流是指液体在管道中呈现出不规则的、随机的流动状态。

在湍流中,液体的流速不均匀,流体粒子的速度呈现混乱的分布,存在着涡流和涡旋的运动。

湍流具有流速高、流动不稳定和粘性损失大等特点。

三、影响管道液体流动的因素管道液体流动受到多种因素的影响,主要包括以下几个方面:1. 管道的几何形状管道的几何形状直接影响液体的流速和流量。

例如,管道的直径和长度会影响液体流动的阻力和压力损失,管道的弯曲和收缩等处会引起液体的湍流和涡流现象。

2. 液体的性质液体的粘度、密度和流变性质等都会对液体的流动特性产生影响。

化工原理课件 第一章第三节

化工原理课件   第一章第三节

如图所示,设有上、下两块面积很大且相距 很近的平行平板,板间充满某种静止液体。 若将下板固定,而对上板施加一个恒定的外 力,上板就以恒定速度u沿x方向运动。 若u较小,则两板间的液体就会分成无数平行 的薄层而运动,粘附在上板底面下的一薄层流体 以速度u随上板运动, 其下各层液体的速度 依次降低,紧贴在下 板表面的一层液体, 因粘附在静止的下板 上, 其速度为零,两平 板间流速呈线性变化。
随着流体的向前流动,流速受影响的区域逐 渐扩大,即在垂直于流体流动方向上产生了速度 梯度。 流动边界层:存在着较大速度梯度的流体层区 域,即流速降为主体流速的99% 以内的区域。
边界层厚度:边界层外缘与壁面间的垂直距离。
流体在平板上流动时的边界层: 如图1-26所示, 由于边界层的形成,把沿壁面 的流动分为两个区域:边界层区和主流区。
二、流体的粘度 (动力粘度)
1.粘度的物理意义
流体流动时在与流动方向垂直的方向上产 生单位速度梯度所需的剪应力。 粘度总是与速度梯度相联系,流体只有在运 动时才显现出来。分析静止流体的规律时就不用 考虑粘度这个因素。 粘度的物理本质:分子间的引力和分子的运动与 碰撞。
讨论 :
μ=f(p,T) T位时间通过单位截面积流体的质量;
μu/d 与流体内的黏滞力成正比。
u /( u / d )
2
du

Re
Re 数实际上反映了流体流动中惯性力与
黏滞力的比。标志着流体流动的湍动程度。 当惯性力较大时, Re 数较大;
当黏滞力较大时, Re 数较小;
一、层流时的速度分布 实验和理论分析都已证明,层流时的速度分 布为抛物线形状,如图1- 23所示。以下进行理论 推导。

物理单位制:

化工原理-流体在管内的流动.

化工原理-流体在管内的流动.
此外,在图中的管路上还安装有换热器和泵,则进,出该系统的能量还有:
(1)热 设换热器向1kg流体供应的或从1kg流体取出的热量为Qe,其单位为J/kg. 若换热器对所衡算的流体加热,则Qe为正。冷却为负。
(2)外功1kg流体通过泵(或其他输送设备)所获得的能量,称为外功或净功,有 时还称为有效功,以We表示,其单位为J/kg。
对不可压缩流体: u1A1= u2A2=······= uA=常数 圆管内不可压缩流体:u1d12= u2d22=······= ud2=常数
5
2.4 柏努利(Bernoulli)方程
柏努利导出原理:能量衡算(主要是机械能)。 图示 衡算范围:内壁面、1-1′、2-2′ 间所围成的体系。 衡算基准:1kg流体。 基准水平面:0-0平面。
第二节 流体在管内的流动 Flow of Fluids in Pipes
流动着的流体内部压强变化的规律,主要遵循连续性方程式与柏努 利方程式。 2.1 流量与流速 1)定义、符号、单位:
单位时间内流过管道任一截面的流体量,称为流量。若流量用体 积来计量,则称为体积流量,以VS表示,其单位为m3/s。若流量用质量 来计量,别称为质量流量,以wS表示,其单位为kg/s。 单位时间内流体在流动方向上所流过的距离,称为流速,以u表示,其 单位为m/s。 由于气体的体积流量随温度和压强而变化,显然气体的流速亦随之而 变。因此,采用质量流速就较为方便。质量流速的定义是单位时间内 流体流过管道单位截面积的质量,亦称为质量通量,以G表示,单位 为kg/(m2·s)。
提示:为计算管内各截面的压强,应首先计算管内水的流速。
先在贮槽水面1-1及管子出口内侧截面6-6间列柏努利方程式。
并以截面6-6为基准水平面。由于管路的能量损失不计,可应用

管内流体流动现象

管内流体流动现象

剪应力可写为以下形式
F ma m du d (mu ) τ= = = = A A A dθ Adθ
式中: 式中: 为时间; (mu)为动量,θ为时间; )为动量, 为时间
所以剪应力表示了单位时间、 所以剪应力表示了单位时间 、 通过单位 面积的动量, 即动量通量, 面积的动量 , 即动量通量 , 牛顿粘性定律也 反映了动量通量的大小。 反映了动量通量的大小。
d u µ d ( ρu ) d ( ρu ) = =ν τ =µ dy ρ dy dy
式中: 式中:
.
.
.
.
(1-31b) )
ρu =
.
mu V
.
——为单位体积流体的动量,称 为单位体积流体的动量, 为单位体积流体的动量 为动量浓度; 为动量浓度; ——为动量浓度梯度。 为动量浓度梯度。 为动量浓度梯度
二、流型判据——雷诺准数 流型判据 雷诺准数
1.流体的流动类型可用雷诺数 判断 流体的流动类型可用雷诺数Re判断 流体的流动类型可用雷诺数
Re =
dρu
µ
(1-33) )
Re准数是一个无因次的数群。 准数是一个无因次的数群。 准数是一个无因次的数群
2.判断流型: 判断流型: 判断流型 大量的实验结果表明,流体在直管内流动时: 大量的实验结果表明,流体在直管内流动时: Re≤2000时,流动为层流,此区称为层流区; 时 流动为层流,此区称为层流区; Re≥4000时,一般出现湍流,此区称为湍流区; 时 一般出现湍流,此区称为湍流区; 2000< Re <4000 时,流动可能是层流,也可能 流动可能是层流, 是湍流,该区称为不稳定的过渡区。 是湍流,该区称为不稳定的过渡区。
如图所示,设有上、下两块面积很大且相距 如图所示,设有上、 很近的平行平板,板间充满某种静止液体。 很近的平行平板,板间充满某种静止液体。 若将下板固定, 若将下板固定 , 而对上板施加一个恒定的外 上板就以恒定速度u沿 方向运动 方向运动。 力,上板就以恒定速度 沿x方向运动。 较小, 若u较小,则两板间的液体就会分成无数平行 较小 的薄层而运动, 的薄层而运动 , 粘附在上板底面下的一薄层流体 以速度u随上板运动 随上板运动, 以速度 随上板运动, 其下各层液体的速度 依次降低, 依次降低 , 紧贴在下 板表面的一层液体, 板表面的一层液体 , 因粘附在静止的下板 其速度为零, 上, 其速度为零,两平 板间流速呈线性变化。 板间流速呈线性变化 。

管中流体流动状态和管状态的关系

管中流体流动状态和管状态的关系

管中流动状态与管状态的关系摘要本文通过雷诺实验介绍了流体流动的两种状态,即层流和湍流,并且介绍了圆管和其他异性管的临界雷诺数。

随后用纳维-斯托克斯公式分析层流圆管和缝隙中的流动状态,简单介绍了一种用于分析湍流关键词雷诺实验层流湍流圆管流动缝隙流动众所周知,流体的流动阻力及速度分布均与流体的流动状态紧密相关。

因此,流体的流动状态的研究无疑具有非常重要的理论价值与实际意义。

1883年英国物理学家雷诺通过大量实验,发现了流体在管道中流动是存在两种内部结构完全不同的流动状态,即层流和湍流。

两种流动状态可通过实验来观察,即雷诺实验。

一、流体状态的分类与界定1、雷诺实验雷诺数代表惯性力和粘性力之比,雷诺数不同,这两种力的比值也不同,由此产生内部结构和运动性质完全不同的两种流动状态。

这种现象用图1-a所示的雷诺实验装置可以清楚地观测出来。

图表 1 雷诺实验装置容器6和3中分别装满了水和密度与水相同的红色液体,容器6由水管2供水,并由溢流管1保持液面高度不变。

打开阀8让水从玻璃管7中流出,这时打开阀4,红色液体也经细导管5流入水平玻璃管7中。

调节阀8使管7中的流速较小时,红色液体在管7中呈一条明显的直线,将小管5的出口上下移动,则红色直线也上下移动,红色水的直线形状都很稳定,这说明此时整个管中的水都是沿轴向流动,流体质点没有横向运动,不相互混杂,如图1-b所示。

液体的这种流动状态称为层流。

当调整阀门8使玻璃管中的流速逐渐增大至某一值时,可以看到红线开始出现抖动而呈波纹状,如图1-c所示,这表明层流状态被破坏,液流开始出现紊乱。

若管7中流速继续增大,红线消失,红色液体便和清水完全混杂在一起,如图1-d所示,表明此时管中流体质点有剧烈的互相混杂,质点运动速度不仅在轴向而且在纵向均有不规则的脉动现象,这是的流动状态称为湍流。

如果将阀门8逐渐关小,湍乱现象逐渐减轻,当流速减小至一定值时,红色水又重新恢复直线形状出现层流。

§3管内流体流动现象

§3管内流体流动现象

第一章 流体流动§4 流体在管内流动时的摩擦阻力损失本节重点:直管阻力与局部阻力的计算,摩擦系数的影响因素。

难点:用量纲分析法解决工程实际问题。

流动阻力的大小与流体本身的物理性质、流动状况及壁面的形状等因素有关。

化工管路系统主要由两部分组成,一部分是直管,另一部分是管件、阀门等。

相应流体流动阻力也分为两种:直管阻力:流体流经一定直径的直管时由于内摩擦而产生的阻力; 局部阻力:流体流经管件、阀门等局部地方由于流速大小及方向的改变而引起的阻力。

一 范宁公式(Fanning )1、范宁公式 :范宁经过理论推导,得到了以下公式: 22l u h f d λ= (1-53) 式(1-53)为计算流体在直管内流动阻力的通式,称为范宁(Fanning )公式。

式中λ为无量纲系数,称为摩擦系数或摩擦因数,与流体流动的Re 及管壁状况有关。

式(1-53)也可以写成:22u d l h p f f ρλρ==∆ (1-54) 应当指出,范宁公式对层流与湍流均适用,只是两种情况下摩擦系数λ不同。

2、管壁粗糙度对摩擦系数λ的影响光滑管:玻璃管、铜管、铅管及塑料管等称为光滑管;粗糙管:钢管、铸铁管等。

管道壁面凸出部分的平均高度,称为绝对粗糙度,以ε表示。

绝对粗糙度与管径的比值即dε,称为相对粗糙度。

工业管道的绝对粗糙度数值见教材(P27表1-1)。

管壁粗糙度对流动阻力或摩擦系数的影响,主要是由于流体在管道中流动时,流体质点与管壁凸出部分相碰撞而增加了流体的能量损失,其影响程度与管径的大小有关,因此在摩擦系数图中用相对粗糙度dε,而不是绝对粗糙度ε。

流体作层流流动时,流体层平行于管轴流动,层流层掩盖了管壁的粗糙面,同时流体的流动速度也比较缓慢,对管壁凸出部分没有什么碰撞作用,所以层流时的流动阻力或摩擦系数与管壁粗糙度无关,只与Re有关。

流体作湍流流动时,靠近壁面处总是存在着层流内层。

如果层流内层的厚度δL大于管壁的绝对粗糙度ε,即δL>ε时,如图1-28(a)所示,此时管壁粗糙度对流动阻力的影响与层流时相近,此为水力光滑管。

第三节流体流动的基本方程

第三节流体流动的基本方程

gZ1
u12 2
P1
We
gZ 2 u22 P2
2
hf
1) 柏努利方程的物理意义:在任一垂直流动方向的截面上,单位质 量流体的总机械能守恒,而每一种形式的机械能不一定相等,可以 相互转换;
2) 当流体静止时,u=0,Σhf=0,We=0,则柏努利方程变为静力学 方程,可见静力学方程式是柏努利方程的特例;
H gZ u2 2
及 H We
则:上式右简化为 △H = qe 或 H2 = H1 + qe
对于方程
U
P
u2 2
gZ
qe
We
设:① 流体不可压缩 ρ1 = ρ2 ② 流动过程流体温度不变(等温流动),△U = 0
③ 流动过程中因流体粘性而产生的机械能损失为hf,并以热的 形式向外散失。(放热为负)
u12 3335 u22 4905 2 1.20 2 1.2
化简得:
u22 u12 13733
(a)
由连续性方程有: u1 A1 u2 A2
u2
u1
d1 d2
2
u2 16u1
(b)
联立(a)、(b)两式
16u1 2 u1 2 13733
u1 7.34m / s
Vh
3600
第三节 流体流动的基本方程
管路计算
流体动力学
流体流动
管内流体 流动现象
流体流动 阻力
流速与流量
流体动力学主要研究流体流动过程中,流速、压强等参数的 变化规律,研究流体流动过程中的能量损失以及为输送流体需对 流体提供的能量,进而总结出流体在管内流动的规律。
1.3.1 流体的流量与流速 一、流量 1. 体积流量

新乡学院化工原理1管内流体流动现象

新乡学院化工原理1管内流体流动现象

新乡学院化工原理精品课程
三、层流时的摩擦系数
速度分布方程
umax

( p1 p2 )
4l
R2

u

1 2
umax
Rd 2
(
p1

p2
)

32lu
d2
p f

(Hagen-Poiseuille)方程
新乡学院化工原理精品课程
能量损失
h f

32lu d2
4l d

8 u2
l d
u2 2
令 8 ,则
u2
hf
l
d
u2 2
计算流体流动阻力的一般公式
范宁公式:
hf
l
d
u2 2
J/kg
Hf


l d
u2 2g
m
p f

l d
u 2
2
Pa
新乡学院化工原理精品课程
该公式层流与湍流均适用; 注意 p与 p f的区别。
新乡学院化工原理精品课程
二者之间的关系:
p

We

gz


u2 2

p f
当 We 0 z 0 u 0 时:
p p f
即:水平、等径直管,无外功加入时,两截面间的阻力损失 与两截面间的压力差在数值上相等。
管路中的流动阻力=直管阻力+局部阻力 直管阻力:由于流体和管壁之间的摩擦而产生; 局部阻力:由于速度的大小或方向的改变而引起。
新乡学院化工原理精品课程 流体柱受到的与流动方向一致的推动力:
(
p1
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章流体流动
§3 管内流体流动现象
本节重点:牛顿粘性定律、层流与湍流的比较。

一、流体的粘度
(一)、牛顿粘性定律
流体的典型特征是具有流动性,但不同流体的流动性能不同,这主要是因为流体内部质点间作相对运动时存在不同的内摩擦力。

这种表明流体流动时产生内摩擦力的特性称为粘性。

流体的粘性越大,其流动性越小。

流体的粘性是流体产生流动阻力的根源。

如图1-23 所示,设有上、下两
块面积很大且相距很近的平行平
板,板间充满某种静止液体。

若将
下板固定,而对上板施加一个恒定
的外力,上板就以恒定速度u沿x方向运动。

若u较小,则两板间的液体就会分成无数平行的薄层而向右运动,粘附在上板底面下的一薄层流体以速度u随上板运动,其以下各层液体的速度依次降低,紧贴在下板表面的一层液体,因粘附在静止的下板上, 其速度为零,两平板间流速呈线性变化。

对任意相邻两层流体来说,上层速度较大,下层速度较小,前者对后者起带动作用,而后者对前者起拖曳作用,流
体层之间的这种相互作用,是
由内摩擦力引起的,而流体的
粘性正是这种内摩擦的表现。

平行平板间的流体,流速分布为直线,而流体在圆管内流动时,速度分布呈抛物线形,如右图所示。

实验证明,对于一定的流体,内摩擦力F 与两流体层的速度差.
u d 和两层间的接触面积S 成正比,与两层之间的垂直距离dy 成反比,即
dy
du S F μ= 式中:F ——内摩擦力,N ;
dy u
d .——法向速度梯度,即在与流体流动方向相垂直的y 方向上流体速度的变化率,1/s ;
μ(英文读音:mju:)——比例系数,称为流体的粘度或动力粘度,Pa·s 。

一般,单位面积上的内摩擦力称为剪应力,以τ表示,单位为Pa ,则式(1-26)变为
dy u
d .μτ= (1-49) 式(1-49)称为牛顿粘性定律,表明流体层间的内摩擦力或剪应力与法向速度梯度成正比。

剪应力与速度梯度的关系符合牛顿粘性定律的流体,称为牛顿型流体,包括所有气体和大多数液体;不符合牛顿粘性定律的流体称为非牛顿型流体,如高分子溶液、胶体溶液及悬浮液等。

本章讨论的均为牛顿型流体。

(二) 粘度的物理意义和单位
1、粘度的物理意义 流体流动时在与流动垂直的方向上产生单位速
度梯度所需的剪应力。

粘度是反映流体粘性大小的物理量。

粘度也是流体的物性之一,其值由实验测定。

液体的粘度,随温度的升高而降低,压力对其影响可忽略不计。

气体的粘度,随温度的升高而增大,一般情况下也可忽略压力的影响,但在极高或极低的压力条件下需考虑其影响。

2、粘度的单位
1)SI 单位:
[][]s Pa m s m Pa .⋅==⎥⎦⎤⎢⎣⎡=
dy u d τμ s m kg m
1s m m s m kg dy du
22∙==τ=μ 2)物理单位制
在一些工程手册中,粘度的单位常常用物理单位制下的cP (厘泊)表示,它们的换算关系为
[][]s cm g cm s )s cm g (
dy u d 22.∙==⎥⎦⎤⎢⎣⎡τ=μ=泊 泊的单位太大,常用厘泊表示,1泊=100厘泊,水在室温下的粘度为1厘泊。

1cP =10-3 Pa·s
3、运动粘度 流体的粘性还可用粘度μ与密度ρ的比值表示,称为运动粘度,以符号ν(英文读音:nju:)表示,即
ρμ
ν= (1-27)
其单位为m 2/s 。

显然运动粘度也是流体的物理性质。

二、流动型态与雷诺数
(一)层流和湍流
图1-24雷诺实验装置 图1-24为雷诺实验装置示意图。

水箱装有溢流装置,以维持水位恒定,箱中有一水平玻璃直管,其出口处有一阀门用以调节流量。

水箱上方装有带颜色的小瓶,有色液体经细管注入玻璃管内。

从实验中观察到,当水的流速从小到大时,有色液体变化如图1-25所示。

实验表明,流体在管道中流动时存在两种截然不同的流型。

层流(或滞流) 如图1-25(a )所示,流体质点仅沿着与管轴平行的方向作直线运动,质点无径向脉动,质点之间互不混合;
湍流(或紊流) 如图1-25(c )所示,流体质点除了沿管轴方向向前流动外,还有径向脉动,各质点的速度在大小和方向上都随时变化,质点互相碰撞和混合。

(二)、流型判据——雷诺数
图1-25 流体流动型态示意图

1-26 层流时的速度分布 图
1-22 湍流时的速度分布
流体的流动类型可以用雷诺数Re 判断。

μρu
d =R
e (1-51)
Re 准数是一个无量纲的数群。

大量的实验结果表明,流体在直管内流动时,
当Re≤2000时,流动为层流,此区称为层流区;
(2)当Re≥4000时,一般出现湍流,此区称为湍流区;其值愈大,流体的湍动愈剧烈,内摩擦力也愈大。

(3) 当2000< Re <4000 时,流动可能是层流,也可能是湍流,与外界干扰有关,该区称为不稳定的过渡区。

不是一种流型。

三、流体在圆管内的速度分布
流体在圆管内的速度分布是指流体流动时管截面上质点的速度随半径的变化关系。

无论是层流或是湍流,管壁处质点速度均为零,越靠近管中心流速越大,到管中心处速度为最大。

但两种流型的速度分布却不相同。

实验和理论分析都已证明,层流时的速度分布为抛物线形状,如图1- 26所示。

湍流时流体质点的运动状况较层流要复杂得多,截面上某一固定
点的流体质点在沿管轴向前运动的同时,还有径向上的运动,使速度的大小与方向都随时变化。

湍流的基本特征是出现了径向脉动速度,使得动量传递较之层流大得多。

湍流时的速度分布目前尚不能利用理论推导获得,而是通过实验测定,结果如图1-22所示。

四、层流内层。

相关文档
最新文档