干燥实验报告

合集下载

药物的干燥实验报告

药物的干燥实验报告

一、实验名称:药物的干燥实验二、实验目的:1. 了解药物干燥的基本原理和方法;2. 掌握干燥设备的使用及操作技巧;3. 通过实验,测定药物干燥过程中的干燥曲线和干燥速率曲线;4. 分析影响药物干燥效果的因素。

三、实验原理:药物干燥是将药物中的水分去除,以防止药物变质、失效,提高药物稳定性。

干燥方法有常压干燥、减压干燥、微波干燥等。

本实验采用常压干燥方法,通过控制干燥条件,使药物中的水分逐渐蒸发,直至干燥。

四、实验材料:1. 药物:某中药提取物(如:金银花提取物);2. 仪器:干燥箱、干燥器、电子天平、温度计、湿度计、干燥速率曲线测定仪等;3. 药品:无水乙醇、无水硫酸钠等。

五、实验步骤:1. 将药物样品置于干燥箱中,设定干燥温度为50℃,预干燥30分钟;2. 在干燥箱中放入干燥器,将药物样品放入干燥器中,关闭干燥器门;3. 设置干燥速率曲线测定仪,记录干燥过程中的温度、湿度、干燥速率等数据;4. 每隔一定时间(如:10分钟、20分钟、30分钟等)取出干燥器,称量药物样品,计算干燥速率;5. 绘制干燥曲线和干燥速率曲线;6. 分析影响药物干燥效果的因素。

六、实验结果与分析:1. 干燥曲线:如图1所示,药物样品在干燥过程中,干燥时间与干燥率呈正相关关系。

在干燥初期,干燥速率较快,干燥率增加明显;随着干燥时间的延长,干燥速率逐渐减小,干燥率增加趋于平稳。

图1 药物干燥曲线2. 干燥速率曲线:如图2所示,干燥速率曲线呈“S”型,分为三个阶段:预热阶段、恒速阶段和降速阶段。

在预热阶段,药物样品表面水分迅速蒸发,干燥速率较大;在恒速阶段,干燥速率基本保持恒定;在降速阶段,干燥速率逐渐减小,直至干燥完成。

图2 药物干燥速率曲线3. 影响药物干燥效果的因素:(1)干燥温度:干燥温度越高,干燥速率越快,但过高的温度可能导致药物成分分解,影响药物质量;(2)干燥时间:干燥时间越长,干燥率越高,但过长的干燥时间可能导致药物成分损失;(3)干燥器类型:干燥器类型不同,干燥效果存在差异。

干燥实验实验报告数据处理

干燥实验实验报告数据处理

引言概述:本文旨在对干燥实验所得数据进行处理并分析,以获取实验数据中的有用信息和结论。

本实验旨在探究不同材料在不同干燥条件下的干燥曲线,并对其进行数据处理,从而得出相关的研究成果。

正文内容:一、实验数据处理方法1.1数据采集对于干燥实验中获得的原始数据,首先需要进行数据的采集。

通过在实验过程中使用合适的仪器和设备,可以获得关于材料的质量、时间等相关数据。

1.2数据整理在数据采集完成后,需要对原始数据进行整理。

这包括对数据的分类、去除异常值和错误数据等工作。

通过整理后的数据可以更好地进行后续的分析和处理。

1.3数据预处理在进行实验数据分析之前,需要对数据进行预处理。

这包括数据的归一化、平滑等操作,以保证数据的有效性和准确性。

1.4数据分析方法对于干燥实验数据的分析,可以采用统计学方法、回归分析等多种方法。

通过这些方法,可以从不同的角度来分析实验数据,进而得出相关结论。

1.5数据可视化为了更好地展示实验数据与分析结果,可以使用图表等形式对数据进行可视化。

通过可视化可以更直观地了解数据的特点和趋势。

二、实验数据处理结果分析2.1干燥速率分析通过对干燥实验数据的处理和分析,可以得到不同材料在不同干燥条件下的干燥速率。

对于每个材料,可以绘制干燥速率与时间的关系曲线,进一步分析材料的干燥特性。

2.2干燥时间分析通过对实验数据的处理,可以得到材料在不同干燥条件下的干燥时间。

通过比较不同材料的干燥时间,可以探究不同材料的干燥特性和影响因素。

2.3干燥升温率分析通过对实验数据的处理和分析,可以得到材料在干燥过程中的升温率。

通过对不同材料的升温率进行分析,可以了解材料的干燥速度和热传导性能。

2.4干燥湿度分析通过对实验数据的处理和分析,可以得到材料在不同干燥条件下的湿度变化情况。

通过分析湿度的变化,可以研究材料在干燥过程中的水分迁移和蒸发特性。

2.5干燥效果评估通过对实验数据的处理和分析,可以对不同干燥条件下的干燥效果进行评估。

干燥实验实验报告思考题(3篇)

干燥实验实验报告思考题(3篇)

第1篇一、实验目的1. 了解干燥实验的基本原理和操作方法。

2. 掌握干燥设备的使用技巧。

3. 分析干燥过程中物料的性质变化。

4. 评估干燥效果,为实际生产提供参考。

二、实验内容1. 干燥实验的基本原理2. 干燥设备的选用与操作3. 干燥过程中物料性质的变化4. 干燥效果的评价三、思考题1. 请简述干燥实验的基本原理,并说明干燥过程分为哪几个阶段。

2. 在干燥实验中,如何选用合适的干燥设备?请列举几种常见的干燥设备及其适用范围。

3. 在干燥过程中,如何控制干燥温度和干燥时间?这对干燥效果有何影响?4. 请分析干燥过程中物料性质的变化,如水分、温度、粒度等,并说明这些变化对干燥效果的影响。

5. 在干燥实验中,如何评价干燥效果?请列举几种评价方法。

6. 在干燥过程中,如何防止物料发生结块、焦化等现象?请提出相应的解决措施。

7. 请分析干燥过程中能耗的影响因素,并提出降低能耗的方法。

8. 在干燥实验中,如何提高干燥效率?请从物料、设备、工艺等方面进行分析。

9. 请举例说明干燥实验在实际生产中的应用,如化工、食品、医药等行业。

10. 在干燥实验中,如何保证实验数据的准确性和可靠性?请提出相应的措施。

11. 请分析干燥实验过程中可能出现的故障及解决方法。

12. 在干燥实验中,如何保证实验操作的安全性?请提出相应的措施。

13. 请简述干燥实验在环境保护方面的作用。

14. 在干燥实验中,如何提高干燥设备的利用率?请提出相应的措施。

15. 请分析干燥实验在节能减排方面的意义。

16. 在干燥实验中,如何提高干燥设备的自动化程度?请提出相应的措施。

17. 请探讨干燥实验在提高产品质量方面的作用。

18. 在干燥实验中,如何根据物料特性选择合适的干燥工艺?19. 请分析干燥实验在提高生产效率方面的作用。

20. 在干燥实验中,如何降低干燥过程中的能耗?四、实验报告撰写要求1. 实验报告应包括实验目的、实验内容、实验过程、实验结果、分析与讨论、结论等部分。

化工原理实验报告干燥

化工原理实验报告干燥

化工原理实验报告干燥化工原理实验报告:干燥概述:干燥是化工过程中常见的一种操作,用于除去物料中的水分或其他溶剂,以提高产品质量或满足后续工艺的需要。

本实验旨在探究干燥的原理及其在化工工艺中的应用。

一、干燥的原理干燥是通过将物料暴露在适当的条件下,使水分或其他溶剂从物料中蒸发出来,达到去除水分的目的。

常见的干燥方法包括自然干燥、加热干燥、真空干燥等。

1. 自然干燥自然干燥是将物料暴露在自然环境下,利用自然界的温度、湿度和风力等因素,使水分逐渐蒸发。

这种方法操作简单,但速度较慢,且受环境因素的影响较大。

2. 加热干燥加热干燥是通过加热物料,提高其表面温度,使水分蒸发。

常见的加热干燥方法包括烘箱干燥、喷雾干燥等。

烘箱干燥是将物料放入烘箱中,利用热空气对物料进行加热,使水分蒸发。

喷雾干燥是将物料以液滴形式喷入热空气中,通过瞬间蒸发的方式进行干燥。

3. 真空干燥真空干燥是在低压条件下进行干燥,通过降低环境压力,使水分在较低温度下蒸发。

真空干燥适用于对热敏性物料的干燥,能够避免物料的热分解或变质。

二、干燥在化工工艺中的应用干燥在化工工艺中具有广泛的应用,以下是几个常见的例子:1. 化工产品的干燥在化工生产中,很多产品需要经过干燥操作,以去除其中的水分或其他溶剂。

例如,某些化工产品在含水状态下容易发生反应或降解,因此需要进行干燥以提高稳定性和保存性。

2. 溶剂的回收在溶剂回收过程中,通常需要对溶剂进行干燥,以去除其中的水分或其他杂质。

通过干燥,可以提高溶剂的纯度和再利用率,减少资源的浪费。

3. 催化剂的干燥在催化反应中,催化剂的活性往往与其表面的水分有关。

因此,在使用催化剂之前,通常需要对其进行干燥,以提高催化剂的活性和稳定性。

4. 原料的干燥在某些化工工艺中,原料的水分含量会影响反应的速率和产物的质量。

因此,在反应之前,需要对原料进行干燥,以确保反应的顺利进行和产物的质量。

结论:干燥是化工过程中常见的一种操作,通过去除物料中的水分或其他溶剂,提高产品质量或满足后续工艺的需要。

化工原理实验报告干燥

化工原理实验报告干燥

化工原理实验报告干燥化工原理实验报告:干燥实验目的:本实验旨在探究干燥过程中的原理和影响因素,通过实验数据分析和结果总结,加深对干燥过程的理解。

实验原理:干燥是化工生产中常见的一种工艺操作,其目的是将物料中的水分蒸发或者挥发,使物料达到一定的干燥程度。

在干燥过程中,热量的传递和水分的蒸发是两个关键的环节。

热传递可以通过对流、传导和辐射等方式进行,而水分的蒸发则受到温度、湿度、风速等因素的影响。

实验步骤:1. 准备实验所需的样品和干燥设备。

2. 将样品放入干燥设备中,并记录下初始重量和湿度。

3. 启动干燥设备,设置相应的温度和风速。

4. 定期取出样品,记录下其重量和湿度。

5. 根据实验数据进行分析和计算,得出干燥速率、热传递效率等参数。

实验结果:通过实验数据的统计和分析,我们得出了不同条件下的干燥速率和热传递效率。

在不同的温度、湿度和风速条件下,干燥速率和热传递效率均有所不同。

同时,我们也发现了一些影响干燥效果的因素,如样品的初始湿度、表面积等。

结论:通过本次实验,我们深入了解了干燥过程中的原理和影响因素,对干燥工艺有了更深入的理解。

同时,我们也发现了一些可以优化的地方,如调整干燥设备的工艺参数,选择合适的干燥方法等,以提高干燥效率和降低能耗。

总结:干燥是化工生产中不可或缺的一环,其效率和质量直接影响着产品的成品率和品质。

通过本次实验,我们对干燥过程有了更深入的了解,为今后的工艺优化和改进提供了一定的参考依据。

同时,也为我们的理论知识和实践技能提供了锻炼和提升的机会。

希望通过不断地实验和学习,我们能够更好地掌握化工原理,为工程实践提供更精准的指导。

干燥实验报告

干燥实验报告

一、摘要本实验旨在通过实验室模拟干燥过程,探究干燥原理和干燥速率,掌握干燥设备的基本操作方法,并分析影响干燥效果的因素。

实验采用流化床干燥器作为干燥设备,对某物料进行干燥实验,并绘制干燥速率曲线、物料含水量与时间的关系曲线以及流化床压降与气速的关系曲线。

二、实验目的1. 了解流化床干燥器的基本流程及操作方法。

2. 掌握干燥速率曲线的测定方法,绘制干燥速率曲线。

3. 分析物料含水量与时间的关系,确定干燥过程的不同阶段。

4. 测定流化床压降与气速的关系,为干燥设备的设计提供理论依据。

三、实验原理1. 干燥原理干燥是利用热能将物料中的水分蒸发的过程。

在干燥过程中,物料表面水分蒸发形成水蒸气,水蒸气在干燥介质(如空气)中扩散,直至物料内部水分达到平衡。

干燥速率与物料表面水分蒸发速率和内部水分扩散速率有关。

2. 流化床干燥原理流化床干燥器是一种利用流化床技术进行干燥的设备。

物料在干燥器内受到热风的作用,床层产生流动,形成流化床。

物料在流化床中受到热风和物料颗粒间的碰撞,水分不断蒸发,从而实现干燥。

四、实验装置与仪器1. 实验装置:流化床干燥器、温度计、湿度计、流量计、电子秤、计时器等。

2. 实验仪器:干燥器、空气加热器、电热恒温干燥箱、恒温水浴锅、数据采集系统等。

五、实验步骤1. 准备实验材料:将物料分成若干份,每份质量相同,并记录初始含水量。

2. 调节干燥器:开启干燥器,调节热风温度和流量,使物料处于流化状态。

3. 干燥实验:将物料放入干燥器,记录干燥时间、物料温度、物料含水量等数据。

4. 数据处理:将实验数据输入计算机,绘制干燥速率曲线、物料含水量与时间的关系曲线以及流化床压降与气速的关系曲线。

六、实验结果与分析1. 干燥速率曲线根据实验数据,绘制干燥速率曲线。

干燥速率曲线呈抛物线形状,可分为三个阶段:恒速干燥阶段、降速干燥阶段和平衡干燥阶段。

在恒速干燥阶段,干燥速率基本保持不变;在降速干燥阶段,干燥速率逐渐降低;在平衡干燥阶段,干燥速率趋于零。

干燥仿真实验报告(3篇)

干燥仿真实验报告(3篇)

第1篇一、实验目的1. 了解干燥过程的基本原理和影响因素。

2. 掌握干燥仿真实验的操作方法。

3. 通过仿真实验,分析干燥过程中物料水分的变化规律,优化干燥工艺。

二、实验原理干燥过程是指将物料中的水分蒸发,使物料达到所需干燥程度的过程。

干燥过程中,物料水分的变化受多种因素影响,如干燥介质、干燥温度、干燥时间等。

本实验采用干燥仿真软件,模拟干燥过程,分析物料水分的变化规律。

三、实验仪器与材料1. 电脑一台;2. 干燥仿真软件一套;3. 物料样品;4. 温度计;5. 时间记录器。

四、实验步骤1. 打开干燥仿真软件,选择合适的干燥介质、干燥温度和干燥时间;2. 将物料样品放入干燥器,设定干燥器的初始状态;3. 启动仿真实验,观察物料水分的变化过程;4. 记录实验数据,包括干燥时间、物料水分、干燥温度等;5. 分析实验数据,优化干燥工艺。

五、实验结果与分析1. 干燥过程中,物料水分随干燥时间的延长而逐渐降低,符合干燥过程的基本规律;2. 在相同干燥条件下,物料水分的降低速度与干燥温度、干燥介质等因素有关;3. 仿真实验结果表明,提高干燥温度和增加干燥介质流量,可以加快物料水分的降低速度;4. 通过优化干燥工艺,可以实现物料水分的快速降低,提高干燥效率。

六、实验结论1. 干燥过程中,物料水分的变化受多种因素影响,如干燥介质、干燥温度、干燥时间等;2. 通过干燥仿真实验,可以分析物料水分的变化规律,优化干燥工艺;3. 提高干燥温度和增加干燥介质流量,可以加快物料水分的降低速度,提高干燥效率。

七、实验注意事项1. 在进行干燥仿真实验时,应选择合适的干燥介质、干燥温度和干燥时间;2. 实验过程中,应注意观察物料水分的变化,及时调整干燥参数;3. 实验数据应准确记录,为优化干燥工艺提供依据。

八、实验总结本实验通过干燥仿真软件,模拟干燥过程,分析了物料水分的变化规律。

实验结果表明,干燥过程中,物料水分的变化受多种因素影响,通过优化干燥工艺,可以实现物料水分的快速降低,提高干燥效率。

干燥实验的实验报告

干燥实验的实验报告

干燥实验的实验报告干燥实验的实验报告一、引言干燥是指将物体中的水分去除的过程,广泛应用于工业生产和实验室研究中。

干燥实验旨在探究不同物质在不同条件下的干燥速度和效果,为实际应用提供参考依据。

本实验选取了几种常见的物质进行干燥实验,并对实验结果进行分析和总结。

二、实验材料和方法1. 实验材料:- 湿度计:用于测量环境湿度;- 水分含量测试仪:用于测量物质的水分含量;- 不同物质样品:如食盐、洗发水、纸张等。

2. 实验方法:1) 设定实验环境:将实验室温度控制在25℃,湿度控制在50%;2) 选取不同物质样品,记录其初始重量和水分含量;3) 将样品放置在干燥箱中,设定不同的温度和时间;4) 定期取出样品,使用水分含量测试仪测量其水分含量;5) 记录实验数据,分析干燥速度和效果。

三、实验结果与分析1. 食盐干燥实验:食盐是一种易溶于水的物质,我们将其放置在干燥箱中,设定温度为60℃,时间为2小时。

实验结果显示,食盐的水分含量从初始的10%降低到了2%。

说明在较高温度下,食盐的干燥速度较快,且效果较好。

2. 洗发水干燥实验:洗发水是一种含有大量水分的液体,我们将其放置在干燥箱中,设定温度为40℃,时间为4小时。

实验结果显示,洗发水的水分含量从初始的80%降低到了20%。

说明在较低温度下,洗发水的干燥速度较慢,但仍然能够达到一定的干燥效果。

3. 纸张干燥实验:纸张是一种吸水性较强的材料,我们将其放置在干燥箱中,设定温度为50℃,时间为3小时。

实验结果显示,纸张的水分含量从初始的30%降低到了10%。

说明纸张在中等温度下,能够较快地干燥,并且干燥效果较好。

四、实验总结通过本次干燥实验,我们得出了以下结论:1. 温度对干燥速度和效果有重要影响:较高温度能够加快干燥速度,但过高的温度可能导致物质的质量损失;2. 不同物质的干燥速度和效果存在差异:易溶于水的物质干燥速度较快,吸水性较强的材料干燥速度较慢;3. 干燥时间的长短也会影响干燥效果:适当延长干燥时间可以提高干燥效果,但过长的时间可能造成能源浪费。

干燥的实验报告

干燥的实验报告

干燥的实验报告干燥的实验报告一、引言干燥是一项广泛应用于工业、实验室以及日常生活中的重要技术。

通过去除材料中的水分,可以提高产品的质量和稳定性。

本实验旨在探究不同干燥方法对材料的影响,以及干燥过程中可能出现的问题和解决方案。

二、实验材料与方法1. 实验材料:- 鲜橙片- 烘箱- 风扇- 干燥剂(二氧化硅)2. 实验方法:1)将鲜橙片均匀分布在两个试验组中,一个放入烘箱,另一个放在通风良好的室内。

2)观察并记录两组橙片的干燥过程,包括颜色变化、质地变化等。

3)在烘箱中加入干燥剂,观察其对橙片干燥速度的影响。

三、实验结果与讨论1. 不同干燥方法对材料的影响:通过对比烘箱和自然通风两种干燥方法,我们发现烘箱能够更快速地将橙片中的水分去除,而自然通风所需时间较长。

这是因为烘箱提供了更高的温度和较低的湿度,有利于水分的蒸发和扩散。

然而,过高的温度可能导致橙片的质地变硬,影响其口感。

2. 干燥过程中可能出现的问题与解决方案:a) 氧化问题:在干燥过程中,橙片暴露在空气中,容易发生氧化反应,导致品质下降。

解决方案是使用氧化剂,如二氧化硅,来吸附橙片周围的氧气,减少氧化反应的发生。

b) 水分不均匀问题:由于橙片的形状和大小不一,干燥速度可能存在差异,导致一些橙片干燥不均匀。

解决方案是在干燥过程中定期翻动橙片,以保证其均匀受热和通风。

四、实验结论通过本实验,我们得出以下结论:1. 烘箱比自然通风更适合进行快速干燥,但需要控制好温度,以避免质地变硬。

2. 使用干燥剂可以减少氧化反应的发生,提高干燥效果。

3. 定期翻动材料可以避免干燥不均匀的问题。

五、进一步研究本实验仅探究了干燥方法对橙片的影响,未来的研究可以扩展到其他材料,如蔬菜、肉类等。

此外,还可以研究不同干燥剂对干燥效果的影响,以及温度、湿度等参数的优化。

六、结语干燥是一项重要的技术,广泛应用于各个领域。

通过本实验,我们了解了不同干燥方法对材料的影响,以及干燥过程中可能出现的问题和解决方案。

干燥程度测量实验报告

干燥程度测量实验报告

一、实验目的1. 理解干燥程度测量的基本原理和方法。

2. 掌握使用干燥度测定仪进行实验操作。

3. 分析干燥程度与时间、温度等因素的关系。

4. 确定不同物料在不同干燥条件下的干燥速率。

二、实验原理干燥程度是指物料中水分含量的多少,通常以水分质量占物料总质量的比例表示。

干燥程度测量主要基于物料中水分含量的变化,通过干燥度测定仪等设备,在恒定的干燥条件下,测定物料在一定时间内的水分蒸发量,从而计算干燥程度。

三、实验材料与设备1. 实验材料:不同含水量的湿物料(如玉米、小麦、大米等)。

2. 实验设备:干燥度测定仪、电子天平、烘箱、干燥皿、温度计、湿度计等。

四、实验步骤1. 准备实验材料:将不同含水量的湿物料分别称重,放入干燥皿中。

2. 设置干燥条件:将烘箱预热至设定温度,保持恒温。

3. 测量初始水分:使用电子天平称量干燥皿及物料的质量,记录数据。

4. 干燥实验:将干燥皿连同物料放入烘箱中,设定干燥时间,开始干燥实验。

5. 定时测量:在实验过程中,每隔一定时间(如30分钟)取出干燥皿,使用电子天平称量干燥皿及物料的质量,记录数据。

6. 计算干燥程度:根据实验数据,计算不同时间点的干燥程度,绘制干燥曲线。

五、实验结果与分析1. 实验结果:| 时间(分钟) | 玉米干燥程度(%) | 小麦干燥程度(%) | 大米干燥程度(%) ||--------------|------------------|------------------|------------------|| 0 | 30 | 25 | 20 || 30 | 20 | 18 | 15 || 60 | 15 | 13 | 12 || 90 | 12 | 10 | 9 || 120 | 10 | 8 | 8 |2. 分析:(1)干燥速率:由实验数据可知,玉米、小麦、大米的干燥速率不同,这与物料本身的特性有关。

(2)干燥程度与时间的关系:随着干燥时间的增加,干燥程度逐渐提高。

干燥实验实验报告数据处理

干燥实验实验报告数据处理

干燥实验实验报告数据处理引言干燥实验是一种常见的实验方法,用于研究材料在不同湿度条件下的干燥特性。

本实验旨在对干燥实验进行数据处理,分析得出结论并提出进一步研究的建议。

数据收集为了进行干燥实验,我们收集了一批材料样品,并在不同的湿度条件下进行干燥实验。

每个样品在干燥的过程中,我们记录下了不同时间点的湿度和质量数据。

共收集了X个样品的数据。

数据处理方法为了分析干燥实验数据,我们采用了以下数据处理方法:1. 数据清洗在进行数据处理之前,我们首先对数据进行清洗,包括去除异常值和缺失值的处理。

对于异常值,我们采用了3σ原则进行剔除。

对于缺失值,我们选择了插值法进行填补。

2. 质量-时间曲线绘制为了直观地观察样品质量随时间的变化趋势,我们绘制了每个样品的质量-时间曲线。

通过观察曲线,我们可以初步判断样品的干燥速率及干燥特性。

3. 干燥速率计算为了进一步 quant 某个样品的干燥速率,我们计算了样品在不同时间点的干燥速率。

干燥速率的计算公式采用了质量-时间曲线的斜率,即:干燥速率= Δ质量/ Δ时间通过计算干燥速率,我们可以得到每个样品在不同湿度下的干燥速率数据。

数据分析与结果根据上述数据处理方法,我们对干燥实验数据进行了分析,并得到了以下结果:1. 质量-时间曲线观察从质量-时间曲线的观察中,我们发现样品的质量在干燥初期迅速下降,随着时间的推移,下降速度逐渐变缓。

这表明样品的干燥过程存在一个快速干燥期和一个缓慢干燥期。

2. 干燥速率分析通过计算干燥速率,我们发现样品在不同湿度条件下的干燥速率存在差异。

低湿度条件下,样品的干燥速率较快,而在高湿度条件下,干燥速率明显减慢。

这与我们的经验常识相符,即湿度越低,材料的干燥速率越快。

3. 干燥特性分析根据实验结果,我们可以初步得出样品的干燥特性:在干燥初期,样品的干燥速率较快,随着时间的推移,干燥速率逐渐减慢,最终趋于稳定。

结论与建议基于以上分析结果,我们得出了以下结论和建议:结论1.样品的干燥过程可以划分为快速干燥期和缓慢干燥期。

干燥实验实验报告结果及分析是什么(两篇)

干燥实验实验报告结果及分析是什么(两篇)

引言概述:干燥实验是化学实验中常用的一种实验方法,通过加热或者其他方式将溶液或固体样品中的水分蒸发或去除,从而达到干燥的目的。

干燥实验的实验报告结果及分析是对实验过程、实验数据以及实验结果进行综合分析和总结的过程。

本文旨在对干燥实验的实验报告结果进行详细分析,并提供专业的阐述。

正文内容:一、实验过程1. 确定实验目的a. 文献调研:了解干燥实验的原理和应用领域。

b. 实验设计:确定实验方案,包括实验条件、实验步骤等。

2. 实验操作a. 准备样品:选择适合的样品进行干燥实验。

b. 仪器准备:准备好所需的实验仪器和设备。

c. 实验操作:按照实验方案进行仔细操作,注意安全。

3. 实验记录a. 记录实验参数:记录实验过程中的温度、湿度等参数。

b. 记录实验结果:记录实验前后样品的重量变化等实验结果。

4. 数据处理a. 数据整理:整理并归纳实验数据,准备进行分析。

二、实验数据分析1. 温度变化a. 根据实验记录获取实验过程中温度的变化趋势。

b. 分析温度变化对实验结果的影响,如温度过高或过低可能影响干燥效果。

2. 湿度变化a. 根据实验记录获取实验过程中湿度的变化趋势。

b. 分析湿度变化对实验结果的影响,如湿度过高可能影响干燥速度。

3. 重量变化a. 根据实验记录获取实验前后样品的重量变化。

b. 分析重量变化对实验结果的影响,如重量减少可能表示水分被蒸发或去除。

4. 干燥效果评价a. 根据重量变化和实验目的评价干燥效果的好坏。

b. 分析实验结果与预期目标的差距,给出改进意见。

5. 结果及分析总结a. 对实验结果进行综合分析和总结,包括实验步骤、实验条件、实验结果等方面。

b. 分析实验结果的可重复性和可靠性,给出信度评价。

三、干燥实验应用领域分析1. 化学实验a. 在化学实验中,干燥实验常被用于去除反应产物中的水分。

b. 分析干燥实验在化学实验中的应用效果和注意事项。

2. 生物学实验a. 在生物学实验中,干燥实验常被用于去除生物样品中的水分。

【精品】干燥实验报告

【精品】干燥实验报告

【精品】干燥实验报告一、实验目的研究干燥过程的基本规律,掌握干燥过程中湿度、温度、时间等因素的影响,了解干燥设备的结构和工作原理,并掌握干燥操作的基本技能和注意事项。

二、实验原理在干燥过程中,湿物质从初始状态的湿态变成最终的干态,其含水量的变化与干燥的时间、温度、湿度等因素有关。

干燥的速率与温度的高低密切相关,温度会引起物质内部水分的蒸发,从而加速干燥速度。

而湿度的改变则会影响干燥速率的大小。

保持干燥环境的湿度低于物质的水分饱和度能促进干燥的进行。

换言之,适当的温度和湿度条件都是实现高速干燥的前提条件。

三、实验设备和仪器1.干燥箱、卧式加热器、电子秤、温湿度计。

2.实验室用具:钟表、托盘、管子、药勺、滤纸、实验笔记本等。

四、实验步骤1.制备待测样品,将其用温水或蒸馏水浸泡一定时间,以达到一定的湿度,然后放置于室温下晾干一段时间。

2.记录样品质量,称重大约1克左右的样品,记录下来。

3.在干燥箱内平铺草纸。

4.将待测样品均匀地铺在草纸上,记录下来。

5.放入干燥箱内,在加热器上加热,设置温度和时间。

将温度设定为50~60℃,时间设定为30分钟。

6.每隔10分钟记录一次样品重量和温度湿度计的读数。

7.直到干燥结束,依次记录样品质量、干燥时间、干燥温度、湿度等数据。

8.取出样品,称重记录下其重量。

五、实验数据处理按以下公式计算出样品的含水量,比较不同干燥条件下样品的含水量和干燥效率。

6.实验结果1.不同干燥温度下样品含水量的变化。

2.不同干燥时间下样品含水量的变化。

3.不同干燥湿度下样品含水量的变化。

7.实验分析1.从实验结果可以看出,在合适的温度下,湿度越小,干燥速率越快,样品的含水量也会更少。

2.干燥温度越高,干燥速率越快,但超过一定温度会使样品脆化、变色、失去营养成分。

3.不同干燥时间下样品的含水量随干燥时间的延长而减少,但时间过长同样会导致样品品质下降。

8.注意事项1.样品应在相同的温度下进行称重。

干燥实验报告

干燥实验报告

干燥实验报告一、实验目的干燥操作是化工生产中常见的单元操作之一,本次实验的目的在于:1、熟悉常压厢式干燥器的构造和操作方法。

2、测定在恒定干燥条件下物料的干燥曲线和干燥速率曲线。

3、了解湿物料的临界含水量及平衡含水量的概念及其影响因素。

二、实验原理在干燥过程中,物料的含水量随时间而变化。

干燥曲线是指物料含水量与干燥时间的关系曲线。

干燥速率是指单位时间内在单位干燥面积上气化的水分质量,干燥速率曲线则表示干燥速率与物料含水量的关系。

物料在干燥过程中,一般经历预热阶段、恒速干燥阶段和降速干燥阶段。

在恒速干燥阶段,干燥速率保持恒定,主要受外部条件(如空气的温度、湿度和流速等)影响;在降速干燥阶段,干燥速率逐渐下降,主要受物料内部水分扩散速率的限制。

三、实验装置与材料1、实验装置本次实验采用的是常压厢式干燥器,主要由干燥室、电加热装置、风机、温度传感器、湿度传感器等组成。

2、实验材料选用湿的某种物料,其初始含水量较高。

四、实验步骤1、称取一定量的湿物料,记录其初始质量。

2、将湿物料均匀地平铺在干燥室内的托盘上。

3、开启电加热装置和风机,调节空气温度、流速等参数至设定值。

4、每隔一定时间(如 5 分钟)取出少量物料,迅速称重,记录质量和时间。

5、当物料的质量基本不再变化时,停止实验。

五、实验数据记录与处理1、实验数据记录|时间(min)|物料质量(g)|||||5 |_____||10 |_____||15 |_____||||2、计算物料的含水量含水量=(湿物料质量干物料质量)/湿物料质量 × 100%3、绘制干燥曲线以时间为横坐标,含水量为纵坐标,绘制干燥曲线。

4、计算干燥速率干燥速率=(相邻两次含水量之差)/(相邻两次测量的时间间隔)5、绘制干燥速率曲线以含水量为横坐标,干燥速率为纵坐标,绘制干燥速率曲线。

六、实验结果与分析1、干燥曲线分析从干燥曲线可以看出,物料在干燥初期含水量迅速下降,随后下降速度逐渐减缓。

仪器的干燥实验报告

仪器的干燥实验报告

一、实验目的1. 了解仪器干燥的基本原理和方法。

2. 掌握不同类型仪器的干燥方法及注意事项。

3. 培养实验操作技能,提高实验安全意识。

二、实验原理仪器干燥是指将仪器中的水分或湿气除去,使仪器达到干燥状态。

根据仪器材质和实验要求,干燥方法可分为自然干燥、加热干燥、真空干燥等。

本实验主要介绍自然干燥和加热干燥两种方法。

三、实验仪器与试剂1. 实验仪器:烘箱、干燥箱、干燥器、酒精灯、镊子、剪刀等。

2. 实验试剂:无水硫酸钠、氯化钙、硅胶等干燥剂。

四、实验步骤1. 自然干燥法(1)将待干燥的仪器洗净,用蒸馏水冲洗干净,置于通风处晾干。

(2)待仪器表面水分蒸发后,放入干燥器中,加入适量的干燥剂,如无水硫酸钠、氯化钙、硅胶等。

(3)密封干燥器,放置一段时间,使仪器内部水分蒸发。

2. 加热干燥法(1)将待干燥的仪器洗净,用蒸馏水冲洗干净,置于烘箱中。

(2)将烘箱温度设定在100-120℃,开启烘箱,使仪器内部水分蒸发。

(3)待仪器干燥后,关闭烘箱,待温度降至室温后取出仪器。

五、实验结果与分析1. 自然干燥法实验结果显示,经过自然干燥的仪器,其内部水分含量较低,符合实验要求。

2. 加热干燥法实验结果显示,经过加热干燥的仪器,其内部水分含量同样较低,符合实验要求。

六、实验结论1. 自然干燥法和加热干燥法均可有效去除仪器内部水分,达到干燥目的。

2. 自然干燥法操作简单,但干燥时间较长;加热干燥法干燥速度快,但需注意温度控制,防止仪器损坏。

七、注意事项1. 实验过程中,应注意安全,避免火灾等事故发生。

2. 使用加热干燥法时,温度不宜过高,以免损坏仪器。

3. 干燥剂的选择应根据实验要求进行,如无水硫酸钠、氯化钙、硅胶等。

4. 干燥过程中,应定期检查仪器内部水分含量,确保干燥效果。

八、实验心得通过本次实验,我掌握了仪器干燥的基本原理和方法,提高了实验操作技能。

同时,我认识到实验过程中安全意识的重要性,以及合理选择干燥剂的重要性。

干燥实验实验报告书

干燥实验实验报告书

一、实验目的1. 了解气流常压干燥设备的流程和工作原理;2. 测定物料的干燥曲线和干燥速率曲线;3. 测定传质系数KH。

二、实验原理干燥实验是在恒定的干燥条件下进行的,即实验操作为间歇式,采用大量的热空气干燥少量的湿物料,空气进出干燥器的温度、湿度、流速及物料的接触方式不变。

干燥曲线是指物料的平均干基湿度和温度随干燥时间而变化的关系曲线。

干燥速率曲线则是指干燥速率随平均干基湿度而变化的曲线。

平均干基湿度是指1kg绝干物料中含水分的Kg数。

绝干物料是把物料放在烘箱内,保持物性不变的条件下干燥至恒重而得。

1. 干燥曲线:如图2-2-8-1所示,干燥曲线分为三个阶段:AB为预热阶段,BC为恒速阶段,CD为降速阶段。

2. 干燥速率曲线:如图2-2-8-2所示,干燥速率曲线可以由干燥曲线的数据整理而得。

C点对应的湿度叫临界湿度Xo,E点对应的湿度叫平衡湿度XP。

三、实验仪器与材料1. 实验仪器:- 气流常压干燥设备- 温湿度计- 烘箱- 称量瓶- 烧杯- 砝码- 计时器- 绘图仪2. 实验材料:- 湿物料- 热空气四、实验步骤1. 准备工作:将湿物料放入干燥设备中,启动设备,调整热空气温度和湿度,记录初始条件。

2. 干燥过程:在恒定的干燥条件下,每隔一定时间取样,称量物料质量,测量物料温度和湿度,记录数据。

3. 数据处理:根据实验数据,绘制干燥曲线和干燥速率曲线。

4. 计算传质系数KH:根据干燥速率曲线和物料特性,计算传质系数KH。

五、实验结果与分析1. 干燥曲线:根据实验数据,绘制干燥曲线,分析物料干燥过程的变化规律。

2. 干燥速率曲线:根据干燥曲线,绘制干燥速率曲线,分析物料干燥速率的变化规律。

3. 传质系数KH:根据干燥速率曲线和物料特性,计算传质系数KH,分析物料干燥过程中的传质机理。

六、实验结论1. 通过干燥实验,了解了气流常压干燥设备的流程和工作原理。

2. 测定了物料的干燥曲线和干燥速率曲线,分析了物料干燥过程的变化规律。

最新干燥实验实验报告

最新干燥实验实验报告

最新干燥实验实验报告实验目的:探究不同条件下物质干燥效率的变化,并分析影响干燥过程的主要因素。

实验材料:- 待干燥物质样品(如石膏粉)- 干燥箱- 电子天平- 温度计- 湿度计- 计时器- 保护眼镜和手套实验方法:1. 准备待干燥的石膏粉样品,记录其初始质量。

2. 将干燥箱预热至预定温度(如50°C、80°C和110°C)。

3. 将等量的石膏粉样品分别放入三个不同的干燥箱中。

4. 记录初始时间,并开始计时。

5. 每隔10分钟测量并记录各样品的质量,直至样品质量不再发生变化。

6. 同时监测并记录干燥箱内的温度和湿度。

7. 比较不同温度下样品干燥的时间和最终质量,分析温度对干燥效率的影响。

实验结果:- 50°C条件下,石膏粉样品干燥时间为60分钟,最终质量减轻了20%。

- 80°C条件下,石膏粉样品干燥时间为40分钟,最终质量减轻了25%。

- 110°C条件下,石膏粉样品干燥时间为30分钟,最终质量减轻了30%。

实验讨论:实验结果显示,随着温度的升高,石膏粉样品的干燥速率加快,干燥时间缩短,质量减轻的百分比也有所增加。

这表明温度是影响干燥效率的重要因素。

此外,实验中也观察到湿度的变化,湿度越低,干燥速度越快。

因此,在实际应用中,控制干燥环境的温度和湿度是提高干燥效率的关键。

结论:通过本次实验,我们得出结论,提高干燥温度可以有效加快物质的干燥速度,但同时也需要考虑能耗和物质本身对高温的耐受性。

未来的研究可以进一步探讨其他因素,如气流速度、样品的形状和大小等,对干燥效率的影响。

洞道干燥实验实验报告

洞道干燥实验实验报告

一、实验目的1. 了解洞道干燥装置的基本结构、工艺流程和操作方法。

2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。

3. 掌握根据实验干燥曲线求干燥速率曲线、恒速阶段干燥速率、临界含水量、平衡含水量等干燥特性数据的分析方法。

4. 研究干燥条件对干燥过程特性的影响。

二、实验原理洞道干燥是一种连续式干燥方式,适用于大批量物料的干燥。

干燥过程中,物料在洞道内连续移动,与干燥介质(热空气)进行热交换,从而实现水分的蒸发。

干燥过程分为三个阶段:1. 预热阶段:物料表面水分开始蒸发,温度逐渐升高。

2. 恒速干燥阶段:物料表面水分蒸发速度达到最大值,干燥速率基本保持恒定。

3. 降速干燥阶段:物料内部水分开始蒸发,干燥速率逐渐降低。

干燥特性曲线是指干燥过程中物料干基含水量与干燥时间的关系曲线。

干燥速率曲线是指干燥过程中物料干基含水量与干燥速率的关系曲线。

三、实验装置1. 洞道干燥装置:长1.10米、宽0.125米、高0.180米,加热功率500w—1500w,空气流量1-5m/min,干燥温度40--120℃,天平量程0-200g,最小秤量值0.1g,干、湿球温度计。

2. 风机:用于输送干燥介质。

3. 孔板流量计:用于测量空气流量。

4. 倾斜式压差计:用于测量空气压力。

5. 风速调节阀:用于调节空气流量。

6. 电加热器:用于加热干燥介质。

7. 干燥室:用于放置待干燥物料。

8. 试样架:用于放置待干燥物料。

9. 热重天平:用于测量物料重量。

10. 电流表:用于测量电加热器电流。

11. 干球温度计、湿球温度计、触点温度计:用于测量干燥介质温度。

四、实验步骤1. 准备实验材料:待干燥物料、洞道干燥装置、相关仪器设备。

2. 安装洞道干燥装置,连接相关管道和仪器。

3. 开启风机,调节空气流量至预定值。

4. 打开电加热器,调节加热功率至预定值,使干燥室温度达到恒定值。

5. 将待干燥物料放入干燥室,确保物料均匀分布。

6. 开启天平,记录物料初始重量。

干燥实验实验报告

干燥实验实验报告

干燥实验实验报告实验名称:干燥实验实验目的:1. 了解干燥的原理和方法。

2. 掌握不同物体干燥的时间和方法。

3. 掌握各种物体干燥时可能遇到的问题及解决方法。

实验原理:干燥是通过蒸发物质中的水分来将物体变得更加干燥。

在本实验中,我们将探究三种不同物体的干燥过程–棉布、铁钉和橘子皮–并比较不同物体所需的时间和方法。

实验步骤:1. 准备三个试管,将它们标记为“棉布”、“铁钉”和“橘子皮”。

2. 将一块棉布、一些钉子和一些橘子皮放入相应的试管中。

3. 每个试管都要用蓝色封口膜密封,使里面的气体保持不变。

4. 用电子天平称出每个试管中物体的质量,记录下来。

5. 将三个试管并排放在室温下,保持室温不变化。

6. 每隔1天记录一次每个试管的质量,直到它们不再减少。

7. 分析数据并比较三种物体的干燥速度。

实验结果:在棉布、铁钉和橘子皮的干燥实验中,我们发现三种物体的干燥速度各不相同。

具体来说,铁钉的干燥速度最快,两天后就已经减轻了1.7克,而橘子皮和棉布的干燥速度相对较慢,分别用了10天和7天才完全干燥。

我们还注意到,封口膜非常重要,因为它可以防止试管内外的气体混合。

当然,在干燥过程中还可能遇到一些问题。

比如,某些物体可能会变硬或僵硬。

这时,我们可以在干燥过程中轻轻摇晃试管以防止物体变形。

结论:干燥是一种常见的处理方法,可以去除物体中的水分,从而延长物体的寿命。

不同物体有不同的干燥速度和方法,并且在干燥过程中还可能遇到一些问题。

因此,我们应该遵循正确的干燥方法,认真注意干燥过程中的问题,以确保实验结果的准确性。

干燥实验实验报告

干燥实验实验报告

干燥实验实验报告1. 实验目的本实验旨在研究不同条件下,物质的干燥过程,并分析其干燥速度和干燥效果。

2. 实验原理在自然界中,物质会受到空气中的水分的影响而变得湿润。

通过干燥实验,我们可以利用一定的条件和方法,将物质中的水分逐步去除,达到干燥的目的。

常用的干燥方法包括加热干燥、吸附干燥和通风干燥等。

加热干燥的基本原理是通过加热物质使其温度升高,从而增加分子的热运动,进而促使水分分子从物质中蒸发出来。

吸附干燥是利用一定净化剂(如硅胶、分子筛等)对物质中的水分进行吸附,从而实现干燥的目的。

通风干燥则是通过通风设备将潮湿空气排出,以保持物质周围的干燥环境。

3. 实验步骤本实验采用加热干燥的方法进行,具体步骤如下:1.准备实验所需材料:含有水分的物质样品、干燥设备(如烘箱)、温度计等。

2.将物质样品放入烘箱中,并设置适当的温度。

3.记录开始时物质样品的初始质量和温度。

4.在设定的温度下进行干燥,定时记录物质样品的质量和温度。

5.当物质样品的质量基本不再变化时,停止干燥,并记录最终的质量和温度。

6.计算干燥过程中物质的质量损失率和干燥速度。

4. 实验结果与分析根据实验步骤进行干燥实验后,得到了如下的实验结果:时间 (min) 温度 (℃) 质量 (g)0 25 5010 40 4820 50 4630 60 4440 70 4250 80 4060 90 3870 90 38根据上表可以计算出物质样品的质量损失率和干燥速度。

质量损失率可以通过计算相邻时间点的质量差除以时间差得到,干燥速度则是质量损失率的绝对值。

在本实验中,初始质量为50g的物质样品在70分钟内降低了12g,故质量损失率为12g/70min = 0.171g/min,干燥速度为0.171g/min。

5. 实验结论通过本实验可以得出如下结论:1.加热干燥是一种常用的干燥方法,能够使物质中的水分快速蒸发。

2.干燥速度与温度相关,温度越高,干燥速度越快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如读数为 0.57,则绝干物料量为 1-0.57=0.43g (4)蒸发掉的水量为 0.85-0.43=0.42g 当天平处于工作状态时,不能进行取放砝码或试样、调零、 开门等。
五、实验数据: 1.风道干燥实验
第一组温度 100℃,第二组温度 115℃。
时间( s ) 第一组( X 1 /g ) 第二组( X 2 /g ) 时间( s ) 第一组( X 1 /g ) 第二组( X 2 /g )
1220
1240 1260 1280 1300 1320 1340 1360 1380 1400 1420 1440 1460 1480 1500 1520 1540 1560 1580 1600 1620 1640 1660 1680 1700 1720 1740 1760 1780
6.723 6.699 6.677 6.655 6.634 6.614 6.596 6.578 6.561 6.545 6.531 6.517 6.504 6.492 6.481 6.471 6.462 6.454 6.447 6.440 6.434 6.429 6.424 6.420 6.416 6.413 6.411 6.408 6.406
0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780
8.53 8.47 8.37 8.25 8.14 8.04 7.95 7.84 7.74 7.64 7.53 7.45 7.34 7.25 7.18 7.05 6.96 6.89 6.80 6.72 6.63 6.54 6.49 6.41 6.35 6.30 6.25
运动的固有频率(也即红外线或远红外线的发射波长和被干燥物料的吸收波长)相匹配时,引起物料 中的分子强烈振动,在物料的内部发生激烈摩擦产生热而达到干燥的目的。 在红外线或远红外线干燥中, 由于被干燥的物料中表面水分不断蒸发吸热, 使物料表面温度降低, 造成物料内部温度比表面温度高,这样使物料的热扩散方向是由内往外的。同时,由于物料内存在水 分梯度而引起水分移动,总是由水分较多的内部向水分含量较小的外部进行湿扩散。所以,物料内部 水分的湿扩散与热扩散方向是一致的,从而也就加速了水分内扩散的过程,也即加速了干燥的进程。
9.04 8.94 8.82 8.68 8.56 8.42 8.29 8.17 8.05 7.91 7.80 7.65 7.54 7.43 7.32 7.21 7.11 7.03 6.96 6.87 6.80 6.73 6.68 6.62 6.56 6.51 6.46
810 840 870 900 930 960 990 1020 1050 1080 1110 1140 1170 1200 1230 1260 1290 1320 1350 1380 1410 1440 1470 1500 1530 1560 1590
二、实验原理
干燥速度:单位时间内,单位干燥面积上汽化的水分质量,即
U
dW Sdt
U——干燥速度,kg 水/(m2*s ) S——干燥面积,m2 W——汽化的水分质量,kg t——时间,s 因为
dW Gc' dX
所以
Gc' dX U Sdt
Gc ——绝干物料的质量,kg X——干基含水量,以绝干物料为基准表示的含水量。 干燥曲线是表示物料含水量(kg 水/kg 干物料)与干燥时间 t 的关系曲线。干燥速度曲线是干燥速
度与物料含水量的关系曲线。本实验采取在恒定干燥条件下,采用大量空气干燥少量物料,保证空气 进出干燥器的状态、气速和空气的流动方式均不变。 对流干燥是由热干燥介质将热能传给湿物料,使物料内部水分汽化的过程。 红外线和远红外线干燥器是利用辐射传热干燥的一种方法。红外线或远红外线辐射器所产生的电 磁波,以光的速度直线传播到达被干燥的物料,当红外线或远红外线的发射频率和被干燥物料中分子
二:温度 110℃
初始质量:8.653g
时间 (s )
质量 (X / g )
时间 (s )
质量 (X / g )
时间 (s )
质量 (X / g )
时间 (s )
质量 (X / g )
60 90 120 150 180 210 240 270 300 330 360 390
8.381 8.229 8.100 7.973 7.849 7.727 7.608 7.493 7.380 7.266 7.154 7.042
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100 2120 2140 2160 2180 2200 2220 2240 2260 2280 2300
6.404 6.402 6.401 6.399 6.398 6.397 6.396 6.395 6.394 6.393 6.393 6.392 6.391 6.391 6.391 6.390 6.390 6.390 6.389 6.389 6.389 6.388 6.388 6.388 6.388 6.388
三:温度 120℃
时间 (m i n ) 厚质量 (X / g )
厚样品初始质量:8.717g
薄质量 (X / g ) 时间 (m i n ) 厚质量 (X / g )
薄样品初始质量:8.826g
薄质量 (X / g ) 时间 (m i n ) 厚质量 (X / g ) 薄质量 (X / g )
60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540
420 450 480 510 540 570 600 630 660 690 720 750
6.934 6.829 6.728 6.639 6.548 6.467 6.389 6.313 6.242 6.174 6.111 6.051
780 810 840 870 900 930 960 990 1020 1050 1080 1110
5.996 5.945 5.900 5.862 5.830 5.804 5.784 5.770 5.759 5.750 5.744 5.740
1140 1170 1200 1230 1260 1290 1320 1350 1380 1410 1440 1470
5.737 5.734 5.733 5.731 5.73 5.729 5.728 5.728 5.728 5.727 5.727 5.727
红外干燥实验
(1)通电后开启天平(左下方黑手大旋钮)及红外灯开关(左下方) ,此时投影屏级红外灯应亮。 打开仪器门,在天平盘上放上小方盘及适量(1~3)克砝码,用红外灯预热 10~20 分钟后用前方小锤调 零。 (2)取出砝码,将适量湿物料均匀铺平在小方盘内、放入天平称重。 以 1g 砝码为例,此时读数如为 0,则湿重为 1g。 (3)如为 0.15,则湿重为 1-0.15=0.85g。以此类推,读数越大,重量越小。 打开红外灯加热,读数呈增加趋势,及时地每隔一定时间读数(时间间隔视加热物料量及其初始湿度 而定) 、记录,直到指针不动,即为绝干物料重量。
三、实验装置与流程
图 1 风道干燥实验装置
其中孔板流量计标定公式:
V 1.56 R 0.55
V——空气流量, m / h R——压差读数计, mmH 2O
3
红外干燥实验装置 2
四、实验步骤及注意事项 风道干燥实验
1)实验前准备 (1) 现场熟悉试验装置和流程 (2) 检查湿球温度计是否安装正确,加水到指定液面。 (3) 测量试样的绝干质量和尺寸。 (4) 将试样充分浸湿,注意放贷入干燥器时以不带水为准。 2) 实验操作步骤 (1)启动风机,调节流量。 (2)接通加热电阻进行预热,一般调节常热电流 2.0A,加热电流 3~4A, 控温设定可取 70 度,为 消除重传感器零点飘移的的影响,预热时间可适当延长。 (3)待重传感器零点值和湿球温度读数基本不变,控温在 70 度不变时,记下流量,各点温度值 和传感器零点值。将准备好的湿试件轻轻放入干燥器中(注意手不能压按传感器的托架,避免试件接 触器壁) ,记下湿物料的初重。 (4)用秒表记录时间间隔(1~2 分钟)内称重传感器显示的质量值,连续测试,直至物料质量保 持不变为止。 (5)在测试过程中注意每隔一定时间(如 4~6 分钟)检查一下传感器零点飘移的情况,并记录。 (6)在对测试过程中应随时监测干湿球温度(显示值应维持不变,误差 0.5 度) 。若发生变化,则 表明系统为达到稳定或湿球温度计缺水。 (7)停秒表前,记下所有各点的温度,流量值。停表后立即取出试件,注意不要压按传感器的托 架。 (8)停止加热,风机继续运行几分钟后再停机。 3) 注意事项 (1)在检查零点漂移情况时,抬放试件应当小心,注意不要把托盘碰歪或是托盘转动,以保证托 盘测定质量的准确性。 (2)传感器托盘亦不可用手碰触,并避免试件接触器壁,影响测定结果。 (3)实验结束后,应先关闭加热系统,风机继续运转使热空气排出后方可停机。
640 660 680 700 720 740 760 780 800 820 840 860 880 900 920 940 960 980 1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200
7.874 7.816 7.760 7.705 7.652 7.60ห้องสมุดไป่ตู้ 7.551 7.502 7.454 7.408 7.363 7.321 7.279 7.238 7.199 7.160 7.124 7.088 7.052 7.017 6.984 6.950 6.918 6.887 6.857 6.829 6.801 6.774 6.748
相关文档
最新文档